A CLASS OF FOUR DIMENSIONAL GALE POLYTOPES

T. BISZTRICZKY

ABSTRACT. For each k£ > 6, we introduce a convex 4-polytope with 3k — 7 vertices
such that there is a complete description of each of its facets based upon a labelling (total
ordering) of the vertices that satisfies a part of Gale’s Evenness Condition.

DEFINITIONS

Let Y be a set of points in R%. Then conv Y and aff Y denote, respectively, the convex
hull and affine hull of Y. f Y = {1, ..., Ym} is finite, we set

Y15+, Ym) = conv Y and (y1,...ym) = aff Y.

Thus, as usual, [y;,yo] is the closed segment with end points y; and ys,.

Let P be a (convex) d-polytope. For —1 < i < d, let F;(P) denote the set of i-faces of P
and f;(P) = |F;(P)|. For convenience, we usually let F(P) = F;_;(P), the set of facets of
P. We recall that the face lattice of P is the collection of all faces of P ordered by inclusion,
and that two polytopes are (combinatorially) equivalent if their face lattices are isomorphic.

Next, a facet system of P is a pair (C,N) where N is a finite set, C C 2V and there is a
bijection h : N — F,(P) such that

F(P) = {conv ({h(n)|n € C})|C € C}.
We recall the following form (8] or [9], p. 71:

1. If (C,N) and(C',N) are facet systems of conver d-polytopes then C € C' implies that
C =C’', and consequently the two polytopes are equivalent.

Finally, let H be a hyperplane of R* such that H N (int P) = @, and let y be a point of
R*\H. If y and int P are (are not) in the same open half-space determined by H, we say
that y is beneath (beyond) H with respect to P. If H = aff F' for some F € F(P), we say
that y is beneath F' (beyond F') provided y is beneath (beyond) H with respect to P.

As noted above, we are interested in totally ordering the vertices of a polytope.

Let V = Fo(P) = {1, %2, ..., Ty }, n > dsl. We set z; < z; if, and only if, i < j, and call
Ty < Ty < ... < T, a verter array of P. We say that P is a Gale polytope if there exists
a vertex array of P such that for any ' € F(P) and any z; # z; in V\F, z; and z; are



separated in that vertex array by an even number of vertices of F'. If T < Ty < ... <, isthe
vertex array in the preceding definition, we say also that P is Gale with z; < 29 < ... < z,.

We note that a convex polygon that is Gale with Z1 < Z3 < ... < T has the edges [z,, 7]
and [, ;1] for i = 1,....n — 1. Since such a labelling of vertices is always possible, convex
polygons are Gale.

As other examples of Gale polytopes, we cite the cyclic d-polytopes (cf. [5],[6]) the
ordinary 3-polytopes (cf. [2]) and the d-multiplices for all odd d (cf. [3]). For each of these
polytopes, there is a complete description of all the facets irregardless of how many vertices
they may have. In general and already for d = 4, such a description is a very difficult task
and has been accomplished mostly for polytopes with “few” vertices, cf. for example [1], [4]
and [7].

The preceding three articles are concerned with neighbourly or simplicial d-polytopes for
d = 4 and 6 and the enumeration of their combinatorial types. Werecall that a neighbourly d-
polytope is a generalization of a cyclic d-polytope P because any [d/2] vertices of P determine
a face of P. We present a generalization of P that focuses on Gale’s Evenness Condition.
The importance of this approach is that there is necessarily more information about the
facial structure of the resultant polytope, and that this information is available even if the
polytopes has “many” vertices.

We begin this investigation by introducing for each k > 6 and n = 3k — 7, a 4-polytope
F, that is Gale with 7 < zo < ... < Zn. Now, the origin of these P, is combinatorial. In
particular, they are determined in the following manner:

Start with a 4-polytope that is not a simplex and that is cyclic with the vertex array
Ty < Ty < ... <z (this accounts both for k and for k > 6). For i = 1,2, ..., adjoin a vertex
Tirx 50 that with z; < 2y < ... < 244, [z1,...,zi4x) is Gale, [Zit1, .., Ziyx] is cyclic and
[, Tita, ..., Tig) is not cyclic (call such a 4-polytope k-sequentially cyclic). Always choosing
Tiyr 50 that as many vertices as possible may be adjoined to (21, ..., T;;1], we obtained that
1+ k<3k-7.

Clearly, such a combinatorial approach presents us with two problems:

Is P, realizable in R* for each n? -

If P, is realizable in R?, is there a realzation which is k-sequentially cyclic?

In this article, we deal with the first problem. To be precise, we describe P, in terms of
all of its facets. Next, we show how to construct geometrically a 4-polytope @, in R* that
is equivalent to P,. Finally, we prove that such a construction is possible.

In regard to the second problem, we know already that there is a k-sequentially cyclic
realization of P, for k = 6, 7 and 8. As a general proof seems to be long and complicated,
we hope to present it in another paper.

THE POLYTOPES P,;n=3k—-7,k > 6

Before describing P,, we note that it is Gale with T < 3 < ... < T, and that it has
k% —3k —1 facets. With the hope that the facial pattern becomes more evident as k increases,

2



we present first Py, P4 and Pj;. Also, we simplify our notation by setting

F (i) = {F € F(P,)| z; is the least vertex of F}

and
i) ={[s,....,5] | F = [=s,...,z;} € F(d)}.
k—2 k-2
We remark that F(P,) = | J F(i), and set C(P,) = | J C(¢). Clearly, C(P,) represents a
i=1 i=1

facet system of P,.

Py €)= {[1,2,4,5,9,10], [1,2,5,6], [1,2,6,7), [1,2,7,8], [1,2,8,9],
1,3,4,8,9), [1,3,4,7,8], [1,4,5,6,7,11]},

c(2)= {[2,3,5,6,10,11], [2,3,6,7], [2,3,7,8], [2,3,8,9], [2,3,9,10]},
c3)= {[3,4,6,7,11], [3,4,9,10], [3,4,10,11]},
c(4)= {[4,5,10,11}}.
Py c(1)= {[1,2,4,511,12], [1,2,5,6], [1,2,6,7], [1,2,7,8], [1,2,8,9],
[1,2,9,10], [1,2,10,11], [1,3,4,10,11], [1,3,4,9, 10],
[1)4757879]’ [1)55677:8114]}1

c(2)= {[2,3,5,6,12,13], [2,3,6,7], [2,3,7,8], [2,3,8,9], [2,3,9,10],
[2,3,10,11], [2,3,11,12]},

c(3)= {[3,4,6,7,13,14], [3,4,7,8], [3,4,8,9], [3,4,11,12], [3,4,12,13]},
c(4) = {[4,57,8,14], [4,5,12,13], [4,5,13,14]},

cG) = {[5,6,13,14]}.



P ¢() = {[1,2,4,5,13,14], [1,2,5,6], [1,2,6,7], [1,2,7,8], [1,2,8,9],
[1,2,9,10], [1,2,10,11], [1,2,11,12], [1,2,12,13], [1,3, 4,12, 13),
[1,3,4,11,12], [1,4,5,10,11), [1,5,6,9, 10], [1,6,7,8,9, 17]},

c(2) = {[2,3,5,6,14,15], [2,3,6,7], [2,3,7,8], [2,3,8,9], [2,3,9, 10],
[2,3,10,11), [2,3,11,12], [2,3,12,13], [2,3,13,14]},

C(3)= {[3,4,6,7,15,16], [3,4,7,8], [3,4,8,9], [3,4,9,10], [3,4,10,11],
[3,4,13,14], [3,4, 14,15]},

c(4)= {[4,5,7,8,16,17], [4,5,8,9], [4,5,9,10], [4,5, 14,15], [4,5,15,16]},
c(5) = {[5,6,8,9,17], [5,6,15,16], [5,6,16,17]},
c6) = {[6,7,16,17]}.

P,:C(1) ={[1,2,4,5,2k — 3,2k — 2, [1,2,5,6], [1,2,6,7],....[1,2, 2%k — 4, 2k — 3],
[1,3,4,2k — 4,2k — 3, [1,3,4,2k — 5,2k — 4],...
[1,3+4,4+4,2%—5—i2%—4—i),.[Lk—3k—2k+1k+2],
[1,k—2k—1,kk+1,3k =17},

c(2) ={[2,3,5,6,2k—2,2k~1],[2,3,6,7), [2,3,7,8],....[2,3, 2k — 3, 2k — 2]},
C(i) ={,i+1,i+3,i+4,i+2—3), [i,i+1,i+4,i+5), [i,i+1,i+5,i+6],
coltyi+1,2k =3 —14,2k—2—14), [i,i+1,i+ 2k — 6,4 + 2k — 5],
[i,i +1,5+2k—5i+2 4} fori =3,....k — 4,

Clk—~3) ={k—3k—2kk+1,3%—7), [k—3,k—23k—09,3k—8]|,
[k — 3,k — 2,3k — 8,3k — 7]},

Ck—2) ={k—2k—1,3k—8,3k—"7]}

THE CONSTRUCTION

Clearly, in order to determine how to construct a 4-polytope @, in R* that is equivalent
to F,, we need to understand the relationship between P, and its subpolytopes

P = [21,Z0, ..., T}, m < n.

In particular, it is important to know which facets of P,, determine supporting hyperplanes
of P,. With this in mind and assuming a priori that P, is realizable, we set

F'(m) = {F' € F(Pn) | Zm € F' and aff F' supports P,}
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and
C'(m) = {li,7,....m] | F' = (i, zj, ..., Tm) € F'(m)},
and claim the following.

2.1 ¢'(m) ={[1,2,m—1,m)], [2,3,m—1,m],...,[m—-4,m—-3,m—l,m]}for m=25,..,k—1.
22 C'(k) = {[1,2,k — L,k), [2,8,k = 1, K], [k — 4,k — 3,k — 1, k], [,k — 2,k — 1, k]}.

23 C'(m)= {[1,2,m—1,m),[2,3,m - Lm],.,k—j—-2,k—j—1,m—1,m),
[1,k—j—2,k—-j— 177’”’]’ [17k_.7_ 11k—jam_ 1,m]}for m=k+]
and j=1,....k — 5.

24 C'(2k —4) = {[1,2,2k — 5,2k — 4], [1,3,4,2k — 5,2k — 4], [2,3, 2%k — 5, 2% — 4]}.

2.5 C(2k-3) = {[1,2,4,5,2k — 3],[1,2,2k — 4,2k — 3], [1,3,4, 2% — 4, 2k — 3],
[2,3,2k — 4, 2k — 3]}.

26 C'(m)= {[5,j+1,j+3,j+4,m~-1,m), +1,7+2,5+4,j+5m],
[+1,54+2,m~1m)], [[4+2,i+3,m—1m]}for m=2k—3+;
and j=1,.. k- 5.

27 CBk=T)= {(Lk~2,k—1,k+1,3k~7), [k— 4,k —3,k—1,k,3k — 8,3k — 7],
[k —3,k—2,k,k+1,3k—7], [k — 3,k — 2,3k — 8,3k — 7],
[k — 2,k —1,3k - 8,3k — 7]}

Proof. (2.1,2.2) From C(1) and C(2), it is clear that we need only to verify that [z,7 +
IL,m—1m] € C'(m)for3<i<m-4and5<m< k, and that follows form C(%) since
2k—2—-12>2k—-24+4—-k=k+2.

As neither C(k — 3) nor C(k — 2) contributes any element to C’ (m), the assertions follow.

(23) Letm=k+jand1<j< k-5, Thenk+1<m<2—-5andk—j—2<k-—3.

From €(1) and C(2), {[1,2,m — 1,m], [2,3,m — 1,m]} C C'(m). If 3 < i < min {k -
4k—j—2}then j<k—i—2 m<2% —i—2and [i,i +1,m — 1,m] € C'(m) from C().
Finally,if k — j — 2 = k — 3 then

[k—j——2,k—-j—-1,m—1,m]= k—3,k—2,kk+1] € C'(m)
from C(k — 3).
Since
={[L,k—-2,k—1,k,k +1), [1,k-—3,k—2,k:+1,k+2],...,[1,4,5,2k—6,k:—5]},

it follows from C(1) that [1,k— 5 — 1,k — j,m— 1,m] e C'(m) for k+1<m < 2k —5 Then
[1,k=j~2,k=j—1,m,m+1] € C'(m+1) for k < m < 2k—6 and [1,3,4, 2k—5, 2k—4] € C(1)
yield that [L,k—j -2,k —j—1,m]€C'(m)fork+1<m < 2% —5.

The assertion now readily follows.



(2.4,2.5) Immediate from C(1) and C(2), and the fact that for i > 3, 2k — 2 — i < 2k — 5 and
1+2k—52> 2k~ 2.

(2.6) Let m = 2k—3+j. Itisclear from C(1),1 < i < k—4, that [7,74+1,j43,j+4,m—1,m] €
C'(m) for 2k — 2 < m < 3k — 7. From whence we argue as above to obtain that
G+1,5+2,5+4,j+5,m] €C'(m) for 2k —2 < m < 3k — 8.

We note that with j =1 — 1,
{U+L,5+2,m~1,m]|j=1,..,k—5}={[i,i+1,i+2k—5i+2k—4] |i=2,.. k—4}
and that with j =i — 2,
{(i+2,j+8m—1,m]|j=1,.k—5} = {[3,i+1,i+2k—6,i+2k—5] | i =3,..., k—3}.
It is now easy to verify the assertion from C(R,).

(2.7) Immediate. O

Now that we have an idea of the relationship between P,, and P,, we wish to approximate
m

a facet system of P, by eliminating the extraneous representations of its facets from U C' (7).
i=5

Accordingly, let F*(P,,) denote the set of all F* € |J F'() with the property that if F' €

=5

|J F'(i) and aff F' = aff F* then F* contains F”, and set
i =5

C*(Pm) = {[’L,,j] I F* = [a:,-,...,:vj] (S f*(m)}.
We remark that C*(P,) = C(FP,) and that from 2.1 to 2.7 and C(Pn), it is easy to obtain
) ]
3.1 ¢(B) = | (i),
i=5

32 C'(Pn) =(C*"(Pu-)\{[L,k—3i—-1k—jm—1}HuC(m)form=k+j
and j=1,..,k— 5,

3.3 C*(Pas) = (C*(Pu—s)\{[1,3,4,2k — 5]}) U C'(2k — 4),
3.4 C*(Par—s) = (C*(Par-a)\{[1,2,4,5]}) UC'(2k — 3),

3.5 C*(Pm) = (C*(Pm—l)\{[j)j +1,2+3,j+4,m— 1]) [.7 +1,7+2,5+4,5 +5]})
U C'(m)for m =2k -3+ jand j=1,...k—5, and

36 C*(P) =(C(Pa)\{[Lk—2k—1kk+1), [k—4,k—3,k—1,k 3k — 8],
[k —3,k—2,k,k+1]})ucC'(3k —7).
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Proceeding with the construction, let Q; be a cyclic 4-polytope in R* with the vertex
array y; < Y2 < ... < Yk, k > 6, and choose points ye41,Yk42, ..., Y3x—7 in R? in the order
presented so that y,, has the following position with respect to

Qm—l = [ylay%"';ym] :

41 Form=k+jand j=1,...k—5, yn is on (Y1, Ye—j-1, Yk—j> Ym—1) and beyond ezactly
[ylyy‘iayi+17ym—l] fOT 1= 21 1k - .7 - 2.

4.2 Yak—a 15 on (Y1,Y3, Y1) = (¥1,Y2, Y3, Ya) N (Y1, Y3, Y4, Yar—s) and beyond ezactly
[y1,y2,y3,3/2k—5]-

4.3 Y3 15 on (Y2,Y1,Ys) = (41,2, Y4, Us) N (Y2, Y3, Y4, Ys) and beyond ezactly
[yl;y2;y3;y4>y2k—4]-

4.4 Form =2k—3+jandj =1, v k=4, Ym is on (yj+2,yj+4,yj+5) = (yj+1,yj+2,yj+4,yj+5)
O (Yit2, Y543, Yirar Yirs) and {Y;,Yir1, Yi+s, Yird, Ym—1), and beyond ezactly

[Yi+1, Yjsa, Yi+3: Yj+as Ym-1]-
Assuming again that such a construction is possible, we set
and compare C(Q,) and C*(P,,) for m =k,...,.n =3k — 7.

5. C(Qm) = C*(Pn)U{[s—3,5—2,5—1, s]|s=4,..,k}U{1,4,i+1,m]|i=2, oy k—3j—3}
form=k+jand j=0,..k—5.

Proof. From 2.1, 2.2 and 3.1,
C*(Py) ={li,i+1,s—1,8]|i=1,..,s—4and s =5,...,k} U{[1,k — 2,k — 1,k]}.
Since Q) is cyclic with 13 < ¥y < ... < ys, )

CQx) = {li,i+1,s—1,8] |i=1,..,s—3and s = 4,...,k} U{[L,4,i+1,k] | i =2, ...k — 2}

and the assertion follows for j = 0.
We assume that 1 < j < k — 5 and that

C(Qm-1) =C*(Pn-1)U{ls—3,5—2,s—1,8] | s =4,... k}U{[L,4,i+1,m—1] | i =2,...,u}

whereu=k—(j—1)-3=k—j—2.
We note that

Lu+lu+2m—-1]=[Lk—j—1,k—jm—1 €C(Pn)
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and that by 4.1, ym is on (Y1, Yut1,Yus2, Ym—1) and beyond only [y1,¥:, Yis1, Ym—1] for i =
2, ..., u.

We recall that if F' € F(Qm)\F(Qm-1) then
F = conv {ym} UG)

where either G € F(Qmn-1) and y,, € aff G or G € Fyp(Qm_1) and y,n is beyond (beneath) at
least one facet of Q,,_; that contains G. Accordingly, we need only to examine the 2-faces
of [y1, %, Yit1,Ym-1] for i = 2,...,u. Such an examination readily yields that [y1, ¥:, Yit1],
2<i < wu,and [y;,Yir1,Ym-1], 1 < i < u, are the only ones from these 2-faces that generate
facets through y,,. Thus by the inductior, 2.3 and 3.2,

C(@m) = (C@n-O\{[Li,i+1,m—1]]i=2 .. u+1})U{[Li i+ 1,m]|i=2,..u}
U{lii+1,m—1,m]|i=1,.,u}U{l,u+ Lu+2m-—1,m]}

=(C"(Po-O\{[Lu+Lu+2,m -1} U{[s-3,5s-2,5—1,5] | s=4,...k}
u{C'(m)U {[1,4,i+1,m] |i=2,..,u—1}

=C*(Pn)U{[s—3,s-2,s—1,8] | s=4,...,k} U{[1,i,i+1,m]
|i=2,...k—j—3)

6. C(Qak-a) = C*(Po—a) U{[s —3,5—2,s —1,8] | s =5,...k} U{[1,2,3,4, 2 — 4]}.

Proof. From 2.3, 4.2 and 5, we have that

C(Q2x-5) = C*(Por—s) U{[s —3,8—2,s~1,8] | s = 4,..,k}U{[1,2,3,2k — 8]},

[1,3,4,2k — 5] € C*(Py_5) and yai—4 is on both (1, %2, 9s,va) and (y1, s, Ya, Yox—s), and
beyond only [y1,¥2,ys, Y2k—5). Thus, it is immediate by 2.4 and 3.3 that

C(Qae-1) = (C(Qu-5)\{[1,2,3,4], [1,3,4,2k — 5], [1,2,3,2k — 5]} U {[1,2,3,4, 2k — 4],
[1,3,4,2k — 5,2k — 4], [1,2,2k — 5,2k — 4], [2,3, 2k — 5,2k — 4]}

= (C*(Pax-s)\{[1,3,4,2k - 5]} ) U{[s — 3,5 — 2,5 — 1,8] | s = 5, ..., k}
U C'(2k — 4) U {[1,2,3,4, 2k — 4]}

= C*(Py—g) U{[s —3,5 - 2,5 — 1,5] | s =5,...,k} U{[1,2,3,4, 2k — 4]}.
We remark that [y1, Y3, ys, Yar—4a] € F2(Q2i-4) and that [yg, yar_a] € F1(Qar—1). O

7. C(Qm) = C*(Pn)U{[s—3,5—2,5—1,8] | s = j+6,..,k}U{[j +2,5+3,j+4,j+5,m]}
form=2k—-3+jand j=0,1,..,k — 5.

Proof. Noting that [y1,¥s, Vs, Y2x-4], [y1, v2, ¥4, [, 92, Yax-d], [y2, Y3, 94] and [Y2, Y3, Yor-4]
are the 2-faces of [y1, ya, Y3, ¥s, Yor—4], We argue as above to obtain that

C(Q2k_3) = C*(ng_g) U {[S - 3,8 - 2,8 e 1,8] I § = 6, ,k} U {[2,3,4,5,2k —_ 3]},
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(Y2, Y1, Ys, Yor—3] € F2(Qaxr-3) and [ys, yor-3] ¢ F1(Qax-3)-
Proceeding by induction; the assertion, [yj12, ¥jta, Yi+s, Um] € F2(Qm) and [Yjis,Ym]| ¢
F1(Qm) follow as above from 2.6, 3.6 and 4.4.

We remark that {[s —3,s —2,s —1,s] | k+1 < s <k} is empty and thus,

C(Qsk-s) = C*(Pap-s) U{[k — 3,k — 2,k — 1,k, 3k — 8]}.

8. C(Qsr-7) = C*(Psag—7) = C(Pag_1)-

Proof. Noting that y; € (Yx_a,¥Yk—1, Vs, Urs21) from 4.1, the assertion is immediate by 3.6,
4.4 and 6. O

We remark that P, and @, are equivalent and that for k = k,...,n, @, is Gale with
Y1 <Y <... < Ynm.

REALIZATION

Recalling that Qi C R* is a cyclic 4-polytope with the vertex array y; < y2 < ... < ¥,
k > 6, we verify the existence of points i1, ..., ysx—7 in R?* satisfying 4.1 to 4.4.

Set F' = [y1, Yk—2, Ye-1, Y&, F*[Y1, Y2, Ye-1, Y] and F; = [y1, ¥i, Yig1,¥x) for i = 2,... k= 3.
These are the facets of Q) containing [y, yz]. With

H= off F,H* = off F* and H; = off F,

we have that

M*=H*'"NH and M; =H;,NH

are planes containing the line L = (y;,yx). From 4.1, we need intitially to find a point y € H
such that, with respect to F), it is beneath M* and beyond each M;.
Let 2 <4 < k— 3. Since [y1,%,yx] € F2(Qx), there is a supporting hyperplane H; C R
such that 3
H; N Qr = [y1,¥:, Yx)- )
We note that [y;,ys, ys] = F* N Fy implies that H, ranges between H* and H,, and that for -
i > 2, [y1,%,y%) = Fi—1 N F; implies that H; ranges between H;_; and H;. Thus the plane

H; N H, containing L, ranges between M* and M, for i = 2, and between M;_; and M; for
i> 2. Now if

H,NnH=H,NH

for some 2 < u < v < k— 3 then through the plane M = H,Nn H,N H with the property that
M NQk = [y1, Y], there passes three distinct supporting hyperplanes of Qj such that each of



them intersects Qx\M; a contradiction. Accordingly, the arrangement of M*, My, ..., . My_3
in H is as indicated in Figure 1.

k=3 M,
T2 M,
P M

F / e SOOANNNY <

k-1 Yk

Figure 1

It is now clear that there are points y € H that are, with respect to F', beneath M* and
beyond each M;. With respect to Qg, such y are on aff F', beneath F* and beyond each F;.
Now if y is arbitrarily close to say the mid-point of [y;,yx] then it is obviously beneath all
the other facets of Q, and we label it yx41.

Let 2< § < k—5, u = k — j and assume that Yy1,...,Ym—1 €xist satisfying 4.1 for
m = k + j. From 2.3 and 5., the facets of Q-1 = [v1, -, Ym-1] containing (Y1, Ym—1]
are F' = [ylsyu—l,yu;ym—llx F' = [yl,yu;yu+1;ym—2;ym——1]a F* = [y1,y2)ym—2,ym—1]; and
Fi = [y1, Y, Yis1s Ymer) for i =2, k—j—2=u—2. Let H = off F, H' = aff ', H* = aff
F*and H; = aff F;, aswellas M’ = H'NH, M* = H*NH and M; = H; N H. Now we argue.
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as above and obtain that the arrangemert of the planes in H is as indicated in Figure 2.

u-2
yu-—l
Mu-3
¥ \ M*
/\ N
MY
Fyu Ym-1 )

[

71

Figure 2

Again, we choose as ym, a point y € H that is beyond My, ..., My—2 and beneath M* (and
M') with respect to F, and arbitrarily close to say the mid-point of [y1, ¥m-1]-

Next, we need a point on the plane M = (y;,ys,ys) that is beyond only [yy, Yo, Y3, Yok—5)
with respect to Qar—5. Since

(y1,93) = M 0O (y1,Y2,Y3, Y2k-5),

it is immediate that a point ¥y € M\[y1,¥3,ys] that is arbitrarily close to say the mid-point
of [y1,s] is suitable choice for yax_4.
We choose yqx_3 in a similar manner. .

Finally, let 1 < j < k — 4 and assume that Yog_3, ..., Ym—1 exist satisfying 4.3 to 4.4 for .
m =2k -3+ j. Set
M = (Yjr2, Yj+a, Yi+s)s
Fo = [ijyj+1ayj+3:yj+4’ym—1],
Fl = [yj-H Y Yi+2, Y543, Yi+4, ym——I]y

Li =MnN affF,-,

11



and let H C R* be a supporting hyperplane of Q,,_; such that

HNQm1=FNF = [yj+l;yj+37yj+4yym-—l]-

From 4.4, we need a point on Ly that is beyond L; with respect to [y;+2,Y;+4,Ys+s), and

beneath all the other facets of @,,-1 with respect to Qp—1; cf. Figure 3 with explanation to
follow.

We note that if MN aff (Fo N F}) is a line then
aff (M U (Fo N Fl)) = aff ({yj+2} U (Fo n Fl)) = aff Fl

and y;+5 € Fi; a contradiction. Hence, MN aff (Fo N F1) = {yj+a} and L = HN M is a
supporting line of [y;;9,Yj44,Yj+5) that passes through y;44 and is distinct from Lo and L;.
Since H ranges between aff Fy and aff Fy, and Ly # L # L, it follows that L ranges between
Ly and L;.

Yi+s
Lo

Yj+4

Yi+2

Figure 3

Let F' € F(Qm-1) such that y;44 € " and Fo# F' # Fy. Now if I' = (aff )N M =L
then y;.5 ¢ F', and it follows from the Gale property of Qm_; that y;43 € F'. Hence, ‘
through the plane M’ = aff (L U {y;,3}), there passes three supporting hyperplanes aff Fp,
aff F} and aff F' of Q,,_1 such that each of them intersects Q,,—1\M’; a contradiction.

Since L' # L and L ranges between Lo and L;, we have the explanation for Figure 3. It
is now clear that a point y € Ly that is beyond L; with respect to [yj+2,¥j+4, Yj+5) and is
arbitrarily close to y;4 is a suitable choice for yp,.

12



REMARKS

In summary, we have the existence of a 4-polytope Q,(n = 3k —7) and k > 6 in R* that
is not only Gale with 3; < ¥ < ... < y» but also has the property that for k¥ < m < n, the

subpolytpes Qm = [y1,¥2, ..., Ym] are Gale with the induced vertex array. We remark that
the f-vector of ), is

(3k — 7,k* 4+ 3k — 19, 2k* — 3k — 13,k* — 3k — 1).

In addition to the earlier question of whether Q,, is k-sequentially cyclic, it is also natural
to ask if there exists a point 9,41 € R* such that Quy1 = [Y1,.-,Yn, Ynt1] is Gale with
Y1 < Yo < oo < Yn < Yns1? All we know at present is that our method of construction
does not yield ¥, ;1 and the reason seems to be the following: the construction pretends that
the points y; lie on simple, locally of order four, oriented curve in R* that itself lies on the
boundary of a strictly convex body. As such a curve may be closed then, of course, after
choosing sufficiently many points as move along the curve, we return to the starting point
y1. The construction yields the 3k — 7 points are sufficiently many.

Next, we make no claim that we have presented the only or even the best way of con-
structing Gale 4-polytopes. As food for thought, we present the following combinatorial

4-polytope P = [x1, X9, ..., T9g] that is Gale with the natural ordering. With our usual nota-
tion for facets,

c(P)= {[1,2,5,6,9,10,13,14,17,18,21,22, 25,26}, [1,2,8,9, 15,16, 22, 23],
[1,4,5,8,9,12,13,16,17,20,21,24, 25,28, [1,7,8, 14, 15,21, 22, 28],
[2,3,6,7,10,11,14, 15,18, 19, 22, 23, 26, 27, [2,3,9,10,16,17, 23, 24],
3,4,7,8,11,12,15, 16,19, 20, 23, 24, 27, 28], [3,4,10,11,17, 18,24, 25],
[4,5,11,12,18,19, 25, 26], [5,6,12,13,19, 20, 26, 27),

[6,7,13,14, 20,21, 27, 28]}.

It is noteworthy that P is simple, with no triangular 2-faces and the f-vector (28,56,39,11).
It is evident that Gale polytopes have an inherent interest and it is our belief that, as a
class of explicit examples, they will further the understanding of polytopes in general.

The author gratefully acknowledges that this research was partially supported by the
Natural Sciences and Engineering Council of Canada.
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