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Abstract. We introduce a class of three-dimensional polytopes P with the property that there is a
total ordering of the vertices of P that determines completely the facial structure of P. This class
contains the cyclic 3-polytopes.

Mathematics Subject Classifications (1991): 52A15, 52B10, 52B12.

Let C'(v, d) denote a cyclic d-polytope with v vertices in E<, d > 3. We recall
that C'(v, d) is combinatorially equivalent to the convex hull of v points on the
moment curve, or on any curve of order d, in E%. The importance of C (v, d) is
well known and it is due to the fact that there is a vertex array (a total ordering of
vertices) of C(v, d) that determines completely the facial structure of C(v, d). It
is our belief that there are other classes of a-polytopes, induced by curves in E?,
with a vertex array that is instrumental in determining their facial structure.

Presently, we verify this conjecture for d = 3.

As the first step in the introduction of this new class of 3-polytopes, we present
an overview of our motivations, definitions and main results.

In Section 1, we describe the class of oriented ordinary spherical space curves
(cf. Figure 1) and show that if we choose vertices on such a curve in a particular
manner then the facets of the resultant 3-polytope satisfy a global and a local
condition ((01) and (02)) that can be expressed solely in terms of the order of
appearance of the vertices on the curve. With this observation in mind, we define
an ordinary 3-polytope as one with a vertex array such that its facets satisfy (01)
and (02). Except for the notations at the beginning and the definition at the end, the
reader may choose to skip this section.

The central concept in understanding and describing an ordinary 3-polytope P
with the vertex array zg < 1 < -+ < Tp, 7 > 3, is its characteristic. Specifically,
the characteristic of P is an integer k(k = char P), where 3 < k < n, and z¢ and
z; determine an edge of P iff 1 < ¢ < k iff z,, and z,,_; determine an edge of P.
The introduction of char P is the subject of Lemmas 6, 7 and 8, and requires the
description of the vertex figures of P at zo (Lemma 7) and z,, (Lemma 8), and a set
of facets of P which do not contain zg or z,,. In Lemmas 9 and 10, we determine
which of the facets above may be equal and which must be distinct. These are the
last results required to describe P.

Theorem 11 states that, in fact, we have all the facets of P and that the number
f2(P) of facets of P increases as k = char P increases. In particular, P is cyclic
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Fig. 1.

if £ = n (Theorem 13), and a P with maximum f,( P) ‘looks’ more cyclic as k
approaches n (cf. Theorem 12 and Figures 4 and 5).

Finally, we determine a lower bound for f,( P) in Theorem 14, and show that if
the characteristic of P is minimum (k¥ = 3) then there is a P with the least number
of facets of any 3-polytope with n + 1 vertices (cf. Theorem 15 and Figures 2, 3, 4
and 7). Thus, we introduce a class of 3-polytopes with the unexpected property that
for a fixed number of vertices, the polytope with the maximum number of facets
and a polytope with the minimum number of facets are in the class.

1. The Curves

LetY C E3. Then conv Y and aff Y denote, respectively, the convex hull and the
affine hullof Y. fY = {yy,..., yn}, we set

[y1,..., yn] =convY and (yi,..., y,) = aff Y.
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z
k=3, f,(P)=6 k=4, £,(P)=8
Fig. 3. @=7)

Thus, as usual, [y, y2] is the closed segment with endpoints y; and y,. We set
(v, 12) = [y, v2]\{w1, 92}

Let I C E' be an open interval and let S C E3 be a sphere of positive radius.
Let I': I — S be a simple finite C'* curve; that is, ' is injective and any plane
intersects I'(]) at a finite number of points. For convenience, we identify I' and
I'(I).Forr < tinI,wesetI'[r, t| = I'([r, t]) and T'(r, t) = T'((r, t)).

Let s € I and U C I be an open neighbourhood of s. We say that I'(U) is of
order k if k is the maximum number of coplanar points of I'(U). Clearly, £ > 3.
We say that I'(s) is ordinary if there is an open neighbourhood U C I of s such
that I'(U) is of order three, and that T is ordinary if each of its points is ordinary.
Finally, let H be a plane through 1'(s). Then | H NT'| < oo implies that either there
is an open neighbourhood U C I of s such that I'(U) lies on one side of H or not.
In case of the former [latter], we say that H supports [cuts] T at T'(s).

Henceforth, we assume that I': I — S is a simple, finite, ordinary C* curve.
From p. 169 of [1], we cite the property of such a I' that we require for this study.
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k=4, (P)=8 k=5, fi(P)=10

Fig. 4. (1=8)

LEMMA 1. Let r < s < tin I. Ther (I'(r), I'(s), I(t)) is a plane that cuts T at
L'(s).

LEMMA 2. Letr < s < t < win I suchthat H = (I'(r), I'(s), I'(t), T'(u)) isa
plane and H N T(s, t) = . Then (T(r), T'(w)) N (T(s), I'(t)) # 0.

Proof. Let A = [I'(r), I'(s), I'(t), I'(u)]. Since I is spherical, A is a convex
4-gon.

If (I'(r), I'(w)) N (T(s), I'(t)) = 0 then [I'(r), I'(u)] is an edge of A, and
['(s) and I'(¢) are on the same side of (I'(r), I'(w)) in H. Since H N I'[s, t] =
{[(s), I'(t)}, H supports B = conv(I'[s, t]). Since I'(s) and I'(¢) are on the same
sideof (I'(r), I'(u)), (I'(r), I'(w))N B = 0. Thus there is aplane H' # H through
(T'(r), I'(u)) that supports B. Since H' necessarily supports I at I'(s") for some
s < s’ < t, we have a contradiction by 1. a
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LEMMA 3. LetY = {y1,..., Ym} C T suchthaty; = T(r;), r1 < 712... < Tpp
inlandm > 4. If H = (y1,..., Ym) isaplaneand H N\ T[ry,..., 7] = Y then

[y15- -+ Y] is a convex m-gon with the edges [y1, y2], [Ym—1, Ym] and [y;, yiy2],
i=1,...,m—-2,
Proof.Fori=1,..., m — 3, weapply 2 withr; < 7,41 < 142 < 7543. O
Letn >3, 59 <8 < ---<8inl, 2z =T(s), V = {2,..., 2,} and

() = conv V. Since T is simple and spherical, @ is a 3-polytope and V = ext ().
We set z; < z;if s; < s;in I, and call 29 < 21 < --- < 2, a vertex array of Q. If
we reverse this ordering on V then z, < z,-1 < -+« < 2 is a reverse vertex array
of Q.

We note that if T is of order three then (cf. [2] and [3]) @ is a cyclic 3-polytope
and the vertex array 2y < - - - < 2, satisfies Gale’s Evenness Condition: A set V' of
three points of V' determines a facet of @ if and only if every two points of V\ V"’
are separated in the vertex array by an even number of points of V. Thus

{[20, zi, zipa]li=1,..., n =1} U{[25, 2zj+1, z)l =0, 1,..., n — 2}

is the set of facets of (J.

If T is not of order 3 then, of course, we do not expect that zp < - < z,
satisfies Gale’s Evenness Condition. We do, however, obtain the necessary part of
the condition for a certain type of facet of ().

LEMMA 4. Let F be a facet of () such that (aff F) N (s, s,] = FNV and
aff F' cuts I'(sp, sn) at each point of intersection. Then every two points of V\ F
are separated in zy < --- < z, by an even number of points of FN'V,

Proof. Let y = T'(r) # I'(t) = win V\F, y < w. Since H = aff F' supports
¢, y and w lie in the same open half-space determined by H. Since H NI'(r, t) C
F'nV and H cuts I'(r, t) at each point of intersection, it follows that H cuts, and
meets, ['(r, t) at an even number of points. a

We note that if, in Lemma 4, (aff )N T(sq, sn] = {y1,..., ym} where y; < 3 <
-oo < Ym,thenaff Feutslaty, fori=2,..., m—1by 1.

In summary, if Q) has the property that for each facet F of Q, (aff F))NI'[sp, s,] =
F NV and aff F' cuts I'(sg, sy, ) at each point of intersection then () with the vertex
array zg < - - - < 2z, satisfies 3 and 4.

Let P be a 3-polytope with V' = ext P = {zg, z1,..., p}, n > 3. We say
that P is ordinary if there is a vertex array, say, zg < - -+ < Z, such that for each
facet F' of P:

(01) every two points of V\F are separated in zo < --- < z, by an even
number of points of "NV, and
02 it FNV = {y,...,ym} Where y; < y2 < --- < yn, then F is a convex

m-gon with the edges [y1, 2], [ym—1, Ym] and [yi, Yigy2]si=1,...,m — 2.
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k=4, £,(P)=9 3
k=5, £®)=9

k=6, f,(P)=12

Fig. 5. (n=9)

We note that if P is ordinary with z¢9 < - -+ < z, then it is also ordinary with
Ty < -+ < Zp.

2. The Polytopes

In this section, we assume that P is an ordinary 3-polytope with V = ext P =
{zo, zy,..., Tp}, n > 3, and the vertex array zo < - -+ < , satisfying (01) and
02).

We denote by & or E( P)[F or F(P)], the set of edges [facets] of P. As usual,
fi(P) = |£(P)| and fo( P) = | F(P)|.Next, we say that z; # z; in V are adjacent
if [2;, ;] € E. Fori=0, 1,..., n, we set

Fi={Fe¢eFlz;e F} and V;={z; € V|[z;, z;] € £}
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n=9, f,(P)=9 n=10, f,(P)=9
Fig. 6. (k=4)
Finally, for 7 = 0, 1,..., n — 1, we set L; = [z;, ;4+1]. We recall that

[z;, 2;] € £ ifand only if | F; N F;| = 2.

LEMMAS1IfF € Fiand1 <i<n-—1then FN{z;_1, ;41} # 0.

2. If F € F contains {zg, z1, T2} or {Tn—2, Tp—1, Tn}then |[FNV| = 3.

3.IfL; ¢ Eand1 <i<n-2then{L;,_, Liy1} CE.

Proof. The first assertion follows from (01).

Let {zg, z|, 2} C F € F.If there is a smallest ¢ > 2 such that z; € F then
[:El, .7,'2'] € Eby (02). Let FiNF;, = {F, G} Then FNG = [271, .’1),’] and G N
{z0, 23} = 0;acontradiction by 5.1. We argue similarly if {z,,_>, T,_1, .} C F.

Let L; € £ forsomel <1 < n—2.Then|F;NF;4| < 1.Thus|F;| > 3and 5.1
yield that | F;NF;_| > 2and hence, |F;NF;_1| = 2. Similarly, | F;11NFit2| = 2.

O
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Fig. 7. (n=21)

LEMMA 6. There are integers k and m such that 3 < k, m < n, Vp =
{z\, x2,..., 2} and V, = {Zpn—m,-- .y Tno2, Tn-1}-

Proof. We verify that Vy = {2, z2,..., zx} for some k > 3 by showing that
ifi >2andz; € Vpthenz;_; € Vp.
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Clearly, |V| > 3 and z; € V; for some : > 2. Then [zp, z;] € &£ and
[z0, @;] = F NG for some F and G in F. By (02), this is possible only if

[Fn {1170, xl,...,l‘i}l <3 and |Gn{zg, z1,...,2;} < 3.

If i = nthen |[FNV| = |GNV| = 3 by the above and {F, G} =
{[zo, z1, Tvn], [T0y Tn-1, Tpn]} bY (01). Thus [zg, T,—1] € £.Leti < n—1. Then
FNnGnV = {xg, z;} and 5.1 yield that, say, z;_y € F and z;41 € G. Thus
Fnizg, zy,... ,l‘,‘} = {x(), Ti_1, 1‘1'} by the above, and [zo, :z:i_l] ef by (02).

A similar argument with the reverse vertex array yields:

Vi ={Zn-m,---»Tn-2, Tn-1} forsomem > 3. O

LEMMA 7. Let Vy = {zy, z2,..., 2k}, 3< k < n.

1. |Fo| = k and Foy = {FIO,..., F,?} where {zo, zi, ziy1] C F? fori =
L..., k—1, [z, z1, z4) C FP, F? = [zg, 71, 23] and either k = n and
}‘2 = [.’II(), L1, ZL'n] or [xO’ L1y Tky wk+1} - F]?

2.Ifk<n—1thenforj=0,1,...,n—1—k, [z;, ;5] and [Tj+1, Tj41+k)

are edges of a facet G; of P.

Proof. We note first that each F' € Fq contains exactly two edges through z¢
and thus, |F N Vp| = 2.

Since there are k£ edges of P containing zp, the vertex figure of P at z¢ is a
convex k-gon. The k-gon has exactly k edges and thus, | Fo| = k.

Let ' € Foand FNVy = {z;, z;} forsome 1 < ¢ < j < k. Ifi > 1
then z;,_; ¢ F and 5.1 yield that z; = z;4;. Let: = 1. Then 2 < j < k is not
possible by 5.1 and so, either z; = zy orz; = 3. If FNVy = {2;, 2,41} for some
1 <1< k—1,wedenote Fby F? If FNVy = {1, z}, we denote F by F}. Since
| Fo| = k, it follows that Fo = {F},..., F?}. We note that F{ = [z¢, 1, 2] by
5.2, and that if k = n then FONV = {=z, z1, z,}.

Let £ < n — 1. Since F,? N {zg, 21,..., 2k} = {z0, %1, x} and k > 3,
Tit1 € FY by 5.1. Then zg < 71 < Tk < Tky1, and (02) yield that [zg, zj]
and [z}, zk41] are edges of F,?. Let 1 < j < n — 1 — k and assume that there
is an F' € F with edges [¢;_1, zj_1+&] and [z, zj1i]. Let G € F such that
[xj, ~’7j+k] =FNG. Then1<j,j+k<n-1,GnN {ch_l, :Ej+k_1} = ( and
5.1 imply that {z; 11, Z;j4k+1} C G. Since [z}, z;4&] € &, it follows by (02) that

Gfzj, Tjgrs- o5 gk} = {25, Tjt1, Tipk}-

Thus, T 4541 € G and (02) yield that [.z‘j+1, .z]'+k+1] €. 0O

LEMMA 8. Let Vo = {z1, ©2,..., Tk}, 3 < k < n.ThenV, = {zpn—k,...,
Lp—2- xn—l}a |]:n| = kand F, = {Fl*vaF}:} where [mn—i—-l, Tn—is zn] C Fi*
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fori=1,..., k=1, [®nk, Tno1, 2] C Fy, F} = [Tn-2, Trn—1, T»] and either
k = nand F': = ["E07 Tn-1, xn] or [‘rn—k—h Tn—ky Tn—1, xn] c F]:

Proof.By 6,V, = {&n—m,...,Tn-2, Tn_1} forsome 3 < m < n. Clearly, we
need only to show that m = k.

Ifk = nthen[zg, z,] € Eandm = n.Letk < n—1.From 7.2, [z,_k, z,] =
[x(n—l—k)+17 z(n_l_k)+1+k] € £ and thus,n —k > n—m and k < m. Now, with
the reverse vertex array, m < n — 1 implies that m < k. O

In view of 8, we say that P has characteristic k (char P = k) if [Vg| = |V,| =
k,3<k<n.

Let char P = k. Then the following are (not necessarily distinct) facets of
P: FP,...,.F,?, Ff,..., F; and when k < n -1, Gy, Gy,...,Gp_k-1. For
consistency of notation, we set 0 = Fyand F* = F,,. Itis clear that |FOnF*| <
2.If k < n —1then

(z0. T1, Tk, Th41] C GoN F,?
and
[Tn-k=1, Tn-k, Tnois Tn) C Grok_1 N F.
Thus Go = F} and Gy,_g_| = F}]. When k < n — 3, we set
G={G1,..., Gu_g-2}.

We recall that [z, z;4%] and [2j.1, Tk4j41] are edges of G; € G. Clearly, if
Lj and L} are also edges of G then G| is distinct from each facet in FOU F* U
(G\{G;})- Accordingly, we determirie when L; € £ fori =0, 1,...,n — 1. From
7and 8, {Lo, L1, Ln_2, Ln_1} C E. We set

L={L,..., La_3}.

LEMMA 9. Let char P = kand L; € LU {Ly, L,_»}.

1. Ifi < min{k, n — k — 2} then L, C F? N G,.

2. Ifk+1<i<n—k—~2thenL; CG;_p NG,;.
3.Ifn—k—1<i<kthenL;, CF'NF:_,_,.

4. Ifi >max{k+1,n—k—1}then L; CG;_y N F:_,_,.

Furthermore, L; € & if and only if the two denoted facets are distinct.
Proof. We note that

Li = [2(-kysk> T(imk)thtt] = [Bn(noic)—15 Tac(niz1)]

and thus, 9.1 to 9.4 readily follow from 7 and 8. Next, if L; ¢ £ then L; is contained
in at most one facet of P.
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Finally, let F' € F contain L; € £. Thenby (02), either FNV C {zo,..., z;—1}
or FnV C {z;,..., z,}. It is now easy to check that, in each of 9.1 to 9.4, the
two denoted facets are distinct when L; € £. a

From 9, we obtain that if L; € £\& then certain facets in F Oy F*UG are equal.
We now investigate which facets in % U F* U G may be equal and which are
necessarily distinct.

LEMMA 10. Letchar P = k, 3 <k < n.
1. If G; = Gj then j = i (mod k); moreover, if j = i+ lk and l > 1 then
G =Gigr = - = Gigie = Gj.
2. IfFP = F* thenj + i =n— 1 (modk); moreover, ifn — 1= j +1i+lkand
[ > 1then Fio =G, == Gi+(l—1)k = Ff.

Proof. LetG =G; =G;,1<i1<j<n—k—2 Then

{zi, Tit1s Tivks Titht1s Tjy Tigly Titk, Tipht1} C G

by 7.2. Since z; < z; < x;41 < Tj4k, it follows from (02) that L; ¢ £.

Let j < k. Then L; ¢ £ and 9.1 imply that G = F} and zo € G. Since
2o < z; < Tip1 < Tipk, We also obtain that L; ¢ £ and hence, G = F?. Since
F) = Fland [{F},..., F{}| = k, i = j. Thisis a contradictionand so, j > k+1.
Then L; ¢ £ and 9.2 imply that G = G;_x. Now arguing as above, we obtain that
eitherj —k<kandj—-k=dcrj—k>k+1land G =Gy = Gj_2. 13.1
now follows readily.

Let I = F? = F*, 2 <4, j < k. Letk = n. Then [z, zn] € € and
|FOr F*| = 2. From 7 and 8,

[.1‘(), Tp—1, xn] - FS—I N F: and [II}(), Ty, CIZn] - FS N F;—l'

Thus (i, j)iseither (n — 1, n)or (n, n — 1). Letk = n — 1. Then |[FON F*| < 1
and from 7 and 8,

[5507 Tl Tp—1, xn] g Fy?—l n F’;:—]'
Thus F°_, = F?_,and (i, j)=(n—1, n— 1).Let k < n — 2. Then
{'7307 Tiy Tigly Tp—j—13 Tn—j> -Tn} CF

and by (02), {Li, Ln—j_1}NE = 0.

Ifi > n—k—1then L; ¢ £ and 9.3 imply that Fi0 = Fr_, . ThusFf = F*_,_,
andj =n-—i{—1.Wenotethatn —k—1<n—-j—1.Henceifn—j—-1<k .
then L,_;—; ¢ & and 9.3 imply that Fg_j_l = F* | = Fr. Thus
Fo = R0

7 n—j—

—(n—3-1)-
, and againi =n —j — 1.
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leti <n—-k—2andn—j-12>k+1 Then F? = G; by 9.1, and
Gn—j—t)—k = F;_(n_]-_l)_l = F7 by 9.4. Since G; = G(n—j-1)—4, it follows
from 10.1 thati = n — j — 1(mod k), n — j — 1 = i + lk for some [ > 1 and

We are now ready to describe ordinary 3-polytopes. We continue with the intro-
duced terminology and remark that for a real number b, [b] denotes the largest
integer equal to or less than b.

THEOREM 11. Let P be an ordinary 3-polytope with the vertex array g < - -+ <
&, and the characteristic k. Then

1L F(P)={F), ..., F2, F{,...,F}}fork >n -2,

2. F(P)=A{F,....,F?, Gi,....,Gn_ k2, F},...,Ff} fork <n -3,
3. as(P)<n+k—-2and

4. fo(PY=n+k—-2fork>n—1.

Proof. Let F € F\(F°U F*). Then there is a smallest i, 1 < i < n — 2, such
that z; € F. We note that 2,41 € Fby5.1,and L; € Eby (02). Ifi<n—-k -2
thenk < n-3and F € {Gi—k, G;} by9.10r92.1fi > n—k—1thents > k+1
by 9.3. Thusn — 3 > kand F = G; _; by 9.4.

We recall from the proof of 10 that if k = n[n — 1] then | FON F*| = 2[1]. Now,
11.3 and 11.4 readily follow from 11.1 and 11.2. a

THEOREM 12. Let P be an ordinary 3-polytope with the vertex array tg < - -+ <
Ty, the characteristic k and fo(P) = n + k — 2. Then

1 FY == (2o, @4, 2i1] and F¥ = [Tp—io1, Tnoi, Tplfori=1,...,k— 1,

2. F,? = (@0, 21, Thy Thpr]) and FYf = [@p—k—1, Tn—k, Tn-1, Tn|Whenk < n—1
and

3G = @y, 2ivn, Tidks Tivkt1) whenk <n—3andj=1,...,n—k-2.

Proof. We note that f,(P) = n 4+ k — 2 and 9 yield that £ C £, and that the
descriptions of the facets readily follow from 7,8 and £ C £. a

With the remark that if char P = n then fo(P) = 2n — 2, F? = Fr | =
[zg, 21, 4] and FF = Fg_l = [x0, Tn—1, Zn], and if char P = n — 1 then
[(P)=2n—3and F°_, = F*_, = [%0, 21, Tn_1, Tn], Wwe have from 12 a
complete description of ordinary 3-polytopes with maximal number of facets.
Next. we recall that the starting point for the development of this theory was

the cyclic 3-polytope. We now elaborate on this relationship.

THEOREM 13. Let P be a 3-polytope with vertices xq, 1,..., . Then P is cyclic
with g < z1 < -+ < z, if and only if P is ordinary with g < 1 < -+ < ZTp,
and char P = n.
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Proof. If P is cyclicwithzp < z1 < -+ - < 2, then

F(P) = {[zo, Ti, ixalft =1,..., n — 1}
U{|z;, Tip1, zalli =0,..., n —2}

by Gale’s Evenness Condition. Clearly, P satisfies (01) and (02), and [z, z,] is
an edge of P.
If P is ordinary with zg < 2| < -+ < 2, and char P = n then

]'-(P): {FP: [.’270, z;, .’L'H_]]l’l:: 1,.”’ n_l}
U{Fz* - [:l"’n—l'—la Tn—i, :En”Zz 1,..., n— 1}

by 11 and 12, and Gale’s Evenness Condition is satisfied. a

Next, we consider P with the vertex array z9 < --- < Z,, the characteristic
k<n-2and fo( P)<n+k—2.

Ifk = n—2then fo(P) = 2n--5by11.1and |FONF*| < L,and F? = F}_,_,
forsome2 < i < n—2by 10.2.

Let K <n — 3. Then

F(PY=A{F,..., F), Gy,..., Gnk-2, Fi,..., FT}

and some of the facets are equal under the restrictions of F{ = [zo, z1, 22}, F} =
[€n—2, Tn_y, ], |[FO| = |F*| = k and |FO N F*| < 1. It is now a matter of
applying 10, 9 and 5.3 to determine which facets may be equal, and of applying 12
to describe the identified facets in terms of the vertices. For small =, it is an easy
exercise to determine all ordinary 3-polytopes with n + 1 vertices. In the general
case, we restrict our attention to /” with a maximum number of identified facets.

THEOREM 14. Let P be an ordinary 3-polytope with the vertex array g < - -+ <
., and this characteristick < n — 3. Then fo(P) > k + [n/2)].

Proof. We recall that £ = {L,,..., L,—3}. By 9 and 10, all possible identifi-
cations of facets are related to £\£; that is,

f2(P) = (n+k—2)—|L\E|.

Since {Ly, L,_»} C &, it follows from 5.3 that |£\&| < [(n — 3)/2]. Thus,

2

We note that if & = 3 then 3 4 [n/2] = [((rn 4+ 1) + 5)/2] is the greatest
lower bound for the number of facets of any 3-polytope with = + 1 vertices; cf.
p. 184 of [3]. In the article, we present some examples of P with & = 3 and
H(P)=3+[n/2].

fz(P)z(n+k—2)—[ﬁ—ﬁ]:k+[%]. a
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THEOREM 15. Let P be an ordinary 3-polytope with the vertex array zo <
-++ < &Iy, the characteristic 3 and L\E = {Lyli = 1,..., m} where m =
((n —3)/2] > 3. Then fo(P) = 3 + [n/2] with the following identifications:
Fg = Gz, (;2,'_3 = GZifori = 2,..., m - 1andG2m_3 =Fx

n-2m-1"

Proof. Apply 9.1,9.2 and 9.4. a

From 13, 15 and the examples, it follows that in the class of 3-polytopes with
n + 1 > 6 vertices, there is an ordinary one with the maximum number of facets,
and an ordinary one with the minimum number of facets.

Finally, we observe that if k is large compared to n then k + [n/2] is certainly not
the greatest lower bound for f,( P). Ir particular, we can show thatifn = k+4 > 9
ork+5<mn<2k—1(neven)then f(P)>2k—1,andifn =k+3 > 7or
T<n=k+4<8ork+5<n<2k—1(nodd)then fr,( P) > 2k.

3. Remarks and Examples

Our rationale for the definition of an ordinary 3-polytope is based upon some
properties of a simple, finite, ordinary C* curve I': I — § C E3. We note that in
fact it is sufficient to assume that I': I — E? is a simple, finite regular C* curve
which is convex, namely, |[L N I'| < 2 for any line L C E3and T C bd(conv I').
Clearly, it is easy to visualize spherical curves, and regular polytopes have been
already defined.

LetI = (o, 7), m € Z* andI'™: I — E3 be defined by

I'™(t) = (cos(mt) sin(t), sin(mt)sin(t), cos(t)).

Then I'"™ is a simiple, finite C'* spherical curve. It is tedious but not too difficult to
check that I'™ is ordinary. In Figure 1, we depict I' form = 1, 2, 4 and 8.

Next, we recall that unlike the definition of a cyclic polytope, the definition of an
ordinary 3-polytope is not in terms of an ordinary curve I'. This approach permits
us to avoid the difficult task of verifying that for large n, there exist sg < - - - < s,
in [ such that for each facet F' of ) == conv{T'(s9),..., I'(sn)},

(aff F)OT[s0, su) = F N {T(50),..., [(sn)}

and aff I cuts I'(sg, s,) at each point of intersection.

Finally, in Figures 2 to 7, we present examples of ordinary 3-polytopes with the
vertex array 2o < --- < &, and the characteristic k¥ < n — 3. In each case, f>(P)
is minimum for the type of polytope depicted. It is easy to check that P need not
always be combinatorially unique.

References

I. Bisztriczky, T.: On the four-vertex theorern for space curves, J. Geometry 27 (1986), 166—-174.
2. Gale, D.: Neighborly and cyclic polytopes, Proc. Symp. Pure Math. 7 (convexity) (1963), 225-232.
3. Griinbaum, B.: Convex Polytopes, Wiley, London, New York, Sydney, 1967.



