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ABSTRACT

For each k,m and n such that n > k& > 2m + 1 > 5, we present a convex
(2m + 1)-polytope with n + 1 vertices and Q(k:n'") + (n— k) (k:n"_';2)
facets with the property that there is a complete description of each of
the facets based upon a total ordering of the vertices.

Introduction
We introduce a class of convex (2m + 1)-polytopes P, via a total ordering of
the vertices of P, which contains the cyclic (2m + 1)-polytopes and which has
the property that there is a complste description of the facets of each P. These
polytopes, which we call ordinary, have been defined for m = 1 in [1] and we
present them here for m > 1. In fact, we define an ordinary d-polytope for any
d > 3 but show that the polytope is not cyclic only if d = 2m + 1 (Theorem A).
As guide-posts, we indicate the central concepts and results of our theory.
Let P be a convex d-polytope in E¢, d = 2m 4+ 1 > 5, with a totally ordered
set of vertices, say, zg < 1 < +-+ < T,,. Then P is ordinary if each of its facets
satisfies a global condition (the necessary part of Gale’s Evenness Condition) and
a local one (a specific relation among the vertices of a facet). Then there exist
integers k and [ (see Lemma 4 for the existence of k) such that d < k, | < n,
conv{zg,z;} is an edge of P if and only if 1 < ¢ < k, and conv{zn_;,Tn} is an
edge of P if and only if 1 <4 <. In fact, k is equal to [ (Corollary 13) and we
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call it the characteristic of P. Given k and [, we list the facets of P containing z
or r, in Lemmas 8 and 9, and the other facets of P in Lemma 11. In Theorem

B and its Corollary, we describe completely these facets and show that if k is the
characteristic of P then

fom(P) =2<k7_nm) +(n—k)(k_m_2)’

m-—1
and that if k = n then P is cyclic.

Finally, we note that ordinary 3-polytopes were inspired by the idea of choos-
ing, as vertices, points on a convex ordinary space curve in E3. Unfortunately,
there 1s as yet no definition of a convex ordinary space curve in E9 for d > 3.
However, certain types of curves in E¢ (for example, curves of order d) have
properties that are independent of d, as long as the parity of d is the same. Thus
our expectation, in generalizing the definition of an ordinary 3-polytope, is that
there 1s a new class of d-polytopes only if d = 2m + 1. As this is the case, our
approach seems to be a reasonable one.

1. Definitions

Let Y be a set of points in £¢, d >> 3. Then conv Y is the convex hull of Y and
Y = {y1,...,ys} is finite, we set

[Y1,---,ys] = conv{ys,...,ys}

Thus, {y1,y2] is the closed segment with end points y; and ys,.

Let V = {xg,21,...,7,} be a totally ordered set of n + 1 points in E¢ with
x; <uy if and only if i < j. We say that z; and z;4; are successive points, and
if z; < x; < xx then z; separates z; and z} or z; is between z; and x.

Let Y C V. Then Y is connected (in V) if z; < z; < z) and {z;,2x} C Y
unply that z; € Y. If Y is not connected then clearly it can be written uniquely
as the union of maximal connected subsets, which we call components of Y.
A coruponent X of Y is even or odd according to the parity of | X| = card X.
Next, Y is a Gale set (in V') if any two points of V\Y are separated by an even
number of points of Y. Finally, Y is a paired set if it is the union of mutually
disjoint subsets {z;, z;41}.

We note that V, ) and all paired subsets of V are Gale sets. Conversely, let
Y C V be a Gale set. f Y N {xg,z,} = 0 then Y is a paired set. Thus if Y is
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not connected then Y has at most two odd components, each of which contains

Ly OF Ly,

We acknowledge that a connected set is an adaptation of Shephard’s contiguous
set in [5], and that Gale sets stem from the article [2] by Gale.

Let r» and s be integers such that 0 < 2r < s, and let Y C V be a connected
set with |Y'| = s. Let p(r,s) be the number of paired subsets X of Y such that
| X| = 2r; that is, X is the union of r mutually disjoint pairs.

Since p(1,s) = s — 1 = (°7'), we assume that r > 2 and that p(r — 1,s) =

(*,%"). Noting that p(r,s) = p(r,s — 1) +p(r — 1,5 - 2),

s=2(r—1)

p(r,s) = Z p(r—1,s—1)

i=2

:s—ZZT+2<s_i_r+1>: TE—:I ( J )
i—2 r—1 j=s—r—1 r—1

X (1)=(7)

j=r—1

cf. formula 1.52 in [3]. We shall use p(r, s) to calculate the number of facets of

an ordinary polytope.

Let P C E? be a (convex) d-polytope. For —1 < i < d, let F;(P) denote the
set of i-faces of P and f;(P) = |F;(P)|. When there is no danger of confusion, we
set F, = Fi(P) and F = Fy_y. Let V = Fo(P) = {z0,71,...,Tn}, n > d. We
set ; < x; if and only if ¢ < j, and call g < 21 < -+ < z, a vertex array of P.
If we reverse the ordering, we call 2, < z,,_1 < --- < 7y a reverse vertex array
of P. Let G € F;(P), 1 <i<d,such that GNV = {yo,v1,...,ys} (each y; is
some ;) and yp < y; < --- < ys is the ordering induced by zy < z; < -+ < zp,.
We call yo <y < -+ < y, an (induced) vertex array of G, and set y; = yo for
J <0andy; =y, for j >s.

We recall from {2] and [4] that a d-polytope P with the vertex array 2o < £, <
<+ < xy is cyclic if P is simplicial and satisfies Gale’s Evenness Condition: A

d element subset Y of V' determires a facet of P if and only if Y is a Gale set.
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Furthermore, if P is cyclic then p(r,s) = (s;r) readily yields that

_n+l (n+1—m> for d = 2m,
n+1—m m
fa—1(P) = ‘
2(""7") for d = 2m + 1.
m s

Let P be a d-polytope with the vertex array o < z, < -+ <z, n > d > 3.
Then P is ordinary if for each facet F' of P,
(01) FNV is a Gale set, and
(02) ifyo <y < --- <y, isthe (induced) vertex array of F then the (d—2)-faces
of " are [yo,y1,- - Yd—2]; [Yo—dt2,- -+ ¥s—1,¥s] a0d [Yicay2, ..., Yiz1, Yit1,
o Yitd-2) fori=1,..., s~ 1.

We emphasize the convention that in the description of faces as in (02), the
terms y; are to be ignored if j < C or j > s.

Since cyclic d-polytopes are simplicial, they are clearly ordinary. Next, and
this is the reason why fo(P) = n+ 1 and fo(F) = s + 1, if P is ordinary with
the vertex array zg < o1 < --- < x, then it is ordinary with the reverse vertex
array r, < p-1 < --- < xp.

Finally, if P is an ordinary 3-polytope and F € F»(P) has the vertex array
Yo < 3y < --- < ys then F is a polygon with the edges [yo,v1], [ys—1,¥ys] and
[vi,y,4+2] for j =0,...,5—2. For a description of ordinary 3-polytopes, we refer
to {1'. As we shall see, there are differences between the theories of ordinary
3-polvtopes and ordinary d-polytopes, d > 4.

2. Preliminaries

Henceforth, we assume that P is an ordinary d-polytope with the vertex array
o <y < - < zp, d> 4. We list some of the consequences of our definition,

and note that Lemmas 4, 8 and 9, and Theorem A are particularly significant.

1. LEMMA: Let F € F with the vertex array yo < y1 < -+ < y,, and let
G € F4_, with the vertex array z. < 25 < +-- < 2.
1.1 fg2(F)=s8+1and fo(G) <2d — 4.
1.2 The vertices y;, Yi+1, - - - » Yi+d—1 are affinely independent, 1 =0, ...,s—d+1.
1.3 If s > d then [yo,y1,---,Ya--2], [Y0,Y2,-- -+ ¥d—1]; Ws—dt1,---Ys—2,¥s] and
[Ys—d+2, - - - Ys—1,Ys) are the only (d — 2)-faces of F' that are simplices.
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14 If G C F then |Fn{z; |21 <x; <z} <t+ 1, with equality for t > d;
furthermore, if t < 2d — 5 then yo = 21 or ys = 2.

1.5 |yo,y;] € F1 if and only if 1 < j <d —1 if and only if [ys_;,ys] € F1.

1.6 If s > d then for j = 0,...,8 —d, [Yj,Yj41,Yj+d—1,Yj+d] € F2 and
5, Ysd) & Fr.

Proof: The first four observations readily follow from (02).
5. 1 1 < j < d—1 then 1.3 yields that [yo,y;] is an edge of P. Let d < j <5
and G € Fy_y(F) such that {yo,y;} C G. Clearly,

G = [Wicda+2, - - Yic1: Yit1s- - - s Yitd—2]

for some i such that i —d+2<0andd < j <i+d—2. Hence, 2 <i<d—2and
it follows that y; € G. But then [yy,y;] is not the intersection of (d — 2)-faces of
F, and it is not an edge of P.
By ihe reverse vertex array, we obtain the second part of 1.5.
6. Let 0 < j <s—d. Since d > 4, we have that
jHd—2
m [Yiedezs - Yoty Yit1s - Yird—2] = [Yjs Yjr1s Yjrd—1, Yitd]
=42
is a face of P. It is now easy to check that if {y;,yj4a} C G € Fuo(F)
then {yj41,Yj4a—1} C G. Thus, y;,yj+a] ¢ F1 and from this it follows that
(v, Yj 15 Yj+d—1,Yj+a] € F2. B

2. LyrMMA: Let F € F with the vertex array yo < -+ < Yp < Ypp1 < +++ <

Yot < Yt < o0 < Ysy {YrYrs1} = {25, 2541} and {ys-1,9:} = {zi-1, @}
21 Ifr>lands>r+d—1theny—; =x;_;.
22 Ift<s-—1andd—1<t then ys41 = Ti41-

Proof 1. Letr>lands>r+d-—-1. Then2<r+1<s—-d+2<s—2and

G= [yr—d+3, ey Yry Yrg2,y .. ,yr+d—1] € Fa_s.

Let I € F with the vertex array z) < 21 < -+ < z such that F'NF =G. Then
F' iz, zj01} = {z;}, ©; > 7o and (01) imply that z;_; and z; are successive

vertices of F'. Clearly

G = zid42,- -1 Zim1,Zidls+ -+ s Zitd—2]
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for some 1 < 4 < u—1. Since {yrs2,--,Yrqd—1} = d — 2, it follows that
{4r—1.yr} C{2icay2,-.-,2zi—1}. Hence, y._; and y, = x; are successive vertices
of F'and yp_q = Tj_q-

2. letd—1<t<s-—~1. Then

G = [Ytedt1r- - Yt=2:Yts - - Ytrd—1] € Fa—o

. / . . .
and, with F* defined as above, z; and ;41 are successive vertices of F'. Now,

HYt—ig1, > ye—2}l = d — 2 yields {ye, ye41} C {2Zig1,-- -5 Zixd—2} and Y1 =
L. [ |

Let VO = {z; € V|[zo,z:] € F1} and F* = {F € F|z, € F}.

3. LiMMA: Let zg # z; € F € F°. Then |Fﬂ VOI =d—1, and z; € V° if and

only £ [N {xg,...,z;}| < d.

Prooi- Apply 1.5. i
4. L1 MMA: There is an integer k such that d < k <n and V° = {zy,...,2x}.

Proot: Let k < n be the largest integer such that z; € V°. Clearly, k > d. We
show that i > 2 and z; € V° imply that z;_; € V0.

Let F = {F € F | {zg,z;} C F}. Then the edge [z,z;] is the intersection
of all the F € F', and by 3., |[Fn{zo,...,z;}| < d for each F € F . Thus, if
z;_1 = F € F then |F0{zg,..., 71} < dand z;-, € VO

If2 <i<n-1thenforany F € F, Fn{z;_1,zi+1} # O by (01). Since there
must be an F € F such that ziy1 ¢ F, we have that z;_; € F.

Ifi = n then each F € F is a (d— 1)-simplex by 3. Let r be the largest integer
such that r < n and there is an F. € F with z, € Fy.. Let Yo <y1 < -+ < Yd-1
be the vertex array of F,. Then yy = xg, Y4—2 = Tr, Yi—1 = T, and

G = [yO) ‘e ,yd—4,97r,$n] € fd—2~

Let 17 € F such that ' N F, = G. If 2,41 # n, then z,_; € F' N F, by (01).
Since z,_, € F, implies z,_, = yq.3, and z,_3; € G implies z,_1 = yq_4, it

follows that ,41 = =, and z, = cp_1. [ |
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5. LEMMA: Let VO = {my,...,z1}. Let F € F° with the vertex array zo < y1 <
c<us and T4 < Yg-1-
5.1 1f d = 2m then either xy = yg_1 and {y1,...,Yyq—2} is a paired sub-
set of {z1,...,25-1} or £1 = yy and {y2,...,Ya-1} is a paired subset of
{T, ..., Tk}
5.2 1fd = 2m+1 then either {y1,...,ya—1} Is a paired subset of {x1,...,xk} or

1 =1, Tk = Y41 and {ya,. .., Y42} is a paired subset of {z3,...,Tr_1}.

Proof:  We note that by 1.5 and 4., yg_1 < xp. Next, yg_1 > x4 implies that
{0,Y1,-..,Yd—1} is not connected. Thus, the two assertions in both 5.1 and 5.2
are mutually exclusive.

1. Let d = 2m. X {zo,vy1,...,Ya-1} is paired then 1 = y; and {y2,...,yq—1}
is paired. If {zo,y1,...,¥d—1} is not paired then because it is not connected,
it has exactly two odd components. One component contains zp and the other
contains y4—1. By (01), the latter i3 not possible if y4_1 < zx. Hence, yq_1 = xi
and {y1,...,Yq—2} is paired.

2. Let d = 2m + 1. Since {zo,y1,.-.,Yd—1} is not connected and contains an
odd number of elements, it has exactly one odd component which contains either
xg or vg_;. In case of the former, {y1,...,y4-1} is paired. In case of the latter,

we have o1 = y1, {y2,...,Yd-2} Is paired and, as above, y4_1 = z. |

We note that while the assertiors in 5 are somewhat repetitive, they make it
casier to list the facets in F%. Our goal now is to list the d element subsets of

VYU {zg} that by 1.2 and 3., determine the facets in F°.

6. LEMMA: Let VO = {x,,...,2;}. For each integer r such that d — 1 <r < k,
there 1s an F € F° such that z, € F and |F N {xzy,...,z,}| = d; that is, z, €
FNV?C{xy,...,z}.

Proof  Since the assertion is true for r = k, we show that if it is true for r,
d <1 <k, then it is true for r — 1. Let d < r < k and let F' € F° with the vertex
array o < y1 < - < Ysy Tp = Yd—1-

[fr = nthen F = [zg,%1,- .-, Yd-2, Tn} I8 a (d—1)-simplex by 3. From the proof
of 4., we may assume that z,,_1 = yg_o. We note that G = [zo,¥1,-- - Yd—3, Trn—1)
& F4-» and so, there is an F' € F such that F'NF = G. Then T ¢ FI, F' e Fo
and z,,_, € F nV°C {Z1,.. ., Tn-1}.
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Let r <n—1. Since r > d and |F N {zy,...,z,.}| = d—1, it follows that there
is an integer j such that 2 < 7 < and

F{zj_q,...,x0} ={zj,..., 20}

If ¢,41 ¢ F then z;_1 ¢ F and (01) yield that {z;,...,z,} is an even compo-
nent of FNV, j<r—1and z,_ = y4—2. By (02),

G =[zo,y1.. -, Yd-3,Tr—1] € Fa—2.

Let /" ¢ Fsuchthat FF NF=G. Then F € F°, z, ¢ F', {zj,...,zr1} C F'
and by 1.4, ‘F/ N {wo,...,wr_l}l < d. Since [{zj,...,z,—1}| is odd, it follows
that r;_, € F' and \F’ N {zo, ... ,a:r_l}‘ =d.

If 2,41 € F then 2,1 ¢ V° and 4. imply that » = k. Since

G ={zo,y2,-..,Yd—1) = [T0, Y2, ..., Yd—2,Tk) € Fa_2,

there is an F' € F such that F N F = G. We note that F € FO, piq ¢ F and
e FNVOC {z1,...,zx} by 4. We argue now as in the preceding paragraph
to verify the assertion for k — 1. |

7. LemMMA: Let VO = {zy,... 2.}, d<k<n. Letd—1<r<kand F € F°
such that ©, € F and |F N {zo,...,z;}| =d. Let {z;,zj41} C FNV for some
1<, <r—2.

7.1 If j > 1 and z;_; ¢ F then there is an F € F° such that
Fv®=((FNV)\{z;11}) U{zg;_1}.
7.2 If j <r—2and z; ¢ F then there is an F € F° such that
FAvO = ((FAVO)\(2;1) U {z542).

Proof: Let yo < y1 < --- < ys be the vertex array of F. Then zy = vy,
ap=ygqand FAVO={y;,...,yq-1}. For2<i<d-2,

G; = [yOa'--ayi-—layi+1,-~-7yi+d—2] € Fa-2

and there is an F; € F such that F;, N F = G,;. We note that F; € F° and
(FoVO\{y} € FEnVe.
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If j > 1 and z;_1 ¢ F then with {z;,2;41} = {¥i-1,%:}, (01) yields that
;o1 € F. M j <r—2and 24, ¢ F then with {z;,z;41} = {yi, 441}, (01)
vields that z;42 € F;. Now by 3. and 4., F = F; in each case. 1

In view of the preceding lemmas, we can now list all the facets in F°. Hence-

forth, we let S; denote a paired set of vertices of cardinality j > 0, and set
So =10.
& LemMA: Let VO = {zq,...,zx}.
8.1 Ifd = 2m then
FO ={F51(Sa-2)|Sa-2 C {z2,...,2x}}
U{F§(54-2)| Sa-2 C {z1,...,Tk-1}}
where
Fo,1(Sa—2) N{zo, ..., xx} = {xo, 21} U Sa—2
and
FE(Sy_2) N {zo,...,zk} = {xo} USa_o U {zk}.
8.2 If d=2m+1 then
FO ={Fy(S4-1)|S4-1 C {z1,...,zx}}
U{Fg1(54-3)| Sa=s C {z2,...,Th-1}}
where
Fy(Sg-1) N{zo,.. ., Tk} = {0} U Sa-1
and
F(fl(Sd_g) N{zo,...,Zx} = {Zo,z1} U Sq—3 U {zx}.

We note that 8. states simply that if @ is the vertex figure of P at xo deter-
mined by a hyperplane H and if {z;} = H N [zg,z;] fori=1,...,k then Q is a
cyclic (d — 1)-polytope with the vertex array zp < z; < -+ < 2. Also, if d = 2m
then

m-—1

k—
|f0‘=2p(m-—1,k—l)=2( m),
and if d = 2m + 1 then

|70 = p(m, k) + p(ra — 1,k — 2)

() = )



110 T. BISZTRICZKY Isr. J. Math.
Next, let
V*={z; € V|[zn_s,z,] € F1} and F* = {F € F|z, € F}.
By reversing the vertex array, we obtain that there is an  such that d <[ < n
and V* = {z,_4,...,z,_1}, and the analogues of 3, 5, 6 and 7.

9. LEMMA: Let V* = {z,_y,...,2n1}
9.1 If d = 2m then

F* :{Fn—l,n(sd——Z) ISd-2 C {xn—la cee 7$n—2}}

U{F::_l(sd—zﬂ Sd—2 C {xn—l+l>~ o azn—l}}

where

Foo1n(Sa-2) N {&n_t,...,Zn} = Sq2 U {Zpn_1,2,}
and
F:_I(Sd_g) N{Zn-t1,.- -, T} = {Znat} U Sa—z U {z,}.
9.2 Ifd=2m + 1 then
F* ={Fn(Sa-1) 184-1 C{zn-t,...,Tn-1}}
U{FP 1 (Sa=3)| Saca € {ath1s- - Tn_2}}

where
Fn(sd—l) n {xn—la ce 1-'L'n} =83, U {xn}
and
F::ll,n(sd—ii) N {xn—la e ,.’L‘n} = {xn—l} U Sg_3U {:Z:n——l:xn}-
We are now ready to exclude the case d = 2m from our considerations.
THEOREM A: Let P be an ordinary d-polytope with the vertex array o < T; <
++ < Iy, d=2m >4. Then P is cyclic.
Proot-

(l) [IE(),(En] (S fli
We suppose that VO = {z1,...,2;}, d < k < n, and seek a contradiction.
By 8.1, there is an F' € F° with the vertex array yo < 3 < --- < Ys such
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that {vo,...,¥a—1} = {Z0,Z1,-..,Za—2,Tk}. Since d < k < n, xx_1 ¢ F and
zry1 € F. By (02),

G = [yo,yg, S ,yd_l] = [.’130,.'132, . ,J:d_g,:ck] € -7'-d—2-
Let F' € F such that F'NF = G. Then F' N{zy, 741} = 0 and 241 € F'. By
14,
F N {:L'o, . ,:ck} = {(L‘o,m‘z, ... ,md_z,wk_l,mk}.
Hence, z; and 44, are separated by an odd number d — 1 of vertices of F ’, a

contradiction. Thus, [zo,z,] € F1 and k =n=1.

(i1) P 1S SIMPLICAL:
We suppose that
F ={FeF| fo(F) 2 d+1}
is not empty and seek a contradiction.
Since k =n =1, FFN(FPUF*) =0 by 3. Let F € F' with the vertex array

o < y1 < -+ < ys. Then F N {29,z,} = 0 implies that {yo,y1,...,ys} is a
paired set and s > d+ 1. Let

{yo,y1,yd,yd+1} = {mi;$i+la$vazv+l}

for some suitable i and v. We note that ¢ > 1. Without loss of generality, we
may assume that if FF € F then FNV C {z;,...,Tn-1}-
We observe that

G = [yo,¥1,¥3,---,¥d] € Fa-2
by (02), and there is an F' € F such that F' N F = G. Since fo(G) = d,

F nf{z;|w<z; <ya}|=d+1

by 1.4. Since F' N {Zi=1,Ty+1} = @ and d+ 1 is odd, the set above is not paired;
a contradiction.

(iii) FOR EACH Sy C {%1,...,Zn—1}, THERE IS AN F' € F SUCH THAT FNV =
Sy:
Let {yo,.--,Yd4—1} C V be a paired set with zo < yo < -+ < Y4—1 < Tn. Then

{yo,11} = {Tr,Try1} for some r > 1, and y; = z, for some t > r + 2. Since
Sa—2=1{y2,--,Ya-1} C {Tr42,.--,Zn-1}, it follows from 8.1 and k = n that

[an:El, Y2,... 1yd—l] S f
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Then G = [21,Y2,.--,Yd—1] € F4—2 by (02). Since y2 = x; > xr42 > 23 and P is
simplicial, it is clear that

[wlaz% Y2, - ,yd—-l]
is the other facet of P containing G. Reiteration of this argument yields that
(i Zit1, Y2, Ya1] € F
fori =1,...,t — 2, and hence for i = r.

(iv) P1s cycLic: By 8., 9., the preceding and (01), we have that P is simplicial
and satisfies Gale’s Evenness Condition. |

3. Ordinary (2m + 1)-polytopes

In this section, we assume that d = 2m + 1 > 5. From 8.2 and 9.2, we have the
facets of P passing through zg or z,. We proceed now with the task of finding
the remaining facets of P.

10. LEMMA: Let VO = {z;,...,a},d<k<n-2and1<i<n—k—1. Let
J be an odd integer, 1 < j < d—2, Sq_j_2 C {iy2,...,Tivk—j—1} and F € F
such that

Fo{zioy, .. Zigk} = {Zi1, 2} USaj2 U{@igk—j, .- -, Tivk }-
Then there is an F' € F such that

F' o {mi,. ik} = {20, Tir1 } U Samjma U @ikt - Tighr }-

Proof: Let yo < y1 < -+ < ys be the vertex array of F. Then

Fo{zioa, .., @ik} = {¥r—2,. .-, Ur—24d}

for some 2 < r < s—d+2. We note that {y,-2,y,—1} = {zi—1,7:} and y, > ;4.
Hence, s <r+d—2by 2.1; that is, s =r+d — 2 and

Fn {%’—1, s ,-’Ez‘+k} = {ys—d7 s Yste

From 1.6, [¢;—1, Titk] = [Ys—d,Ys) & F1. Since

G= [ys-j‘d+2a ces Ys—j—1, Ys—j+1y- - - ’ys—j+d—2] € fd—Z
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for | <j<d~2and 2,44—; = yYs—;, we have that

G = [ys—j—d+2a ceesYs—j—1 Titk—j+1s- .- awi-‘rk]‘

Let F' € F such that FF NF = G. Then z;4—; ¢ F', i+k < n and
HZith- j+1s- - Tisk}| = J (odd) yield that z;4 k41 € F.

If 5 == 1 then ys_j g2 = Ys—d+1 = Yr—1 = z; and z;_1 ¢ G. Thus, z;_1 ¢ F
and z;.1 € F'. Let j > 3. Then Ys—j—d+2 < Ys—d = Ti—1 and

Gf{zict, .. 2o} = {Zi—, 2} U Saj 2 U{Tivk—jt1,-- Tk}
Since [#;_1, Tirk] € F1, it follows frcm 1.4 and 1.5 that there is exactly one vertex

x of F' such that = ¢ Gand z;_1 <z < Tiqk. Thenzipp_; ¢ F’ and (01) clearly
vield that * = z;41. [ |

11. LEMMA: Let VO = {zy,...,2x},d<k<n-land0<i<n-—k—1 For
each Sy_3 C {Tiz2,. .., Tivk—1}, there is a facet F;(S4_3) of P such that

Fi(Sq_3) N {zi, o Tigks1} = {Zis Tig1} U Sq3 U {Tigk, Tivksr}
Proof: We note that by 8.2, the assertion is true for ¢ = 0. (Since k < n,
Tpyt € F(il(Sd_g).) Let 1 <3 < n--k— 1 and assume that the assertion is true
for i — 1.
Let Sy 3 C {Tiv2y- -, Titk—1}. If Tigk—1 ¢ Sa-3 then F;_1(S4-3) exists by
the induction hypothesis. Since

Fioi(Sams) N {mi 1, Tork b = {Zim1, @i} U Saa U {Zigk—1, Tivr )

the existence of F;(Sy_3) follows from 10. with j = 1. Let x;x_1 € Sq-3. Since
Sq_3 15 paired, there is a largest odd integer j such that 3 < j < d— 2 and
Titk—, ¢ Sd_3. Then

Sy 3= "Sa_j2U{Titk—jt1s-- - Tivk—1}
with
Sq—j—2 = Sq—s N {Tit2, .., Tiyk—j-1},
and
S = Sqej_2 U{Tizk—jy - Tivk—2}

is a paired set of cardinality d — 3. Now, Fi_l(Sl) exists by induction, and
Fi(Sq..3) exists by 10. [ |
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12. CoROLLARY: Let VO = {z;,...,2x},d <k <n—1. Then
(@i, Tiv1, Tivk, Cighy1] € F2 fori=0,...,n—k— 1.

Proof: Let 0 < i <n-k—-1, S4_4 C {$i+2,...,$i+k_1} and yo < y; <
© < Ys be the vertex array of F;(Sy_3). Then F;(Sy_3) N {Ziy..  Tigkp1} =
{¥;,- -, Yj+a} for some 0 < j < s —d, and

[T, Zig 13 Tigks Tkt 1) = (U5 Yjt1, Yj+d—1, Yj+a] € Fo

by 1.6. "
13. <COROLLARY: Let V® = {z,, .., 23}, d <k <n. Then
V¥ ={&n_ky .., Tn_1}
Proof: As we have already noted, V* = {z,_;,... ,&n-1} for some d < | < n.

If k--n then [zg,z,] € Fi, and n = L.
Let k < n—1and consider Sy_3 = {Zp_qs2,...,Tn-2} C {Tn-kt1s- -, Tn_2}.
By 1L, F,_x_1(S4—3) exists and

F‘;,fk-—l(deS) M {an—k—lv R 7:L'n} = {xn—k~—17$n—k} u Sd—S U {zn—la wn}-

By 15, [zn_k,2n]) € Fy. Thusn —1 < n -k and k < I. Now by reversing the

vertex array, | < k. |

Since }V°| = |V*| = k for some d < k < n, we call k the characteristic of P
and write k = char P.
Fori=0,...,n—d+1, let

le{F€f| g, e FNV C {iEl,,In}}
Since [FNV| > d for any F € F, we have that F = U?;Odﬂ F. Finally, let
_7} = {Fi(Sd_g) | Sd_3 C {:I)H_z, e ,fL'i-Hc—l} and i = 0, cea T — k — 1}

when k < n — 1, and set F = 0 otherwise.
As noted in the introduction, Lemma 11 will yield all the facets of P not

containing xq or z,. This next Lemma will enable us to prove it.
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14. LEMMA: Let k = char P, F € F with the vertex array yo < y1 < - < Ys
and {yo,y1} = {Zi, Ti+1}. Then ya3 < Titk—2-

Proof: 1f i = 0 then yq_; < zx by 8.2, and the assertion follows. Let i > 1 and
assume that if F € F with the vertex array zp < 21 < -+ < 2 and {z0,21} =
{Zi—1, z;} then zg.3 < Tiyk-3.

Since yo # zo and FNV is a Gale set, we have that {yo, ... ,Yd—2} is a paired
set and either yg_y = o, or s > d and {y4_1,ya} is a paired set.

Ifys.1 = z, then F € F*. Now 9.2 implies that 541 = {Ziy Tiv1,Y0, - - Yd—2}
CA{Zn gy -y Tn—1} and F = F(84_;). Hence, Zn_ < T and yg-3 < Tp_g =
T(n—k +(k-2) < Tivk—2. Let s > d and, say,

{:’ﬁi—B,yd—-?,yd—hyd} = {l'juzj-i—la:nl’a:l—kl}-
We note that
GI = [y07y2a e 7yd—1] = ["L‘i’ Y2, 1yd—2,ml] S fd—2~

Let F' € F with the vertex array wy < wy < --- < wr such that FnF=¢G.
Since F' N {Zit1, 131} = 0, we have that {zic1,z1-1} C F'. Then fO(G') =
d—1<2d—5 and 1.4 yield that z; = yg—1 = Wr, and so £;_1 = w,—_1. From
folG'1=d—1and 1.3,

. !
either G = [Wr_di2y. o swr]  OF G = [Wr_dt1,--- , Wr—2, Wr).

In case of the former, y; and y, are separated by the d — 2 (odd) vertices

Y2, >Yd-1 of F'. Hence,
[yo, Y2,.-- 7yd-1] = [wr—d+1, vy W2, wr]
and
{Wr_g, ..., wr} ={Tio1,%i,Y2, -+, Yd—2, Ti—1, Tt}
Accordingly, :
G = [Wr—dy .- Wr—3, Wr_1,Wr]
= [@i1,Ti, Y25 - - - s Yd—3, Ti-1,T1) € Fa—2.

Let F' € F with the vertex array zo < z1 < -+- < 2 such that FNnF =G.
Since fo(G) = d < 2d — 5, it follows from 1.4 that there is exactly one vertex z

of F such that z ¢ Gand zi_1 < z <y, and 29 = T;_1 OF 2 = Ty. Since

{zi 1, Ti. Y2, - - -, Yd—4, T1=1, T2}
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is a paired set, z; = yq_3 and z,4; = yq_o ¢ F, it follows that ZTj_q € F and
T, <z < Tj—1.-

If 2o = z;_y then {z;_1,2;} = {24-1,24}. Thus z < zj—1 implies that «;
Yd—3 = 2z4-2, and T;_1 = zg_3. By the induction, Zj1 < Tiyk-3 and so x; <
Titk -2-

Let z; = x;. Then

{ti-, i} = {z1-a,20-ar1} end  {zj_1,zj,2 1} = {zt-3, 212,241}

We note that

G= [Zu—d+21 S FE-ZTRE, PR azu+d—2]

for somet—d+2 < u < t—3. Now u < t—3 implies that u—d+2 < t—d. Therefore

Zyu-d+2 < Zt—4 and our convention yield that z,_4 = 2. Since 2y = z;_g,
Ya-3 = ¥; < Tiyk-2 from above. [ ]
15. LEMMA: Let P be an ordinary d-polytope with the vertex array

Tp < x1 < --- <z, and the characteristic k, d = 2m +1 > 5. Then
F=F'UFUF.
Proof: Let F' € F with the vertex array yo < y1 < -+ < y,. We may assume
that g < yg. Then
Sa-1={%0,-,va2}
is a paired set with, say, {yo,v1} = {zi, zi31} and {ya_3,v4_2} = {zj,x;41}. By
14., 7 <14 k — 2; that is,
Sz(i)—l - {:Eiy cee 7$1i+k—1} N {$(j_k)+2, Ceey :11j+1}.

Then

Sé—S = {y07 LR 7yd—4} C {-'L'(j—k)...z, - ,l‘j_l}
and

53 5= {y2,-- -, ¥da-2} C{Zit2,.. ., Tith-1}

We note that ;47 =yg_2 < zn_q and G = [yo,...,Yd-2] € Fg_a.
If + >n—k then S§_; C {zn_k,...,Zn—1} and 9.2 imply that G C Fo(S9_,).
Ifi < n—k—1then S3_5 C {@i42. ..., Tisk—1} and 11. yield that G C F;(S3_5).
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If j <k—1then S}, C {1,...,zx} and 8.2 imply that G C Fo(SY_ ). If
j >k then S 5 C {z(j_k)42,-- -+ FG-k)y+k—1}, 0 < j—k <n—k—2and 11.
yield that G C F;_x(Si_3).

Since G is the intersection of exactly two facets of P, it follows that F' € FuU F*.

We can now list all the facets of P and it remains only to describe them in

terms of their vertices. To that end, we use the decomposition

n-d+1

F = U F
1=0

THEOREM B: Let P be an ordinary d-polytope with the vertex array
X9 < a1 < --- < xp, and the characteristick, d =2m +1 > 5. Then

faa(P) = 2<k :nm> +(n— k)(k‘m“2>

m—1

and, with {Yit+1,...,Yi+;} denoting a paired set of cardinality j, the following
are the facets of P.
Bl. forj=d—-2,...,k—2and {y1,...,Ya—-3} C {x1,..., 21},

[z()?yl? R 7yd—37$j7$j+1].
B2. Forr=0,...,m—2 and {y21.+1, .. .,yd_g} C {$2r+2, . 7~7:k—2}7

[:EOa ey T2ry Y2r415 - -t yYd—3, Thk—1,-- - 7$k+27‘]

and

[1‘0, ey Ld=3,Th—1,y-- - 7Ik+d—3]-
B3. Fori=0,....n—k—1,r=17,...,m—2,
{vart+2,- -, ¥i—2} C{Zit2r43,- -, Tigh-1}
and yq_o # Tg4i—1 fori >0,
(@i, Tigor 1, Yara2s -+ o 1 Yd=2, Thtiy - - - a$k+i+2r+1]

and

[©i, ..y Titd—2, Thtiy - - - » Thtitd—2]-
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B4 For {y1,...,yq-3} C {Tn_kio,-.. yTn-1} and, Yg-3 # Tn_1 ifk < n,
[Tk Tnkt1s Y15+« s Yd—3, Tn)-

BS Forj=d-2,...,k—2and {y1,...,y4_3} C {Tnjy1,. .. 201},

[xn—j--lazn—j5yl) v ,yd~3,~’5n]-
Proof Bl: Letd—-2<j<k—2and S;_5 = {y1,- -, ya-3} C {xy,.. ST}
Set
Sg-1 = Sa—3 U{zj,zj41} and S5_5 = Sy_1\{y1,v2}.

Froni Sq_1 C {z1,...,zx_1} and 8.2,
Fo(Sa—1) N {zo, ...,z } = {x0} U Sa1 = {z0, y1,- -, Ya—3, %5, 2,41 }.

Let .zyp < y; < --- <y, be the vertex array of Fo(S4-1). Then y4_; = z41, and
we need to show that s = d — 1. By 3., we may assume that k < n. Since 2.1
(with r = 1) implies that if y; # 1 then s < 1+d — 1, we may assume also that
y1 = z1. Then y; = x5 and S} _3 C {x3,...,z%}. If k < n — 1 then from 11.,

PS5 a){zn, - zkge} = {21, 22308 _3U{@hs1, Tht2} = Sa—1U{Tks1, Thpa ).

Let % < z; < - < z be the vertex array of Fi(S;_5). We recall that
(0,41, Tk, Tiy1) € Fo by 12. ‘Therefore, z, ¢ F1(S;_;) implies that z, ¢
Fl(é’;_s), and {Zo,...,Zd_g} = Sd—l- Since

G = [ZOa oo azd—fZ] = [ylay27 e 7yd—37mj7xj+1]

is a td - 2)-face of P such that & C Fp(Sq—1), fo(G) =d —1 and zo ¢ G, it
follows from 1.3 that y; € G; that is, yg_; = Tjt1 = Ys.

If £ =mn —1 then we need only that z, ¢ Fy(S4—1). This is immediate since
(20,71, %n_1,%n] € Fa, {T0,21} C Fo(S4-1) and z,_; ¢ Fo(Sg-1).

BZ. Let 0 <7 <m -2, {y2r41,---,Ya—3} C {z2ry2,...,0k—2} and S5_, C
{21, ..,zx} such that
{zo} UST_) = {Z0, .-, Tar, Y2rs1,- -, Ya—3, Th—1, Tk }.
Fron 8.2,

Fo(S;_4)n {:L‘o, . ,th} = {1,‘0} usSy_ ;.
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We may assume that k& < n. Then {zo,zx} C Fo(S;_,) and 12. yield that for
j=1, .on—k—1,

z; € Fo(Sg_l) if and only if Tjt+k € FO(S;__I)-
Thus, {xg,..., T2} C Fp(S]_;) implies that
FO(‘S;.—]) M {x07 e ,$k+27~} - {m(l, oy T2y Y2r4 1y - - - yYd—3, Tk—1y- - - 7zk+2’r}~

Let yo < y1 < --- < ys be the vertex array of Fo(S7_,). Then T2, = Yatar—1,
and yo,41 # Torsy and 2.1 imply that s <2r+1+d—-1=d+2r.
We observe that with Sy_1 = {z1,...,Z4-3,Zx-1, %k}, 8.2 yields that

Fo(Sq-1) 0 {zo,..., zx} = {T0,- .-, Td—3, Tk~1, Tk}
Now, we argue as above and obtain that
Fo(Sq-1) = [zo, -, Td—3, Th—1,- - - , Thyd—3]-

We may think of this facet as the - = m — 1 case.
B3. Let 0<i<n—-k—1,0<r<m-2,

{Y2r+2s -+ Ya—2} C {Titorss, -, Tigh1}
and S;_5 C {Zi42,...,Titk—1} such that
{zi, Tip1 U S _g ={xi, ..., Tit2rs1, Y2r42,- - »Yd—2}

From 11.,

Fi(S_ )Nz, Tivks1} = {Zis oo, Tidort1, Y2rq2s - -+ Yd—2, Thtis Thotit1)-

Since {xy,...,Tiyor41,Thtiy C Fi(ST_3) and zitor42 ¢ Fi(S]_3), we apply 12.
and 2.1 as above and obtain that

Fi(S_) N {iy o0} = @iy oo Tigor41,Y2r 425 - - - > Yd—2, Thtis - - + » Thbit2r+1}-

We may now assume that i > 0. As we are describing here the facets with the

initial vertex x;, it ts an easy consequence of 2.2 and 12. that yg—2 # ZTg4i—1 if
and only if

Fi(S3_3) = [Tis- oy Tig2r i1, Y2r 42, - - - Yd—2) Thobiy « - + s Thobik2r+1)-
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With Sd_g = {IEH_Q, AN 7$i+d—2}, we have that
Fi(Sa—3) N {zsy - Tivkpr} = %6, Titd—2, Thoi, Thyig1 }
for 0 <i <n—k—1. Noting that z;,4_, # Tg+i—1 and arguing as above, we
obtain that
Fi(Sa—3) = [%iy ., Tivd—2, Thtis - - - Thpigd_z)-

Again, we may think of this as the r = m — 1 case.

B4. Let S;_5 = {yl, ... ,yd—S} - {a:n_k+2, . ,wn_l}. Then
Sd—l = {xn—kvxn—k—H} U Sd—S - {wn—ky s 7$n—1}7

and irom 9.2,

Fn(Sd-—l) n {xn—ka e 7:E7L} - {zn—k’wn-—k+17yl’ .. ayd~37xn}'

Now if £ < n, we obtain from 2.2 and 12. that

Fn(Sd—l) = [xn—lﬁ Tn—k+1:Y1y--- 7yd—37zn]

if and only if yy_3 # 2n_1.

B5. Apply Bl with the reverse vertex array.

Now, let F € F*, 0 <i < n —d+ 1, have the vertex array yo < y1 < +-- < ¥Ys.
If i = 0 then by 8.2, either {y1,...,y4_1} is a paired subset of {z1,...,zx} [type
Bl or B2] or {yo,y1,¥a-1} = {zo,21,zx} and {y2,...,y4_2} is a paired subset
of {z2,...,zk 1} [type B3 (k <n)or B4 (k=n)]. f 1 <i<n—k—1 then
{Y0,.--,Ya—2} is a paired set and by 14., {y2,.-,¥a—2} C {@ig2,- ., Tivk_1}
[type B3]. f0<n—k <i<n—d+1 then 9.2 yields that F' is type B4 or B5.

Finally, we note that d — 3 = 2(m — 1) and recall that

z": '/i _f{v+1
“\u T \u+1)
Clearly, there are
k—2 k-2 i—m
2 — ] — =
Z p(m—1,j—1) 2‘Z <m_1)
j=d—2 j=d-2
facets in Bl and B5. Since each facet in B2 is determined by an S;_3 C

{21, , 22}, there are p(m — 1,k — 2) = (*,™7") of them.

m—1
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Let k£ = n. Then each facet in B4 is determined by an Sq_3 C {z2,...,Zn_1}
and there are p(m — 1,n — 2) = (*77") of them. Thus, in this case,
=2 (i-m n—m-—1 )
fa_1(P) =2 =2
wm=2 2 () () ) = 2 000
J=d—2 d—2
n—m-—1i i n—m—1 i
> ()= (Wl
i=d—2—m i=m—1

Let k < n. Considering B3, each facet in FO(F*, 1 < i < n—k—1)is

determined by an Sy_3 C {z3,...,Zk—1 }{{Zit2,- -+ Titk—2}), and there are

p(m—1,k=2)+(n—k—1)p(m—1,k—3) = (k ;’t‘_— 1) H(n—k—1) (k -m— 2)

1 m—1
of thein. In B4, each facet is determined by an Sy 3 C {Zn—k+2,--.,Tn—2} and
there are p(m — 1,k — 3) = (k;'ZIZ) of them. Therefore,
2 j—m k-m-—1 k—m—2
fa-1(P)=2 j§2<m_1>—k( 1 ) +(n~k)( o )

=" M) rw-n (T

16. COROLLARY: Let P be an ordinary d-polytope with the vertex array

rg < a1 < --- < x, and the characteristick, d=2m +1 > 5.

16.1 If k = n then P is cyclic with the same vertex array.

16.2 Ifk = d then fy_1(P) = n+1 and the (d—1)-faces of P are [xo, 1, . .., Tq—1),
(Tredtly - Tn-1,%n] and  [Ti—gi1,.. . Tic1,Tig1y. .1 Tiga—1]  for
r=1,...,n—1.

Proof 1. It is immediate that if £ = n then F = F° U F* and P is simplicial.
Theorem B or Lemmas 8.2 and 9.2 now yield that any d element Gale set of V
is the set of vertices of a facet of F.

2. Let k = d. The assertion is trivial if n = d, and

fd_l(P):2(m+1)+(n—d)(m_1) —om+2+n—d=n+1.
m m-—1
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Let /5 = [Zi—dg41,-- -y Tiz1, Tit1,...,Tigd—1] for i = 1,...,n — 1, and assume
that d < n.

From Bl and B5, we obtain [z,...,24_1] and [zp_441,. .., 21], Tespectively.
B2 yields F; forodd i = 1,...,d -- 2. B3 yields F; foreven i = 2,...,d — 1, and
t=d,...,n — 2. Finally, B4 yields F,_;. | |

4. Remarks and examples

It is clear that although we can describe ordinary (2m + 1)-polytopes, further
study is needed to really understand them. For example, 16.2 is a surprising
result, that hints of something special about ordinary (2m + 1)-polytopes with
characteristic 2m + 1, m > 2. Also, while the present definition of an ordinary
d-polytope is a reasonable one because it recognizes the parity of d, it does not
indicate in any way how to obtain non-cyclic ordinary 2m-polytopes. Is there
a better definition of ordinary (2m + 1)-polytopes? This relates of course to
the problem of a second definition of an ordinary d-polytope that yields cyclic
(2m + 1)-polytopes and non-trivial 2m-polytopes.

Next, the difference between the theory of ordinary 3-polytopes and that of
those of higher dimension. From [1], we note that if P is an ordinary 3-polytope
with fo(P) =n + 1 and char P = k then

[g-] +k§fz(P)§n+k—2:2(kzl)+(n—k)(kg3).

Thus, P is not combinatorially unique. It is somewhat surprising that already
an ordinary 5-polytope with n.+-1 vertices and characteristic & is combinatorially

unique.

Finaliy, we refer to [1] for examples of ordinary 3-polytopes. Below, we present
two examples of higher dimensional ones. In each case, the polytope is d-
dimensional with the vertex array zo < z; < --- < z, and the characteristic
k, d == 2m 4 1. We specify the polytope by (n, k,d) and denote the facets using
the subscripts of the x;’s. We list the facets via Theorem B.
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Example 1: (n,k,d) = (7,6,5) and f4 = 14.

BL: [0,1,2,3,4],[0,1,2,4,5],[0,2,3,4,5;

B2: [0,2,3,5,6],[0,3,4,5,6],[0,1,2,5,6,7];
B3: [0,1,3,4,6,7],0,1,4,5,6,7],(0,1,2,3,6,7;
B4: [1,2,3,4,7],[1,2,4,5,7);

B5: [2,3,4,5,7],(2,3,5,6,7],[3,4,5,86,7].

Example 2: (n,k,d) = (10,8,7) and fs = 26.

B1:

B2:

B3:

B4:

B5:

[0,1,2,3,4,5,6],[0,1,2,3,4,5,7],[0,1,2,4,5,6,7],[0,2,3,4,5,6,7];

[07 27 37 4’ 5’ 77 8]’ [0’ 27 31 5’ 6’ 7’ 8]’ [07 3’ 47 57 67 7’ 8]’
[0,1,2,4,5,7,8,9,10],[0,1,2,5,6,7,8,9,10],[0,1, 2, 3,4,7,8,9,10];

[0,1,3,4,5,6,8,9],(0,1,3,4,5,7,8,9],(0,1,4,5,6,7,8,9],
[0,1,2,3,5,6,8,9,10],[0,1,2,3,6,7,8,9, 10],
[1,2,4,5,6,7,9,10],[1,2,3,4,6,7,9, 10],
[0,1,2,3,4,5,8,9,10],[1,2,3,4,5,6,9, 10;
2,3,4,5,6,7,10],[2,3,4,5,7,8,10],[2,3,5,6,7,8, 10];

3,4,5,6,7,8,10],[3,4,5,6,8,9,10],[3,4,6,7,8,9,10],[4,5,6,7,8,9, 10].
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