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Ordinary 3-Polytopes
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Abstract. We introduce a class of three-dimensional polytopes P with the property that there is a
total ordering of the vertices of P that determines completely the facial structure of P. This class
contains the cyclic 3-polytopes.

Mathematics Subject Classifications (1991): 52A15, 52B10, 52B12.

Let C (v, d) denote a cyclic d-polytope with v vertices in E¢, d > 3. We recall
that C(v, d) is combinatorially equivalent to the convex hull of v points on the
moment curve, ot on any curve of order d, in E¢. The importance of C(v, d) is
well known and it is due to the fact that there is a vertex array (a total ordering of
vertices) of C(v, d) that determines completely the facial structure of C(v, d). It
is our belief that there are other classes of a-polytopes, induced by curves in E°,
with a vertex array that is instruamental in determining their facial structure.

Presently, we verify this conjecture for d = 3. )

As the first step in the introduction of this new class of 3-polytopes, we present
an overview of our motivations, definitions and main results.

In Section 1, we describe the class of oriented ordinary spherical space curves

(cf. Figure 1) and show that if we choose vertices on such a curve in a particular
manner then the facets of the resultant 3-polytope satisfy a global and a local
condition ((01) and (02)) that can be expressed solely in terms of the order of
appearance of the vertices on the curve. With this observation in mind, we define
an ordinary 3-polytope as one with a vertex array such that its facets satisfy (01)
and (02). Except for the notations at the beginning and the definition at the end, the
reader may choose to skip this section. ’
““"'The central concept in understanding and describing an ordinary 3-polytope P
With the vertex array 2o < z1 < *** < &5, 1 2> 3,isits characteristic. Specifically,
the characteristic of P is an integer k(k = char P), where 3 < k < n, and z and
z; determirie an edge of P iff 1 < i < k iff z,, and z,,_; determine’an edge of P.
The introduction of char P is the subject of Lemmas 6, 7 and 8, and requires the
description of the vertex figures of P at 2o (Lemma 7) and 2., (Lemma 8), and a set
of facets of P which do not contain zg or Z,. In Lemmas 9 and 10, we determine
Wthhuof the facets above may be equal and which must be distinct. These are the
last results required to describe P.

> Theorem 11 states that, in fact, we have all the facets of P and that the number
: fz(P) of facets of P increases as k = char P increases. In particular, P is cyclic
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Fig. 1.

if k = n (Theorem 13), and a P with maximum f,(P) ‘looks’ more cyclic as k
approaches n (cf. Theorem 12 and Figures 4 and 5).

Finally, we determine a lower bound for f(P) in Theorem 14, and show :;; if
the characteristic of P is minimum (k = 3) then there is a P with the least number
of facets of any 3-polytope with n + 1 vertices (cf. Theorem 15 and Figures 2, 3, 4
and 7). Thus, we introduce a class of 3-polytopes with the unexpected property that
for a fixed number of vertices, the polytope with the maximum number of facets
and a polytope with the minimum number of facets are in the class. .

1. The Curves : ; C

H\.mﬁ Y ¢ E3. ThenconvY and aff Y denote, _d%mnné? the convex hull and En
affine hull of Y. If Y = {y1,..., Yn}, we set

[vi,..., yn}=convY and (y1,..., yn) =aff Y.

i g
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Fig. 2. (1=6)

3
Fig. 3. (=17)

k=4, f,(P)=8

Thus, as usual, [y, 2] is the closed segment with endpoints y; and y,. We set
(1, 12) = lys, v2l\{w1, 12}-

Let I C E! be an open interval and let § C E be a sphere of positive radius.
Let I: I — S be a simple finite C™ curve; that is, T is injective and any plane
intersects I'(J) at a finite number of points. For convenience, we identify I' and
T(I). For r < tin I, we set T[r, ] = T'([r, t]) and I'(r, t) = T((r, t)).

Let s € I and U C I be an open neighbourhood of s. We say that I'(U) is of
order k if k is the maximum number of coplanar points of I'(U). Clearly, k > 3.
We say that I'(s) is ordinary if there is an open neighbourhood U C I of s such
that () is of order three, and that T is ordinary if each of its points is ordinary.
Finally, let H be a plane through I'(s). Then |H NT| < oo implies that either there
is an open neighbourhood U C I of s such that I'(U) lies on one side of H or not.
In case of the former [latter], we say that H supports [cuts] T' at ['(s).

-+ Henceforth, we assume that I': I — S is a simple, finite, ordinary C'*° curve.
From p. 169 of [1], we cite the property of such a I that we require for this study.




T. BISZTRICZKY

132

k=4, f,(P)=8 k=5, f2(P)=10

Fig. 4. (#=8)

LEMMA 1. Let r < s < tin I. Then
T'(8). . |
LEMMA 2. Let 7 < s < t < winl such that H = (L(r), T(s), T(?), I(u)) isa
planeand HN T (s, t) = 0. Then (T'(r), E:ZD QA.@Y H.vi. *&s.\» a =”<wx
Proof. Let A = [[(r), I(s), I'(t), I'(w)]. Since T'is spherical, A 1s a o.o

4 mm_ﬂmil, T(u)) N (T(s), I'(t)) = @ then [[(r), .25_ is an oMmM ﬂu}%:.m
I'(s) and I'(¢} are on the same side of (I'(r), E:VV in m.amm_:“oﬁnon Em, 4=
{I(s), T(t)}, H supports B = conv(I'[s, t]). Since Em.v m:- ( Wﬁ S heongh
side of (I'(r), T(w)), (T(r), T(v))nNB = s..dEm.a_oR isap EH..« L) o s
(T(r), T'(u)) that supports B. Since H’ necessarily supports L at 1{s

s < ' < t, we have a contradiction by 1. s

(T(r), T(s), L(t)) is a plane that cuts T at

o
e

e

0
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LEMMA 3. LetY = {y1,-.., Ym} C I suchthaty; = I(r;), r1 < 712... < Ty
inTandm > 4.IfH = {y1,..., ym) isaplaneand HNT[ry,..., ] = Y then
[Y15- - - Y] is a convex m-gon with the edges [y1, Y2l [ym—1, ym] and [yi, yisa),
i=1,...,m=2

Prodf. mo:., =1,..., m—3,weapply 2 withr; < riy1 < riy2 < rig3. o]

r0~§wu,moAm_AA.mzm:hn..nH.?..v;\u?o,:;N:MEE
@ = conv V. Since I is simple and spherical, ¢} is a 3-polytope and V' = ext Q).
We set z; < zj if s; < sjin],and call 29 < 2y < -+ < 2, a vertex array of Q. If
we reverse this ordering on V then z,, < 2,1 < -+ - < zg is a reverse vertex array
of Q.

We note that if T is of order three then (cf. [2] and [3]) @ is a cyclic 3-polytope
and the vertex array zp < - - - < 2y satisfies Gale's Evenness Condition: A set V! of
three points of V determines a facet of @ if and only if every two points of V\V’

are separated in the vertex array by an even number of points of V'. Thus
{lz0, 2z, zipalli=1,..., n =1} U{[2}, zj41, Z)li =0, 1,..., n — 2}

is the set of facets of ).

If T is not of order 3 then, of course, we do not expect that 29 < --- < 2,
satisfies Gale’s Evenness Condition. We do, however, obtain the necessary part of
the condition for a certain type of facet of Q).

LEMMA 4. Let F be a facet of Q such that (aff F) N I'[sg, s,] = FNV and
aff F cuts T'(so, $5) at each point of intersection. Then every two points of V\F
are separated in zg < - - - < z, by an even number of points of F NV,

Proof.- Lety = I'(r) # I'(t) = win V\F, y < w. Since H = aff F supports
@, vy and w lie in the same open half-space determined by H. Since H NI'(r, t} C
FNV and H cuts I'(r, t) at each point of intersection, it follows that I cuts, and
meets, I'(r, t) at an even number of points. (]

We note that if, in Lemma 4, (aff F)NT[sp, 8x] = {y1,..., ym } where y; < 12 <
«vs < Y, thenaff FeutsTaty; fori =2,..., m—1by L.

In summary, if Q has the property that for each facet F of Q, (aff F)NI'[sg, sp]) =
FNYV and aff F cuts I'( sg, s,,) at each point of intersection then ¢ with the vertex
array zg < +++ < zn, satisfies 3 and 4.

Let P be a 3-polytope with V = ext P = {zg, z1,..., Zn}, n > 3. We say
that P is ordinary if there is a vertex array, say, 2o < -+ < Zp such that for each

B . facet F of P:

R

:(01) every two points of V\F are separated in zo < -+ < z, by an even
number of points of NV, and

©O)if FnV = {y,...,ym} Where y < y2 < -+ < ym then F is a convex

;. m-gon with the edges [y1, ¥2], [¥m—1, Ym] and [4i, Yire)si=1,...,m - 2.
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k=4, f,(P)=9

k=6, ,(P)=12

Fig. 5. (#=9)

‘We note that if P is ordinary withzg < -+ < Tn then it is also ordinary with
Ty < - < s

2. The Polytopes

In this section, we assume that P is an ordinary 3-polytope with V' = ext P =
{zo, Z1,...» Tn}, 0 23, and the vertex array zg < - - - < Tn satisfying (01) and
e

(02).

if [zi, z;] € €. Fori =0, 1,..., n, we set

Fi={Fe€ Flzi€ F} and Vi = {z; € Vllzi, 2] € £}

We denote by £ or E(P)[F or F(P)], the set of edges [facets] of P. As usual, -
fi(P) = |E(P)|and f2(P) = | F(P)|. Next, we say that z; # z;in V are adjacent
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3

1 5

- n=8, f;(P)=8

n=10, £,(P)=9

n=9, fL(P)=9
Fig. 6. (k=4)

Finally, for = = 0, 1 n-1 weset L; = [z
, fe , 1., , ¢ = [z, zig1] We al
[zi, z;] € € if and only if | F; 0 F;| = 2. 1 iptl. W recall tha

LEMMASIIfF e Fiand1<i<n—1thenF0{z;_1, ziz1} £ 0
2. If F € F contains {zo, 21, 2} or {Zn_2, Zn_1, Zn} then |F N <_ =3
3IfLi ¢ Eand1<i<n—2then{Li, Lin} CE. .
MSM\. The first assertion follows from (01).
et {zo, 21, 22} C F € F.If there is a smallest ¢ > 2 suc ;
[z1, =i} € Eby (02). Let ;1N F; = {F, G}. Then FNG Hr_”__mH M._mmsm Mmh
{z0, z2} = 0; acontradiction by 5.1. We argue similarly if {z, 2, su,u_ ) z,} C F.
. Let L; ¢ £ forsome 1 < i < n—2.Then|F;NF;4| < 1. Thus|F;| ,V uumaau ~
yieldthat | 7;0F;_1| > 2and hence, | FiNFi_1| = 2. Similarly, | Fig1n Fival = 2.
. ad

v
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8 Kl
¢ k=3, (P)=13
3, il 1s
19
I \Pu\ S L./N - |
k:\ —_— ~ 1t ‘
- ~
0 2 /»A
0 \
1 13 af
° "
5 3}
q 43
k=4, f(P)=16
Fig. 7. (#=21)

LEMMA 6. There are integers k and m such that 3 < k, m < m, Vo =

{zy, T2, +» zx} and Vo = {Zn-m,- -5 Tn-2s Tp-1}
Proof. ‘We verify that Vo = {z1y T25-- s
ifi>2andz; €Wy then z;_1 € Vo.

z)} for some k > 3 by showing that
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Clearly, |[V| > 3 and z; € Vp for some i > 2. Then [z, z;] € &€ and

[z0, z;] = F N G for some F and G in F. By (02), this is possible only if
|F N {zo, T1,...,%i}} <3 and |G 0 {=z0, zy,...,zi}| €3.

Ifi = nthen [FNV| = |GNV| = 3 by the above and {F, G} =
{[z0, Z1, p], [®0, Tn-1, Tn)} by (01). Thus [zo, ,_1] € €. Leti < n—1.Then
FNGNV = {zg, z;} and 5.1 yield that, say, z;_; € F and z;4; € G. Thus
Fn{zog, z1,...,2:} = {20, Ti-1, z:} by the above, and [zo, zi-1] € £ by (02).

A similar argument with the reverse vertex array yields:

Vi = {Tp-my-i+r@Tn-2, Tn_1} forsomem > 3. O

LEMMA 7. Let Vg = {z1, %2, .., Tk}, 3<k < n.

1. |Fol = k and Fo = {F?,..., FJ} where [zo, =i, Tiy1] C FY fori =
1,..., k=1, [zo, =1, zx] C F}, F? = [zo, 71, 73] and either k = n and
F? = [2o, T1, Zn] oF [T0, T1, Tk, The1] C FF.

2. Ifk<n—1thenforj=0,1,...,n—1—k, [z, zjtx] and[zj41, Tjy14k]
are edges of a facet G ; of P.

Proof. We note first that each F' € Fy contains exactly two edges through zg
and thus, |F N V| = 2.

Since there are k edges of P containing zo} the vertex figure of P at zg is a
convex k-gon. The k-gon has exactly k edges and thus, | Fo| = k.

Let F € Foand FNVy = {z;, z;} forsome1 < i < j < k. Ifz > 1
then z;_ ¢ F and 5.1 yield that z; = z;y;. Leti = 1. Then 2 < j < k is not
possible by 5.1 and so, either z; = z; orz; = z¢. If FNVy = {24, zi41} for some
1 < i < k—1,wedenote Fby F2.If FNV; = {z1, zx}, we denote F'by F. Since
|Fol = k, it follows that Fo = {F?,..., F{}. We note that FY = [zo, =1, z2] by
5.2, and that if k = n then F2 NV = {0, =1, Tn}.

Let k < n — 1. Since F? N {zo, %1,..., Tk} = {0, Z1, Tt} and k > 3,
zr41 € FQ by 5.1. Then 7o < 1 < k < Tk41, and (02) yield that [zg, 2]
and [z, zr41] are edges of Nm Let 1 < j € n— 1 — k and assume that there
is an F € F with edges [r;_1, z-1+4] and [z;, z;4x). Let G € F such that
[¢;, zj4k] = FNG.Then1 < j, j+k<n—1,GN{zj-1, Tjsx—1} = @and
5.1 imply that {z;41, Zj+s4+1} C G. Since [z}, ;x| € £, it follows by (02) that

G N {zj, Tirty. oy Tiwk} = {25, Tivts Tipk).

Thus, z,4k+1 € G and (02) yield that [z;,1, Tj4x41] € £. O
LEMMA 8. Let Vy = {zy, z2,..., zx}, 3 < k < n.ThenV, = {z,_4,...,

Tn-2, Tn_1}, |Fnl = kand Fp = {F},..., F}} where [Tn_i—1, Tn_i, Tn] C F}
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fori= _,....... k-1, [Zn—k, sz_lw,ww_ m_"m_,m,sﬁwru M”w,ﬁﬁlﬂr%“:_ and either
¢ Hﬁ“ﬂﬂ.&&ﬂ:@ﬂ«\mﬂgm M‘.MM“%: . a?ﬂ M:M_vawonwoan 3<mg<n Clearly, we
:noMM:W “oﬁwwmﬂaﬂ”wwu .mh%w:a m = n.Letk < n—1.From7.2,[Znt, z,] =

andthus,n—k > n—mand k < m. Now, with

[€(n_1-k)+1> T(n-1-k)+1+k) € € h

the reverse vertex array, m < 1 — 1 implies that m < k.

In view of 8, we say that P has characteristic k (char P = k) if [Vo| = Vol =

A . - - .
. wuo.Am .M_Mnﬂwu — k. Then the following are (not necessarily distinct) facets of

P: ﬂv ..;ﬁm, Ff,... Fy and when k < n — 1, Go, Gi, ..., Gn—k—1. For

. .| <
consistency of notation, we set FO = Foand F* = Fy. Itisclear that |[FInF*| <

2.1k < n— Ithen
—Hc, T1y Tky HT—.L C GoN m...m

and

13
[Zn-k-1, Tn—ks Tn-1) zn) € Gnok-1 N F.

Thus G = F and Gn—k-1 = Fy. When k <n-—3,weset

Q = AQ:.. .y Q:I—«INM.

. .w.

We recall that [, zj4k] and [Tjs1, s»i.w:. are edges of G; € m.MﬂﬂW“”._
L: and L; are also edges of G then Gj is distinct from each facet in e

Amiﬁ.ﬂ.&. Accordingly, we determine when L; € Efori=0,1,...,n—1. From

7 and 8, Aho, Ly, Ly_2, h:l_w C €. We set
L={Lsy..., Ln-3}-

LEMMA 9. Let char P = kand L; € LU {Ly, Ln-2}-

1. Ifi < min{k, n — k—2}thenL; C F'nGi.
2. Ifk+1 <1< ﬁlwlw_.rmzhmmﬁ.ft)_ﬁu?
3.lfn—k-1 <i<kthenLi CFPNFL_ iy
4. Ifi>max{k+1,n— k—1} then Li C Gi—k N F5_iy-
Furthermore, L; € £ if and only if the two denoted facets are distinct.
Proof. We note that

Li = [2G_kysks S(i—Rytkrt] = Fnmmeiz)-1> Zp(n—i-1)] e

m7 and 8. Next, if L; ¢ £ then L; is contained

and thus, 9.1 to 9.4 readily follow fro
in at most one facet of P.

i
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Finally, let F' € F contain L; € £. Thenby (02), either FNV C {=o, ..., zi—1}
or FNV C {z;,..., z,}. It is now easy to check that, in each of 9.1 to 9.4, the
two denoted facets are distinct when L; € €. a

From 9, we obtain that if L; € £\£ then certain facets in 7° U F* U G are equal.
We now investigate which facets in 7% U F* U G may be equal and which are
necessarily distinct.

LEMMA 10. Letchar P =k, 3 < k < m.
1. If G; = Gj then j = i (mod k); moreover, if j = i+ lk andl > 1 then

Gi=Gipr == Gigie = Gj.
2. Qam...oﬂﬂ., then j +1i=n — 1 (mod k), moreover, ifn — 1 = j+ i+ lk and
1> ﬂuwaz.md..o“ﬁnmﬂ ...HQm+A~I_v»H$w.

Proof LetG = G; =G, 1 <i<j<n—k—2 Then
{Ziy Tigt, Tivks Tivksl, Tjy) Tjrl, Titk, Tjrkt1} C G

by 7.2. Since z; < ; < Tj41 < Tj4k, it follows from (02) that L; ¢ £.

Let j < k. Then L; ¢ £ and 9.1 imply that G = F} and z € G. Since
Tg < T; < Tiy1 < Titk, we also obtain that L; ¢ £ and hence, G = FY. Since
F? = FPand |{F],..., F{}| =k, i = j. Thisis a contradiction and 50, j > k+1.
Then L; ¢ £ and 9.2 imply that G = G;_x. Now arguing as above, we obtain that
eitherj —k<kandj—k=torj—k2>k+1andG = Gj_ = Gj_2. 13.1
now follows readily.

Let F = F? = F}, 2 <4, j < k. Let k = n. Then [z,, z,) € £ and

|70N F*| = 2. From 7 and 8,
Twc. H§I~“ Hﬁu m .m.JMl— D .@J“.. NH—A..— TGO. Huu Sw—_ m ‘NAJM_V D N.Jw”|_.

Thus (i, j)iseither(n — 1, n)or(n, n—1).Letk = n— 1. Then [F'n F*| < 1
and from 7 and 8,

_..Hog T1y Tp—1, &:_ c mﬂwl_ n Nﬂ.“.l_.
Thus F)_; = F;_jand (i, j)=(n— 1, n—1). Letk < n — 2. Then
4 *&ov Tiy Tigly Tn—j—1y Tn-j, &:w CF
and by (02), {Li, Lp_j1}NE=90.

Ifi > n—k—1thenL; ¢ £and9.3imply that FY = F;;_; ;. Thus F} = F;_,
andj=n—¢—1.Wenotethatn —k—1<n-—j—1.Henceifn-j—-1<k
then L, ;1 ¢ £ and 9.3 imply that mwi.u_ = Fy_(nj-1y-1 = F;. Thus
m.w = N.MJ.L and againt =n — j — 1.

T ST SR

b
£

T
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Let ¢ A,Slwlum:a:lg.l_ N w+~.ﬁ_m=ﬁo HQ..U%@.M.EE
Gn—j-1)-k = Fi (nej-1)-1 = F? by 9.4. Since Gi = G(n-j-1)-k» it follows
from 10.1 thati =n —j — 1(mod k), n —Jj — 1 = i+ lk for some ! > 1 and

FO=Gi==Giy-nk = Gn—j-1)-k = 5 o

We are now ready to describe ordinary 3-polytopes. We continue with the intro-
duced terminology and remark that for a real number b, [b] denotes the largest

integer equal to or less than b.

THEOREM 11. Let P be an ordinary 3-polytope with the vertex array To < -+ <
z,, and the characteristic k. Then

1. \..Cuvuﬁﬂvf.iﬁm, ﬁm,:;ﬁww\owwwalw,
2. F(P) = Am._o,..;m_m, Gy yGnok-2, ﬁmu...,ﬁa\cxw <n-3
3. fo(P) <n+k-2and
4. fr(P) =n+k—2fork>n—1
Proof. Let F € F\(FOu F*). Then there is a smallest i, 1 < i < n—2,such
that z; € F. We note that Z;11 € Fboy5.l,and L; € Eby(02).Ifi < n— k-2
thenk <n-3and F € {Gi-x, Gi} by 9.1 or9.2.1fi > n—k—1theni 2 k+1
by 9.3. Thus n — 3> kand F = Gi-k by 9.4.
We recall from the proof of 10 that if k = n[n — 1] then |FOnF*| = 2{1]. Now,
11.3 and 11.4 readily follow from 11.1 and 11.2. ]

THEOREM 12. Let P be an ordinary 3-polytope with the vertex array g < * -+ <
., the characteristic kand fo(P)=n+ k — 2. Then

1. F? = [zo, =4 ziy1) and F? = [Tn—i-1, Tn—is zp)fori=1,....k—1,
2. F? = [zo, T1y Tks vry1] and Ff = [Tn-k-1, Tn—ks Tn-1) zn|whenk < n—1
and

3. Q.Q = Ts.: Titls Tjt+ks na.q.+w+L when k < ﬁllwh:&.w. =1,...,n— k-2

Proof. We note that fo(P)=n+k—2 and 9 yield that £ C £, and that the
descriptions of the facets readily follow from 7, 8 and LCE. a

With the remark that if char P = n then f(P) = m—2 F2=F,_ =
[zg, T1, Tn] and 7 = FO_, = [z0, Zn-1 z,), and if char P = n — 1 then
fo( P) = 2n ~ 3 and FO =F, = [0, T1, Tn-1, z,], we have from 12 a
complete description of ordinary 3-polytopes with maximal number of facets.

Next, we recall that the starting point for the development of this theory was
the cyclic 3-polytope. We now elaborate on this relationship.

THEOREM 13. Let P bea 3-polytope with vertices To, L1, -+ z,,. Then P is cyclic

withzg < 1 < - < In _.\azkciv:.\wWQ‘&:aQs;S&c <z << Tn
and char P = n.
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Proof. If P is cyclic with zg < z1 < -+~ < Ty, then

F(P) = {[zo, zi, ziga)li=1,..., n — 1}
C:Hm. Tipl, H::s =0,...,n— Nw

by Gale’s Evenness Condition. Clearly, P satisfi .
an edge of P. y, P satisfies (01) and (02), and [zg, ,] is

If P is ordinary withzg < z; < - -- < z,, and char P = n then

.N.lﬁwv“ AMO“ —Ro. T, &.TT_:@.“ —4..; n — mw
CAN.J.* = Tﬁﬁl..l_q Tn—i, &..::s.“ Hv...u n-— ~v

by 11 and 12, and Gale’s Evenness Condition is satisfied. 0

Next, we consider P with the vertex arra
y £g < -+- < Tp, th isti
Aty Sty T e characteristic
Ifk = n—2then fo(P) = 2n—5by 11.1 and | F°
. NnF* < V= F*
forsome 2 < i < n—2by 10.2. ’ | < rmsam,,o = facict
Let k < n — 3. Then

F(P)={F,..., F), Gi,..., Gn_k—2, F},..., F'}

and some of the facets are equal under the restrictions of ﬂ, = [zg, 71, 22, F} =
?:x».. Tn_1y Tnly |FO = |F*| = kand |FON F*| < 1. 1tis :oi,m szow of
mE.GEm 10, 9 and 5.3 to determine which facets may be equal, and of applying 12
to anmo:_uo the identified facets in terms of the vertices. For L:m: n :JM M: nm»m
exercise to an.ﬁm:a:m all ordinary 3-polytopes with n + 1 vertices. ~.: the monnnm
case, we restrict our attention to P with a maximum number of identified facets

Hmmowm«(_ 14. Let P be an ordinary 3-polytope with the vertex array zp < - <
z,, and this characteristick < n — 3. Then f,(P) > k + [n/2].
Proof. We recall that £ = {L,,..., L,—3}. By 9 and 10, all possible identifi-

cations of facets are related to £\&; that is,

f(P) = (n+k-2)-|L\E].

Since {L1, L,_2} C &, it follows from 5.3 that |C\&| < [(n — 3)/2]. Thus

AP 2 k-2 - 252 =k |2

) 5 k+151- o
We note that if & = 3 then 3 + [n/2] = [(( i

= [((n 4+ 1) + 5)/2] is the greatest

lower bound for the number of facets of any 3-polytope iz—vw_ w 1 <Q.:momm. ow

p. 184 of [3]. In the article, we present some exampl i —
f2(P) =3+ [n/2). mples of P with k& = 3 and
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THEOREM 15. Let P be an ordinary 3-polytope with the vertex array To <

... < &, the characteristic 3 and L\E = {Lyli = 1,..., m} s&.mxa m =

[(n — 3)/2} > 3. Then f2(P) = 3 + [n/2] with the following identifications:

M% = Ga, Gri—3=Gaifori=2,..., m— land Gam-3 = F}_sm-1-
Proof. Apply 9.1, 9.2 and 9.4.

From 13, 15 and the examples, it follows that in the class of 3-polytopes with
n+12>6 vertices, there is an ordinary one with the maximum number of facets,
and an ordinary one with the minimum number of facets. . .
Finally, we observe that if k is large compared to n then k+{n/ N_ is certainly not
the greatest lower bound for f2(P). In particular, we can show that ifn=k+42>9
ork+5<n< 2k — 1 (n even) then fo(P) > 2k — l,andifn=k+3>7Tor
7<n=k+4<8Bork+5<n<2k—1(nodd)then fo(P) 2 2k.

O

3. Remarks and Examples

Our rationale for the definition of an ordinary 3-polytope is based upon some
properties of a simple, finite, ordinary C® curve I': I — § - E3. We note that in
fact it is sufficient to assume that T': I — E3 is a simple, finite regular C*° curve
which is convex, namely, |L N T'| < 2 for any line L ¢ E3and T’ C bd(conv T').
Clearly, it is easy to visualize spherical curves, and regular polytopes have been

already defined.
LetI = (o, v), m € Zt and"™: [ — E3 be defined by

I™(t) = (cos(mt) sin(t), sin(mt) sin(z), cos(?)).

Then I'™ is a simple, finite C* spherical curve. 1t is tedious but not too difficuit to
check that '™ is ordinary. In Figure 1, we depict ™ form =1, 2, 4and 8.

Next, we recall that unlike the definition of a cyclic polytope, the definition of an
ordinary 3-polytope is not in terms of an ordinary curve I'. This wvu_.ownr permits
us to avoid the difficult task of verifying that for large n, there exist 89 < « -+ < 8n
in I such that for each facet F of @ = conv{I'(s0),.- -, I'(sn)}s

(aff F) N T[s0, 8n] = F' N {T(s0),--5 T(sn)}

and aff F cuts I'(sp, s») at each point of intersection. .
Finally, in Figures 2 to 7, we present examples of ordinary 3-polytopes with the

vertex array To < - - - < T and the characteristic k < n — 3. In each case, f2(P)

is minimum for the type of polytope depicted. It is easy to check that P need not

always be combinatorially unique.
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Abstract. We exhibit 18 surfaces that can be mapped generically into 3-space with a single triple-
point. The family should be used as a source of examples and counter-examples.

Mathematics Subject Classifications (1991): 57R45, 52B70.

There are two well-known surfaces which have a single triple-point. Steiner’s
surface is the image of a semiregular map and has six non-immersive points or
crosscaps. Its domain is the projective plane P2. When given as the zero-set of the
function :

f(z, y, ) = 2y +9* 22 + 2% +oyz
the surface has tetrahedral symmetry and the singular set consists of an interval on
each of the three axes. These intervals are lines of double-points which intersect

in a triple-point at the origin and are terminated at each end by a crosscap. Boy’s
surface is an immersion of P2, Its singular set is a bouquet of three circles and we

_ can assume that these also contain intervals of the coordinate axes connected by

270° circular arcs.

Here we exhibit a family of 18 surfaces with a single triple-point which includes
the Steiner and Boy surfaces; one of the others (which we have designated 2g) has
been investigated by the second author and David Mond ([M], [M-M]). They are
built from the basic ingredients in the Steiner and Boy surfaces: the singular set
consists of an interval in each axis, and these three intervals are either terminated
by crosscaps or connected to one another by arcs. The four cases are shown in
Figure 1. Although none of our surfaces is given as the image of a map we shall
refer to them as semiregular surfaces and to their abstract topological type as their
domain. We also discuss transitions between the surfaces that can be achieved by
anihilating pairs of crosscaps by a surgery. There is a unique path from the Steiner
to the Boy surface. Frangois Apéry described a one-parameter family of mappings
of P2 in R3 which transforms the Steiner to the Boy surface ([A, p. 80]). The three
hyperbolic confluences occur simultaneously as the crosscaps disappear.

1. Surfaces with Six Crosscaps

Since all our surfaces must contain a triple-point, we begin by constructing this.
The vertices {a, b, ¢, d, ¢, f} of aregular octahedron determine three squares that




