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Abstract. Let Abe a(d + 1) x d real matrix whose row vectors positively spafi and

which is generic in the sense oiBiny and Scarf [BS1]. Such a matrix determines a certain
infinited-dimensional simplicial compleX, as described by&any etal. [BHS]. The group

79 acts onx. with finitely many orbits. Letf; be the number of orbits @f + 1)-simplices of

3. The sequencé = (fo, f1, ..., fq_1) is the f-vector of a certain triangulated — 1)-

ball T embedded in=. When A has integer entries it is also, as shown by the work of
Peeva and Sturmfels [PS], the sequence of Betti numbers of the minimal free resolution of
K[X1, ..., Xq+1]/1, wherel is the lattice ideal determined b.

In this paper we study relations among the numbigrdt is shown thatfy, fy,...,
fld-3),2) determine the other numbers via linear relations, and that there are additional
nonlinear relations. In more precise (and more technical) terms, our analysis shows that
is linearly determined by a certaM-sequencégo, 01, . . ., 0,@d-1)2;), hamely, the-vector
of the (d — 2)-sphere bounding . AlthoughT is in general not a cone over its boundary,
it turns out that itsf -vector behaves as if it were.

1. Introduction

A construction appearing in the work of Scarf and coauthors [Sc1], [BHS], [BS1] shows
away to associate with sufficiently generic rea 1) x d matricesA a certain abstract
simplicial complexz. This “big Scarf complex” is infinite, wittZ¢ as its set of vertices
and with the grougZ® acting on it. It is however locally finite, and the choice of one
of A’'s row vectors as priviliged determines a certain finite subcomplex the link of

¥ at the origin. This “small Scarf complex” is a triangulation ofte— 1)-dimensional

ball, and its faces are in bijection with the orbits of #&action onx.
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Sciences and Medicine, and by a KTH-Yale Collaboration Grant.



OF2 A. Bjorner

Let f; be the number afdimensional simplices of the compl@x It was empirically
observed by Scarf that all the face numbé&rseem to be determined bfy alone for
d = 3 andd = 4, and byfy and f; whend = 5. This led him to ask [Sc2] whether it
is true that in generafy, f1,..., f (43,2 determine the othef;-numbers. The main
purpose of this paper is to prove that this is true. The proof will show that the face
numbers ofT are determined by the face numbers of its boundary. This boundary is
a (d — 2)-dimensional sphere, and relying on the Dehn—Sommerville relations among
the face numbers of spheres we reach the conclusion. From a realization of the big
Scarf complexX as a polyhedral surface, due taBny et al. [BHS], one can glean
the information that the boundary df is isomorphic to the boundary complex of a
convex polytope. Via the work of Stanley [St1] this introduces further relations of an
algebraic nature on the face numberslghamely, nonlinear inequalities of Macaulay
type.

The construction of the Scarf complexBsandT is reviewed in Sections 2 and 3.
Here for motivation we briefly mention the reasons for their study.

The complexes: were introduced by Scarf [Scl] for purposes to do with integer
programming. In fact, he defined such complexesrfor d real matricesA that are
sufficiently generic. In this paper only tiee= d + 1 case is considered. The relevance
for integer programming is that the 1-skeletonXfprovides a complete test set for
integer programs of the form

minimize ag - X
subjectto @ - x < by, i=1,...,d,

whereay, . .., aq are the row vectors of the matrik. Namely, if a pointxg € Z9 is

in the feasible region and if a local minimum is achievek@{meaning that no im-
provement of the objective function can be attained at @nyeighbor ofxg), thenxg

is a global minimum. Furthermore, the-neighbors ofxg in the direction of decreas-

ing objective function are determined by the vertices of the small Scarf conplex
The higher-dimensional structure Bfis very interesting mathematically; its meaning
for integer programming is however more elusive, see, e.g., [SS] for a result in this
direction.

Scarf complexes have recently become of interest also in commutative algebra, due
to the work of Bayer, Peeva, and Sturmfels [BPS], [BS2], [PS] on free resolutions. Since
the numbersf; studied in this paper have algebraic meaning in that setting we want to
outline the connection. This is done only for the case of a sufficiently gefte#d) x d
integer matrixA, although their work is more general.

For such a matrivd, let £ £ {A .y | y € Z9). ThenZ is a sublattice o7+ with
which we associate the ideal

def
=

x®—x"|a,be N*landa—be L)
in the polynomial ringS ot K[X] = K[X1, ..., Xd+1]. In [PS] a minimal free resolution

0— St 5 ghz ... 5,80 555 5/1,-50

is constructed, wherd; denotes the face numbers of the small Scarf compleas
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previously discussed. Thus, the face number¥ afive the Betti numbers of the ring
S/1. in the generic case. In the nongeneric case it is shown in [PSTitlgates a lower
bound for the th Betti number of the ring.

2. The Big ComplexX

In this section we review some definitions and general properties that are needed. Full
details about this material can be found in [BHS] and [BS1].

Let Abe a(d + 1) x d real matrix. We require thaA is of full rank, and that there
exists a strictly positive vectar € R4*! such that A= 0. Forb € R4 et

Ky &' (x € RY|Ax < by}.

If nonempty, Ky, is either a point or a full-dimensional simplex Rf'. K}, is said to
be lattice freeif int K, N Z4 = @. A pointn € RY is called aneighbor(or neighbor
of the origin if the smallest set of the forrK, containingn and 0 is lattice free. Let
N denote the set of neighbors. It is proved in [BS1] that theNsé$ nonempty and
finite.

Denote byay, . .., a4 the row vectors ofA. The matrixA is said to begenericif

neN = g-n#0, forall O0<i <d.

We assume thak is generic. Also, since only the directions provided by the row vectors
g are important, not their magnitudes, we can without loss of generality normalize the
vectorc to be the unit vectot = (1, ..., 1). In summary, from now on we require of
the matrixA € R@+Dxd that

(Al) Ais of rankd,
(A2) 1-A=0,
(A3) Ais generic.

Call a simplexK, maximal lattice freaf Ky, is lattice free but every convex body
strictly containingK, has some point fronZ® in its interior. It can be shown that if
Ky, is maximal lattice free, then its boundary interseZfsin exactlyd + 1 points
(one in the relative interior of each of its facets). T®earf complexz (or ) is the
abstract simplicial complex whose vertex seZsand whose facets (maximal faces)
are the intersectionk, N Z9, for all maximal lattice freeKp,. Thus = is a pured-
dimensional complex. Its faces are the sets of the fim Z9, for lattice free sim-
plicesKp.

Although the convex hulls oE’s facets in general intersect in complicated ways, it
turns out that the geometric realizationX®fis homeomorphic to real-space. This was
shown by Birdny et al. [BHS]. Some details of their method of proof are needed later,
S0 we review them here.

For a fixed positive real numbery consider the injective mapping: RY — RI+!
defined by

O X > (efoX L glaaXy
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LetM &' {((Yo, ..., Yg) € R¥1|y. > Oforalli, and ]_[idzoyi = 1}. Because of assump-

tion (A2) we have thaip(R%) € M, and, in fact [BHS, Lemma 1} (R%) = M. Let

v & ¢ (Z%), and letC be the convex hull 0¥/ (which is a discrete set). Defirfe € C

to be afaceof C if there exists a closed half-spakkin R4+ with bounding hyperplane
HO such thaC < H andC N H® = F. The zero-dimensional faces are the point¥of
(and thus they correspond bijectively to the lattice poifts The higher-dimensional
faces ofC are described as follows, for large enough

Theorem 1[BHS, Theorem 3]. There existsgtsuch that for t> tp:

(i) the maximal faces of C are d-simplices
(i) suppose¥ ..., x% e Zd then{x?, ..., x%} e ifandonlyifg (x°), ..., @ (x%)
are the vertices of a maximal face of C

Remark. The proofs in [BHS] are based on a stricter definition of genericity than
the one given here. However, they go through unchanged in the greater generality, see
Remark 4 of [BS1].

Theorem 1 shows that the boundary comple€ girovides a geometric realization of
the Scarf complex. In particular, since the boundary Gfis obviously homeomorphic
to RY we obtain:

Corollary 2 [BHS]. ||Z] = RY.

3. The Small ComplexT
It is clear from the definition that the grod' acts onx:
cexy and teZ' = o+tex. 1)

This action is transitive on vertices. Hence, to study the local structure of the complex it
suffices to confine attention to the neighborhhood of the origin. Let

LE e |0¢0,0U{0)e3)

define thelink of ¥ at the origin. The vertices of the subcomplexare precisely the
neighbors. Because of condition (A3) the Bksplits intonegative neighbors

N~ MmeN|a-n<0

andpositive neighbors N % _N-. The subcomplex

TG N |oU0} e}
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of L is called thetop complex, a terminology suggested by Scarf [Sc2]. Its dependence
on the choice o8y, via the definition ofN ~, is discussed at the end of this section.

The top complexT has been studied by Scarf for many years and its properties are
discussed in a forthcoming treatise [Sc3]. To make this paper self-contained we give
proofs of the key technical properties Dfthat are needed here. We refer to [Sc3] for a
fuller treatment.

Proposition 3. The mapping sendinfx?, ..., x1} to the orbit of{0, x*, ..., x/} is a
bijection between thej — 1)-faces of T and th&%-orbits of j-faces of.

Proof. Leto be aj-face of¥. Chooseau € R such that the half-spaegx < u contains
o while the planeagx = u intersectsr. Let xg be the unique intersection point (unique

due to genericity). Then the translate— xo = {0, x1, ..., xJ} has the property that
ax < Ofori =1,...,j,ie,{x}...,xl} e T. Hence, the mapping is surjective.
Injectivity is clear. O

Example 4. The matrix

21 —29 2
6 -9 26
A=l _g 35 _13
23 3 -33

is generic and has 20 neighbors. Its top compleis shown (unlabeled and up to
combinatorial isomorphism) in Fig. 1. (Remark: This example was computed by a Maple
program provided by B. Sturmfels.)

We say that a simplicial complex ig@lytopal(d — 1)-spheréf it is combinatorially
isomorphic to the boundary complex of some condegolytope. See [G] or [Z] for
notions relating to polytopes and convex geometry. A simplicial complex is called a
regular d-ball if it is combinatorially isomorphic to some regular triangulation of a
convexd-polytope. A triangulatiomA of a d-polytope is regular if it is the projection
of the lower boundary of a convexl + 1)-polytope, see the discussion in Section 5.1
of [Z].

Fig. 1. The top complex of a 4« 3 matrix.
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The following result is important for our work with face numbers in the next section.

Theorem 5.

(i) L is a polytopal(d — 1)-sphere
(i) T is aregular(d — 1)-ball,
(iii) 9T is a polytopakd — 2)-sphere
The proof follows a sequence of lemmas. The notatiolj1][d=ef {zeZ|i<z< ]}
is used.

Lemma 6. Supposéx?, ..., x%} e L. Then there exists a unique(0, d] such that
ax! < Oforall j €[1,d].

Proof. Sinces = {0, x%, ..., x9} is afacet oft there is a maximal lattice free simplex
Ky, such that = K, N Z9. K, has a unique facéf, containing 0 in its relative interior.
Let axx = 0 be the equation dfy’s supporting hyperplane. Then, by definitiond,
ayx! < Oforallj e[1,d].

If i #k, thenKy has a supporting hyperplane of the foax = u containing some
x! in the interior of its intersection witk,. Since Oe K, it follows thatu > 0, and
henceg;x] > 0. O

Forx € N let

1+x) €' e[0,d] | ax > 0},

1-(x) £'(i e[0,d] | ax < O}

Both these sets are nonempty forxale N.

Lemma 7. Forevery je [0, d] there exists a unique & N and a unique Xe N such
that I (x) = {j} and 1= (X') = {j}.

Proof. Letb = (0,...,0,b;,0,...,0) and choosdy; > 0 minimal such thaky
intersectsZ® in at least one point other than 0. This poinwill be unique (due to
genericity), it will be a neighbor, and it will satisfyt(x) = {j}. As a consequence,
—x e Nandl—(—x) ={j}. O

Let {x!,...,x9} € L. By Theorem 1 the sdtL, ¢ (x), ..., ¢:(x%)} spans a facet of
C. Let
AY) Eho(Yo— D+ + Ag(Ya — 1) =0

be the equation of the supporting hyperplane of this fac€t afiented so that(y) > 0
forally € C. Thena; > O for alli, by Lemma 3 of [BHS].
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Lemma8. Supposegx?,...,x% e L and choose “k” as in Lemma. Then for
sufficiently large {

Ak > (d 4+ DA, forall j #Kk.

Proof. Choose a numbevl suchthatO< M < ax/ forall j € [1,d]andi € | *(x}).
Then choosé¢ > tg large enough thaMt — 1 > 2d.

Choosep # k such that., > ; for all j # k. Suppose (to reach a contradiction)
thatix < (d+1)x,. By Lemma 6 (the uniqueness part) there exgsts[1, d] such that
p € 17(x9). Using thati(g;(x9)) = 0 and the various inequalities we get

> hio< 2dap < @ -1,

iel—(x9)
<@-1 Y n= Y @@ -y
iel+(x9) iel+(x9)
= Y @A-e"Hn= >
iel—(x9) iel—(x9)

This contradiction shows thak > (d + 1), and since.p, > A for all j # k we are
done. O

Lemma9. Let{x},...,x% e L,and letr(y) = 0 be the equation of the supporting
hyperplane of the corresponding facet of C as befdhen for sufficiently large t

_[>0, if {x%,...,x%eT,
+((d+20....0)is {< o, otherwise

Proof. Let® E'A((d+2.0,....0) = (d+ Do — X0 4.

If {x%,...,x9} € T, thenk = 0in Lemma 8 and we g@?:l Aj <d(o/(d+1) <
(d + 1)Ap; henced > 0.

If {x%,...,x9} ¢ T, thenk # 0 in Lemma 8 andd + )iy < Ay < qu:l Aj; hence
® < 0. O

Proof of Theorenb. Choosé sufficiently large and leP = C N H, whereH is the
hyperplaneyy + --- + yqg = d + 2 in R4, The vertexl of C is separated from its
neighbors byH, so P is a bounded conved-polytope whose boundary complex is
isomorphic toL. This proves part (i).

Letg = (d+2,0,...,0) € R¥L Theng € H, and Lemma 9 shows that (in the
d-spaceH) g is beneath those facets Bfthat correspond to the facetsf and beyond
the remaining ones. (Being “beneath” means being on the same side as the intBrior of

and the opposite for “beyond.”) L&t be the part of’s boundary complex that realizes

T, and letQ £’ conv(P U {q}). The facets of the polytop® are the facets i’ and

faces of the formconu F U {q}) for facetsF of the boundar®T’. It follows thatT’ is
a (d — 1)-ball, and its boundary compleXT’ is isomorphic to the vertex figure @
at the vertexq, which shows it is a polytopald — 2)-sphere. See Section 5 of [BL1]
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for more about this kind of argument. Finally, a projective transformation that moves
g (but no other vertex o)) to infinity will move T’ into a position showing thal is
regular. O

We return for a moment to the definition of the compleand its dependence on the

choice of a specific row oA. Generalizing our earlier definitions, let
N EMmeN|a n<0
and
T E N JoU(0) ex),

fori = 0,...,d. This createsl + 1 “top” complexes, all satisfying the enumerative
property of Proposition 3, as well as all the other properties we have derived. Examples
show, however, that these compleXgsire in general notisomorphic. Using Theorem 5
and Lemma 6 we can conclude the following:

Proposition 10. The(d — 1)-balls Ty, Ty, ..., Tg have pairwise disjoint interiorsand
their union is the link L

4. Face Numbers of Scarf Complexes

We begin with a quick review of some definitions and results from the general theory of
face numbers. For more about this topic, see, e.g., [G], [Z], or the survey [BB].

Let A be a(d — 1)-dimensional simplicial complex, and lek be the number
of i-dimensional faces ofA. The sequencef = (fg,..., fq_1) is called the f-
vectorof A. We put f_; = 1. Theh-vector h= (hg, ..., hq) of A is defined by
the equation

d d
D fix® =) hix+ 1t )
i=0 i=0

Note thathg = 1, h; = n —d, andhg = (-1)%"15(A), wherex(A) is the reduced
Euler characteristic oA. In particular,

o — 1 if A'is a sphere,
4700, if Aisaball,

where the conditions are shorthand for saying thatgeometric realization is homeo-
morphic to a sphere, resp. a ball.
The following are called thBehn—-Sommerville relations

If Aisaspherethenh =hy_j,forall0<i <d. (€)

Hence, for spheres afl-vector information is encoded in the much shogerector
0= (9o, ..., 0pd/2), defined byg, = h; — hj_;. We have thagg =1,09: =n—d — 1.
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Asequence of integersy, . . ., a) is called arM -sequencé there exists a nonempty
family M of monomials ing; variables such that

@) if mdividesm’ andm’ € M, thenm € M, and
(iiy M contains exactly; monomials of degrek forall0 <i < k.

M-sequences have a number of algebraic and combinatorial characterizations, see, e.g.,
[St2] and [Z]. Their relevance for this paper is the following result due to Stanley [St1]:

If A'is a polytopal spherghen(go, ..., 0id/2)) iS an M-sequence 4

If Aisa(d—21)-ball,its boundary compleXA is a(d —2)-sphere. FurthermoréA’s
f-vectoris determined by that af, as shown by the following consequence of the Dehn—
Sommerville relations, due to McMullen and Walkup [MW], see also Corollary 3.9 of
[BL2]:

If Ais a ball with boundaryA, then f* —hi; = g?4. (5)

After this review, we now turn our attention back to Scarf complexes. fl-iectors
of L, T,anddT are denoted ", fT, and f?T, and similarly for theih- andg-vectors.

Proposition 11.

() fr=d0+21T;
(i) hr =@ +Dh' +d—i+DhT ;.

Proof. Leto be ani-simplex of T. Theno U {0} is an(i + 1)-simplex of=. Each one
of thei + 2 vertices ofo U {0} can be translated to the origin, andiits- 2 maximal
faces thus contribute distinctsimplices toL. The proof of part (i) is concluded with
the observation that everysimplex ofL is obtained from a uniquiesimplex of T in
this fashion.

To simplify notation, for the rest of this proof put %77 andh £ hT. For part (ii)
we begin by differentiating (2) and multiplying kx + 1):

d—1 ‘ d—1 .

oA =D fiax+ DX =Y "d —ih(x+ D
i=0 i=0

This relation gives

d d d-1
d Z fi_gxd — Z ifi_xd7 + Z(d i) gxd-i-t
i=0 i=0 i—o

d

d
dY hix+ D% = ihix+ D
i=0

i=0
Using (2) and its derivative this simplifies to

d d d—1
it = Y i+ 14+ > d - Dhi(x + D
=0 =0 i—

lihi + (d+1—i)hi_g](x +1)9".

d

i=0
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Hence, using part (i) we get

d d
DM+ =) i+ D fioax
i=0 i=0
d _ d )
= Y fihi +d+1-Dhi](x+ D% + ) fi_x
i=0 i=0
d .
= D[ +Dhi + (d + 1 - Dhi_g](x + D,
i=0
which proves part (ii). O

Proposition 12. The h-vector of T satisfies
hiT = hzirflfi’
forallO<i < [(d—1)/2].
Proof The Dehn-Sommerville relatiohg = h}_; together with Proposition 11(ii)
show that
(i + D" —hi_p=d-i+Dhi;—hly. ©

We have thah] = 0 andh} = 1 (T being a ball and. a sphere), sb]_; = 1 follows
from Proposition 11(ii). Hence, sindg = 1, (6) gives

hg:th_1 = hI:hg_Z = h;:hg_s = ..., O
The following is our main result.

Theorem 13. LetdT be the boundary complex of Then

hl = hdT

1 [

forall0<i<d-1

Proof. Using Proposition 12 and (5) we get that

= =R = g =T T,
forall 1 <i < [(d — 1)/2]. Sinceh] = h3T = 1 it follows thath! = h’T for all
0<i =< |[(d-1)/2]. This extends to all 6< i < d — 1 via Proposition 12 and the
Dehn-Sommerville relationts’™ = hi", ;. O

Corollary 14. T has the same f-vector as the cone over its bounaamely fiT =
foT + £77.
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Proof. If (hy, ..., hq_1) is theh-vector of som&d — 2)-complexA, straightforward
computation (multiply (2) by + 1) shows thathy, ..., hq_1, 0) is theh-vector of the
cone overA. O

One particular consequence, already known to Scarf [Sc2], [Sc3], isTtinets a
unigue interior vertex, although (as illustrated by Fig.Tl)s in generainot the cone
over its boundary. The unique interior vertexlofs the neighbok that in Lemma 7 was
characterized by the property (x) = {0}.

Corollary 15. The f-vector of T determingand is determined hyhe M-sequence
(1, giTv cees gf(L—l)/Zj)‘

Proof. Theg-vector ofdT is anM-sequence, sinc&T is polytopal (Theorem 5). The
rest follows from the theorem. O

Thetheorem alsoimplies adirect relationship betweegtectors of the two spheres
L andaT.

Corollary 16. g- = (i + 1g’" + d —i +2)g"";.

Proof. We have from Proposition 11 and the theorem that

g- =ht—h-, =G0 +Dh +d—i+Dh", —(h| ,+d—i+2h",)
=i+t —h p+d—i+2Mh_;—h,)
= (+D1g"" +d—-i+2g",. O

5. Remarks

1. The property of being a ball with a unique interior vertex does not by itself imply any
special relationship between tHevector of T and that of its boundary, such as that of
Corollary 14. For example, take two tetrahedra glued together along one triangle and
then perform a stellar subdivision of one of them, thus introducing an interior vertex.
The resulting ball has five facets, whereas its boundary has six. One can also construct
a unigue-interior-vertex triangulation of the 3-ball with seven facets, whose boundary is
the same six-facet 2-sphere.

2. Let Fy4 be the set of allf -vectors of Scarf top complexdscoming from generic
(d + 1) x d-matrices. What is the dimension of the affine spatFgin R%? We have
shown that

dim aff £y < LdT_lJ

Is this upper bound sharp, or are other linear relations satisfied by fhesetors ?
3. Amore ambitious question is to ask whikhsequence€l, gi, . . ., 9)d-1)/2)) are
“Scarf” in the sense of Corollary 15, i.e., correspond to the elementy of



OF12 A. Bjorner

4. The Stanley—Reisner rings of top compleXemay be interesting to investigate
further from an algebraic point of view. For instance, Proposition 12 indicates that they
might have a “Lefschetz element,” similar to the ones provided by toric geometry in
[St1].
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