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1 Introduction
For 2 < k < n, let Vn'?k denote the set of points x = (z,, ... Zn) € R® such that z;, = z;, = --- = zi,

for some k-set of indices 1 < ¢; < i3 < --- < iy < n. Define V€ similarly for x € C*. The main
k y

n

purpose of this paper is to obtain topological and combinatorial information about these subspace

arrangements and the manifolds Msk =R" — Vn'?k and M,Ek =C" — Vn(?k.



These objects have been much studied in the £ = 2 case. Namely, Vn',‘Z is the union of the reflecting
hyperplanes of the Coxeter arrangement of type A, _; (corresponding to the symmetric group S,),
and MR, consists of n! disjoint simplicial cones (times a copy of R). Hence, the cohomology of M,':z is
free with B%(MR,) = n! as its only non-vanishing Betti number. Furthermore, ME, is known as the
"pure braid space”. It is a K(,1) space with the pure braid group as fundamental group [FaN62],
'FoN62]. Arnol’d [Arn69] showed that the cohomology of MvE2 is free and he also computed its Betti
numbers. See [0T92] for more information about the k = 2 case.

The interest in obtaining information about the cohomology of M,':k, also for k£ > 3, arose in
connection with a problem from computer science in [BLY92], [BL92]. Namely, the Betti numbers of
Mgk are there shown to be the essential ingredient in a lower bound for the complexity of deciding

membership in VR, using the linear decision tree model of computation.
The following are the main results of this paper.

Theorem 1.1 The cohomology groups of M,':k are free. Furthermore
(a) MR, is (k — 3)-connected.

(b) HY(MR,) # 0 if and only if d = t - (k — 2), for some integer t such that 0 <t < 1]

(c) rankH*2(MR,) = Z(n) . (;i 11> if k> 3.

ik \?

Theorem 1.2 The cohomology groups of M,Ek are free. Furthermore,
(a) Mfk is (2k — 4)-connected.
(b) Hd(M,Ek) # 0 if and only if d = 0 or there exist integers 1 <m <t < | 2| such that

t-(k—2)—m+t- k<d<t-(k—2)—m+n.

(¢) rankH*3(ME,) = (}).

(d) x(Mg) = 0.

Theorem 1.3 The spaces VR NS"" and V.E.NS™ 1 have the homotopy type of a wedge of spheres.

More precise information about the size and the distribution of non-vanishing Betti numbers will
be given in Section 5, where also the proofs of Theorems 1.1-1.3 appear. These theorems make a
result of Serre [Ser53] applicable, from which the following conclusions can be drawn about the higher
homotopy groups.

Corollary 1.4
(a) If k> 4 then mo(MR) #0 for infinitely many d > k — 2.

(b) If k > 3 then wd(M,Ek) # 0 for infinitely many d > 2k — 3.



Our proofs rely on a combination of two techniques. The first stems from recent progress in the
study of subspace arrangements, more precisely the cohomology formula of Goresky and MacPherson
[GM88] and the related formula for homotopy type of Ziegler and Zivaljevié [ZZ91]. These results
reduce questions of the type we study here (at least in principle) to questions about the combinatorics
of certain finite lattices. The second technique consists in combinatorial methods for computing the
homotopy type of partially ordered sets. In Section 2 the relevant background from these two areas
will be reviewed.

The lattices which are of interest for our work have the following combinatorial characterization.
For 2 <n,2 <k, and 0 </, let IL, x(!) be the family of all partitions 7 of the set {1,2,...,n} such
that each block B of 7 satisfies at least one of the following requirements :

(i) 1B =1,
(ii) k <|B| < n,
(i) BN{1,2,....1} #0.

Ordered by refinement, I, () is a lattice, in fact a join-sublattice of the lattice of all partitions of
{1,2,...,n}. Thelattice Il,, s = I1,, +(0) appeared in [BLY92] (there denoted II,, x_;) where its Mobius
function was computed. It is the intersection lattice of the subspace arrangements determining M,':k

and M,Ek. The sense in which we speak about the topology of a lattice will be explained in Sections
2 and 4.

Theorem 1.5 Assume that2 < k < n.

(a) The lattice I1,, x has the homotopy type of a wedge of spheres (possibly of different dimensions).
Therefore its homology groups are free.

(b) Hy(T,z) # 0 if and only ifd=n —3 —t.(k—2), for some integer t such that 1 <t < 2]
(c) rankHy(I1, ) is divisible by (Z:;), for all d.

(d) rankH, 1 (k) = (321), if k > 3.

This will be proved in Section 4. More general information valid for I, x({), all I > 0, is given
there, and also a formula for rankHy(I1,, ;) of which (b), (c) and (d) are special cases, see Theorem
4.5. Part (a) is strengthened to S,_;-equivariant homotopy equivalence in Remark 7.7, where the
representations of symmetric groups induced on the homology of II,, 4, M,':k, and M,Ek are briefly
discussed.

The lattices I, x and their generalizations Il . n.% defined in Section 6 are closely related to
certain complexes of disconnected k-graphs, which have been considered by Fock, Nekrasov, Rosly
and Selivanov [FNRS91] and V.A.Vassiliev in connection with questions in quantum theory and the
homotopy classification of links. We comment on such complexes and answer some questions asked
by these authors in Remark 7.8.

The various recursions and formulae for computing the Betti numbers of M,':k, M,Ek and II, 4
make computer calculations possible. At the end of the paper we present some tables of computer
generated Betti numbers.

We are grateful to J. Alonso, V. Strehl, V.A. Vassiliev and G.M. Ziegler for helpful conversations
and suggestions.



2 Preliminaries

The purpose of this section is to gather some tools that will be needed, and to establish notation.

A finite collection A = {Kj,...,K;} of linear proper subspaces in R" is called a SUBSPACE AR-
RANGEMENT. Most of what is said in this section and the following one is true also for arrangements
of affine subspaces, but since that generality will not be needed we will for simplicity assume that the
spaces I; are linear, i.e., contain the origin. We may without loss of generality assume that there
are no containments K; C K;, ¢ # 7.

Let V4 = K;U---UK, and M4 = R* — V4. These spaces are called the UNION and COMPLEMENT
of A, respectively. The complement M 4 is an n-dimensional manifold. The INTERSECTION LATTICE
L 4 is the collection of all intersections { K, N---NK; |1 <4 <--- <t; <t} ordered by reverse
inclusion : ¢ < y if and only if £ D y. This makes L 4 into a finite lattice with bottom element
0 = R" and top element 1 = K; N---N K,. The notation L = L 4 — {0} will be convenient.

Let P be a poset (finite partially ordered set) and for =,y € P, z < y, let A(z,y) denote the
ORDER COMPLEX of the open interval (z,y) = { 2 € P |z < z < y }, i.e., the simplicial complex
of all chains zo < z; < --- < x4 in (z,y). We will write Hi(z,y) = Hi(A(z,y),Z) for the i-th
reduced simplicial homology group of A(z,y), and ﬁi(z,y) = rankﬁi(:c,y) for the corresponding
Betti numbers. For the closed interval (z,y) U {z,y} we will use the notation [z,y]. Further, H'(T')
will denote the reduced singular cohomology of a space T'. All homology and cohomology groups
appearing in this paper are taken to have coefficients in Z.

The following two results establish the fundamental link between the topology of the arrangement
A and the combinatorics of its intersection lattice L 4.

Proposition 2.1 (Goresky and MacPherson [GM88]) For every subspace arrangement A and all
dimensions 1 : _ _
H‘(MA) = @ Hcodim(z)—Z—i(Oa:L‘)

>0
:ceLA

Proposition 2.2 (Ziegler and Zivaljevi¢ [Z291]) For every arrangement A in R™ there is a homotopy
equivalence
VanS* ! ~ wedge (A(O, T) * Sdim(”)'l)
.rELiO

In these formulas, codim(z) = n—dim(z), S~! denotes the unit sphere in R?, and ”*” denotes the
join of spaces. Note that the Ziegler-Zivaljevié result implies the Goresky-MacPherson formula via
Alexander duality in S"!. A different proof of Proposition 2.1, and a result similar to Proposition
2.2, appear in Vassiliev [Vas92, Theorems 6.2 and 6.4].

Two elements z and y of a lattice L are said to be COMPLEMENTS if t Ay = 0 and z Vy = 1.
Denote by Co(x) the set of all complements of z. Here we write V for the join operation (supremum)
and A for the meet operation (infimum) in the lattice L. A subset A C L is called an ANTICHAIN if
no two distinct elements are comparable, i.e., if z < y implies ¢ = y for all z,y € A.

Proposition 2.3 (Bjorner and Walker [BW83]) For a finite lattice L, and every element z # 0,1
such that Co(z) is an antichain, there is a homotopy equivalence :

A(0,1) ~ wedge susp(A(ﬁ, y) * Ay, i))

yeCO(z)

In the preceding proposition we denote by "susp” the suspension of topological spaces. The DIRECT
PRODUCT P x @ of two posets P and () is the set of all ordered pairs < z,y >,z € P, y € Q,
ordered by < z,y > < < 2’y > ifand only if z < 2’ in Pand y < ¢’ in Q.
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Lemma 2.4 (Quillen [Qui78], Walker [Wal88]) If ¢ < &' and y < y', then there is a homeo-
morphism :
A< 2,y >, < 2,y >) = susp(A(z,2') x Ay, )

To be able to use this homeomorphism, we need the following information about topological prop-
erties of the join operation.

Lemma 2.5 Suppose that A; and A, are finite simplicial complezes.

(i) If H{(A,) and Hi(As) are free for all i, then

Hip (A1 85) = @ (Hy(A1) ® Hy(As)).

ptg=i

(12) If Ay and A, both have the homotopy type of a wedge of spheres, then so does Ay * A,.

(1) If A has the homotopy type of a wedge of spheres, then so does susp(A).
Proof: Part (i) follows from the formula
Hi(A1 x Ag) = Hipa (A + Ag) @ Hi(Ay) @ Hi(Ay),

see Munkres [Mun84, p. 373], together with the Kiinneth formula [Mun84, p. 351]. Alternatively,
it can be shown via direct arguments that isomorphism of homology is induced by the map of chain
complexes C(A;) @ C(Az) — C(A; * A,) defined on generators by

(Zoy -+ »%p) ® (Yoy- - 5¥q) ™ (Toy- -« 5Tpy Y0y - - - 3Yg )-

Part (ii) follows from these two facts :
(iv) If Ty >~ T] and T, ~ T, then Ty x Tp ~ T{ * T},

(v) (wedge S*) x (wedge S%) ~ wedge S*+b5+1,
i j i,j
Note that part (iii) is the special case A; = S9 of part (ii).
Statement (iv) can be proven directly from the definitions: take homotopy inverses f; : T; — T!
and g; : T/ — T;, : = 1,2, and combine them to homotopy inverses f, * fo : Ty * T, — T} * T} and
Gixgy: TV xTy — T+ T,.
For statement (v) we note that there are natural inclusions

5% % S5 ey (wedge S**) * (wedge S*)
i j

such that
(wedge S*) * (wedge S = (S S¥).
1 J y

1,7

Let p be the wedge point of wedge S*. Then :

(wedge 5*) » (we;lge Sty = (U(S™ + 8%))/(p * (we]dge sh)) =

i,J

= UJ((5% % 5*)/(p+ 5*)) =



= we_dge((S“' * 5%)/(p * Sb’)) ~
)
~ wedge S* * Sbs
0,j
Here the first and the last homotopy equivalences use that the homotopy type is unaffected by
smashing a contractible subcomplex (see e.g. [BW83, p.12]), and the last equivalence also uses that
the wedge operation is well-defined on homotopy classes of spaces (see [BW83, p. 16]). Finally, there
1s a homeomorphism S® « §® & §e+%+1 a5 can be deduced from [Mun84, pp. 370-371). =

The following facts about intervals in product posets P x Q) are directly implied by the two preceding
lemmas.

Proposition 2.6 Suppose that ¢ <z’ in P andy < y’ in Q.
(i) If T:f,-(:c,x') and E(y,y’) are free for all 1, then

Ei+2(< z,y >a < xlvyl >) = @ (HP(:E"TI) ® EQ(yay,))'

pHqe=t

(it) If A(z,z") and A(y,y’) are both homotopy equivalent to wedges of spheres, then so is also
Al< zy > . <2y >).

3 General subspace arrangements

Some of the arguments used to prove the theorems stated in Section 1 do not rely on the specific
structure found in the "k-equal” arrangements. We have gathered such general results in this section.

Theorem 3.1 Let A be a subspace arrangement and ¢ = Ir\pi.r‘ltcodim(K). Then
(€

(1) M4 is (c — 2)-connected,
(ii) HY(M4) is a free Abelian group,

(i) rank(H ' (Ma)) > |A°], A° = { K € A | codim(K) = c }, with equality if and only if
codm(KN K'Y # c+1 forall K, K' € A°.

Proof: The statements are trivially true for ¢ = 1, so we may assume that ¢ > 2. Suppose that
> 0in La. We have that codim(y) € {1,...,c— 1} forall 0 <y < z in L 4, hence dimA(0,z) <
codim(z) — 2 — (¢ — 1). It follows that Ecodim(z)_2_(c_1)(ﬁ, x) is necessarily free, since no boundaries
are present in the maximal dimension. By Proposition 2.1,

Hc_l (MA) = @ Hcodirn.(:c)—?—(c—l)(6» .'L'),

z>0

and part (i) follows.

Let us look more closely at the various contributions to H°~!(M 4) generated by = € Li{’. First of
all, each K" € A° contributes a copy of 17.1((), K)= E_l(@) =17.

Suppose now that codim(K N K’) # ¢+ 1 for all K,K' € A°. If z € Li{? — A° then no chain in
A(0, ) can contain elements of both codimensions ¢ and ¢+ 1, hence dimA(0, z) < codim(z) -2 —c.
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For dimensional reasons there are then no non-zero contributions coming from z ¢ .A4°, and hence
H Y (My) =24

Suppose instead that codim(K N K') = ¢+ 1 for some K, K’ € A°. Let = K N K'. Then A(0,z)
is a 0-dimensional complex with at least two points K and K', so Hy(0,z) # 0. This contribution
shows that rankH""'(M_4) > |.A°|, and part (iii) has been proved. .

The dimension arguments that we have so far used show also that H*(M4) = 0 for all 1 < ¢ — 2.
To prove the stronger property that homotopy groups vanish up to dimension ¢ — 2, i.e. to prove
part (i), we will proceed differently.

Take any regular CW-decomposition of the unit sphere S*~! in R™ that contains V4 N S™! as
a subcomplex, and whose barycentric subdivision is a PL-sphere. Two different constructions of
such decompositions, called the "s(1)- and s(?)-stratifications”, are described in Bjdrner and Ziegler
[BZ92, Sections 2 and 9]. Let P be the face poset of such a cell complex, and let P, be the subset of
cells whose union is the (n — ¢ — 1)-dimensional subcomplex V4 N S"~!. Then as shown in [BZ92,
Proposition 3.1] the opposite poset P°? is the face poset of a regular CW-decomposition of $*~!, and
the subposet (P — Fy)° determines a subcomplex having the homotopy type of S*~! — (V4N S 1) =
M4 N S™ 1. Clearly, M4 N S™ 1 is a strong deformation retract of M4. Every cell o € P, satisfies
dimp(0) < n —c -1, hence dimpw(0) > (n — 1) — (n — ¢ — 1) = c. It follows that the full (¢ — 1)-
skeleton of P°? is contained in the subcomplex (P — P,)°?, and since P = §"~! is (¢ — 2)-connected
so is therefore also (P — P,)°? ~ M4. (In the last step we have used the well-known fact that a
complex is k-connected if and only if its (k + 1)-skeleton is k-connected.) ]

For ¢ = 2 the theorem says only that M 4 is arc-wise connected and that H'(M4) 2 Z* for some
k > |A°]. For ¢ > 3 it implies together with results of Hurewicz and Serre some information about
the homotopy groups.

Corollary 3.2 Suppose that ¢ > 3. Then
(1) 7i(Ma)=0, fori <c-2,
(i) meor(M 4) 2 ZF, for some k > | A%,

(i) mi(M4) # 0 (in fact, there is an element of infinite order or an element of order two), for
infinitely many values of 1.

Proof: Part (i) is a restatement of (c — 2)-connectedness. It implies via the Hurewicz Theorem and
the Universal Coefficient Theorem that .y (M 4) = H._,(M 4) = H"'(M 4), and gives part (ii).
It has been shown by Serre [Ser53, p. 217] that if T is a topological space having the homotopy
type of a finite CW-complex, and if T' is 1-connected and H;(T,Z;) # 0 for at least one 7 > 0, then
there are infinitely many dimensions 7 such that the homotopy group =;(T) contains a subgroup
1isomorphic to Z or to Z,. This implies part (iii). ]

We will now show that the Euler characteristic x(M.4) equals zero in many interesting cases. See
also Remark 7.6.

Theorem 3.3 Assume that codim(z) is even, for all z € La. Then x(Ma) = 0.

Proof: We will use Proposition 2.1 and the fact that the Mdbius function u(0,z) is the reduced
Euler characteristic of A(0, z), see e.g. [Sta86, p. 120].

X(Ma)—1=3(-1)"-F'(Ma) =

i>0



= Z(—l)' : Z ,gcodim(r)—2_,'((), IL‘) =

120 >0
= Z Z(_l)' : Bcodim(:c)-—2_,'(0,:l,‘) =
£>0120
= Z Z (-1)- B,(ﬁ,x) =
>012-1
ZZ/‘(O»fU):—l- B
>0

Corollary 3.4 If A is an arrangement of complez subspaces in C™ = R*", then x(M 4) = 0.

4 The II,4(l) partition lattices

In this section the homology groups and the homotopy type of the lattices II,, x(!) will be described.
The description includes the proof of Theorem 1.5, with several added details. When we speak about
topological properties of a lattice L we always have the order complex of L — {(A),i} in mind. So, in
terms of the notation introduced in Section 2 we have A(L) = A(0,1), Hi(L) = Hi(0,1), etc. .

It is well known that the lattice I, of all partitions of the set {1,...,n} ordered by refinement is a
geometric lattice of rank n — 1 with Mdbius function u(0,1) = (=1)""': (n —1)!, see [Sta86, p. 128].
The following is therefore implied by [BW83, Theorem 5.1].

Proposition 4.1 The lattice I1,, has the homotopy type of a wedge of (n — 1)! copies of the sphere

qn-B

Let 2 < n, 2 < k and 0 < [, and consider the partition lattice Il, x(!) C Il,, defined in Section 1.
The join operation of Il, x(I) is the same as that of II,,, whereas the meet operation of II, x({)
consists in first taking the meet in I, and then breaking up all blocks B such that |B| < k and
Bn{l,...,l} = 0 into singletons.

The case | = 0 is the most interesting one for our purposes and we will make a few observations
about it. If 3 < k < % then the lattice I, x(0) is not pure (i.e., there exist maximal chains of
different lengths). For example, the partition (1 2 3)(4 5 6) covers the partition (1 2 3)(4)(5)(6) in
Il63(0) but (1 2 3 4 5)(6) does not. On the other hand, if 2 < k < n then the lattice I, x(0) is
pure. In fact, it is easy to see that in this case II, £(0) is isomorphic to the inclusion lattice of all
subsets A C {1,...,n} such that |A| = 0 or |A| > k. This is a rank-selected boolean lattice, and one
can deduce from standard facts about rank-selected shellable posets (see e.g. [Bj689, (11.13)]) that
I1,.x(0) has the homotopy type of a wedge of (:::) copies of the (n — k — 1)-dimensional sphere. This
can also be derived via the observation that II, x(0) is anti-isomorphic to the (n — k — 1)-skeleton of
an (n — 1)-simplex, and it will be proved again as a special case of the results in this section. It will
turn out that k = 2 and 7 < k < n are the only cases for which Il x(0) is homotopically a wedge of
equidimensional spheres.

If n < k the lattice I1,, «(0) consists of only the partition (1)(2)--- (n). To guarantee non-degenerate
lattices (with 0 # 1) we will always require that either k < n or 0 < I. Therefore let us call (n, k, )
an ADMISSIBLE TRIPLE if n, k£ and [ are integers such that 2 < n, 2 < k, 0 <[, and either k < n or
0 <L

In the following let I?ﬁk(l) denote the rank of the reduced homology group Hy(II, (1)), and

Bg,k = ng(o)



Lemma 4.2 Let (n,k,l) be an admissible triple with 0 <. Ifn —1 <1 orn <k, then II, x(I) has
the homotopy type of a wedge of (n — 3)-dimensional spheres. All homology groups are free, and the
following formulas hold for their ranks :

(i) If n —1 <1, then
(n=1)! , tfd=n-3
Eg,k(l)={

0 ,  otherwise
(i) If0 <l<n <k, then B, (I)=1- B2} (1), and hence

met=t )

~ , ifd=n-3
B:,k(l)={ . /

,  otherwise

Proof: In case (i) we have that II, x(!) = II,, so all claims follow from Proposition 4.1.

For the case (ii) we first observe that n > 3, and that (1---n — 1)(n) € I, 4(I) since | > 0. We
will investigate the complements of (1---n — 1)(n) in II,, 4(1). These correspond to partitions with
n — 2 blocks of size 1 and a single block (j n) of size 2, where j € {1,....I}. There are ! partitions
of that kind. All of them are minimal in II, x({) — {ﬁ}, and hence they form an antichain. For every
complement 7 of (1---n —1)(n) the closed interval [r, 1] in I, x({) is isomorphic to ,_; x(!). So we
infer from Proposition 2.3 that there is a homotopy equivalence

(4.1) o k(1) ~ wedge susp(l'ln_lvk(l)).
]

In particular, Eﬁyk(l) =1 BS:},k(l). Now by an (n — [ — 1)-fold application of the reduction (4.1)
we arrive at the lattice 14, (/). The assertions then follow from the formula for Eldﬂ,k(l) and the
homotopy type information given in part (i). [

Now we are in a position to state and prove the basic theorem on the topological properties of the
lattices I1,, x(1).

Theorem 4.3 Let (n,k,l) be an admissible triple.

(i) The lattice T, k(1) has the homotopy type of a wedge of spheres (possibly of different dimen-
stons). Therefore the homology groups are free.

(i) For0 <I<n—1,2<k<n-—1, and all d, the following recursion formula holds for the rank
B,‘ka(l) of the d-th reduced homology group (equivalently, the number of d-spheres in the wedge) :

~ n—1-101\ «~,_ ~
B = (") 1 TY) B 0+ 0 B

Proof: We will use induction on n > 2. The degenerate case n = 2 is trivially correct, since
A(ITz k(1)) = {0} which is the (—1)-dimensional sphere and H_,({0}) = Z. Assume that n > 3. If
n <l orifn <kand 0 < then correctness follows from Lemma 4.2. The case n = k and | = 0 is
also correct, since A(1l,.(0)) = {@}. So let us assume that 0 </ <n—-1and2<k<n-1.

Our assumptions imply that the partition (1.--n — 1)(n) is an element of I, x(I). Let 7 be a
complement of (1---n — 1)(n) in II,x(!). In this situation there can be no non-trivial block in =
which is contained in {1,...,n —1}. Otherwise the meet of = and (1---n — 1)(n) would be non-
trivial. Therefore 7 contains only one block of size greater than 1. Now assume that B, is the unique
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non-trivial block of 7. Then by definition of IT, x({) either |B,| > k and B; N {1,...,l} = 0, or

B, intersects {1,...,l} non-trivially. In the first case we immediately conclude that |B;| = k and
n € By from the fact that # complements (1---n — 1)(n). In the second case it follows by the same
reasoning that |B;| = 2 and By = (y n) for an integer j between 1 and [. These partitions are

all the complements of (1---n — 1)(n), and it is easily seen that they from an antichain in II, k().
Therefore we can apply Proposition 2.3. All complements 7 are minimal in II,, 4({) — {0}, so our
considerations are reduced to the intervals [x,1]. We have to distinguish between the two different
types of complements :

(a) The unique non-trivial block By in 7 is a block of size k such that B;N{1,...,l} = 0. Regarding
this block as a single point shows that in the interval [r, 1] all blocks containing this point are
allowed to occur. For the other blocks the same restrictions hold as before. After a suitable
renumbering we obtain [, i] = k1 k(U + 1).

(b) The unique non-trivial block in 7 is a block (5 n), where 5 € {1,...,l}. Again we contract this
block to a single point. Analogously to case (a) we infer that in [r, 1] all blocks containing this
point are allowed. Again the remaining blocks have to obey the inherited restrictions. Now
suitable renumbering shows that [r,1] 2 IT,_; x({).

There are (",:l_l) complements which satisfy condition (a) and ! complements which satisfy condition
(b). Since the sets of complements described by (a) and (b) are disjoint the decomposition provided

by Proposition 2.3 proves the recursion formula of part (ii) and, with the induction assumption, also
the claim of part (i). u

The recursion given in part (ii) provides an algorithm for computing Bi,k(l) for any admissible
triple (n,k,l) and any d € Z. If n <l or n < k the answer is already provided by Lemma 4.2.
Otherwise repeated use of the recursion will lead to parameter values where Lemma 4.2 is applicable.
In actual computations one can often stop branches of the recursion before Lemma 4.2 becomes
applicable, since Bg,k(l) may be zero for dimensional reasons. Clearly,

Bi(h=0,ifd>n~3ord<~1.

T'he following computation of Bg,k(l) provides a stopping rule which somewhat improves on B;i(l) =
0. We omit the proof, which is via case-by-case checking.

Lemma 4.4 For all admissible triples z = (n, k,1)
n—1, ifz=(n n——l,O) , n >3
N 1 , fz=(n,n-1,1) , n>4
By (1) = 1 . if z=(3,k,1) , k>3
2, z'fz—(3,k,l) , k>2,1>2
0 , in all other cases.

Having established the basic recursion formulas it is natural to ask which homology groups vanish
and which do not. We will investigate this in detail and provide a complete answer for the case { = 0.
The case | # 0 can be treated similarly. Since the case k = 2 is just the case of the full partition
lattice, which is completely understood (see Proposition 4.1), we may assume that k& > 2.

What has to be done is to trace the recursion given in Theorem 4.3. For a single step in the
recursion we will refer to the left term Ed‘}cﬂ . in Theorem 4.3 as a branch of type L and to the
right term Bd "1 as a branch of type R. One immediately observes that the parameter k is constant.
Hence we may omit the reference to k in the further derivations.
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Assume that we start our recursion with the parameters (n,d,!) where | = 0. Assume further that
we meet the conditions of Lemma 4.2 (i) or (ii) after a suitable number of recursion steps with the
parameters (n',d’,l'). Let t7, be the number of recursion steps of type L and tg the number of steps
of type R which had to be taken. Then the parameters satisfy :

(42) Tl,zn——(k—l)-tL—tR, d,=d—tL—tR and l':tL_

From Lemma 4.2 we deduce that we get a contribution to homology only in case n’ — 3 = d, or
equivalently n — (k —~ 1) -ty —tp — 3 = d — t;, — tp. Adding t1 + tg to both sides we see that the
dimension d to which the contribution is made actually depends only on t;, and the defining equation

for d = d(t,) is
(4.3) d(tL) =Tl—(k—2)-tL—3.

Therefore, the dimensions d for which there are non-vanishing homology groups ﬁd(ﬂn,k(O)) are
determined by the parameters ¢, which can occur in a complete recursion path starting with the
parameters n, 2 < k < n and [ = 0 and involving exactly ¢ branchings of type L. The parameter
l'is 0 at the beginning, so the first step in the recursion must be of type L (since we want to count
only non-zero contributions to the rank of the homology group). Hence,

tr >1
and the ranks of all homology groups are divisible by (Z:;) Since one can always meet the
condition of Lemma 4.2 (ii) by branching a suitable number of times into branch R it remains to
find tight upper and lower bounds for the parameter ¢;..
The lower bound is given by t;, = 1. This bound is achieved by going into branch L once and then
branching to the R with the parameter / = 1 until the parameters meet the conditions of Lemma
4.2. The multiplication by ! does not change the value and the factor given by Lemma 4.2 (i) or (i1)

is always 1 in this case. Therefore the maximal-dimensional non-vanishing homology group is given
by :

—1
4.4 maz =n—k—1, Bime = ("7 )
(4.4) d n , B (k——l)

The formula for the rank follows from the fact that the parameters t;, and g and the path in the
recursion are uniquely determined in this case. This simple observation is an immediate consequence
of the maximality of d,....

Let us now investigate the general case. Here the combinatorial analysis of the recursion paths
gets a bit more involved. Assume that B¢ x(0) # 0, and let p be a recursion path that contributes
a non-zero summand to B,‘f'k(O). For mstance, we might have p = LRLLLRRL, in terms of the left
and right branchings. Let us assume that p ends with a left branch L, if not then truncate p SO
that it does (recall that p must start with L). Write p = p’L. As before we let ¢;, be the number of
L-branchings and tg the number of R-branchings in p, so t;, > 1 and t5 > 0. When applied after the

branching sequence p', the recursion formula (Theorem 4.3) has the form (see (4.2) for the parameter
values) :

Sd—(ty—1)—t _
Bn—(kL—l)-(tL}il)—tR,k(tL -1)=

n—ktL""k'—l—tR d— ~d— ~1)—tp-—1
= ( P —1 ) Bn—:t ;;zt,‘ —tR. k(tL) + (tL — 1)- Bn—zjcl;l;~)(t:il)—tn—1,k(tL -1)

11



By assumption p = p’[. makes a non-zero contribution, hence
n—kitr+k—-1—-tp>k—-1,
which for (t;,tr) > (1,0) is equivalent to

It < [g]
(4.5)
0 S tR S n — th.

So, (4.5) gives necessary conditions that an L-ending recursion path contributes to non-zero ho-
mology, and the contribution then is to dimension d(¢1), as shown by (4.3). We will now show that
this condition is sufficient, in the sense that if 1 <t < 2], then Bd(t (0) # 0. For this we will work
with complete recursion paths, and it will be useful to picture these as paths in a rectangular integer
lattice.

Two recursion paths with the same distribution of L-branches and R-branches must end at the
same Betti number E’;ji'k(l'). This follows from the fact that the effect on the parameters of a sequence
LR is the same as the effect of the sequence RL. Therefore we obtain the following description.

Let n > k> 2 and 1 <t < |2] be natural numbers. We set s = n —t - k. Let G(n, k,t) denote
the integer lattice {0,...,s} x {1,...,t} U {(0,0)}. We regard G(n,k,t) as a directed graph whose
edges are ((¢,7),(+1,7)) and ((2,7),(¢,7 + 1)). Hence every maximal path starts in (0,0) and ends
n (s,t). Now we label the edge ((7,7), (¢ + 1,7)) by j and the edge ((i,5), (¢,7 + 1)) by ( —Jk" 1).

TS

(n—(tk—_lz.k—l)

(0,0)

Figure 1

Finally we label each node (i, ) by Bn i (k 1)_1 (7). The labels are chosen to correspond to the
Betti numbers (nodes) and coefficients (edges) that will be encountered in a recursion process starting
from Bn(k)(O)

We claim that every recursion path that ends in the sink node (s, ) will give a non-zero contribution
10 Bd“)(()) and conversely every such contributing path can be extended or truncated to one ending
in (s.t). For the first claim it suffices to observe that the node (s, ) is labeled by Bd(t) (k= 1)_ K=
B}33(t). which by Lemma 4.2 (i) equals (t — 1)! # 0, and that all edge-labels in G(n, k,t) are non-
zero. For the second claim we use the fact (4.5) that if a path p = p’RR--- R makes a non-zero
contribution to BZ(Q(O) and if p’ which ends with L has step distribution (¢1,tg), then t;, = t and

12



0 < tp < n—tk = s. Hence, such a path p meets the upper border (the y = ¢ line) of the graph
G(n,k,t) at the point (tgr,t) to the left of the sink node (s,t), and then (possibly) takes some steps
to the right. By adding or deleting such R-steps, the path p can be made to end in (s,t). Figure 2
shows a close-up view of the upper right-hand corner of the labeled graph G(n, k, ), which is helpful
for verifications.

(s;t)

B3 ()=(t-1)!

() (i)

nt—-2
Bt+k—1,k(t_l)

)

Figure 2

Let us assign to each maximal path p in G(n, k,t) the product of the labels of its edges, and call
this number w(p) the WEIGHT of p. The preceding discussion has shown that

(4.6) By30) = (t = 1)!- 3 w(p).

p

Each path p can be encoded by the sequence 0 < iy < iy < -+ < 44y < s, given by the edges
(1;,7) = (25,5 + 1) that belong to p. This leads to a more efficient reformulation of (4.6), which is
stated in the following theorem together with the other major conclusions that have been reached.

Theorem 4.5 Assume that 2 < k < n, and let E;‘f,k = rankHy(M, ). Then
(i) E;‘f'k #0 tf and only ifd =n —3 —t- (k — 2) for some integer t such that 1 <t < L%
(i) If1 <t < | 2], then
i (h -1
e 1 (i) B v !

0=ip<t1 <KLty Lir=n—tk

where (%) =

n—k=1—a) (n=2k—1-i) (=) k=1=i) s gaea i
k—1 k-1 k-1

This unwieldy expression specializes to a more manageable form for the two highest-dimensional
non-vanishing Betti numbers, and when % divides n also for the lowest-dimensional one.

13



Corollary 4.6

6 B = (32)

~ n—2k k—l : ‘
(i) B = (0) - % ( . _T’) Y, ifn > 2%,

j=0

lin—1—jk
(111) Ijk_qEthenB"qu2) (g —1)!- H(nk 1] )
J=0 o

For example, we compute

BY, = (135) = 455

. .
Bla=(3) 2 (3 ;L]) .97 = 29 819 335

Blsa=3-(5)- (") (5) - () = 15 765 750.

Also, for all £ > 3 :

(k) . ifd=lord=k-1
(4.7) By =

0 , otherwise

It is interesting to compare the following known formula for the Euler characteristic of I,z with
the expressions for the individual Betti numbers in Theorem 4.5.

k-1

Proposition 4.7 [BLY92, Theorem 5.6] Let ay, . .. ,ax_; be the roots of the polynomial Z f— k> 2.
1=0 '
Then
Z(—l)d-éi,k =—(n—1)! Za
d>0

We will end this section by generalizing the preceding results to lower intervals

[0,7) = {7 € Mpx | 0 < 7' <7} in My = II,, 4(0).

Theorem 4.8 Letn € I, 4, 2 < k < n, be a partition with m non- -singleton blocks of sizes ayq, ... ,an,.
Then

(1) [0,71'] EHalvk X Ha;,k X e X Hamk

(1)) The interval [0, 7] has the homotopy type of a wedge of spheres. Its homology groups are
therefore free.

(11i) ﬁg(ﬁ,n) # 0 if and only if d = Zai —-m—2—1t-(k—2), for some integer t satisfying

ma
m<tS YTl
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(1v) rankﬁd(ﬁ, )= Z Bal k Bag k* Bpm

amv
P14+ +pm=d=—2(m-1)

~ . m =1 m
(v) rankHg,, (0.7) = H(Cllc 1), Jordmaz =Y ai—m—2—m-(k-2).
- i=1

1=1

(vi) rankHy(0,) is divisible by [] (‘Z B 11) for all d.
1=1 -

Proof: The direct product decomposition (i) is obvious from the fact that the non-singleton blocks
can be independently refined. Theorem 4.3 and (m — 1)-fold use of Proposition 2.6 prove part (ii)
and yield the formula

—

Ed((), 7T') = @ (le(nal,k) ® ot ® Epm(namyk))7

p1++pm=d—2(m-1)

which gives part (iv). The rest can be easily deduced from the information given by Theorem 4.5. m

5 The ”k-equal” arrangements and their manifolds

Fix 2 <k < n, and for each k-subset 4y < iy <--- <dpof {1,...n} let KR . ={xeR" |z, =
2, = -+ =z, }. The collection AR = { KR . 11<iu<---<ixr<n}of(n—k+1)-
dimensional subspaces is the real "k-equal” arrangement. Replacing R by C we get the complex
k-equal arrangement A¢ x» which can be regarded as an arrangement of 2(n — k + 1)-dimensional

subspaces in R** 22 C". The spaces M Rk and M, Ck considered in Section 1 are the complements of
these arrangements.

Lemma 5.1 The intersection lattice of Ag,k, and of AS‘,C, is isomorphic to I, . Suppose that
m € Il k is a partition with m non-singleton blocks of sizes ay,. .. ,an, respectively. Then, viewed as
a subspace of R™ (resp. of C") via such an isomorphism, © has the following real codimension :

(1) codimA.(ﬂ') = iai —-m

m

(i1) codim'Ac(w) =2- (Z a; — m)

1=1
Proof: Associate with each partition 7 € II,, the subspace

I\'?:{XGR" |4, € B=>z; ==z, foralli,j € {1,...,n} and every block B of = }.

The dimension of K is clearly equal to the number of blocks of 7, which is n — > (ai—1). If 7 has

i=1
only one non-singleton block {1, .. zk} then K, = K;, . This identifies the minimal elements of
O — {O} with the subspaces in An &, and it is easy to verlfy that K, N Ky = Kpyx, from which
the identification of I, ; with the intersection lattice of ARk then follows.

For the complex case, make the replacement R — C and double the dimensions. [
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We will now deal with the real and complex cases separately. Define
ﬂg: = rankHd(A[Rk) and Bf"kd = rankﬁd(Mfk).

Theorem 5.2 For each partition = # 0, let m be the number of non-singleton blocks and a,,. .. ,an,
their sizes. Then

He1—-3—q1 nam—3—gm
> X BB

re28 it tam=d

Proof: Proposition 2.1 gives

(5]) Ed(M,':k)g @ Eeodim(r)—2-—d(037r)'
reﬂzi

Passing to ranks, and using Theorem 4.8 (iv) and Lemma 5.1, we obtain
Bak =3 BB,
>0 (*)

with summation () over all m-tuples (pi,...,pm) such that

m

p1+~~+pm:Zai—m——Q—d—Z(m—1)=Ea,~—3m—d.

=1 i=1

The substitutions p; = a; — 3 — ¢; turn this formula into final form. |
All the supporting steps have now been taken, so that the main results of Section 1 can be proven.

Proof of Theorem 1.1: Formula (5.1) together with Theorem 4.8 (ii) show that the cohomology
of MRk is free.

(a) This part follows from Theorem 3.1 (i).

(b) For this we must combine the information from Theorems 4.5 and 5.2. The formula for B:f

shows that B:f = 0if (k—2) { d, since then also (k —2) { ¢; for some ¢ which shows
that all terms are equal to zero. A general partition 7 > 0 makes non-zero contributions to
cohomology in dimensions t;(k —2) +-+- +t,,(k —2),1 <t; < [%], 1 <i < m, ie., precisely
to the dimensions

(5.2) t-(k—2), for m<t Z%

In particular, 6 Roi(k= gets non-zero contributions from 7 = 1 (for which m = 1 and a; = n)

forall 1 <t < ]_;J and ﬂm *k=2) _ 0 for all ¢ outside this range.

(c) The preceding analysis (5.2) shows that BR ¥~% gets a non-zero contribution only from partitions
7 > 0 with m = 1, i.e., with exactly one non-singleton block. There are (’:) such partitions

with a block of size 7, and they each contribute (' 1) by Corollary 4.6 (i). ]
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The analysis of B,':’,:(k-2) just made shows that while in principle a closed formula valid for all
1 <t < [}] could be produced by inserting the formula of Theorem 4.5 into that of Theorem
5.2, such an expression would be quite awkward. The superposition of contributions of different
form coming from the various 7 € Il,, » makes "nice” formulas for the ¢ > 2 cases in general seem
improbable. Let us note two very special exceptions (k > 2):

B«:‘k’?k(k_ﬂ = (kak)

(5.3)
“R,q(k—
Bt ? = (L L) - (gk+ k +1)

We will now continue with the complex case.

Theorem 5.3 Define m and a; (depending on ©) as in Theorem 5.2. Then

72€d _ ray—3—q; Ham—3—qgm

Bk = 2 > By By,
remt u

g1+ +gm=d+m— Zai
=1

Proof: Argue as for Theorem 5.2, but with the codimension function of A€ replacing that of AR
(see Lemma 5.1). u

Proof of Theorem 1.2 : The freeness of cohomology follows from Proposition 2.1 and Theorem
4.8 (ii).

(a) See Theorem 3.1 (i).

(b) Theorems 4.5 and 5.3 show that ﬁﬁf # 0 if and only if

m

d=>ai—m+t;-(k—2)+ - +t, - (k—2),

i=1

m
for some integers m,ay,...,am,t1,...,t,m such that 1 < m < (2], kF <a; <n, Za,- < n, and
i=1
1<t < [ﬂklj Putting ¢t = ¢; + - .- + t,, it is easy to see that this condition on d is equivalent
to saying that

te(k=2)—m+thk<d<t-(k-2)—m+n

for some integers 1 <m <t < [Z].
(c) See Theorem 3.1 (iii).
(d) See Corollary 3.4. n
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Theorem 1.2 (b) shows that the range of positive dimensions for which M,Ek has non-vanishing
cohomology is a union of integer intervals [t - (k — 2) — m + tk,t - (k — 2) — m + n] indexed by the
parameters (m,t), | < m <t < |2]. These intervals frequently overlap, but their union is not
necessarily connected. Clearly, the least and the greatest such dimensions dp;, and dymqz, are found
for the choices (m,t) = (1,1) and (m,t) = (1, 2]). This gives the explicit expressions

(5.4) dpin =2k~ 3 and  dpas =n— 1+ L%J (k2.

The rank B,E’kd’"'" = <Z) was already computed. We observe that

(5.5) Bﬁfm _ B:;cs—lfj.(k-z)

as can be deduced from Theorem 5.3 (the only contribution in this case comes from = = 1).

Note that for k£ > Z the choice (m,t) = (1,1) is unique, and the cohomology of M,Ek is found
precisely in the interval of dimensions [2k — 3,n + k — 3).

The case k = 3 is interesting. Here there are 3 choices for (m,t) : (1,1),(1,2) and (2,2), and
the two latter produce single element intervals. Thus the total range of dimensions for non-vanishing
cohomology is in this case :

[2k — 3,3k — 3] U {4k — 6,4k — 5)}.
See e.g. the case (n.k) = (16,8) in the tables 8.2. Another curious feature here is that for k > 4 :

5C3k-3 _ 3Cak—6 _ 5Cak—s _ 2k —1
2k = Pk ThPux =L )

Here we have Efk’ik-B = ]§§k_i and B;:k’fkk—s = B;k,k» see (5.5) and (4.7), and B’E,;j‘k’“‘e equals the number
of partitions of {1,...,2k} into 2 blocks of size k (which each contributes 1 to the rank of cohomology
m this dimension). Thus there are always two "isolated” isomorphic cohomology groups of very high
dimension in this case.

Proof of Theorem 1.3 :  This follows from Proposition 2.2 and Theorem 4.8 (i1), see also
Lemma 2.5. |

Proof of Corollary 1.4 : See Corollary 3.2. [

6 Generalized ”k-equal” arrangements

In this section we will generalize the notion of k-equal arrangements and show that several of the
main facts remain true. This generalization was suggested by a question from V.A. Vassiliev, see
Remark 7.8. The arguments here are completely parallel to the ones used in Sections 4 and 5, so we
will omit many details. We will first treat the intersection lattices of these arrangements using their
combinatorial characterization, and then deal with the arrangements and their complements.

Let 2 <k <randny >1,...,n, > 1,1 >0 beintegers. Put n = n;+- - -+n,+1, and fix a partition
{1,....n} = {1,...,l} UWE, U--- U E, such that |E;] = n; for all 1 <7 < r. Define Il,,, . .(l) to
be the family of all partitions = € I, such that each non-singleton block B € 7 satisfies one of the
following conditions :

18



(i) card{ i | E;NB #0 } >k,
Gi) BO{1,....0} #0.

.....

the partitions of {1,...,n} with exactly one non-singleton block B, such that either B, is a k-block
that intersects k different classes E; or else By is a 2-block that touches the set {1,...,/}. Note that
the partition lattices treated in Section 4 are the special cases ny =ny = ---n, =1 :

1—Il ..... l;k(l) = Hr+l,k(l).

Theorem 6.1

.....

.....

(tir) If 1 =0, then t > 1 in part (ii).

Proof: Theorems 4.3 and 4.5 show that the statements here are true for n; = --- = n, = 1. Part
(i) is actually not covered by Theorem 4.5 as stated when [ > 0, but it is easy to check that the
reasoning around formulas (4.2) and (4.3) is valid also when [ > 0, and this is all that is needed. Let
[331 ..... neik(D) = rankHy(Il,,  nk(1)). We will use induction on ny + --- +n, —r > 0, based on the

fact that the result is true when this quantity equals zero (i.e., when ny = --- = n, = 1).
Suppose that n, > 2, and let z € E,. Consider the complements in I,

.....

,,,,,

non-singleton block B, must either be a k-block containing z and touching k — 1 of the classes
Ei, ... E._y, or else B; must be a 2-block (j z) with 1 < j < L. Arguing as in the proof of Theorem
4.3 about the structure of the upper intervals [r, i], and using Proposition 2.3, we are led to the
recursion formula :

(6.1) le nr;k(l) = Z L I 2 E:;_l n! ,nr—l;k(l + 1)+

..... ) : U A
1< << <=1

+l ' Esl_,.l..,nr_l ,n,-—l;k(l)'

Here the string (nj,...,n,_;) is obtained from (ni,...,n,_;) by subtracting 1 in the positions
il, . e ,ik..l.
hence for all intervals [r,1] above complements 7 to ({1,...,n} — {z})(z). Part (i) then follows

directly from Proposition 2.3. For part (ii) one must also check that the condition for non-vanishing
homology is correctly transferred via relation (6.1). (]

In the preceding proof we assumed that some n; > 2 (or after relabeling : n, > 2) in order that the
recursion formula (6.1) would take us back to the previously treated case n; = ---n, = 1. However,
formula (6.1) is valid also if n, = 1, in fact for n; = --- = n, = 1 it specializes to the recursion
formula in Theorem 4.3 (ii).
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We will now define the generalized ”k-equal” arrangements. Let 2 <k <randn; >1,...,n, 21
be integers. Fix a partition Fy U --- U E, of {1,...,n}, such that |E;| =n; and n = ny + --- + n,.
For instance, we can take F; to be the first n; positive integers, F; the next ny ones, and so on.
Let Agl ..... n,:k De the arrangement of subspaces in R™ given by all equations z;, = z;, = --- = z;,
such that |{t,72,...,x} N E;] < 1foralll <j <r. Let My?l,...,n,;k denote its complement in R",
and similarly Mr(z:],_..,nr;k the complexified complement. Note that M1R,...,1;k = Mr'?k are the k-equal

manifolds discussed in Sections 1 and 5. Also, A,,'fhnz;z is the "graphic” hyperplane arrangement
corresponding to the complete bipartite graph K, ,,, and given by the set of equations

{zi—y; |1 <i<n;,1<j3<n;}inR"=R™ x R™,

Theorem 6.2 The cohomology groups of M:,...,n,;k and ng,...,n,;k are free. Furthermore, if
Hd(M::,...,n,;k) # 0 thend =1t-(k—2) for some integer t > 0.

Proof: The intersection lattice of AR . and of A ..nnsk 18 isomorphic to Il . .,x(0). This is
easily seen as in the proof of Lemma 5 1. Also, the formulas for codimension from Lemma 5.1 are
valid. Therefore Proposition 2.1 shows that all the stated properties of cohomology are transferred
from the corresponding homology properties of lower interval [0, 7] in II,, . .x(0). These intervals
[0, 7] have the homotopy type of a wedge of spheres. This follows from Theorem 6.1 (i) by arguing as
in Theorem 4.8 (i) and (ii). Hence cohomology is free. The necessary condition for the dimensions of

non-vanishing cohomology follows by reasoning parallel to that used in proving Theorems 4.8 (iv),
5.2 and 1.1 (b). We omit the details. n

7 Final remarks

7.1 Generalization to other Coxeter groups

Results of the type obtained in this paper might exist in the wider setting of Coxeter groups, and
we would like to raise this question. Let W be a finite Coxeter group acting as a reflection group
on R", and let K be some subspace which is an intersection of reflecting hyperplanes. Then the
orbit A%, = {w(K) | w € W } is a subspace arrangement, and we can consider its complement

Mp'},' # and the complexification M&,'K. Is cohomology always torsion-free for such spaces 7 Do the
dimensions of non-zero cohomology exhibit periodicity ?

7.2 Fundamental groups
What can be said about the fundamental group of MR, ? Is MR, a K(r,1) space ? Note that the

fact that ME, is a K (7, 2k — 3) space for k = 2 does not generalize to k > 3, as shown by Corollary
1.4.

7.3 Algebra structure of the cohomology rings
Can the multiplicative structure of the free graded modules H"‘(MR ) and H* (MC ) be described ?
This was done in the k = 2 case by Arnol’d [Arn69], see also Orlik and Solomon [OSSO] and [0T92].

7.4 CW-complexes

Is there any geometrically motivated CW-complex C, such that € and M,gk are homotopy equivalent
and C has cells only in dimensions ¢ - (k —2), for 0 <t < [}] ?
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7.5 Recursions for Betti numbers

Let b(n, k) = Z(n) (z - 1), l1e., b(n, k) = ranka‘z(M,':k) for n > k > 3. The Zeilberger

1=k 2 k—1
algorithm [Zei91] proves that there is no "closed” formula for b(n, k) (i.e. the quotient %_’;—f% is not

a rational function in n). But the following two recursions hold :
(1) (n—k+2)-b(n+2,k)—Bn—k+4)-bn+1,k)+ (2n +2) - b(n, k) =0,
(i) b(n,k+1) + b(n, k) = (}) - 2.

The first recursion has been computed by the Zeilberger algorithm and the second is due to V.
Strehl.

7.6 Fiber bundles
Let A be an arrangement of complex subspaces in C* = R?", with minimal occurring complex
codimension equal to c. Is it true that

Ma B x (€ - {0})

for some space B ? (Le., does M 4 have the structure of a trivial fiber bundle?) This is true for
complex hyperplane arrangements, see [0T92, Proposition 5.1.1]. If true in general it would explain
on the topological level why x(M.4) = 0, since x(C° — {0}) = x(5%~1!) = 0. Therefore Theorem 3.3
suggests that a similar decomposition might exist for real subspace arrangements satisfying the even
codimension condition.

7.7 The induced S, representations

All homology and cohomology groups computed in Section 4 for the lattice IT,, x and in Section 5 for
the spaces M,':k and M,Ek are S,-modules for the symmetric group S,.. The S, action on homology and
cohomology is induced by the natural action of S, on R” (by permuting the coordinates) which makes
Sy a group of automorphisms of the arrangements As,k and Aﬁk. In order to have a proper setting
for classic representation theory we will assume in this remark that all homology and cohomology
groups are taken with coefficients in the field C of complex numbers.

The k = 2 cases are already known. The character mns of S, on the unique non-vanishing
reduced homology group of II,; = II, has been computed by Stanley [Sta82, Theorem 7.3]. The
representation of S, on the cohomology of M, has been determined by Lehrer and Solomon [LS86],
see also Orlik and Solomon [0S80]. The action of S, on MR, amounts to faithfully permuting the
n! simplicial cones, as is easy to see, so this gives the regular representation.

We denote by n?, the representation of S, on the reduced homology group Ed(Hn,k). Stanley
observes [Sta82, Corollary 7.6] that the restricted character 7232 ls._, is a permutation character,
namely the character of the regular representation. We will show that an analogous result holds for
all the characters 72 ,. We will not give the full details of the proof since it runs parallel to the
proofs of Lemma 4.2 and Theorem 4.3 in an equivariant setting. Here S,_; will be regarded as the
subgroup of S, fixing n.
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Proposition 7.1 Let 2 < k < n be integers. Then the character w;‘f_t'(k—z) ls,_, is a permutation

character for 0 <t < [1].

Proof: In order to be able to use the recursive technique of Lemma 4.2 and Theorem 4.3 we will
for every admissible triple (n, k,!) denote by 78 (1) the character of the group of automorphisms of
[T, k(1) acting on the reduced homology group Hy(Il, (!)). Note that for 0 < I < n — 2 the group of
automorphisms of Il k(/) is S; X Sp—i-1, the direct product of the symmetric group S; on {1,...,l}
and the symmetric group Sp,_; on {{+1,...,n} . For I > n—1 we have II,, x(I) = I, and in this case
the full symmetric group S, is the automorphism group of II,, 4(I). Now the more general claim is :

77:,1:(1) IsixSu_iy » MHO0<I<n-2
(7.1) The characters are permutation characters.
(D ls,, . ifl>n-—1,

This will be deduced from the following topological fact:

(7.2) I, k(1) has the G-homotopy type of a wedge of spheres which are permuted under the action
of G, where G = S5 xS, ;1 if0<I<n-2and G=S,_,ifI>n-1.

__Clearly,the action of G on the d-spheres gives rise to a permutation representation of G on
Hy(11, (1)), which proves (7.1). Proposition 7.1 is the | = 0 case.

To prove (7.2) we will use an equivariant version of Proposition 2.3 [Wel90, Proposition 2.5] which
says the following : If for an element z of a lattice L which is invariant under a group G of lattice
automorphisms the set of complements Co(z) is an antichain, then L is G- homotopy equivalent to
the space given in Proposition 2.3 and G acts on it by fixing the wedge point and permuting the
complexes in the wedge according to its operation on the lattice. For an inductive procedure one has
to proceed as follows. If G is the group of automorphisms of the lattice L which fixes the element z
then one has to determine the G,-homotopy type of A(0,y) and A(y, 1) for the stabilizer G, of each
element y € Co(z). Applying this equivariant version of Proposition 2.3 in the case I > n —1 to the
Sn-1-action on Il, k(!) = II, and letting z = (1---n — 1)(n), we easily verify (7.2) in this case, which
is the case treated in Lemma 4.2 (i). Continuing with this induction technique, the method of the
proofs of Lemma 4.2 (ii) and Theorem 4.3 leads to a proof of (7.2). ]

The determination of the homology characters 74, themselves seems more difficult, and we know
the solution only for the top dimension d = n — k — 1. As mentioned, this was done by Stanley
[Sta82] for k = 2, and we will now show that these characters are irreducible when k > 3.

Proposition 7.2 The homology character Tk k=1 for 2 < k < n, is the irreducible character of Sy,
corresponding to the "hook” partition (k,1,... 1).

Proof: Let B, ; denote the rank-selected boolean lattice B,,, where rank-levels 1, ...,k —1 have been
removed. There is an obvious embedding ¢ : B, — Il which sends a subset E € B, to the
partition of {1,...,n} with unique non-trivial block E. The order complexes of Bnk and of II,
are both (n — k — 1)-dimensional, so the embedding @ I induces an injection @ : Hy_s_ 1(Bng) —

Hn k-1{IIn%). In fact, ¢ is an isomorphism, since ranan k-1(Bnk) = (Z }) = rankﬁn k=1(n k)
and we are working over a field. From the equivariance of the inclusion map ¢ we deduce that @ is

actually an isomorphism of S,,-modules.
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Now we use a result of Stanley [Sta82, Theorem 4.3] which says that the irreducible S,-character
corresponding to A F n occurs in the S,-module H,_;_1(B,i) as many times as the number of
standard Young tableaux of shape A and descent set {k,k+ 1,...,n — 1}. But there is clearly only
one standard Young tableau with descent set {k,k+1,...,n — 1}, and its shape is (k,1,...,1). =

%=1 is not a permutation character, since it does not contain the trivial

character (except in the degenerate case k = n). It would be interesting to have more information
about the representations of S, on the (co)homology of II,, 4, M,':k and M,Ek, for k > 3.

It follows, of course, that 77

7.8 Complexes of disconnected k-graphs

By a k-GRAPH we will mean a collection of k-element subsets of {1,...,n}. A k-graph ¢ is
CONNECTED if for every pair ¢,7' € {1,...,n} there exist a sequence of elements i = g, 1y,...,i, = ¢/
and a sequence of k-edges By,...,B, in G such that {i;_,,i;} C B; for j =1,...,p.

The following question was asked by Fock, Nekrasov, Rosly and Selivanov [FNRS91]. Let the

k-element subsets of {1,...,n} be the vertices of a ((Z) — 1)-simplex, and consider the subcomplex

Ay of its boundary consisting of all disconnected k-graphs. What is the homology of A, ; ?

A more precise question was later asked by V.A. Vassiliev [private communication, July 1992].
Namely, let 2 < k < rand n; > 1, ¢ = 1,...,r, be positive integers. Take pairwise disjoint sets
Ey,...,E., such that |E;| = n; for all 2. Call a k-element subset B C E, U--- U E, BALANCED if
|[BNE;] <1fori=1,...,r. Now, let the balanced k-element subsets of F; U---U E, be the vertices
of a simplex, and consider the subcomplex A,, . . . consisting of all disconnected k-graphs. What
is the homology of A, . % 7

These questions (particularly the first one) can be answered using the Crosscut Theorem (see
below) and the results of this paper. Namely, A, is the crosscut complex of the lattice II, x, so
Apx and Il x are homotopy equivalent. Hence, complete information about the homology and the
homotopy type of A, x can be obtained from Theorems 1.5 and 4.5.

In a similar way, A, . .k is the crosscut complex of the lattice II,,,...n:x(0), hence these cofnplexes
are homotopy equivalent and partial information about the homology of A, . .k can be found in
Theorem 6.1.

The Crosscut Theorem says the following. Let L be a finite lattice and let A be the set of minimal
elements of L — {0}. Define a simplicial complex I'(L,A) by taking A as the vertex set and as

simplices those subsets 4y C A such that \/ T # 1. Then L and the crosscut complex I'(L, A) are
n€Ao
homotopy equivalent. See [Bj689, (10.8)] for a proof and further references.

.....

23



C
n,k

. and

R
n,

8 Tables of Betti numbers for I, ;,

R .
nk *

8.1 Tables of the cohomology of

Neoo o OO0 O000CECOOO0000000OCO0000OC000000000000000000OO0O00000000N0REROOO000OOOOOOO0OOO000C0O00~
aleee coococoooo 0000000000000000000000000000000000000000000000000000000000000010000000000070
- ~
Q ~
Sleoco cooocoo0O0 00O0000000000000000000000000000000000000000000000010000000000%000000”0000%00
©
™~ i
elooce 00000000000 COCEO00O0O00C0000C00000000000000000000r000C00000 0000000000 R00000R00000FO00O
o~ N %
- S b=y 2 -
-
o oo S0 OCCCCOCOOOOCOCONO00000000000O00O000000R0O000O000AN000CON000TO000O0ORO0030000000{E00¥Y0D ©
N ) ~ o b N a
© B -
) 9 b4 Q
~looco cocoocooo0 0000000000000000000010000000w000000009000000000&0000000000”00000000000%00000
-
-t [ A
© N
od 89 0 L 2
~ - o~ - Qo - 32 a © 0 ©
©wlo oo cocoococooo 0000000000OOIOOOOOOHOOOO50060000O”OOHOOOOOGW00w000000190070000000@“00“000000
~ - g - - % 3 0 ®© - 28 <
oo ] ) Py X
lalhe @~
~
e I I 2 b 2 o
wlo oo C 00000000000 OOR00000C0000ONDDO00OONO0000000D 00000000 RAOCD00O0OO00000000000CDR, 0000000
- ~ - a O Y
- ~ &
=)
o I
I S 28 o o 22
) [ 8o © o 2.8 232 BRI 933
wlooco ocoococooooO 00001000709000060&0000040500000070%0000009%0MOOOOOOOBOO1000000008%0100000000
- N N =} © o - ot I
o~ & - og - B Yo -
- 57
o 2 g 5 :
«
- 2 = S o s 2 - 2 e 9 o
oo oo coco~oco0ol 000”0000050000“040000060w000000%090000000%010000000030”0000000OOHOMOOOOOOOOO
L - - o © X e 3 QL = -« 0
@ ] - - - w
- b o
o~
I
o~ o
oo ‘o g S ol a5 av mn
nlo oo comoco Q%o O%MOOOOMMO0000“%000000M%0000000%”00000000”%000000000”&0000000000wm0000000000
B No DS 8] ) as S %
- n ] Q
-
= -
- = = h £ 5 : 3 3 %
~lo ~ o ocpecom~oo 050000O000000080000000400000000900000000010000000000w00000000000“00000000000
- « - 3] ~ ® - - ~
- ~
=)
o
° =3 m =4 m
o 2 S 2 ) © -
o o =4 ~ =4 © x - =1 &
oo~ Nt Q- NIIIIISlll111”111111!811111111m11111111101111111111%111!1]111]12]111111111]1
- -~ 2 2 a Q > g I ©
” © 2 ~ ~ ~
5 N -
- ~
©
©
< v = o~ N MmN 23456723456782345678923456789m23456789wn23456789mnn23456789wnnw234SGTBSWHHUH
COOCOOO0OOCmmMmrmre et NHNNNNANNNNANNNOTOO® O™
gl o - P R S Y S SR T T R - R N SRR AR - S-dahaRalopafabafobaRap i RO RO R LRI E RS BRI CINCIIRCNCCECCR R R i i i /o R e A

24



8.1 Tables of the cohomology of MY}, (continued) :

n k 0 1 2 3 4 5
15 2 1307674368000 [} [ 0 0 [

15 3 1 647167 539181162 11431616196 11061250200 168168000
15 4 1 0 1216513 0 417527812 0
15 5 1 0 0 1579007 0 0

15 6 1 0 0 0 1496065 0
15 7 1 0 ] [ 1066495
15 8 1 0 0 0 0 0
15 9 1 0 0 0 0 0
15 10 1 0 0 0 0 0
15 11 1 0 0 0 0 0o
15 12 1 0 0 0 0 0
15 13 1 0 0 0 0 0
15 14 1 o V] o] o 0
15 15 1 [ 0 0 0 0
16 2 20922789888000 0 0 0 [} 0
16 3 1 1507327 2323102602 89478384996 181667205720 12780768000
16 4 1 0 3080193 0 2266142762 0
16 5 1 0 0 4374527 0 0
16 6 1 0 0 0 4571137 0
16 7 1 0 0 0 0 3629055
16 8 1 0 0 0 0 0
16 9 1 0 0 0 0 0
16 10 1 0 0 0 0 0
16 11 1 [ 0 0 0 o
16 12 1 0 [} 0 0 0
16 13 1 0 0 0 0 0
16 14 1 0 [} 0 0 0
16 15 1 0 0 0 0 0
16 16 1 0 0 0 0 0

n k 6 7 8 9 10 11 12 13 14
15 2 0 0 0 0 0 0 0 0 0
15 3 0 0 0 0 0 0 0 0 0
15 4 632305674 0 0 o ] 0o 0 0 0
15 5 107440762 o 0 756756 0 0 0 [ [}
15 6 0 0 8509930 [ 0 ¢ 0 0 0
15 7 0 0 0 0 141570 0 0 0 0
15 8 580865 0 0 [} 0 0 0 0 0
15 9 0 242815 0 ¢ 0 0 0 0 0
15 10 0 0 77505 0 0 ¢} 0 0 [}
15 11 0 0 0 18591 0 0 0 0 [
15 12 o 0 0 0o 3249 0 o} 0 0
15 13 0 0 0 0 0 391 ] 0 0
15 14 0 0 0 o o] 0 29 0 0
15 15 o 0 0 0 0 0 0 1 0
16 2 o 0 0 [ 0 [} 0 0 0
16 3 o 0 0 0 0 0 0 0 0
16 4 8766802044 0 63063000 0 0 0 0 0 0
16 5 782487862 0 0 42378336 o] 0 0 0 0
16 6 0 o 93470806 0 0 4] 0 [} 0
16 7 o] 0 0 0 3124550 0 0 0 0
16 8 2228225 0 0 0 0 0 12870 0 0
16 9 0 1066495 0 0 0 0 0 0 0
16 10 0 0 397825 0 0 0 0 [} 0
16 11 0 0 0 114687 ] 0 0 [ 0
16 12 o 0 0 0 25089 0 0 o 0
16 13 0 0 0 0 0 4031 0 0 0
16 14 [} 0 0 0 o 0 449 0 0
16 15 0 0 0 0 0 [} 0 31 0
16 16 0 0 0 0 0 0 0 0 1
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8.3 Tables of the reduced homology of II,,; :

n k 0 1 2 3 4 5 6 7 8 9 10
3 2 2 0 0 0 0 0 0 0 0 0 0
4 2 0 6 0 0 0 0 0 o 0 0 0
4 2 3 0 4] 0 o 0 0 0 [s] 0 0
5 2 0 0 24 0 0 0 0 (1) 0 0 0
5 2 1] 6 (4] (4] 0 0 1] 4] 0 0 0
5 4 4 1] 4] 0 0 0 4] o 0 0 0
6 2 [v] o [t] 120 0 4] 1} 1 0 0 0
6 3 1] 10 10 0 0 0 [\ 0 0 0 0
6 4 ) 10 0 0 0 0 [ [} 0 0 0
6 5 5 1] 0 0 0 0 0 [ [s] 0 0
7 2 1) 1] 0 0 720 0 o 0 0 0 0
7 3 [4] 0 105 15 0 0 o 0 0 0 0
7 4 0 0 20 0 o] [ 0 0 [¢] ] 0
7 5 [s] 15 o] V] 0 1] 1] o 0 0 0
7 6 [3 0 0 0 0 o [1] 0 0 0 0
8 2 0 0 [} (4] (4] 5040 0 0 1] 0 0
8 3 0 (] 0 651 21 [1] 0 0 0 0 [+]
. 4 0 35 (1] 35 (0] 0 [v] 0 [v) 0 0
B 5 4] 0 35 (1) 0 0 [¢] 0 0 0 0
8 6 0 21 0 [}] [ 0 0 0 ] 0 0
8 T 7 0 0 1) 0 0 0 0 0 1) 0
9 2 0 0 0 0 [1) 0 40320 0 o 0 0
9 3 1] 0 0 560 3108 28 0 0 0 1] 0
9 4 0 0 504 o 56 0 0 0 0 (1] [4]
9 5 0 1] 1] 70 0 0 1) 0 0 o 0
9 6 0 0 56 0 1] 0 0 0 0 0 4]
9 7 0 28 1] 0 0 0 0 0 0 0 0
9 8 8 0 0 0 0 0 1] 0 0 [v] [¢]
10 2 Q Q 0 0 0 0 0 362880 0 0 0
10 3 o (1] 0 (0] 12600 12636 36 0] 0 o 1]
10 4 0 Q 0 4116 0 B84 0 0 0 0 0
10 5 (0] 126 0 0 126 4] 0 0 0 0 0
10 [ 0 0 o] 126 0 0 0 0 0 0 0
10 7 0 0 84 0 0 0 0 ) 0 0 0
10 8 0 36 0 [v] 0 0 [v] (1] 0 0 0
10 9 9 0 4] 0 [+] 0 0 [ 0 1) o
15 2 [§] 0 0 [v) [4) 0 0 0 0 0 0
15 3 0 0 0 0 0 0 o 33633600 1190839650 480411932 4286373
15 4 0 1] 0 (1) 0 0 75603528 0 8480108 0 364
15 5 0 [s] 0 252252 0 1] 5508503 0 0 1001 0
15 6 0 0 o] (4] 1091090 0 0 0 2002 1) )
15 7 0 0 45045 0 0 0 1] 3003 1) 0 0
15 8 1] ) 0 (4] Q 0 3432 0 4] 1) 0
15 9 0 0 1] 0 0 3003 0 0 (4] 0 0
15 10 0 0] () (1] 2002 0 0 0 0 0 0
15 11 0 o 0 1001 0 0 0 0 0 0 0
15 12 0 0 364 0 0 (] 0 0 0 1] 0
15 13 0 91 0 0 0 4] 0 0 [s] 0 0
15 14 14 0 0 0 0 Q [¢] 0 0 0 0
16 2 0 0 0 0 0 1] 0 (4] 0 [+] [}
16 3 0 1] 0 0 (V] 0 0 0 2018016000 14944759830 2722579860
16 4 0 0 0] o] 0 15765750 1] 753212460 o 29819335 [}
16 5 0 0 [} 0 10090080 0 1} 25857195 0 0 1365
16 6 0 0 [0} o (1] 7690683 0 0 0 3003 0
16 7 0 0 ] 635635 1] 0 0 0 5005 0 0
1 8 0 6435 0 0 4] o] Q 6435 (4] (1] 0
16 9 0 0 0 1] 0 [¢] 6435 0 0 0 0
16 10 ] 0 0 0 0 5005 0 [¢] Q 0 ]
16 11 0 0 0 0 3003 (4] 0 0 0 0 0
16 12 [1] 0 0 1365 4] 1] 0 0 1] 0 0
16 13 0 0 455 0 0 0 0 [s] 1] 0 0
16 14 0 105 0 0 0 4] 0 0 0 (1] g
16 15 15 0 0 0 0 0 0 0 0 0 0
n k 11 12 13 n k 11 12 13
15 2 0 87178281200 0 16 2 0 0 1307674368000
15 3 91 Q 0 16 3 12042135 105 0
15 4 [+] 0 [1] 16 4 455 (] 1]
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