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Abstract. We describe two methods for es-
timating the size and depth of decision trees
where a linear test is performed at each node.
Both methods are applied to the question of de-
ciding, by a linear decision tree, whether given
n real numbers, some k of them are equal. We
show that the minimum depth of a linear deci-
sion tree for this problem is @(n log(n/k)). The
upper bound is easy; the lower bound can be es-
tablished for k=0(n!/4=¢) by a volume argu-
ment; for the whole range, however, our proof
is more complicated and it involves the use of
some topology as well as the theory of M&bius
functions.

1. Introduction. Let P be a set in IR™. Given
a point z, we want to test if z € P. Our model of
computation is a linear decision tree, a rooted
ternary tree T where each node v is associ-
ated with a linear function l,(z)= Y aizi+b,
and the three edges connecting an interior node
to its descendants are labelled “<”, “=" and
‘(\>”. Starting from the root, we move down the
tree; at each internal node v, we check whether
l,(z) >=< 0 and follow the appropriately la-
belled edge. Leaves are labelled YES and NO,
and arriving at a leaf we read off the answer to
the question “is z € P?". We denote the num-
ber of YES leaves and NO leaves by £*(T) and
£=(T), respectively, and we denote by £+(P)
and £7(P) the minimum of £*(T) and ¢~ (T)
over all linear decision trees for P.

Linear decision trees are sometimes sur-
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prisingly powerful devices; we mention here the
result that some NP-complete problems like
knapsack have polynomial size linear decision
trees [MH]. Lower bound results on the size or
depth of linear decision trees usually depend
on counting the number of connected compo-
nents of P or R™\ P (see [DL]). In this paper
we develop two methods that can be applied to

obtain lower bounds if these setsareconnectad.

Our “test problem” is the k-cqual-problem:
given n real numbers z4,...,2z,, decide if some
k of them are equal. This problem has a trivial
O(nlogn) linear decision tree: just sort the el-
ements, and compare the ith element with the
(i+k—1)-st for every i (note that a comparison
“r<y?” is a special case of a linear test). For
k=2, the proof that at least Q(nlogn) linear
tests (in particular, at least Q(nlogn) compar-
isons) are needed was one of the first applica-

tions of the lower bound argument mentioned
above [DL].

For k> 2, this lower bound technique fails
since both P (the union of (}) linear subspaces
of the form z;,, =...= z;,) and its comple-
ment are connected. Note that for large val-
ues of k, the linear decision tree complexity of
this problem does decrease. To show this, as-
sume (for simplicity) that n=2mk. We start
with determining the (2™~'k)-th largest ele-
ment; this takes O(n) comparisons. Then we
go on with finding (2™~2k)-th largest elements
among those smaller and also among those
larger than this element (ties are broken ar-



bitrarily). In the j-th phase, those elements
found so far split all elements into blocks of size
2™~Jk, and we find the element of each block
which splits it into two equal parts (where each
element is counted in the block immediately be-
fore it).

After m phases, we have found the k-
th, (2k)-th, ..., 2™k-th largest elements. Now
if there are k equal elements, then one of
these special elements must occur among them;
therefore it is enough to compare each of them
with 2k other elements (in the blocks immedi-
ately before and after them) to see if indeed
this is the case.

Each phase takes O(n) comparisons, so
the total number of comparisons needed is
O(nm)=0(nlog(n/k)). This determines a lin-
ear decision tree with depth O(nlog(n/k)) and

(consequently) with size (n/k)°(™). Qur main

Jesult shows that this is essentially best possi-
ble:
S

Main Theorem. Every linear decision tree for
the k-equal-problem has size at least (n/k)™(m)
and (consequently) depth at least Q(nlog(n/k)).

Our first method is based on volume esti-
mates, and it proves this result in the range k <
n'/4=¢ (¢>0). Our second method, based on
computing certain topological invariants (and
substantially more complicated) will establish
the result for any n and k. For this part, we
will assume some familiarity with basic alge-
braic topology and its connections with combi-
natorics. For the former see e.g. [Mu] and for
the latter [Bj].

2. Volume arguments. In this section we.as-
sume that P has finite volume. Let T be a
linear decision tree for P, and let U and W
denote the set of internal nodes and leaves of
T, respectively. Let W~ and W+ be the sets
of NO-leaves and YES-leaves, respectively. Let,
for each we W, P, denote the set of inputs
leading to leaf w. Each set P,, is a convex sub-
set of IR™. Since P is the union of all cells P,
(we W), this implies the following:

Proposition 2.1 Let V be the mazimum vol-
ume of a convez subset of P. Then

+s vol( P)
4 2 —

The volume of an arbitrary convex sub-
set of P may be quite difficult to estimate.
Using the recent result [Ba] that every con-
vex body with volume V' contains an ellipsoid
with volume n!n="/2(n 4 1)~(n+1)/2gn/21(] 4
n/2)"1V >n~"/?V (the bound is tight for the

" simplex), we obtain:

Proposition 2.2 Let Vo(P) denote the maz-
imum volume of an ellipsoid contained in P.
Then I(P)
l+>n'"/2—vo—-—.
- Vo(P)

To apply this bound to the k-equal-
problem, we choose P to be My x=[0,1]*\V, \,
where V,, i is the set of all points in [0,1]" with
at least k equal coordinates (so vol(P)=1). We
will show that

Theorem 2.3 For some constant ¢>0
ck(logn)\*"
Vo(Mp )< | =2 .
o "°)-< v )

Let € >0 be any fixed constant and 2 <
k <n(1/9-¢ Tt follows from Theorem 2.3 and
Proposition 2.2 that

,

a5 (" Y

=" (c%?(logn)?) = (c2(logn)2) '
Hence the depth of any linear decision tree for
M,k is at least

logg £+ > n(2¢logy n—logy log n—¢')
>enlogy n>enlogy(n/k).

Proof of Theorem 2.3. Without loss of gen-
erality, we assume that n>108 and 2<k< /7.
Let £ be any ellipsoid contained in M, k. Let
z=(z1,.-.,2,) be the center of £ (where we
may assume that 2 <2, <...<z,), and A, >
A2 2>...2 Ay, the lengths of its semi-axes.

Let m = n—[2-], and consider the
(n—m)-dimensional affine subspace L passing
through 2z and containing the longest n—m
semi-axes. We will prove that there exists a
point z € LNV, i such that

< 8k%(log n)? ‘

o2l < =%

(2.1)



This will imply A, <8k%(logn)?/\/n, since
otherwise £ would contain z, contradicting the
assumption £ C M,, . It will then follow that

qn/2

vol(€) = (H’\ ) T(1+n/2)
<(Jmyrm-t (8k2(logn)2)'"“ /2

Vn I'(1+n/2)
< ck(logn)\ "

To prove (2.1), write L as the solution set
in variables (zy,...,z,) of the equations

a11(z1 — 21) 4. ..+ @1n(Tn — 2,) =0
(2.2)
am1(T1—21)+. cet Amn(Tn—2,)=0

Let D = {i1,42,...,im} C {1,2,...,n} be a
set of m columns such that |det(a.,|D)[ is
maximum. Clearly |det(a;;|p)|#0. Let D =
{1,...,n}\ D. Set a=[2k-logn], and divide
the columns into [n/a] consecutive blocks, all
of size a except possibly the last one. Observe
that there are at least

[I_Dl—kl_n/a_]—a N n
a—k ~ 8k(log n)?
blocks among these that contain more than k

columns of D. Among these blocks B, at least
one must have

k 2
| max z; — minzilss—(lﬂ.
€8 t€B n

Let us fix such a block B, and write. DN
B ={j1,...,7k,...}. Define y= (max;ep z; +
min;ep 2;)/2. Then, for all i€ B,

4k(log n)?
—

lzi —y| < (2.3)

Set b, = — Ep__ arj, (y—
Consider the point z = (z,,.. s Tn) where =y

for i€ {j1,...,7,}, i (1€ D) are defined by the
following equations:

—2;1)-{-.. .+a1,~m(x,-m

zj,) (r=1,...,m).

alil(xil

-z, )=b1,

am,-l(a:;l —2;1)-}-. et ami, (:l:;m - ng)=bm,
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and all other z;=2;.
As det(a;;|p) is maximum, we have for i, €
D by (2.3),

k . .
det(24,... ,1
20, =20, = |30 L)

p=1 det(tl yoooy 1m)

k
4k*(log n)?
<y :Iy-Zj,lS—“—(ng L
r=1

Hence

e - 2| = Zly 2, P+ 3z —f?

f{€D
2 2 2\ 2
i (4k(log n) ) +m (4k (logn) >
n n
< 32k4(log n)* .
n

3. Topological invariants. In the sequel, we
restrict our considerations to closed sets P. It
is clear that among these, only polyhedra (sets
arising as unions of finitely many convex poly-
hedra) have linear decision trees, so we shall
assume that P is a polyhedron. The following
fairly simple inequality gives a lower bound on
the number of leaves of a linear decision tree
for membership in a polyhedron P in terms of
its Euler characteristic. We recall that this may
be defined as follows. Consider a finite family *
of (non-empty, not necessarily bounded) convex
polyhedra such that

(1) if @ € F then every face of Q is in F;
(2) the intersection of any two members of

F is a face of both.

Such a family is called a convez cell com-
plex. If UF = P, we call F a convez cell de-
composition of P. If P is bounded, then F is
a regular CW-complex (see [Mu, Bj]) and we
define its Euler characteristic x(P) by

X(P)= 3 (1) 4@,

QeF

It is a basic fact of algebraic topology that the
Euler characteristic is independent of the choice



of the subdivision, and invariant under a num-
ber of morphisms (e.g. homotopy equivalence).
In particular, any contractible polyhedron has
Euler characteristic 1.

For unbounded polyhedra, we compactify
the space by adding a single point w “at infin-
ity”, and let P = PU{w}. Consider a convex cell
decomposition F of P; then FU {w} is a CW
decomposition of P, and

X(P)=1+ 3 (-1) 4im@

QeF

(the first term comes from the point w as a
cell). In the following we set P= P for bounded
polyhedra (for convenience), and define ep =1
os P is unbounded and =0 otherwise.

Theorem 3.1 Let P be a polyhedron in IR™.
Then

et (P)>|x(P)~epl,
£ (P)>|x(P)—ep+(-1)"".

Proof. Let T be a linear decision tree for P. Us-
ing notation from section 2, we note that each
set Py (w€W) is convex and polyhedral, but
‘not necessarily closed; in fact, P, is open in
\its affine hull: the affine hull A,, of P, is ob-
tained as the intersection of those hyperplanes
lu(z) =0 which tested with equality along the
path from the root to w, and the remaining
strict inequalities along this path define P,,. We
denote by P, the closure of P,, and by &P, the
boundary of P, in A,,. If P, is bounded, then
Py is a ball (in fact a convex cell) and an is
its bounding sphere. If P, is unbounded then
there are two cases:

(i) Py is a ball and 3P, is its bounding
sphere, if P, # Ay,

(ii) Py is a sphere and 9P, =w, if P, =
Ay.

We have P =U{P,:we Wt}; but the
polyhedra P, (even together with their faces)
do not form a convex cell decomposition in gen-
eral. So to relate to the Euler characteristic,
we consider the following finer decomposition.
Our linear decision tree T' determines an ar-
rangement of affine hyperplanes Ar = {H,},
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where H, = {z € IR" :1,(z) =0} for each inner
node u € U. These hyperplanes subdivide IR™
to a number of relatively open convex (polyhe-
dral) regions. These regions, together with their
faces, partition IR" (points in the same class be-
have the same way in all tests on the tree). Let
A denote the set of these classes. Their closures
give a convex cell decomposition of IR".

For each leaf w, let A, A, and A, be
the collections of cells in A contained in P,, P,
and 0P,, respectively. Let A’ denote the set of
cells in A contained in P. Then the closures of
cells in A’ form a convex cell decomposition of
P, and hence

3 (=1) 4O =y (P) —ep.

Cea!

Now we can partition this sum accordmg to the
YES-leaves:

x(P)=ep= 37 3 (-1) 4@
weWw+ Cea,
- Z Z (___1) dim(C)

Z (_1) dim(C) _
weW+ \Ccea, cedA,

= Y (((Puw)-er.) - (x(8Pw)—¢p,))

weWw+

= Z (_1) dim(P.,)'

wew+

In fact, A, forms a convex cell decomposition
of P, 0A, forms a convex cell decomposition
of 9P,, and P and (9P are a ball and a sphere
(or conversely) as stated in (i) or (ii) above.
Therefore x(P,,)~ x(0P,) = (-1) 4im(Ps) fo].
lows from x(ball) =1 and x(n-sphere) =1+
(-1

The bound on £+ follows immediately from
this equation, as the right hand side is at most
|W+|=¢+(T). For £-, observe that the cells in
A, together with w, form a CW decomposition
of the n-sphere, and so 3 ,ca(~1) 4™ =

x(S™)—1. Hence

> (D) O =y (S =1~ (x(P)~ep)

Cea\a!
= -—X(ﬁ)‘l’el’ +(_1)n.



From here the argument is just like that for £+,
by partitioning the left-hand sum according to
the NO-leaves. |

Remarks. 1. It is in general not easy to com-
pute the Euler characteristic of a combinato-
rially presented polyhedron. In a special class
of polyhedra representable as the union of
affine subspaces, however, combinatorial tools
are available to determine this Euler character-
istic, as we shall show below.

2. The Euler characteristic of a polyhedron
may be small even if its structure is very com-
plicated. For example, if the polyhedron is star-
shaped (i.e. it has a point v such that the seg-
ment connecting v to any other point is con-
tained in the polyhedron), then its Euler char-
acteristic is 1. We may get better bounds by
intersecting P with a hyperplane H; it is easy
to see that every linear decision tree for P yields
a linear decision tree for PNH (as a polyhedron
in H) of the same size.

3. It is a very natural problem to extend
these results to algebraic decision trees (trees
where linear tests are replaced by polynomial
tests with bounded degree). The “component
count” version of this method was initiated, for
algebraic decision trees, by Steele and Yao [SY]
and improved by Ben-Or [BO]. One may hope
that the results of Milnor and Thom [Mi, Th]
can be used in combination with the ideas of
this paper.

4. Subspace arrangements. By an affine
subspace arrangement we mean a finite family
A={K1,...,Kn} of affine subspaces in R".
Such an arrangement is called central, if each
K; is a linear subspace, i.e., it contains 0. We
may assume that no K; contains another X j.In
this section we derive combinatorial bounds on
the size of a linear decision tree testing member-
ship in the union of subspaces in an arbitrary
arrangement.

For an arrangement 4 = {K1,..., K},
central or affine, let V4 = UR,K; and M4 =
IR®\ V4. Then V4 is an unbounded polyhe-
dron (if dimVy4 > 0); let V4 denote its com-
pactification with an element w. The set M A s
a d-dimensional manifold, which is connected
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in case dimK;<n-2 for all 1<i<m. We
know from the previous section that £+(V,4)>
[X(V.4) - 1]. Unfortunately, x(V4) is still quite
difficult to determine or estimate, and it will
be useful to consider V,, the intersection of V4
with a very large cube Q (“very large” means
that it intersects every non-empty intersection
of subspaces in .A). Note that

£ (Va) 237 (V))

(first test if z€Q, and if so, test if z € V4), and
hence it suffices to find lower bounds on x(V4)-
Here we use that an optimal tree for the closed
n-cube has 3" YES-leaves, corresponding to its
non-empty faces.

The partially ordered set L4 of all inter-
sections .K,‘l ﬂ...ﬂ](,',.,1Si1 <...<t;<m, or-
dered by reverse inclusion, is called the inter-
section latticeof A= {Kj,...,Kn}. This lattice
has least element 0=IR", and greatest element
i=nA= K1Nn...NK,,.Its atoms (elements cov-
ering ﬁ) are the subspaces K;. Some very useful
aspects of the topology of the spaces V4 and
M 4 are encoded into the lattice L A, as the fol-
lowing results show.

The order complex A(P) of a poset P is the
simplicial complex whose vertex set is P and
whose simplices are the chains 21<...<2 In
P. Note that if the elements of P are vertices of
a (| P|-1)-dimensional simplex, and each chain
is represented by the convex hull of its elements,
then we get a convex cell complex, and the
union of these simplices is 2 polyhedron, which
we shall also denote by A(P).

Proposition 4.1 Let A be an affine arrange-
ment with NA=0. Then V4, V! and A(L4 -
{0,1}) are of the same homotopy type.

Proof. The homotopy equivalence of V4 and
A(L4—{0,1}) follows from the nerve theorem
[Bj, (10.7)] applied to the covering of V4 by
the subspaces K;, together with the cross-cut
theorem [Bj, (10.8)] applied to the cross-cut of
atoms K; in L4. For V) instead of V4 this fol-
lows similarly. (]

As a consequence, we obtain that for any



affine arrangement A with NA=0, we have

e (Va) 2875 (VA) 237" [x(V4)
=37"|x(A(La—{0,1}))].

For arrangements with NA # @ (equivalently,
for central arrangements) this method does not
give any information since in this case Vi is
star-shaped and its Euler characteristic is 1.
We can apply, however, our lower bound to the
intersection of V), with an appropriate hyper-
plane H. In this case, every linear decision tree
for V), would yield a linear decision tree for
VANH (as a set in H) with the same number
of YES-leaves and NO-leaves. Applying Propo-
sition 4.1 to the intersections, we get

Corollary 4.2 Let A={K},...,K,} be a cen-
tral arrangement, and H an affine hyperplane
avoiding 0 whose translate through the origin
contains K1N...NK,, but no other intersection
in La. Then VAnH, ViNH and A(L4-{0,1})
are of the same homotopy type. 1

(4.1)

From here we obtain in the central case:
£ (Va) 237" H(VANH) > 37" |x(ViN H))|

=37"x(A(La—{0,1}))].
(4.2)
The adventage of expressing the Euler
characteristic of V4 or V4N H in terms of the
Euler characteristic of posets is that we can
now invoke the powerful theory of Mébius func-
tions (see [S], Chapter 3, for an introduction to
this theory). The key is the following theorem
9f Ph. Hall: the value of the Mébius function
ﬁ(z,y) for a pair x <y in a poset P is one
less than the Euler characteristic x of the order
complez of the open interval (z,y)={z€ P:z <
z<y}; see [S, p. 120] or [Bj, (9.13)]. Therefore
our results (4.1) and (4.2) can be summed up
as follows:

Theorem 4.3 Let A be an affine subspace ar-
rangement in IR™. Then

£+(VA)23_n |NLA (Ovi)+1| . (4'3)

For central arrangements the Euler char-
acteristic of V4 can be computed in terms of
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the intersection lattice L 4, using a formula of
Goresky and MacPherson [GM, p.238] for the
Betti numbers of M4 and Alexander duality:

x(Va=1+ 3 (-1)9m&@-1y, (0,q).
z€L4, >0

This leads, using Theorem 3.1, to the following
bound:

Theorem 4.4 Let A be a central subspace ar-
rangement in IR". Then

£+(VA)ZI Z (_1) dim(z)#LA(O,x) .
z€LA, >0
(4.4)

Lower bounds for £=(V4) similar to those
in Theorems 4.3 and 4.4 can be derived from
Theorem 3.1 by parallel reasoning.

We do not know if, for a central arrange-
ment, either one of the lower bounds in Theo-
rems 4.3 and 4.4 for £+ is always better than the
other, although in all examples we have checked
(4.4) is far better than (4.3). On the other hand,
(4.3) is simpler to evaluate. Although the evalu-
ation of the Mé6bius function is a difficult prob-
lem in general, its theory is fairly well developed
and we shall illustrate the use of this theory in
the analysis of the k-equal problem in the next
section.

5. Application to the k-equal-problem.
The motivation for this paper is to give
lower bounds for the size of linear decision
trees for the problem: “Given real numbers
Z1,Z2,...,T, decide whether k£ of them are
equal”. This is a special case of the problem
of testing membership in the union of an ar-
rangement: Let A, x denote the arrangement in
IR™ of the (Z) subspaces of dimension n—k+1
given by the equations iy =Ti, =...= 1z,
for 1<#<...<ip<n. It is clear that the k-
equal problem is to decide whether z € Vaus
for points z € R™. Therefore by Theorem 4.3
the Mébius function of the corresponding inter-
section lattice will provide lower bounds for the
size of decision trees. Such intersection lattices

Tnévpm—

denee

/

have a very concrete combinatorial description.

Let II, denote the lattice of partitions of
the set {1,2,...,n} ordered by refinement, and

nu™ \X( V

Ay



for 1<k<n-11let I, be the subposet of
partitions with no block sizes in {2,3,...,k}.In
particular, II,, y = IT,,. We observe that Mk is
itself a lattice, whose join-operation is the same
as that of II,, and whose meet-operation is that
of Il (coarsest common refinement) followed
by breaking all blocks of size < k into singletons.

Proposition ‘5.1 The intersection lattice of
Ank, 2<k < n, is isomorphic to the lattice
I, k—1. If under this isomorphism a subspace
T € Apk corresponds to a partition in | P
with j blocks, then dim(z)=j. |

We define p,, & for all n,k>1 as follows. If
n>k, let py, k= pi(0, i), i.e. the Mobius func-
tion uy of II,, » computed over all of I, . Let
alsopyx=1and py s =... = pk r=0. We denote
by p the Mébius function of I1,,.

We derive various formulas for the Mébius
function px; the last one of these will give a
good enough estimate to settle the linear de-
cision tree problem for all values of k up to a
constant.

The following formula is a special case of
4 result of Crapo (see [S, p. 159]):

Lemma 5.2 Let n>k, and let Y denote the set
of partitions in I1,, with all classes of size k or
less. Then p, = Eer w(y,1). ]

Let Sk(n,j) denote the number of parti-
tions of an n-set into j parts of size at most
k. Then we have by the well-known formula for
the Mdbius function of the partition lattice,

Corollary 5.3
k=Y (=1Y71(j = 1)ISk(n, j).
=1

(For n <k, this follows from Si(n,j)= S(n,7)
and the well-known identity

n

(-1~ (i = 1)18(n, 5)=0.)

J=

Unfortunately, this alternating sum does
not provide any easy way to see the order of
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magnitude of p, x, so we turn to generating
functions. Let

ki
T
and pk(x)——— E i—!.

i=0

o0 xn
Fi(z)= Zun,k;,-
n=1 '

By a well-known formula for the exponential
generating function of partitions into parts with
specified sizes, we have

had B AL | ;
Lemma 5.4 ) Si(n,; )= ﬁ(pk(z) -1).x
n=1
This leads to the following nice formula:

Theorem 5.5 Fi(z)=Inpx(z).
Proof. By Corollary 5.3 and Lemma 5.4,

o0 zn
Fk($)=2#n.k7
n=1 '

=3 DTG - 1S, )
n=1 j=1

2>

J=1

(1F G~ 1)18u(m, )

(o)
=j

s

(—1)1‘*‘(:'—1)!%(“@)—1)f=1npk(x).

J=1

For the derivative we get

k

rooy_ Pe(®) _ pe(z)—(zF/kY) B
Fk(x)—pk(z)— e =1 Fpe(a)”

Let ay,...,a; be the roots of pr. These are
distinct, since
k K

a; a;
Pilei)=pi(ai) = T =~ #0.
In terms of these numbers, we now have a for-
mula for y1,, x which will be good enough for our
purposes.

k
Theorem 5.6 i, x=—(n—1)! E a; "
i=1
Proof. We can write

1 —k!

k
1 A;
=E , A;j= = .
pe(z) SHz-o IACHI




Thus

—- n-1 -n
-3 a7ty
n=k+1 i=1

This formula reveals that p,; is not al-
ways large, e.g., pn2 = 0 whenever n = 2
( mod 4). However, we now show that u, ; is
large often enough.

Theorem 5.7 For all n,k with 1<k<n/2
there erists an m such that n—k+1<m<n
and |pm k| > (m—1)k—™1,

Proof. (This is actually a special case of
Turan’s principle [Tu].) We have min; |a;| <k,
since []; @y =+k!. Assume that |o;|< k. erte

k k=1
g(z)= H(:v —ai)= Z bjz’.

i=2 =0
Then
k—lb‘—lﬁ‘;j'k__—k—l k —
;J(n—l—j)!‘ ZZ %

k
==Y glaa;™ = —glar)a;”

= —klpk(ar)ay™ = o™,

Hence there is a j, 0<j<k—1, such that

Hn—jk

1 —-n+k
- EelT

One can show by induction that

bj = -—k!al-j—lpj(al),
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and hence it is not difficult to see that |b;] <
k¥*Yaq|~3-1. Thus

1 N _
|n—jikl > Z(r—1=)lon | =™+
> (1= 1 jlfag |-+ +ogke2
>(n=1-j)k—mHi-1,

Let £+k=l+(VA +)- Then we get:
Proposxtlon 5.8 For all n,k with1<k<n/4,
we have £ k12 (n— Iz:)'(lilc)"‘"‘2
Proof. We use the monotonicity property that
£ k412 L k41 if n>m. Choosing n>m>n —
k+1 as in Theorem 5.7, we get

Z:.k+1 2 e:t,k+1 237"t i +1]
> (m—=1)43k)"™"1 > (n—-k)(3k)*—""2.

(The last inequality uses that v!(3k)~" is in-
creasing as a function of v for v>3k). |

Proof of the Main Theorem: For k> n/100
we need to prove a bound of Q(n) for the depth
of the tree, which follows by elementary rea-
soning (or we could argue that for fixed k, the
minimum depth increases in n). So we may as-
sume that k < n/100. Then the linear decision
tree complexity of the k-equal problem for n
numbers is at least:

logs £ > (n— k)(loga(n— k) 1)
~(n—-k+2)logsk—(n—-k+2)

> (n—k)logy ™

k 1 n
—_ > — —
2n> 10nlog p
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