—"'? Cr>
—fo /%e/i or 0‘)«7{“

Schwerpunktprogramm der Deutschen Forschungsgemeinschaft

ANWENDUNGSBEZOGENE OPTIMIERUNG UND STEUERUNG

Broken Circuit Complexes:
Pactorisations and Generalisations

by
A. Bjorner and G. M. Ziegler

Report No. 24 1987

Dezember 1987

Institut fir Mathematik

UNIVERSITAT AUGSBURG

Memminger Strafie 6
D-8900 Augsburg



Addresses of the authors:

Anders Bjorner

Dept. of Mathematics

Kungl. Tekniska Hogskolan
Royal Institute of Technology
S-100 44 Stockholm

Sweden

Giinter M. Ziegler
Institut fiir Mathematik
Universitat Augsburg
Memminger Str. 6

8900 Augsburg

West Germany




Abstract

Motivated by the question of when the characteristic polynomial of a matroid fac-
torizes, we study join-factorizations of broken circuit complexes and rooted complexes
(a more general class of complexes). Such factorizations of complexes induce factor-
izations not only of characteristic polynomial but also of the Orlik-Solomon algebra of
the matroid.

The broken circuit complex of a matroid factors into a multiple join of gzero-
dimensional subcomplexes for some linear order of the ground set if and only if the
matroid is supersolvable. Several other characterizations of this case are derived. It is
shown that whether a matroid is supersolvable can be determined from the knowledge
of its 3-element circuits and its rank alone. Also, a supersolvable matroid can be
reconstructed from the incidences of its points and lines.

The class of rooted complexes is introduced, and much of the basic theory for
broken circuit complexes is shown to generalize. Complete factorization of rooted
complexes is however possible also for non-supersolvable matroxds, still inducing fac-
torization of the characteristic polynomial.
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1. Introduction

Let M be a loop-free matroid of rank r with a linear order w on its ground set E.
The broken circusts of (M, w) are the sets C — min, (C), formed by deleting the smallest
element from a circuit C of M. The broken circust complez BC(M,w) is the collection
of all subsets of E that do not contain a broken circuit. The broken circuit complex is
known to be a pure (r — 1)-dimensional subcomplex of the matroid complex, that is,
all its facets (maximal faces) are bases of the matroid.

Broken circuit complexes have been studied as a tool to understand important
combinatorial and homological matroid properties [B1,Br,BO1,BO2,Wi]. In particular,
the following identity due to Whitney and Rota [Ro, p. 359] shows that the f-vector
f = (fo,..., fr) of the broken circuit complex (where f; is the number of (s — 1)-
dimensional faces) encodes the coefficients of the characteristic polynomial:

x(t) = S(-1iferi. (1.1)

s=0

In order to explain the factorization (over the integers) of the characteristic poly-
nomial for many “well-behaved” matroids, Brylawski and Oxley [Br,BO1,BO2] initi-
ated a study of the join-decompositions (factorizations) of broken circuit complexes.
They showed that every modular element induces a factorization of the broken circuit
complex for a suitable linear order, thus giving a deeper structural interpretation of
Stanley’s celebrated modular factorization theorem for the characteristic polynomial
[St1]. The conjectured converse for this result [BO2] is still open.

In this connection Barnabei, Brini and Rota [BBR, p. 137] state: “it frequently
turns out that one of the main tasks of algebraic combinatorics is that of splitting
characteristic polynomials into factors, and establishing connections between such de-
compositions and combinatorial properties of partially ordered sets. At present the
most substantial result in this direction is Stanley’s theory of supersolvable lattices.”

This paper has two purposes. The first is to treat the case of complete factoriza-
tions of the broken circuit complex, corresponding to the case that the characteristic
polynomial has only integer roots. Such complete factorization of the characteristic
polynomial was first proved by Stanley for the class of supersolvable matroids intro-
duced by him [St2]. Our main result includes a converse, on the level of broken circuit
complexes, to this case of complete factorizations. Specifically, we prove in Theorem
2.8 that the following conditions are equivalent for a loop-free matroid M of rank r:

(1) M is supersolvable.

(ii) For some linear order w on E, the broken circuit complex BC(M, w) factors com-
pletely.

(iii) For some w, the 1-skeleton BC(M,w)!!] is a (complete) r-partite graph.

(iv) For some w, the minimal broken circuits (with respect to inclusion) all have size
2.

(v) There exists an ordered partition (X;, Xz,...,X,) of E such that if z,y € X;,
T # y, then there exists z € X; with j < ¢ such that {z,y, 2} is a circuit.

The second purpose of this paper is to introduce a generalization of broken circuit
complexes which is motivated by the study of factorization: the rooted complezes
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generated by rooting maps on the geometric lattice of flats of a matroid. A rooting
map = selects a base point (“root”) for each flat in M in a consistent way, and a
simplex in the rooted complex RC(M, ) is a set that contains no circuit minus the
basepoint of the flat it spans. When there is a linear order on the ground set such that
the base point of each flat is its earliest element, the construction specializes to the
broken circuit complex. A rooted complex of M may, however, be non-isomorphic to
every broken circuit complex BC(M,w). Rooted complexes are the hereditary closures
of certain neat base families as studied by Bjorner [B2].

It is possible to generalize much of the basic theory of broken circuit complexes
to rooted complexes. In particular, their f-vectors satisfy (1.1), which means that
factorization of rooted complexes induces factorization of the characteristic polynomial.
The converse (ii) = (i) of the Theorem above fails, however, in this generality. The
rooted complex RC(M, 1) is a cone over a subcomplex which has the homotopy type of
a wedge of B(M) copies of the (r — 2)-sphere.

The characteristic polynomial x u(t) of a matroid M is (up to an invertible sub-
stitution) the Hilbert series of a certain finite-dimensional anticommutative algebra
A(M), which was introduced by Orlik and Solomon [OS]. Factorizations of x u(t) are
sometimes related to tensor product factorizations of A(M), as shown by Terao [T3].
We discuss such factorizations of A(M) from the point of view of factorizations of
rooted complexes. The key to this connection is the fact that any rooted complex
RC(M, ) induces a basis in the algebra A(M). For the case of broken circuit complexes
this was previously shown by Gel’fand and Zelevinskii [GZ], Jambu and Terao [JT)],
and in an equivalent form by Bjorner [B2]. Our proof (specialized to the broken circuit
complex case) differs from the earlier ones and appears to be somewhat simpler.

We remark that the maximal generality for the type of arguments used is given by
the complexes on E whose restriction to every flat X is a cone of dimension r(X) — 1.
These form a class of complexes which is slightly more general than rooted complexes.

The structural results of this paper do not depend on finiteness of the ground set.
Thus the matroids and geometric lattices considered are of finite rank r, but do not
necessarily have finite ground set respectively set of atoms E. If F is infinite, the or-
derings w of E considered for the construction of broken circuit complexes are assumed
to be well-orderings (as in [B2]). Only the enumerative corollaries (on characteristic
polynomials, f-vectors etc.) depend on finiteness.

In conclusion, let us mention that whereas broken circuit complexes as usually
defined are specific to matroids, the definition of rooted complexes is applicable to any
finite atomic lattice. For instance, a well known construction of a minimal simplicial
subdivision of a convex polytope amounts to taking the rooted complex induced by a
certain rooting map on the face lattice of the polytope (see Remark 4.4).



2. Supersolvable Lattices and Complete Factorization

For the following, let M be a matroid of rank r on a (not neccessarily finite) ground
set E. With the usual canonical reduction we may assume that M is a combinatorial
geometry (that is, loop free and without multiple points). With this, M is completely
determined by its geometric lattice L, whose set of atoms we identify with E. The
closure operator of M will be denoted by o : A — 4, and L is the lattice of its flats
(closed sets), ordered by inclusion. For much of what follows we will discuss matroids
in their geometric lattice version, sometimes switching freely and translating without
special notice between various matroid axiomatizations. The reader is assumed to be
familiar with basic matroid theory, as developed in [CR], [We] or [Wh1-3]. In particu-
lar, we use basic properties of the Mdbius functions and characteristic polynomials of
geometric lattices and the Whitney-Rota formula (1.1). We refer to [B1] and [Br} for
detailed treatments of broken circuit complexes from slightly different angles.

The following notions of “factorization” of simplicial complexes will be used:

Definition 2.1:
Let A be a simplicial complex of dimension r — 1 on a finite ground set E. We
say that A factors if E has a partition E = X; U X; (X;,X; # 0) such that
A=Ay xA,, where A; = Alx, = {S € A: S C X;} is the restriction of A to X;
(i = 1,2), and the join of A; and A, is

A1*A2={51U52251€A1,SQGA2}.

A factors completely if E has a partition E = X; U...U X, info r nonempty sets,
such that A is a multiple join of the induced subcomplexes :

A=A xAgx...x A,
(as above), where the A; are discrete (0-dimensional), i. e.,

A;={0}u{{z}:z€X;} for1 <i<T.

The key point is that because of the Whitney-Rota formula (1.1), factorization
of A = BC(L,w) implies a factorization of the characteristic polynomial, and complete
factorization of A implies that the characteristic polynomial factors completely as

r

x(t) = T1 (¢ ~ &), (2.1)

=1

where e, is the number of points of A;.
The simplest type of factorization of broken circuit complexes is induced by dis-
tributive elements, corresponding to product factorizations of geometric lattices.

Definition 2.2: (see [Ai] or [CR])
Let L be a geometric lattice. A flat X, € L is distrsbutsve if it has a unique

complement X, € L. This is the case exactly if L = Ly x La, where E partitions
into E = X; U X3 so that X; is the set of atoms of L; (1 = 1,2).
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Lemma 2.3:
A set X, C E is a distributive flat if and only if for every linear ordering w on E,
the broken circuit complex A = BC(L,w) factors as

A= Alxl * A‘E—X,-

Proof. Exercise. Compare to Lemma 3.8. ' 0

Now we need some combinatorial facts about modular elements and supersolvable .
geometric lattices:

Definition 2.4: [St1,5t2]
Let L be a geometric lattice of rank r(L) = r. An element M € L is called modular
ifr(MAM') +r(MVM)=r(M)+r(M') forevery M' € L. L is supersolvable
if it has a maximal chain 0 = My < M} < ... < M, = 1 of modular elements,
(called an M-chasn of L).

An element M € L is modular if and only if its complements form an antichain
[St1]. This is the case exactly if all complements of M have the same rank r — r(M).

A basic result about the factorization of broken circuit complexes is the following
theorem of Brylawski and Oxley.

Theorem 2.5: [BO2, Theorem 2.6
Let A = BC(L,w) as above. Then A factors A = A; x &g on E = X, U X, such
that z; < z4 for all z, € X, 73 € X, if and only if X, is a modular flat of L.

Since atoms of geometric lattices are always modular, this yields the factorization
BC(L,w) = {20} * BC'(L,w), where zo = min, (E) and BC'(L,w) is the reduced broken
circuit complez of L. Brylawski and Oxley conjectured in [BO2] that in Theorem 2.5
the assumption about compatibility of linear order and partition can be dropped, that
is, that BC'(L,w) factors for some linear order w if and only if L has a modular flat
M with 1 < r(M) < r (in other words, there is a nontrivial factorization of a broken
circuit complex of L if and only if L has a nontrivial modular flat). In [BOZ2], this is
proved for r < 4.

Iterated application of Theorem 2.5 gives the following result which was also in-
dependently obtained by Bjorner [B1, Exercises] and by Garsia and Wachs [GW].

Corollary 2.6:
The broken circuit complex BC( L, w) factors completely for a partition E = X, U...
U X, and a compatible linear order w on E such that z; < z; for all z; € X;,
z; € X; and s < j, if and only if the sets M; = X; U...U X; are flats and form
an M-chain in L.

Via (2.1) this leads to Stanley’s factorization theorem for the characteristic poly-
nomial of supersolvable lattices.



Corollary 2.7: [St2] .
Let L be a finite supersolvable geometric lattice, and for some M-chain 0 = M, <
M <...<M,=1lete,=|M;—M;_,|,1<i<r. Then

x. () =[]t - e)-

In particular, the multiset {e,,...,e,} does not depend on the choice of an M-
chain for L.

We will show that the assumption of compatibility of linear order and partition in
Corollary 2.6 can be dropped. This means that the analogue of the Brylawski-Oxley
conjecture for complete factorization is true.

First recall a few definitions. A pure simplicial complex of dimension r — 1 (i. e.,
such that all the facets have size r) is completely balanced if the vertex set can be
partitioned into r classes such that every facet of the complex has exactly one vertex
in every class [St3]. Thus every completely factoring complex is completely balanced. A
graph is complete r-partite if its vertex set can be partitioned into r classes (“colored”)
such that the edges are exactly the sets of two vertices in different classes (“of different
color.”) An r-partite graph is any subgraph of a complete r-partite graph, that is, a
graph with partition such that the edges join some of the vertices in different blocks.
With this, a pure complex of dimension r — 1 is completely balanced if and only if its
1-skeleton is r-partite. Also, in graph theoretic terms, a graph is r-partite if and only
if its chromatic number is at most r.

Theorem 2.8:
Let L be a geometric lattice of rank r. The following are equivalent:
(1) L is supersolvable.
(2) For some linear order w on E, the broken circuit complex BC(L,w) factors
completely.
(2’) For some w, BC(L,w) is completely balanced.
(3) For some w, the l-skeleton

BC(L,w)!!! = {S € BC(T,w) : |§| < 2}

of the broken circuit complex is a complete r-partite graph.
(3’) For some w, BC(L,w)!! is r-partite.
(4) For some w, the minimal broken circuits (under inclusion) are all of size 2.
(5) There is a partition E = X, U...UX, such that for any two distinct z,y € X;
there is an element z € X; with j < i such that {z,z, y} is a circuit.

Proof.
(1) = (2) follows from Corollary 2.6.
(2) => (2), (2’) = (3"), (2) => (3}, (3) => (3’), and (2) => (4) are trivial.
[(3’) => (2’) follows from the fact that BC(L,w) is pure (r — 1)-dimensional.]
(3’) => (1): Let E = X; U...U X, such that there is no edge of BC(L,w)l!!
between z # y if = and y are in the same X;. For 1 <1 <r, let a; = min(X;).
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Assume that the X; are labeled such that a; < a3 < ... < a, with respect to w.
For0<i<r,let
M; = V(U X;).
Jss

In particular, this means M, = 0 and M, = 1. To see that the M; are modular
flats and r(M;) = 1, we verify a sequence of facts.

(i) For1<s<r, M; = M;_, Va;.
This is true because for a; < y, y € Xi, {ai,y} is a broken circuit, and thus
there is a z < g; such that {z,q;,y} is a circuit. But 2 € X; for some j <1
(since a; X 2 < a;), hence

y<zVa; < M;_;Va;.

(ii) r(M;) =1 for all 4.
From (i), we get r(M;) < r(M;_1) + 1. But r(Mp) =0 and r(M,) = r, hence
equality holds for all .
(i) M; =<, X; (that is, U,<; X; is a flat.)
For this, assume y < M; for some y € Xj;, j > . But then an argument such
as in (i) implies that a; < M;_, and thus M; = M;_,, contradicting (ii).
(iv) If |[SNn X;| =1 for all 5, then S C E is a basis of L.
If S satisfies the condition, then |S| = r and \/ § = 1 by (ii) and (iii).
(v) For 1 <1< r, M; is modular.
Let M* be a complement of M;. As is easy to see, the lexicographically
smallest basis B for M* cannot contain a broken circuit. Hence, |BNX;| <1
for all . Also, BN X; = 0 for all j < i, because M* A M; = 0. Take
A ={ay,...,a;} as a basis for M;, then ANB = 0 and AUB is independent by
(iv). Thus AUB is a basis for M*VM; = 1, and r(M*)+r(M;) = |AUB| = r.
(4) => (2): For this, we define a ~ b for a,b € E whenever {a,b} is a broken
circuit or a = b. With (4) and the fact that BC(L,w) is pure (r — 1)-dimensional,
it suffices now to show that ‘~’ is an equivalence relation on E. Reflexivity and
symmetry are trivial. To verify transitivity, we show that ‘~ |r’ is transitive for
all triples T' C E, by induction on the lexicographic order ‘<.’ on the set of all
triples. To start the induction, it is clear that ‘~ |’ is transitive on all triples that
contain min, (E). Now, let a ~ b, b ~ ¢, where a, b and ¢ are distinct. Choose
z,y € E minimal such that {z,a,b} and {y,b,c} are circuits. We can assume
that z < y: if £ = y, then z,a,b,c all lie on a line and {z,a,c} is a circuit. But
{z,a,y,c} is easily checked to be a circuit, which makes {a,y,c} into a broken
circuit. Now, y +¢ ¢ and y #£ b since y was chosen minimal, and since a ~ b and
y # b we get from {a,y,b} < {a,b,c} that a % y. Thus from (4) applied to
{a,y,c}, we get a ~ c.
(5) => (3’): For this choose w such that z < y whenever z € X;, y € X; and
1< 7.
(1) = (5): Let X; = {z € E:z < M;;z £ M;_,} for1 <3< rand M-
chain 0 = My < M; < ... < M, = 1. Then for z,y € X; we can choose
z=M;_, A(zVy). O
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We remark that if a particular linear ordering w of E satisfies one of (2), (2’), (3),
(3’) or (4), then the same w satisfies all the others.

Corollary 2.9: .
Whether a geometric lattice L is supersolvable can be decided from the rank
r(L) and the 3-truncation LBl = {X € L : r(X) < 2} U {i} alone. If L is
supersolvable, then it is determined by LI, that is, any supersolvable matroid
can be reconstructed from the incidences of its points and lines.

Proof.
The first part is clear from either of (3), (3’) or (5). The second statement follows
from the fact that the supersolvability of L allows the reconstruction of all bases
in L from knowledge of the 3-circuits. To see this, choose a linear ordering w of E
such that (3) is satisfied and then argue as in the last proof to identify the facets
of BC(L,w). Since the minimal broken circuits with respect to w have size 2, any
basis of L which contains a broken circuit can be shifted into a basis in BC(L,w)
by a sequence of exchanges determined by 3-circuits, and this way all bases of L
can be identified. O

Wilf [Wi, p.325] computes the characteristic polynomial for the graphs that admit
a broken circuit complex with disjoint minimal broken circuits. It is easy to see from his
description together with Theorem 2.8 that for these graphs xc(t) factors completely
over Z exactly if they are chordal and at most 3-chromatic, including the class of all
2-trees.

Also as an application of Theorem 2.8 we get a simple proof for Stanley’s charac-
terization of supersolvable graphs, which was given in [St2] without proof:

Corollary 2.10: [St2, Proposition 2.8]

Let G = (V, E) be a connected finite simple graph and L(G) the geometric lattice

of its graphic matroid. Then the following conditions are equivalent:

(1) L(G) is supersolvable, ,

(2) G is a triangulated graph (i. e., every circuit of length at least four has a
chord),

(3) There is a linear order vo,v1,...,vn of the vertices such that for every i,
1 < 3 < n, the neighbors of v; contained in the set {vo,...,vi—1} form a
clique.

Proof.

(1) => (2): By condition (4) of Theorem 2.8 there exists some order w of E such
that all minimal broken circuits are of size 2. Hence if C is any circuit of size at
least 4, it contains a broken circuit B — min,(B), where B is a 3-circuit. Now
min,,(B) clearly is a chord in C.

(3) = (1): For 1 <i<n,let X; = {(vj,v) € E:0<j <i}. Then the number
of non-empty classes X; equals the rank of L(G). Hence, the implication (5) =>
(1) of Theorem 2.8 applies.

(2) => (3): This follows by induction from the existence of a simplicial vertex (i. e.,
a vertex whose neighbors form a clique) in every connected triangulated graph,
which is a well known property (see [G, Theorem 4.1 and Lemma 4.2]). 0
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3. Rooted Complexes

In order to find further structural explanation for factorizations of the character-
istic polynomial and to throw new light on how the broken circuit construction works
we now start with the definition of a class of complexes associated with a geometric
lattice that is more general than the broken circuit complexes. Although these more
general complexes can also be defined by a notion of “broken circuits”, cf. Lemma 3.3,
we have found more convenient another approach which does not emphasize circuits.

Definition 3.1:
Let L be a geometric lattice, E its set of atoms (points), L5 = L — {0}.

(1) A rooting map for L is a function «# : L,y — E that assigns to every
nonempty flat X a point n(X) € X, such that n(X) € Y < X implies

(YY) = n(X).
For simplicity we extend every rooting map ¥ to a map w : 26 {0} — E
via '

m(A) = n(A).

(2) A subset A C E is called unbroken (with respect to the rooting map r) if
n(A) € A and broken otherwise. A is rooted if m(B) € B for all nonempty
subsets B C A (that is, if A does not contain a broken set). '

(3) The collection of rooted sets for L and  is called the rooted complez of L
with respect to m, and denoted by RC(L, 7).

The following result collects the basic facts.

Theorem 3.2:

(1) RC(L, x) is a simplicial complex (that is, every subset of a rooted set is rooted.)

(2) RC(L, 7) is a cone for r > 0, with apex po = n(E) (i. e, poU A is rooted for every
rooted set AC E.)

(3) RC(L, w) is a subcomplex of the matroid complex (i. e., rooted sets are indepen-
dent.)

(4) RC(L, ) is pure of dimension r — 1 (that is, every maximal rooted set has sige r.)

Proof.

(1) This is clear by definition.

(2) 1f B is rooted, but poU B is not, then there is a B’ C po U B such that w(B') ¢ B'.
But B is rooted, hence po € B', which implies w(B') = po, with the definition of
a rooting map.

(3) Let A be rooted and C C A a circuit. Then C contains p = 7(C), and hence
B = C — p fails to satisfy n(B) € B. _

(4) If B is a maximal rooted set, then po € B by (2). Now by (3), B—po is contained in
a hyperplane which can be chosen not to contain po. Since rooting maps restrict
to flats so that the rooted sets of the flat are exactly those rooted sets of the
whole matroid which are contained in the flat, we are done by induction. (The
cases r = 0 and r = 1 are trivial.) 0



For every rooting map ¥ on a geometric lattice L and for every flat X € L, the
restriction x5 »| defines a rooting map on the interval [0, X], and the corresponding
rooted complex is the restriction of the rooted complex of L to X,

RC([0, X], 7l(5,x]) = RC(L, 7)]x-

Thus all the observations of Theorem 3.2 about rooted complexes also apply to re-
strictions of rooted complexes to flats: they are again rooted complexes and thus pure
cones of dimension r(X) — 1. In particular this implies that every flat has a rooted
basis. (In fact every flat X has |u(0, X)| rooted bases, as we will see in Theorem 3.11.)

The precise relationship between the construction of rooted complexes and of
broken circuit complexes is described in the following lemma and proposition:

Lemma 3.3:

Let  : Ly — E be a rooting map. Define broken circuits as sets of the form
C — (C) for circuits C such that n(C) € C. Then

{ minimal broken sets } = { minimal broken circuits }.

Thus RC(L, r) is the complex of all subsets of E that do not contain a broken
circuit.

Proof.
Let B = C — n(C) be a broken circuit. Then n(B) = n(C) ¢ B, so B is a broken

set.
Conversely, let B be a minimal broken set, and let p = x(B). All proper subsets

of B are unbroken, hence rooted. Let A = B — b be a maximal proper subset of
B

If B were dependent, then B = A and n(A4) = p ¢ B. If AU p were dependent,
then AUp = A and since p€ AUp < B we get 7(4) = 1(AUp) =p & B. Since
A is rooted, we conclude that B and A U p are independent. On the other hand

B U p is clearly dependent, and hence a circuit. Since also 7(B U p) = p it follows
that B is a broken circuit.

Proposition 3.4:
Let w be a linear order on E, and for X € L_; define

7(X) = min, (X).
Then = is a rooting map, and the associated rooted complex is

RC(L, min,,) = BC(L, w).

Proof.

With the definition of “broken circuits” as in Lemma 3.3 it is easy to see that
{ broken circuits } C {C — min,(C): C is a circuit} C { broken sets }.

10
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Hence, the result follows by Lemma 3.3. (Note that the first inclusion is usually
strict, meaning that the concept of broken circuit used here is more restrictive
than the usual one.) 0

Examples in Section 4 will show that not every rooted complex arises in this way
from a linear order on E. However, there turns out to be a canonical linear order on
every rooted set. A rooted complex arises as a broken circuit complex exactly if these
linear orders are compatible (i. e., can be extended to a global linear order on E.)

Lemma 3.5:
Let m be a rooting map on L, and T C E.
(1) T is rooted if and only if there is a (unique) linear order t; <tz < ... <t
on T such that for every non-empty subset S of T, n(S) = min(S).
(2) If T is not rooted, then T contains a unique maximal broken subset TO; the
elements of T* = T — T° can be ordered as t; <tz < ... <t such that for
SCT,n(S)=ming(SNT)if SNT! #0.

Proof.
The required linear orders can be described inductively by t; = n(T — {t1,t2,...,
t;_1}). If this process stops, that is, if t; € T — {ti,tz,...,ti—1}, then T =
T — {t1,t3,...,ti—1} contains every broken subset of T and thus is the unique
maximal broken subset of T'. (Uniqueness also follows from the observation that
the union of any two broken subsets is broken.) For the converse of (1 ), simply
observe that m(S) = min(S) € S for all non-empty subsets S C T.

The considerable size and complexity of geometric lattices suggest to look for a
formulation of rooting maps in more manageable terms, e.g., just using the points and
lines of a combinatorial geometry. We will later see, however, that such a formulation
does not exist (cf. Example 4.3). Nevertheless, one has the following reformulation
that turns out to be useful in some instances.

Construction 3.6:
If r is a rooting map on L, then define a simple digraph Dy = (E, A) which has
an arc from z to y (z,y € E) iff n({z,y}) = y. Then D restricted to a flat X has
the property that there is one vertex mx in X such that for every y € X — {rx},
y — wx is an arc of D|x.
Conversely, every simple digraph D = (E, A) such that every restriction to a flat
has a “complete sink” (in the described sense) defines a unique rooting map.
Here a digraph D corresponds to the construction of a broken circuit complex
exactly if it is acyclic.

The following sequence of results studies factorization of rooted complexes. By
Theorem 3.2(2) there is always the trivial factorization RC(L, x) = {x(E)} *RC'(L, %),
where RC'(L, w) is the reduced rooted complez.

Proposition 3.7:
Let = be a rooting map on L such that A = RC(L,x) factors as A = A, x Az on
X, =JAa, Xa=UA=E-X,. IfX, isa flat, then it is modular.

11



Proof.
Let Y be any complement of X, in L, and let B, and B3 be bases of X; and Y,
respectively. We can assume B; € A; and By € A, which implies B; € A, since
Y NnX, =0. Now B, UB; € A, hence r(X;) +r(Y) = |B,| + |Ba| = |By U By|
< r(L). This implies that X; is modular. g

From Theorem 2.5 and Proposition 3.4 we know that for suitable rooting maps,
modular flats induce factorization of the rooted complex. The converse, as conjectured i
for the case of broken circuit complexes, is false for rooted complexes in general: as ‘
will be seen from examples in Section 4, factorization of rooted complexes may or may
not be induced by modular elements.

However, rooted complexes do always factor at distributive elements, that is,
whenever the geometric lattice is a product, all associated rooted complexes factor.

Lemma 3.8:

If L is an irreducible geometric lattice and r a rooting map on L, then the reduced
rooted complex RC'(L, ) is not a cone.

Proof.

Assume that RC'(L, 7) is a cone over z,. Then RC(L, 7) is a cone both over z; and
zo = n(E). Now if L is connected, then there is a circuit C C E containing both
7o and z,. Then C — {zo,z,} is independent of rank r(C) — 1. Let C’ be a rooted
basis of C' — {zo, z,}. But now C'U{zy, z,} is rooted, hence independent, and has
the same closure as C, which is dependent, but of the same size: contradiction.

(For finite L this lemma alternatively will follow from Theorem 3.12, since the
reduced Euler characteristic of RC’(L, ) is (L), which vanishes only if the matroid
M is not connected, that is, if L is reducible.) a

Theorem 3.9:
(1) If L = L, x Ly and = is a rooting map on L, then

RC(L, ) = RC(L,, ) xRC(Ly, 7).

(2) For every L and = the singleton factors of RC(L, ) (that is, the cone points of
RC(L, 7)) are exactly the roots of the irreducilie factors of L.

Proof.

(1) Ay =RC(L,, ) and A, = RC(L,, 7) are pure subcomplexes of A = RC(L, 7), since
X, =JA, and X; = |J A, are flats. We have to show that n(Fy UF;) € FyUF;
for Fy € A, and F; € A;. Because of Fy UF; = F; UF, we can assume (without
loss of generality) that n(F, UF,) € F,. But this implies n(F,) = x(F, UF3), and
thus 7(F, U F3) € Fy} C F, U F; since F; is rooted.

(2) The factors A; and A, of part (1) are cones over m(X;) and m(X;), respectively.
Thus for every irreducible factor of L we get a cone point of A. The converse
follows from Lemma 3.8. g

The following can be said about generalizations of Theorem 2.8 to rooted com-
plexes.

12




Remark 3.10:
Let L be a geometric lattice of rank r, and 7 a rooting map on L. Consider the
following statements: ,
(2) RC(L, r) factors completely,
(2’) RC(L, ) is completely balanced,
(3) RC(L, )[! is complete r-partite,
(3") RC(L, x)!!] is r-partite.
¥ (4) The minimal nonfaces of RC(L, x) (minimal broken circuits) all have size 2.
f ’ Then (2) = (2°) = (3’), (2) => (3) = (3’) and (2) = (4) are again trivial. -
! (3’) =% (2’) follows from the fact that RC(L, ) is pure of dimension r — 1, by
Theorem 3.2(4).
However, we do not know whether the other converse implications hold.
As for the conditions (1) and (5) of Theorem 2.8, we do not know valid analogues
for the case of rooted complexes. Example 4.3 shows some of the obstacles to
1 finding analogues to Theorem 2.8 and Corollary 2.9 for rooted complexes.

! Now let f = (fo,..., fr) be the f-vector of a rooted complex RC(L, 7), where f; is
the number of faces of RC(L, 7) of cardinality ¢ (fo = 1). The maximal faces (all of size

i r, by Theorem 3.2(4)) are called facets of RC(L,x). The Whitney-Rota formula (1.1)
h has the following generalization.
d Theorem 3.11:
o The f-vector of RC(L, ) is given by
e 3 r—s r
d 2 fitt ™ = (=1)"xc(-1)
1=0
g
Proof.
For every flat X € L, let f(X) be the number of bases of X that are elements of
RC(L, ). Since
(-1)x(-t) = X (17X p(d, X)tr—r )
X€L

of

by definition, it suffices to show that f(X) = (—1)"*) u(0, X).

Now we note that Y f(X) = fi, and hence

r(X)=s
ce
FZ r . _
at > (=) f(X) = 1 (-1)'fi = —X(RE(L, 7))
XeL t=0

1d

is the reduced Euler characteristic of the rooted complex (up to sign.) Since
ly. rooting maps restrict correctly to intervals, we get that for Y < X, f(Y) is also
se the number of bases of Y that belong to RC([0; X]; 7). Thus we get more generally
0 that
m- YZ)-—I(Y) = f.‘(RC([O, X]a"))s

r)(WS}?'
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and hence for X > 0,

r{X) . . R
> (MY = ,(Z(—l)'fs(RC({O,X]nr)) = —x(R¢((0, X}, 7)) = 0,
Y€[0,X] =0 .

since for X € L ;, RC([0, X],7) is a cone by Theorem 3.2(2), and hence has
vanishing reduced Euler characteristic. Thus (0, X) and (—1)"(X) f(X) satisfy
the same recursion on L. With this, f(0) = 1 proves the claim.

Observe that the f-vector of RC(L, ) does not depend on the rooting map =
chosen, but can be computed from L alone, although different rooting maps can give
rise to non-isomorphic rooted complexes. By Theorem 3.2(2), RC(L, 7) is a cone and
hence topologically trivial. However, the reduced rooted complez RC'(L, 7) obtained by
deleting the apex w(E) from RC(L,7) has interesting topological structure. Clearly,
RC'(L, 7) is a pure (r — 2)-dimensional complex on the set of atoms E — n(E).

In the following theorem, B(L) denotes Crapo’s beta-invariant, defined, e.g., in
[We] and [Wh2].

Theorem 3.12:
RC'(L, 7) is homotopy equivalent to a wedge of (r — 2)-dimensional spheres.
If L is finite, the number of the spheres in the wedge equals f(L).

Proof.

We refer to [B3] for definitions and a survey of topological methods in the analysis
of posets as used in the following proof.

Let L be finite, and L = L 4 — [r(1),1]. By a result of Wachs and Walker [WW]
the order complex A(I) is shellable, hence is homotopy equivalent to a wedge of
(r — 2)-spheres, In the finite case, the number of these spheres is equal to the
absolute value of the reduced Euler characteristic of A(L), hence to

> w(0,2)],

w(1)L=

which by a result of Zaslavsky [Zal, p.76; Wh2] is equal to the beta-invariant
B(L). _ “

Now one checks that the mapping * : L — E — {n(1)} induces a simplicial
mapping A(L) — RC'(L, ), hence an order preserving mapping 7 : P — Q of
their face posets P = P(A(L)), @ = P(RC'). For F € Q, that is, F a face of the
reduced rooted complex, look at the fiber 7= (Q<r). This fiber is contractible -
in fact it is meet-contractible via VF. Explicitly, the fiber is the order complex of
a subposet of I obtained as a certain ideal containing VF inside the union of the
principal filters above a, for all a € F. Hence, by the Fiber Theorem of Quillen
[Qu] (see also [Wa]), = induces a homotopy equivalence A(L) ~ RC'(L, 7). g

Theorem 3.12 is probably not best possible. We see no reason to believe that
RC(L, n) does not share all the nice topological properties that are known for the
special case of broken circuit complexes. Specifically, we expect rooted complexes
to be shellable, from which Theorem 3.12 would follow in a stronger form (also for
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all links, which would show that rooted complexes are homotopy Cohen-Macaulay).
However, the known proofs for shellability of broken circuit complexes {B1] [PB] do
not generalize straightforwardly.

In [B2], Bjorner gave an inductive definition of neat base families for matroids as
follows: for a matroid of rank 0 or 1 a neat base family just contains the one basis of
the matroid. For a matroid of higher rank, one chooses a distinguished point p € E,
and a neat base family for every hyperplane not containing p. The neat base family is
then the set of all bases of the form p U B, where B belongs to one of the base families
chosen for the hyperplanes. From the inductive description of the maximal faces of a-
rooted set complex in the proof of Theorem 3.2(4) we get:

Corollary 3.13:
The facets of a rooted complex form a neat base family.

Since in the same way the maximal faces of the restriction of a rooted complex to

each flat X gives a neat base family in X, Theorem 3.11 also follows from the results
of [B2].
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4. Some Examples

It is natural to ask to what extent factorization of a rooted complex can be used
to “explain” factorizations of the characteristic polynomial for more general matroids
than the supersolvable ones. The most general class of geometric lattices for which
x(t) is known to factor over Z is the class of intersection lattices of “free” arrangements
of hyperplanes as defined by Terao [T1,T2] (see also [Zie, Chapter 3]). This includes
the case of representable supersolvable matroids, and that of the intersection latfices
of Coxeter arrangements. The following examples will show that

(1) RC(L, ) can factor completely for non-supersolvable matroids.

(2) x(t) may factor over Z without RC(L, 7) factoring for any rooting map 7.

(3) Not every intersection lattice of a (free) Coxeter arrangement admits a rooting
map such that RC(L, ) factors completely.

(4) There are non-representable matroids for which RC(L, ) factors (but the theory
of free representable matroids (i.e., free arrangements) does not apply).

Example 4.1:

(1) The non-Fano matroid.
The non-Fano plane F~ is the matroid in Figure 4.1. This matroid is not super-
solvable, but its characteristic polynomial factors as

x(t) = (t - 1)t -3)(t-3).

This factorization, which was discussed in [BO2), is not “accidental”. For example,
the corresponding hyperplane arrangement is free in the sense of Terao [T1], and
hence the factorization has to hold (for rather an algebraic than combinatorial
reason).

Furthermore, it turns out that for a suitable rooting map, the rooted complex
factors completely: if « is the rooting map defined by

n(E) =1,
(245) = 5,
(267) = 2,
7(346) = 6,
n(367) = 3, and

7(47) =4 or 7,

then RC(F~, ) factors completely as the join of the zero-dimensional (discrete)
complexes on {1}, {2, 3,4} and {5,6,7}. Here it is easy to see that this m does
not come from any linear order: the second to fifth condition on = would in turn
imply 6 < 2,2 < 6,6 <3 and 3 <5. In fact, if RC(F~, m) was a broken circuit
complex for some w, then L had to be supersolvable by Theorem 2.8.
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(2) Stanley’s Example [{St2].
Let St; be the matroid of Figure 4.2. Its characteristic polynomial again factors
as x(t) = (t — 1)(¢t — 3)(¢t — 3), but this factorization seems to be really accidental
(i.e., not supported by any available theory.) In particular, no coordinatization of
Sty is free in the sense of Terao [Zie, Example 3.10.2].
To see that RC(Sty, m) does not factor completely for any 7, we can assume without
loss of generality that m(128456) = 1. This implies that 28, 24, 25, 34, 85 and
45 are not rooted, and thus for every w, the complement of the 1-skeleton of
RC(St7, ) is isomorphic to the union of K4 with three isolated vertices.

(3) Matroid of the regular icosahedron.
The Coxeter arrangement Hj is the set of symmetry planes of a regular icosahe-
dron. This arrangement is free in the sense of Terao [T1], with

x(t) = (t-1)(t - 8)(t - 9).

It is, however, not hard to check that the corresponding matroid (whose geometric
lattice is the set of intersections of the hyperplanes, ordered by reverse inclusion)
does not have a rooting map = such that RC(Hj, 7) factors completely. The same
applies to the Coxeter arrangements of type Dy, for n > 4, as can easily be checked
using the combinatorial desciption of their matroids in {Za2]. Thus we still lack a
combinatorial explanation for the fact that x(t) factors completely over Z when
L is the intersection lattice of a Coxeter arrangement.
(4) A non-representable matroid.

Let L be the geometry of rank 4, on 11 points, depicted in Figure 4.3. It is not
representable since it contains both the non-Fano matroid and the Fano matroid
as subgeometries. The non-Fano matroid in L in fact forms a modular coatom
Ho. Hence, if we extend the rooting map = on [0, Hy] given by part (1) above
(cf. Figure 4.1) to L via

(X) = {W(X/\Ho) for X A Ho # 0,

X otherwise,

then RC(L, m*) factors completely, with
X (t) = X, (8)(¢ — 4) = (t = 1)(¢ — 3)?(t — 4).

The preceding examples raise the problem to characterize combinatorially those
geometric lattices which admit a rooting map such that the associated rooted complex
factors completely.

We next observe that the converse of Corollary 3.13 is false: not every neat base
family is the set of facets of a rooted complex. In fact, Example 4.2 will show that
the Whitney-Rota formula of Theorem 3.11 does not in general hold for the hereditary
closures of neat base families. Only an inequality stays valid for this case.

Example 4.2:
Consider the combinatorial geometry of Figure 4.4 of rank 4. An affine coordina-
tization in R® is given by 4 = (0,0,0), 6 = (0,1,0), 8 = (0,—1,0), 1 = (1,0,0),

18
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2 = (0,0,1) and 3 = (1,0, 1). We will now construct a neat base family in the
; sense of [B2] for this geometry that does not come from a rooting map and in fact
i does not satisfy the equation of Theorem 3.11 for its hereditary closure.

! Let 1 be the distinguished point for a neat base family B. The planes not through
1 are 2456, 3456, 235 and 236. Let 2 be the distinguished point in 2466 and
4 then 5 the one in 458, so that Bagse = {245,266}. Let 3 be the distinguished
t point in 3456 and then @ the one in 456, so that Bgese = {346,3566}. Then
‘ already 45, 46 and 56 belong to the hereditary closure of the neat base family.
So the line £ = 456 has three “representatives”, making f (£) = 3 in the notation
of the proof of Theorem 3.11, whereas p.(ﬁ, £) = 2. This makes f; larger than the
Whitney number wz, (i. e., the coefficient of t*=2 in x(t)). In general, the f-vector
of the complex generated by a neat base family is componentwise larger than or
equal to the vector of Whitney numbers of the second kind.

We will now describe a geometry L of rank 4 such that the 3-truncation L%l has
a rooting map «' for which RC(LI3l, #') has complete 4-partite 1-skeleton, but #' does
not extend to a rooting map on L (as it would trivially if it was of the form «’ = min,,)
and RC(L, ) does not factor completely for any rooting map .

This explains why it is not true that whenever there is a #/ on L[3l such that
RC(LI3!, 7)1l is r-partite, then there is a roooting map 7 on L such that RC(L, )
factors completely. (Compare this to Remark 3.10.) In particular, we do not know
whether some analogue of Corollary 2.9 holds for rooted complexes.

Example 4.3: (cf. [B2, p. 117])
Let L be the geometric lattice of the geometry given by Figure 4.5, that is, the
sum of a point with the geometry of six points on the vertices and edges of a
triangle. Let Ho be the coatom (plane) determined by this triangle.
Then a rooting map #' on LIl such that

o'(E)=1
'(234) = 2
7'(456) = 4
'(672) = 6

is easily constructed. Since the only non-rooted 2-sets are 34, 56 and 27, the
corresponding rooted complex has a 1-skeleton isomorphic to Kj,322, that is,
complete 4-partite. This RC(LI3], #’) cannot be a broken circuit complex of LBl
this would require 2 <4 <8 < 2.

Clearly, n' cannot be extended to a rooting map = of L: there is no consistent
choice for n(Hp). Also, RC(L,7) cannot factor completely for any = since

X, (8) = (t—1)3(t? -5t +7)

does not factor completely over Z.
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Remark 4.4:

The definition of “rooting map” and “rooted complex” in Section 3 generalizes
straightforwardly to other classes of atomic lattices. For example, let L be the
face lattice of a convex polytope P. Order the vertices of P arbitrarily and for
every non-empty face F' of P define (F) to be the minimal vertex of F. Then «
is a rooting map for L. In this case the rooted complex RC(L, r) gives a simplicial
subdivision of P with no new vertices.

In general the face numbers of rooted complexes RC(L, ) are dependent on the
particular rooting map w. For example, if P is a simplicial polytope with face
lattice L and rooting map m as before, then RC(L, ) is a cone with apex n(P),.
hence

fi(RS(L,m)) = fi(P) + fo(P) — fo(star(x(P))),

which depends on the choice of the rooting map .
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5. The Orlik-Solomon Algebra

With each finite geometric lattice L is associated a certain anticommutative al-
gebra A(L) over 7, as defined by Orlik and Solomon [OS]. For the case when L is
the intersection lattice of a finite set of hyperplanes in C® it was shown in [OS] (with
complex coefficients; see also [JT, Theorem (4.5)]) that A(L) is isomorphic to the sin-
gular cohomology algebra of the complement of the union of these hyperplanes. This
algebra has been studied in several papers by Orlik, Solomon and Terao [OS], [0ST),
[JT], [T3]. 3

It was shown by Gel’fand and Zelevinskii [GZ, Theorem II.1} and by Jambu and
Terao [JT] that any broken circuit complex induces a basis in A(L). Also, as remarked
by Gel’fand and Zelevinskii, this follows from Theorem 5.4 of [B2] together with Section
3 of {OS].

In this section we want to show that more generally every rooted complex of L
induces a basis of A(L). Also, the effect of factorizations of RC(L,x) on A(L) will
be discussed. Our results here generalize work by Terao [T3]. We start with a quick
review of some definitions and notation.

Let A be the free abelian group over a given ground set E (i.e., A ~ Z'E) in the
notation of [Bou); E can canonically be identified with a basis of A), and let AA be
the ezterior algebra over A.

Thus A4 = ®p20 ApA is a free and graded abelian group endowed with an anti-
commutative multiplication (so, if u € Ap4 and v € AgA then uAv=(-1)Pv A u.)

If E is linearly ordered, we get a basis of AA of the form {es : § C E finite}
by putting es = €;, A ... Ae;,, where i,...,1, are the elements of S arranged in
increasing order, denoted by S = {i},43,...,3p}<. In the same way, A, A is free with
basis {es : S C E finite, |S| = p}.

In particular, if E is finite with |E| = n, then AA is free of rank 2", and Ap4 is
free of rank (:)

See texts on multilinear algebra, e. g. Bourbaki [Bou, chapitre 3], for further
discussion.

Define a mapping

d:ApA — Ap 1A

by linear extension of

d(es) = i(—l)"_les-{i,},

s=1

for § = {i;,%2,...,4p}<, and O(eg) = 0. (The mapping 8 : A4 — AA is actually
left interior multiplication with the element d of the dual exterior algebra defined by
d(e;) = 1 for all 1 € E, see [Bou].)

Now let L be a geometric lattice and E the set of its atoms. Identify E with a
basis of A = Z(F) as before. The Orlik-Solomon algebra A(L) is defined by

A(L) = AA/I*S

where I is the ideal of AA generated by all elements 8(ec) where C is a circuit in L.
For subsets § C E we denote by €5 the class of es in A(L).
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Since I is a homogeneous ideal the algebra A(L) inherits its grading from AA:

A(L) = @ Ap(L),
p20
where A,(L) = ApA/(I N A, A).
For an even finer grading, we write
AA= @ AxA, where AxA= )Y Zes=spang{es:VS= X}.
XeL vs=X
This defines a grading of AA because es € AxA and er € Ay A imply es Aer €

Zesur € Axvy A. Now the ideal I is homogeneous for this grading, since for its gener-
ators ec (C a circuit) we have (ec) € Ayc A. Thus we get a direct sum decomposition

A(L) = @ Ax,

XeL

with Ax = Ax A/(I N Ax A). Actually we have

AHL)= D 4x,

X€EL
'(X%=p
and in particular A,(L) = 0 for p > r(L), due to the following lemma (cf. [0S, p.173]).

Lemma 5.1
A subset T C E is dependent if and only if e = 0.

Proof.
Suppose that T is dependent. Let C be a circuit and ¢; a point such that
e, €CCT. Then
er = (e A 3(60)) ANer_c € 1.

For the converse, which will not be needed in subsequent proofs, let w be an
ordering of E in which a given independent set T' comes first (i. e, z € T and
y € E— T implies £ < y.) Then T € BC(L,w). Now, by Theorem 5.2 the set
{g5 : § € BC(L,w)} is a basis of A(L), hence in particular er # 0. 0

The operator 3 satisfies 32v = 0 and d(uAv) = duAv+(—1)PuAdv for u € ApA
and v € AA, (which is easy to verify on basis elements.) This implies that d preserves
I, and thus induces a map

3 : Ap(L) — Ap—1(L)

that is given by 3(g5) = des. Clearly, 3 satisfies the two fomulas for 8 as well.

We are now going to prove that any rooted complex RC(L, 7) induces a basis of
the Orlik-Solomon algebra A(L). The algorithmic nature of our proof is very similar iz
spirit to the concept of “algebra with straightening law” or “Hodge algebra” developed
for the commutative case by Baclawski and Garsia [Ba], [BG] and by De Concini,
Eisenbud and Procesi [DEP], [DP], [E]. This suggests that one might formalize a notion
of “anticommutative algebras with straightening law”, of which the Orlik-Solomon
algebras and also the “face algebras” of Kalai [K], [BK] are examples.
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Theorem 5.2: :
Let w be a rooting map on a geometric lattice L. Then {&r : T € RC(L,x)} is a
basis of A(L).

Proof.

(1) We first verify that {ex : T € RC(L, 7)} is independent in A(L). Let 3 ApeF =0
be a vanishing linear combination in A(L), where by induction on r(L) and using
the direct sum decomposition A(L) = @y, Ax we can assume that the sum is
over bases of the rooted complex RC(L, 7). Every such basis contains z, = n(E),.
so that we can rewrite the linear combination (possibly changing signs of some of

T €

rer the Ap) as
;tion ' €z, AN AFER} =0,
where every F' = F — {z,} is a basis of a hyperplane (coatom) of L that does not
contain zg.
Applying 3, we now obtain
{EArer} — & AM{Arder7} = 0.
Since the decomposition A,_1(L) = @ Apg is direct, this implies
HEL, .,
73]). SArEE = 0
(because ez, A {}_ ApOeF} € @D..cner,_, An), and thus
Apepr =0
hat VFZ:=H rer
for every hyperplane H not containing zo. By induction on the rank we conclude
from this that Ap = 0 for all F.
an (2) Now we will show that there is a function
and
set p : {independent subsets of E} — {0,1,...,r},
0
4 such that p(T) = 0 if and only if T € RC(L, =), and every element &7 # 0 with
3es p(T) > 0 can be written as a linear combination of the form
er= ), Asés
p(5)<p(T)
(“straightening relation”). Iterated application of this type of expansion shows
‘ _Of (after at most r steps) that every e is a linear combination of {g5 : S € RC(Z, 7)}.
i For an independent set T C E, let p(T) be the size of the maximal broken subset
’e_d T° of T if T is not rooted (cf. Lemma 3.5(2)), and p(T) = 0 otherwise. Assume
ni, that T' is not rooted, and let t* = n(T°). Clearly t* ¢ T, since T is independent.
on From this and the proof of Lemma 3.5 one sees that
on
P(TUt —t) = p(TOUt* —t) < p(T®) = |T| = p(T),
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for any t € C — t*, where C is the unique circuit in T° U ¢*.
Multiplying the relation dec = 0 by eroye—c We get a relation of the form

L erouee—t»
teC—t*

€To

and thus a straightening relation

er = Z * ETuee—t)

as claimed. O

Theorem 5.2 does not require L to be finite. We note, however, that in this case of
finite L Theorems 3.11 and 5.2 together imply the following basic result due to Orlik
and Solomon.

Corollary 5.3: [OS, Theorem 2.6
If L is finite, then the Poincaré polynomial of A(L) is (—t)"(®)x(—1).

Using Theorem 5.2, we can easily show how every factorization of a rooted complex
induces a factorization of the associated Orlik-Solomon algebra as a tensor product of
graded subspaces.

Theorem b.4:
Let m be a rooting map on a geometric lattice L such that the rooted complex
A = RC(L,w) has a join decomposition A = A, *x A;. Let A, and A3 be the
subgroups of A(L) generated by {ef : F € A} and {&g : G € A3}, respectively.
Then the Z-linear map

k: A @ Ay — A(L),
defined by multiplication in A(L), is an isomorphism (of graded abelian groups).

Proof.
Every member of the rooted complex A is of the form F UG, where F € A and
Ge Ag, and

€FuG = €F N& = K(EF @ EG)-
But {er: F € A} and {€g : G € A3} are linearly independent by Theorem 5.2,
hence are bases of 4; and Aj,, respectively.

So, by Theorem 5.2, & maps a basis of A; ® A3 bijectively to a basis of A(L) and
thus is an isomorphism..

Of course, the isomorphism x implies a factorization P(4,t) = P(4;,t) - P(A2,t)
of the Poincaré polynomial of 4, corresponding (via Corollary 5.3) to the factorization
of xr(t) induced by the factorization of RC(L, 7).

From Theorem 5.4 we deduce the following factorization result for A(L) in the
case of a modular element, due to Terao [T3, Theorem (3.8)].
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Corollary 5.5:
If M is a modular flat in L, then the Z-linear map

A0, M)e{ @ Ax}— A(L),

XAM=0

defined by multiplication in A(L), is an isomorphism. Conversely, if k is an iso-
morphism for some flat M € L, then M is modular.

Proof.
For this we choose a well-ordering w such that BC(L,w) factors according to The-
orem 2.5, and then apply Theorem 5.4. For the converse, observe that if M is not
modular, then M has a complement M’ such that r(M) + r(M') > r(L). This
means that « kills 4y ® Ansr. O
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6. Further Generalization

As was remarked after Theorem 3.2, the rooted complexes A = RC(L, x) have the
property that

A|x is a cone of dimension r(X) — 1 for every X € L_,. (6.1)

For every complex with this property, we get a covering of L_; by ideals in principal
filters above atoms of L (i. e., subsets F of L such that all flats X in F contain a fixed
atom z and Y < X implies Y € F for X € F), by defining

M(z) = {X € Ly, : Alx is a cone with apex z}.

Here observe that rooting maps correspond to the special case of a partstion of L,
into ideals in principal filters above atoms, via Il(z) = {X € L, : 7(X) = z}.

We will show that most properties proved in the last sections for rooted complexes
generalize to complexes satisfying (6.1). This property (6.1) characterizes rooted com-
plexes for matroids of rank r < 3 (this is easy to verify), but not for higher rank, as
the following example shows.

Example 6.1:
Let E = {1,2,...,7} and let M be the matroid of rank 4 on E whose circuits are
1234, 1256 and all the sets of size 5 not containing any of these two. Let A C 2%
be the simplicial complex whose minimal nonfaces are 134, 256 and all the 4-
subsets of {1,...,8} that do not contain 134 or 266. Then A satisfies (6.1), but
is not generated by a rooting map: Theorem 3.2(2) would require 7(1234) = 2
and m(1258) = 1, which does not allow a consistent choice for 7(12).

In the following sequence of claims we sketch some of the properties that hold for
an arbitrary simplicial complex A on the vertex set E which satisfies (6.1).

Claim 6.2:
A is a subcomplex of the independence complex.

Proof.
Let C € A be a circuit, then A|z has dimension at least |[C| -1 = r(C). 0

Claim 6.3:
For every flat X, A|x is pure.

Proof.
Suppose not, then by induction we can assume that A has a maximal face F of size
|F| < r. Now if A is a cone over zg, then F — {z,} is contained in a hyperplane H
of L that does not contain zo. But A|y is pure by induction, hence F—{zo} C F",
with F' € A|g, and F' U {zo} € A properly contains F.
Claim 6.4:
If L is finite, then the f-vector of A is given by the Whitney-Rota formula (1.1).
Proof.
See the proof of Theorem 3.11. O
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Lemma 6.5:
{i) Let A be a complex satisfying (6.1). Define A-broken sets as those sets B C E

that do not contain a cone point of Al
Then A is the complex of all subsets of E that do not contain a A-broken set.
The union of any two A-broken sets is A-broken, such that every B ¢ A contains
a unique maximal A-broken subset.

(i) If A = RC(L, ) is a rooted complex, then every A-broken set is broken (but not
conversely). In this case

{ minimal broken sets } = { minimal A-broken sets },

such that RC(L, m) is the complex of all subsets of E that do not contain a A-broken
set.

Proof.

(i) A minimal non-face B of A cannot contain a cone point b of Al|g, because this
would mean that B — b is a non-face, too.

Conversely, every B € A is a facet of A|g, and thus contains a cone point of this
complex.

If B, and B, are both A-broken and b € B;, say, is a cone point of Alm, then
b is also a cone point of AlE;': contradiction.

(ii) The first statement is clear. For the second one, let B be a minimal broken set
that is not A-broken. Then B contains a cone point b of A|z. But B-be A
because B is a minimal non-face of A, and thus B € A, because b is a cone point:
contradiction. 0

Claim 6.6:
{5 :S € A} is a basis of A(L).

Proof.
Analogous to the proof of Theorem 5.2. For part (2), we consider A-broken sets
instead of broken sets, define p(T) to be the size of the maximal A-broken subset
of T, let t* be any cone point of Alzz, and use Lemma 6.5(i) instead of Lemma

3.5(2). a

Claim 6.7:
If L =Ly x Ly, then A = Alx, * Alx,.

Proof.
Analogous to the proof of Theorem 3.9(1), using Lemma 6.5(i) and considering
an arbitrary cone point b of Al instead of m(Fy U F,). 0

Claim 6.8:
(i) Let zo be a cone point of A, and let & = zo x A’. A' is a cone iff L is reducible.
(ii) If L is finite, then A' has reduced Euler characteristic £8(L).

Proof.
(i) If L is reducible, then A’ is a cone by Claim 6.7. If L is irreducible, then A’ is

not a cone by the argument of Lemma 3.8.
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(ii) For each flat X € L, let f(X) be the number of bases of X that belong to A. In the
proof of Claim 6.4 we saw that f(X) = (=1)"*)p(0, X). The result now follows
from Zaslavsky’s formula for S(L) quoted in the proof of Theorem 3.12. g

We do not know whether A’ necessarily has to be homotopy equivalent to a wedge
of spheres, as in Theorem 3.12.
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