Combinatorial Stratification
of Complex Arrangements

ANDERS BIORNER & GUNTER M. ZIEGLER

Department of Mathematics Institut fiir Mathematik
Royal Institute of Technology Universitdt Augsburg
S-10044 Stockholm D-8900 Augsburg
Sweden Germany

Version of March 27, 1991

Abstract.

We present a method for discretizing complex hyperplane arrangements by encoding
their topology into a finite partially ordered set of “sign vectors”. This is used in the
following ways:

(1) A general method is given for constructing regular cell complexes having the
homotopy type of the complement of the arrangement.

(2) For the case of complexified arrangements this specializes to the construction of
Salvetti {S]. We study the combinatorial structure of complexified arrangements and the
Salvetti complex in some detail.

(3) This general method simultaneously produces cell decompositions of the singu-
larity link.

(4) The homology of the link and the cohomology of the complement is computed in
terms of explicit bases, which are matched by Alexander duality. This gives a new, more
elementary and more generally valid proof for the Brieskorn-Orlik-Solomon theorem and
some related résults.

(5) Our setup leads to a more general notion of “2-pseudoarrangements”, which can
be thought of as topologically deformed complex arrangements (retaining only the essential
topological and combinatorial structure). We show that all of the above remains true in
this generality, except for the sign patterns of the Orlik-Solomon relations.
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1. Introduction.

Every real hyperplane arrangement 4 = {Hj,..., Hn}in IR¢ with \_, H, = {0} induces
a regular cell decomposition of the unit sphere S4=1. The choice of a defining equation £,
for every hyperplane H, ¢ A leads to a representation of the face poset of this cell complex
braset L C {+.—,0}" of sign vectors, for which the partial ordering of cells by inclusion
1s encoded into a very simple combinatorial relation.

In this paper, we present an analogous combinatorial description for complex arrange-
ments. For this we associate a complez sign s(z) with every complex number z, as
follows:

¢ ify>0,
ify<oO,
sz +iy) =4 + fy=0andz >0,
~ ify=0andz <0,
0 y=z=0.

.

Now let B = {H;,...,H,} be an arrangement of hyperplanes in €9, and fix linear forms
Lo with H, = ker(£,). The position of any point z in space with respect to the hyperplanes
in B are encoded in the complex sign vector

s0(2) = (sD(G(2)), ... sV (ta(2))) € {3, 4, +, —. 0}"
] -y
The points in C€? that have the same sign vector form a relative-open convex cone. Fur-
thermore, the intersections of these cones with the unit sphere S%¢-1 in C? form a regular
cell decomposition of $2¢~1, whose face poset is given by the set £(I) = s{1){€?) of all

sign vectors, ordered componentwise according to the paradigm:
: J
| >
0
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Note that this diagram descibes the (augmented) face poset of the decomposition of S! C €
incuced by the sign function s(*). See Figure 2.3 for a larger example.

The poset K() naturally splits into two parts. The first one, KZEmk, consisting of all
sign vectors that have a 0-component, is the (augmented) face poset a regular CW decom-
position of the singularity link V,nNS524-1, encoding the local structure near the origin of the
sinzular complex variety V, = |JI_, H,. The complementary poset ICE},%P = K(l)\Kil(ilrzk
vields a regular CW complex having the homotopy type of the connected complex manifold
C, = CHV,.

In the spec1al case of a complexified arrangement B = AT (i.e., when B is given by
real forms) the Kicomp cell complex coincides with the one earlier described by Salvetti
S]. Salvetti’s work implies that if two real arrangements A; and A, have isomorphic face
posets, then C g and C ¢ are homotopy equivalent. It follows from our analysis that C &~
anc C s are then actua.lh homeomorphic. The same is true for Ve and VAc

We use the combinatorial description of these cell complexes to determme the homo-
togy of the link V,; N $29-1 via a simple Mayer-Vietoris argument and induction on n.
This leads via Alexander duality to a new and quite elementary proof of the description of
the structure of the cohomology algebra H*(C,;Z) given by Brieskorn [Br] and Orlik &
Sclomon [OS] together with the combinatorial basis for it provided (via [0S]) by Bjsrner
Bl and Jambu & Leborgne [JL]. We describe explicit bases for the homology of the
Lnk and for the cohomology algebra of the complement, which are exactly matched by
Alexander duality.

Our analysis of arrangements, its method to describe links and complements, and the
computations of homology and cohomology are elementary and valid in greater general-
ity than for complex arrangements. We outline a framework of 2-pseudoarrangements that
provides sufficient generality to cover also some cases where the tools of algebraic geometry
[Br] and of differential topology [F1] [GM] are not available. These objects are essentially
the topologically deformed counterparts of the even codimension subspace arrangements
considered by Goresky & MacPherson [GM]. Everything that is done for complex arrange-
ments in this paper goes through for 2-pseudoarrangements, including cell complexes and
(co)homology computations for links and complements, except for the precise sign patterns
of the Orlik-Solomon relations. (See Section 9 for even greater generality.)

:-pseudoarrangements give rise to combinatorial objects that we call 2-matroids. Ex-
amp:ss include complex arrangements, arrangements of subspaces of real codimension 2
with even-dimensional intersections, and complezified oriented matroids. In this paper
we show how the process of complexification can be described combinatorially, so that it
apples to any oriented matroid (whether realizable or not). This extends the results of
Gel'iand & Rybnikov [GR], who constructed the “Salvetti” part of the complexification of
an orented matroid. We also show that every complexified oriented matroid is represented
Ly a 2-pseudoarrangement, so our cohomology computation applies.

<he decomposition of C* given by the fibers of the complex sign map s“) Ccd — k(”
is 1n :his paper called the s'').stratification of B (it depends on the choxce of linear forms
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{; for B). Other complex sign maps s are possible and give rise to a corresponding s-
stratification. In particular, the s(®-stratification obtained by separate consideration of
tae real and the complex parts of £,(z) is useful, since it refines the s(V-stratification and
carries the structure of a real hyperplane arrangement (and an oriented matroid). However,
the s(})-stratification is the mdst economical one (being the coarsest) and also seems to
be more intrinsic than the others. Most of the results of this paper have straightforward
generalizations to arbitrary combinatorial stratifications of complex arrangements, and are
treated in this generality. In fact, the simple underlying ideas, particularly that of the
s'!).stratification, can easily be adapted to arbitrary subspace arrangements.

We gratefully acknowledge the inspiration we received from papers by .M. Gel’fand
and G.L. Rybnikov [GR] on the use of {i,7,+,~} sign vectors and by M. Falk [F1,F2]
on the geometric duality between homology and cohomology classes in the link and the
ccmplement of an arrangement.

In parallel work, P. Orlik [02] has developed ideas concerning stratifications of the
st= type for subspace arrangements.



2. Sign functions, cell complexes and stratifications.

In this section, we construct cell decompositions of the unit sphere §2¢=! in C¢ derived
from complex arrangements, and establish their basic properties. For this we formalize
the concept of a combinatorial stratification and its face poset. We then show how such
stratifications can be induced from the one-dimensional case. The special case of induced
stratifications permits an encoding of the combinatorial structurein a family of sign vectors
with the structure of a poset (partially ordered set).

We will make frequent use of the fact that finite regular CW complexes are completely

encoded by their face posets, so that the combinatorics of the face poset gives us complete
control of the topology. To fix notation and terminology we list a few key points concerning

this

encoding; for further details see Section 4.7 of [BLSWZ).

All (simplicial and CW) complexes we consider are finite, and all CW complexes are
regular. We will often refer to finite regular C1 complexes simply as cell compiezes.
We denote cell complexes by I', whereas the letter A is reserved for simplicial com-
plexes.

The face poset Pr of a cell complex T' is the poset of its closed cells, ordered by
inclusion. The minimal elements are the vertices of I', and P has a combinatorial
rank function given by r(¢) = dim(s). The augmented face poset 0l P has a least
element 0 (corresponding to the empty cell) adjoined. Deletion of 0 from an augmented
face poset will be written without set brackets as P\0. The covering relation, written
X <Y, means that X < Y and no element is strictly between X and Y.

I' is determined by Pr up to homeomorphism, since the order complex A(Fr) (sim-
plicial complex of chains) triangulates T

Construct P := Pu{0,1} by adjoining a minimal and a maximal element, 0 and 1
to P = Fr. The bounded poset P is a lattice if and only if " has the intersection
property, that is, if the intersection of two closed cells always is a closed cell or empty.
A CW poset is the face poset of a cell complex. A CW poset determines its cell
complex I'(P) uniquely up to cellular homeomorphism.

A cell complex homeomoarphic to a ball or a sphere is PL (“piecewise linear”) if some
triangulation of it has a piecewise linear homeomorphism with a simplex (respectively
the boundary of a simplex). This is a combinatorial property, which only depends on
the face poset.

The boundary of every convex polytope is a PL sphere.

If T has a subdivision that is PL, then I is PL as well.

Let T be a PL sphere, whose face poset is (P, <). Define the opposite posei PP :=
(P. <°P) on the same set by '

<%y &= y<r

Then P°? is again the face poset of a regular CW’ sphere, the opposite splhzre T°P,
see [BLSWZ. Proposition 4.7.26]. In fact, 7 is the dual block complez [Mu. §64] of
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I'. The requirement that T' is PL guarantees that the dual block complex is a cell
complex. The barycentric subdivisions of T' and I'°? coincide with the chain complex
A(P), so I'°? is also PL.
The strata that we use in the following are convex comes: non-empty subsets of real
vector spaces that are closed under taking linear combinations with positive coefficients.
Furthermore, they are relative-open, that is, they are open subsets of their linear hulls.
Relative-open convex cones can also be characterized as the solution sets of systems of
homogeneous equations and strict homogeneous inequalities.

Definition 2.1. A combinatorial stratification X of a complex arrangement B in C¢

is a partition of IR?* = € into finitely many subsets (“strata”) that have the following

properties:

(i) the strata are relative-open convex cones,

(if) the intersections of the strata with the unit sphere $2¢=! in C¢ are the open cells of
a regular CW.decomposition I'x of S24-1

(ii) every hyperplane H € B is a union of strata, that is, every H N 5%¢-1 js a subcomplex
of rx,

The face poset of a combinatorial stratification K is defined to be the augmenied face poset

of the cell complex Tx.

It follows easily from (i) that the strata are polyhedral. that is. they are defined by
finitersets of equations and inequalities. However, note that the faces of such 2 cone are not
necessarily strata, because they might be subdivided. The face poset of the stratifcation
1s isomorphic to the set of closed strata, ordered by containment.

We now begin the construction of a special class of indzced combinatorial stratifica-
tions, whose structure is derived from the case of dimension 1.

Definition 2.2. An admissible sign function is a surjective map

where T is a finite set, which we call a set of complez si¢ns, such that the following
conditions hold:

(i) for all a €S, the preimage s™{a) = {z € € : s(z) = a} is a relative-open coavex

cone,

(i) the set ¥ contains a distinguished element 0, such that {0} = s~%(0).

There is canonical partial order on the set & of signs of an admissible sign function, with
a < b if and only if s™'(a) is contained in the closure of s~}(b). The unigue minimal
element of T is 0.

Equivalently, an admissible sign function is a surjective map from € tc a fnite set
of signs such that the preimages of the signs form a combinatorial stratification of the
l-dimensional arrangement with {0} as its only hyperplane. "We can. in fact. identify the
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Figure 2.1: s'Y, and its poset of signs.

+- ++
+0
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Figure 2.2: s(*), and its poset of signs.

signs in T with the strata of the induced stratification. The augmented face poset of the
induced {regular) cell decomposition of ! is (E, <).

Examples 2.3; Denote the usual sign function on IR by s®®: IR — {+,-,0}.

(1) On C, we say that a complex number with positive imaginary part has sign “”, and
a complex number with negative imaginary part has sign “j”, where “j = —i”, This
extends s® to a complez sign function

S(I) : C — {i’j, +s‘,0}

. s®(y)i for sB(y) £ 0,
Ty = {sm(r) otherwise.

'2) A sevond possibility is to consider real and Imaginary part separately, to get the sign

Ld
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function

s € — {+,-,0}?
z+iy = (s™(y),sB(2)).

We obtain partial orderings of the sets of signs {4, j,+,—,0} and {4, -, 0}? that correspond

to inclusion of the closures of the strata. See Figures 2.1 and 2.2.

(3) More generally, the regular division of the complex plane into congruent regions by
k > 2 rays from the origin (including the positive real axis) with successive angles
27 [k gives an admissible sign function. Figures 2.1 and 2.2 show the k =2 and k = 4
cases.

The induced stratifications of complex arrangements are now obtained by associating
2 sign vector to every point of C¢.

Definition 2.4. Let B = {H1,...,H,} be a complex arrangement in ©¢, given by
functionals £, : €C¢ — C (1< a < n),andlet s: € — T be an admissible sign function
:n €. Then the function

Sg: C¢ — T
z = (s(€1(2)),...,5(¢n(2)))

zssoclates a complex sign vector with every point in €<,

The strata of the s-stratification of B are the maximal subsets of €2 on which the
map sg Is constant. .

The set 5,(C?) C T of complez sign vectors inherits a partial order as a subset of
2", which as a direct product is ordered component-wise.

This construction is analogous to the situation for real arrangements, where the usual
sgn function s®: IR — {4, ~,0} defines the only combinatorial stratification of the real
cne-dimensional arrangement whose hyperplane is the origin, so that the construction in
IR™ of induced stratification and face poset is canonical.

In the complex case there are several choices involved. For a fixed sign function s, the
combinatorial structure of the s-stratification depends on the choice of linear forms ¢,.

We remark that in Definition 2.4, one could alternatively allow a different choice of
&-missible sign functior for each hyperplane H, = ker(£,). This might be of interest for
vzitary reflection groups, where it seems natural to associate the regular k, sign function
(Zxample 2.3(3)) with a hyperplane H, whose reflection has order kq.

Theorem 2.5, Let B be an essential arrangement, and s an admissible sign function.
Then the s-stratification of B is combinatorial (Definition 2.1).
Its face poset is isomorphic to the poset of sign vectors s, (C?) (Definition 2.4).

Proof. Consider first the arrangement 5" = {HII"], .. ,H,[,"]} of coordinate hyperplanes
L €™ owith ™ = {z € ©" .z, = 0}. For this arrangement

s CY — T7, (2150 0y2n) = (s(21),...,8(2z))
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clearly defines a combinatorial stratification.
Now the injective map

1: €Y — €, 20— (44(2),...,0a(2)

cmbeds € as a d-subspace T}, := I(€?) of €, so that KH,))=T, N HMfor1<a<n.
This induces a combinatorial stratification of the arrangement {T N H[ ] LIy Nn HL"]}
in T, which is (via 1) isomorphic to B.

Furthermore, the face poset of the s-stratification of Bl is given by Y"; ordered
comporentwise. This property is preserved when restricting to T,. 0

We have shown that for a stratification K induced by an admissible sign function s,
the face poset of X is isomorphic to the poset s, (€9) of sign vectors. For the rest of this
. aper we will freely make the identification £ = s,(€9). In particular, for i = 1,2 we will

t K" denote both the s().stratification of B and its poset of complex sign vectors.

Theorem 2.6. IfK is a combinatorial stratification of an essential complex arrangement
i CF. then the induced cell decomposition T of the unit sphere $2¢-1 is PL.

Proof. Every stratum of K is a relative-open polyhedral cone. Therefore, we can for every
siratum construct a real hyperplane arrangement in which the stratum appears as a face.
The union of all these arrangements is a real hyperplane arrangement A(X) whose cell
complex I'g(x) is a refinement of Ik.

But T4(x) is polytopal: it is the boundary complex of 2%, the polar of the zonotope
ot A(K). see [BLSWZ, Theorem 2.2.2]. Thus Ta(x)is PL, a.nd so is therefore I'x. d

A different proof of Theorems 2.5 and 2.6 for the s(!)-stratification is given in Sect1on
8 ‘the “linear” case of the proof of Theorem 8. 11).

For specific stratifications, like those induced by many admissible sign functions,
stronger statements than that of Theorem 2.6 are possible. For this, we call a stratifi-
cation of € polytopal if there is a polytope P in IR24 = ¢4 (with 0 in its interior) such

Lat the cones of the stratification are the cones cone(F) over the faces F of P. An admis-
sible sign function is polytopal if its stratification of € is polytopal, that is, if every cone
iz it 1s pointed. For example, s(?) is polytopal, but s?) is not.

Theorem 2.7.
Let s be an admissible sign function that is polytopal, and let B be an essentxa!
arrangement in €%, Then the s-stratification of B is polytopal.

Proof. We use the same setup as for the proof of Theorem 2.5. If s is polytopal (with
2-polvtope P), then the s-stratification of the boolean arrangement B(® of coordinate
hv werplanes is polytopal as well: its polytope P{™) is the convex hull of the n copies of P
1. the 1-dimensional coordinate subspaces of ©”. Restriction to the subspace T, = 1(C%)
that the s-stratification of B is polytopal as well (with polytope P™NT,). 0

viotdg
oWl

i
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Corollary 2.8. Let B be an essential complex arrangement, and let K1) and K(2) be
(the face posets of ) the s(V). respectively the s(®)-stratification.

(i) K(*) is the face lattice of a convex polytope.
(11) The cell complex Ty is a subdivision of the cell complex I'j1).

Proof.
(1) The sign function s is polytopal, so this follows from Theorem 2.7,
More explicitly, the s(?)-stratification corresponds to the real hyperplane arrangement
that is given by the hyperplanes

HE = {z € € Im(£,(2)) = 0},
H™ = {z € C*: Re(£o(z)) = 0},

in IR? = C% But real hyperplane arrangements are polytopal, as was mentioned in
the proof of Theorem 2.6.

() is induced from the corresponding property of the sign functions s(!) and s?: the
s()-stratification of C is a subdivision of the s(!)-stratification. O

Note that the s(.stratifications are not polytopal, and they do not have the in-
tersection property. This is intimately connected to the combinatorial properties of this
coarse stratification, which will be further studied in Section 4. We refer to Figure 2.3,
which depicts the s(!)-stratification of the complexification of the real arrangement given
by {2y, y - z} in IR2. Possibly the barycentric subdivision sd(T'x) is polytopal for every
combinatorial stratification, but this is not clear even for the s(1)_stratification.

It would be interesting to know whether the s(1.stratifications of complex arrange-
ments are shellable cell complexes. At the moment, this is an open problem even for the
complexification of a real arrangement A (where KV = Loif, and £ C {#,—,0}" is the
face poset of A, see Section 5).
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3. Cell Complexes for the Link and the Complement.

Regular cell complexes are completely determined (up to homeomorphism) by their face
posets. In this section, we use this elementary fact and a simple retraction argument
to obtain combinatorial descriptions of cell complexes for the complements and links of
complex arrangements. The following general fact will be used.

Proposition 3.1. Let P be the face poset of a PL regular cell decomposition T of the
k-sphere. Let Py be the order ideal corresponding to a subcomplex Ty C I'. Then (P\Py)°?
is the face poset of a regular CW complex Tcomp which is homotopy equivalent to |T'|\|Tl.

Proof. The fact that I is PL guarantees the existence of T °? the “opposite” regular cell
decomposition of the k-sphere with face poset P°P, as was explained at the beginning of
Section 2. Clearly, (P\P))°? is the face poset of a subcomplex Teomp of TP, ,
Finally, |A(P\Py)| & |T'comp]| is homotopy equivalent to IA(P)NA(Po)! = [T\ITo| as
a consequence of the next lemma. O

Retraction Lemma 3.2.  ([BLSWZ, Lemma 4.7.27), [Mu, Lemma 70.1})
Le: P be a finite poset. and let P = P' UP" be a partition into two parts. Then |A(P')|
1s a strong deformation retract of |A(P)|\|A(P")).

Since the face poset of a combinatorial stratification is a PL sphere (Theorem 2.6),
Proposition 3.1 is directly applicable. Before stating the conclusion formally we will make
another definition.

Definition 3.3. Let K be the face poset of a combinatorial stratification of the complex
arrangement B in C¢.

The link poset is the subposet Kiinx C K of those strata that are contained in Ve =
H U...UH,.

The complement poset is Kcomp = K\Kiink, corresponding to those strata that are
contained in C, = C\V,.

Note that by construction Kyink is the augmented face poset of a pure, (2d — 3)-
dimensional complex. Thus if r : £ — {0,1,...,2d} denotes the poset rank function on
K, then Kjing is an order ideal whose maximal elements all have rank 2d — 2.

Similarly, Kcomp is a filter in K. In general the minimal elements of Keomp do not all
have the same rank in X.

Lemma 3.4. Let B be an essential complex arrangement, s an admissible sign function,
and let IC'Q L™ be the face poset of the s-stratification of B. Then

Kiink = {X € X : X, = 0 for some a € [n]}

and
K:comp = K:\/C“nk =KnNn (S\O)n.

Thus. in the induced case we have an entirely combinatorial encoding of the data. See

Figure 2.3 for an illustration.
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Theorem 3.5. Let K be the face poset of a combinatorial stratification of a complex
arrangement B, and let ' := I'x be the corresponding CW-sphere. Then,
(i) Kiink\0 Is the face poset of a subcomplex of T that is homeomorphic to the link
D, =V, n St
(11) (Kcomp)°P is the face poset of a regular CW complexT'comp that is homotopy equivalent
to the complement C,,.

Proof. This follows from Proposition 3.1, together with the definition of a combinatorial
stratification and Theorem 2.6. We also use that C, (Cy N §%4-1)x IR, which shows
that C, retracts to its intersection with $24-1, 0

It is clear from the preceding that the space |A(K\0)|\|A(K1ink\0)| & S2-1\D_ is
homeomorphic to €, N §27=1. Also, V, = cone®(D, ), where cone®(T) denotes the open
cone over a space T, 1.e., cone(T) minus its base . Hence, we can draw the following
conclusion.

Proposition 3.6. Let K be the face poset of a combinatorial stratification of a complex
arrangement B in C¢. Then:
(i) the complement C, is homeomorphic to

(JAMKNO) \ JA(Kiink\0)]) x R.
(ii) #he variety V, is homeomorphic to

cone’ (|A(X\0)]).

Corollary 3.7.  The face poset K determines the complement and the variety of a
complex arrangement up to homeomorphism.

We do not know whether K determines the complement up to diffeomorphism. For
complex arrangements whose matroid has a connected realization space (over C) this

follows from a result by Randell [R].
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4. Combinatorics of the s(!)-Stratification.

Let B be an essential complex arrangement in €¢, and let X(1) = s((C?) C {i,j,+,—,0}"
be the face poset of its s(!)-stratification. The combinatorics of the face poset K:(l) is very
interesting. In general, the structure is more complicated than might be suggested by the
case of complexified arrangements (see Section 5).

In Theorem 4.3, we will list some basic combinatorial properties satisfied by £(1). For
that, we need some operations on complex sign vectors, as follows. The canonical partial
order on the set of complex signs (Figure 2.1) is presumed throughout.

Definition 4.1 Let Z,W € {i,j, +,—,0}" be complex sign vectors.
(i) The real set of Z is
Re(Z) = {a € [n] : Za € {+a _70}} ’

the zero set of Z is

Ze(Z):={a €[n]: Z, = 0}.

Hence. Ze(Z) C Re(Z) C [n].
The support of Z is the pair of sets supp(Z) = (Ze(Z),Re(2)).

(i) A sign vector X will be called real if it lies in {+,—,0}". that is, if Re(X) = [n].
A sign vector Z is imaginary if it lies in {i,,0}", that is. if Re(Z) = Ze(Z). In this
case we can write it as Z =1Y, for a real sign vector Y.

(ii) The composition of sign vectors Z and W is the sign vector ZoW € {i,j,+,—,0}"
deﬁned component-wise by

W. it W, > Z,,

(ZoW)a 1= ZaoWa = {Za otherwise.

(iv) The separation set of Z and W is

S(Z,W) := {a€[n]: 2, = =W, £ 0}
= {a€[n]:(ZoW), # (Wo2Z),}.

Later in the paper the following elementary properties of the composition operation
will be useful./They follow easily from the partial order on the signs in {{,j,+,—,0},
because composition is defined componentwise.

Lemma 4.2.
(i) Composition is associative: for arbitrary sign vectors 2,2, 2" € {i,7,+,—,0}" we
have

Zo(Z'02") = (Z02Yo 2",

tii) Real and imaginary sign vectors commute: for real sign vectors X.Y € {+,—,0}", we
have

XoiY = iYolX.
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More generally, arbitrary sign vectors Z and W commute (that is, WeZ = ZoW ) if
and only if S(Z,W) = 0.

(1) WeZ = Z if and only f W < Z. ‘
WoZ = W if and only if supp(Z) C supp(W).

The following theorem lists a set of basic combinatorial properties possessed by the
K'!-poset of a complex arrangement.

Theorem 4.3. Let KV C {i,5,+,~,0}" be the face poset of an s(!)-stratified complex

arrangement. Then: '

(0) 0e X,

(1) Z € KW implies that —Z € K1),

(2) Z,W € KW implies that ZoW e K.

(3) Z,WW € KW with a € 5(Z,W) implies that there exists a vector U € K such that
Ue < 24, W, and Uy = (ZoW ), = (WoZ); for all b ¢ S(Z.W).

(3 2, W e KW with W £ Z and ZoW = Z implies that there exists a vector Z' € K1)
such that Z' < Z and Z; = Z; for all b ¢ S(Z, Ww).

Proof. The conditions (0) and (1) are obvious. For (2), use that for z, w € C¥%, we get
sz +ew) = sgl)(z) o sV(w),

when € > 0 is small enough.

For (3), let z,w € ©? be points such that Z = s{)(z) and W = s)(w). Then
7= L4(z) and w := {,(w) are complex numbers with opposite nonzero s(1.sign, so they
are “separated” (on their connecting line) by a complex number with a smaller s(!)-sign:
there exists a A, with 0 < A <1, such that s(V(Az 4 (1 = M)w) < s(D(2), s (w). Now put

U:=sP(u) for u:=Az+(1-N)w.

Then the first condition of (3) on U is clear, and the second one follows from the convexity
of the strata of s(1),

For (3'), choose again z,w € €¢ with Z = sg)(z) and W = s(!)(w). The condition
ZoW = Z implies that s(D(z + ew) = s{(z) for small ¢ > 0. Let ¢ > 0 be minimal
such that s((z + ¢(w — 2)) # Z, and set 2’ := s(D(z + ¢/(w — z)). Since strata are
relative-open, this is well-defined; and from the definition of the ordering of the signs we
get Z' < Z. Now from W £ Z we derive ¢ < 1. Thus the assumption ZoW = Z,
together with the convexity of the strata, implies that Wy < Z;, and hence Z} = Z,, for
all b g S(Z,W).

The properties of K(1) listed in Theorem 4.3 are analogues of the “covector axioms”
for oriented matroids of Edmonds & Mandel [EM] [BLSWZ, Sections 3.7, 4.1]. In fact,
they can be used to define “2-matroids” that abstract the combinatorial structure of s(1)-
stratified complex arrangements - see Section 9.4. A different, more combinatorial proof
for them will be given in Proposition 8.13.
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Proposition 4.4.
(i) KU is a ranked poset of rank 2d. Its unique minimal element is 0.
(i) For Z ¢ KW the rank p(Z) is the dimension of the (linear span of) the stratum
{ze €!:sW(z) = 2} of Z.
(i) The maximal elements of K1) are the sign vectors in K(V) n {, j}~.
(iv) Every interval [W, Z] in K U {1} of length pZ — pW = 2 has the form

Z
Zl/ \Zz
N
w

Proof. This follows from the fact that () is the augmented face poset of a (2d—1)-sphere.
ror part (ili) we use that every point z € €9 in general position has s(!)(z) € {i,7}",
together with Theorem 4.3(2).

There are two matroids associated to (the X(M.stratification of) a complex arrange-
ment B3:

¢ The matroid M = M(B) is the matroid of C-dependencies of the linear forms £,. Its
lattice of flats is the intersection lattice [ of B. It can be reconstructed from X(1) as

£

g L={Ze(W): We KWV}

ordered by inclusion. Here r(M) = d, because B is assumed to be essential.
¢ The second matroid is the matroid M® of linear dependencies with real coefficients
of the complex forms £,. Its intersection lattice is given by KX(1) as

L® = {Re(W): W € KW},
ordered by inclusion. This is the matroid of the real arrangement
B = {HRe, . pRe}

where

HRe = {ze C¢: Im(¢,) = 0}.

From this we see that d = (M) < r(M™®) < 2d. There is in fact an oriented matroid
MR associated to BR, whose underlying matroid is M® - jts covectors can be read
off from K1) as the “imaginary parts” of the vectors in iC(1).
Both intersection lattices L and L™ are combined in the s intersection lattice L(V); the
lattice of all intersections of subspaces in the set

{H.... ,Hy HRe, ... HRe},
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(ordered by reverse inclusion). This is a semimodular (hence graded) lattice of length
2d. Its rank function is given by the real codimension of the corresponding subspace.
The hyperplanes HE® are its atoms (rank 1), whereas the subspaces H, appear as its
jom-irreducible elements of rank 2. Both L and L® are contained in L(1) as sublattices.

The support map allows us to derive L) from X1, since L(1) is canonically isomor-
phic to the support lattice of K1), that is, the set supp(K®W) := {supp(Z) : Z € KMy,
ordered componentwise by inclusion. The isomorphism is given by

(2e(2),Re(2)) — () H.n () HE,
a€Ze(Z) a&Re(Z)

its inverse by
V' +— supp(s((v))  for some generic v € V.

The following result describes a further aspect of the connection between the two
matroids A and M™ on the same ground set [n], yielding a canonical injection L «— LR,
For this recall (see [W]) that N — M is a strong map between two matroids on the same
ground set if every flat of M is also a flat of V.

Proposition 4.5.
MR _, M
Is a strong map of matroids.
P4

Proof. Let Ze(Z) be a flat of M, and choose z € €¢ with s(U(z) = Z. Now consider the
finite set of complex numbers

e“ly(z),. .., e'ln(2).
For small enough ¢ > 0, none of them is real and nonzero. Therefore
Re(s™(e¥z)) = Ze(sW(eiz)) = Ze(s'V(z)) = Ze(2),

and we have Z' := s(1)(e*¢z) € £ with Re(Z') = Ze(Z). Hence, Ze(Z) is also a flat of
MR, N

We close thjs section with a rather technical lemma that will be useful later.
Lemma 4.6. Let X() be the face poset of a complex arrangement B, in its s(1).
stratification. Let 4 = {ay,...,ax}_ be an ordered subset of [n], and call a chain

Z2=2<2"<... < zF

an A-chain if

Zs(ag)z{i fort < s,

+ fort > s,
foraUOSsSlsandlSz‘Sk.
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(1) If 4 is dependent in the matroid MR of B, then there is no A-chain in X,
(1) If A is an independent set in M®, and if Z € XV has rank p(Z) = 2d—Fk and satisfies
Za, =+ for 1 <t <k, then there is a unique A-chain in K(1) that starts at Z.

Proof.
(i) Considering a suitable subchain, we may assume that A is a circuit of M™®, But this
means that there is a relation

k
bay = ) ajly;  (ej €M),

i=2

so that if /,,(z) € IR for 2 < J < k, then £,,(z) € IR. Hence Z! cannot exist as
required.

(ii) By induction on k, it suffices to see that Z? as required exists and is unique with
p(Z') =2d -k +1. So Z! has to be a full-dimensional stratum in the subspace
Vii= HEN...n HR of dimension dim(V) = 2d — k + 1. In V,HRENVisa
hyperplane, which is spanned by the stratum Z. Thus there are exactly two strata
Z' and W' in V that cover Z (on the two sides of HR NV in V), and Z}, =iand
W, = j, or conversely. O

A more formal, axiomatic approach is possible that uses only the properties of Theo-
rem 4.3 to derive all the other results of this section. This will partially be carried out in
Sectibn 8.
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5. Complexified Arrangements.

We will now turn our attention to the case of a complexified arrangement, which has special
combinatorial structure. We will show that in this case the cell complex I‘E})mp of Theorem
3.5 specializes to the complex earlier described by Salvetti [S]. The s(!)-stratification, with
the embedding of the Salvetti complex as a subcomplex, is determined by the face lattice
of the real arrangement 4. Therefore the topology of the complement and the variety of a
complexified arrangement (up to homeomorphism) can be studied in entirely combinatorial
terms, namely in terms of the oriented matroid £, of A. In Section 8 we will show that this
analysis can be extended to any oriented matroid (whether realizable or not), by “formal
complexification”. ‘

Let A = {Hy,...,H,} be an arrangement in IR?, given by real linear forms ¢, €
(R4)*. The complezified arrangement AC = {HZ,...,H®} in €¢ is given by the same
forms: H® = kerga({,). The face poset £, =s,(IR?) C {+,—,0}" of A is the collection
of position vectors arising from s, i x (sB(g (%))y.+.,8B(€n(x))), cf. Definition 2.4 and
Example 2.3. It is isomorphic to the augmented face poset of the regular cell decomposition
of $4=1 induced by A. See [BLSWZ, Chapter 4] for a detailed treatment of such posets
C,. ‘

A

Theorem 5.1. Let A = {Hy,...,H,} be a real arrangement with face poset £ C

{+,—,0}", and let A% be its complexification, stratified (for the same choice of real forms

£a) with face posets K1) C {i,5,+,—,0}" and K®) C {+,-,0}2". Then:

(i) KO = Loil = {XoiY : X,Y € L}. That is, KO can be constructed from L using

composition of sign vectors.

(i) Let Int(L) = {[Y,X]: ¥ < X} denote the set of intervals in £. Then the mapping
[Y, X] — XoiY defines a bijection Int(£) « KO,

(iif) The rank function of K is given by P XoiY) = p(X) + p(Y) for Y < X, where p
denotes poset rank in L.

(iv) K@ = Lxl = {(Y,X): X,Y € L£}. That is, K is isomorphic to the poset product
of £ with itself.

(v) The rank function of K(® is given by P, X) = p(X) + p(Y).

(vi) The map ¢: K — KO (¥, X) —> XoiY is an order-preserving surjection.

Proof. For x +%y € €¢, with s.(x) = X and s(y) =Y, we compute (cf. Example 2.3):

sle(x +1y) = (sO(ly(x +iy)), ..., sM(la(x + iy))
= (W(&(x) +it1(y)), ..., sD(a(x) +ila(y)))
= (s (€ (x))ois™ (4y(y)), ... , SR (n(x))0is™(La(y))
=5,(x)ois  (y) = XoiY.

This computation shows that
K = s%((ﬂd) = Loil.
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Furthermore, we observe that XoiY = (YoX)oiY with Y < YoX. Here XoiY completely
determines ¥" and YoX, because they can be read off componentwise. Therefore we have
a bijection between X(1) and the set of intervals in L, as claimed.

An analogous computation to the above establishes sg(x +1y) = (Y, X), and thus
K% = £xL£. The rank function of K(2) can be deduced from this.

To see that the map X2 — ) s order-preserving, suppose that (¥, X’ Ja <
(Y, X)a, le., ¥/ < ¥, and X, < X,.
Case 1: If V! =Y, = 0, then X0t = X! < X, = X,01Y,.
Case 2: If Y =Y, #0, then Xy0tY] = iY! =iY, = X,0iY,.
Case 3: If Y] = 0,Y, # 0, then X! 0iY! = X! <i¥, = X,0iY,.

It remains to prove part (iii). For this, first observe that

3(sD(z)) = sMV(z),

for all z € €. Geometrically this means that the s(!)-stratum of XotY is subdivided into
the s(?)_strata of all the pairs (Y, X') such that X'oiY' = XoiY. Since poset rank in K1)
and in K3 is equal to the dimension of the corresponding stratum, this implies in view of
part (v) that

PD(XoiY) = max{p(X') + p(Y') : X'oiY" = XoiY'}.
Now, suppose that ¥ < X in £. Then X'oi¥' = XoiY implies that Y/ =Y and Yo X' =
YoX = X, and hence .
’ p(X)+p(Y') S p(Y'0X') 4 p(Y') = p(X)+ p(Y).
Thus the maximum is achieved for the pair Y < X, which proves part (iii). 0

Theorem 5.1 shows that for every complexified arrangement AT the face posets K(1)
and K are completely determined by, and can be combinatorially computed from, the
face poset L of the real arrangement A. For instance, the (1) shown in Figure 2.3 is easily
constructed from the face poset of 3 lines in IR?, as shown in Figure 5.1.

Figure 5.1. Face poset £ of an arrangement of three lines in IR2.
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The bijection Int(L£) «— K1) makes it possible to translate the partial order of X(1)
into a corresponding partial ordering of Int(L), which can be independently described.

Proposition 5.2.  For intervals [Y, X],[Y’, X'] € Int(L), define an order relation by

! ! YSY’ and
[Y,X]_<_[Y,X] = {Y'oXSX’.

With this ordering Int(£) & K™ is a poset isomorphism.
Proof. The translation via part (ii) of Theorem 5.1 is straightforward. O

The poset K() & Int(£) produces cell complexes for the link Ve N 5?41 and the
complement C 4, as shown in Section 3. Since everything can be described in terms of £
we can draw the following conclusion from Corollary 3.7.

Theorem 5.3. The face poset £ (that is, the oriented matroid) of a real arrangement
A determines the complement and the variety of the complexified arrangement AT up to
homeomorphism.

We know from Theorem 3.5 that (Jcﬁil,,,,)w is the face poset of a regular CW complex
l’ﬁf,)mp that is homotopy equivalent to C 4. Since )C,(;Bnp ={Z e K1) : Z, 0 for all a},
by Femma 3.4, we can easily translate the combinatorial description of rﬁ},’m,, into the
language of intervals in £. Clearly, if ¥ < X then Ze(XoiY') = 0 if and only if Ze(X) = 0,
which means that X is a maximal element of L, or tope. Geometrically such maximal
elements correspond to the regions of A, i.e., the connected components of IR?\({ J A). We
have shown that the cells of I‘S‘O)m,, are in bijection with the special intervals [V, T], where
T is maximal, and their order relation is a special case of Proposition 5.2. Hence, we have
arrived at the following description of I‘f,-f,)mp. (Remember that the opposite of the ordering
of K1) is used.)

Proposition 5.4. The regular cell complex 1"2,2,,,, has one (d — p(Y'))-dimensional cell
o(y,1} for each upper interval [Y,T) in £ (i.e., such that ¥ < T and T is maximal), and
the inclusion of, closed cells is determined by

Yy <y! and
oy, S oy & {Y’o_T =T,

It is now apparent that this is precisely the cell complex for C o that was constructed
by Salvetti [S]. In fact, this description of Salvetti’s complex in terms of upper intervals
[¥Y,T]in £ was given by Ziegler (1], and the equivalent description in terms of complex
sigh vectors ToiY was given by Gel'fand & Rybnikov [GR]. From Theorem 3.5 we can
deduce Salvetti’s main result.



Theorem 5.5. (Salvetti [S])
Let Tgqp := r&lo)m,, denote the cell complex described in Proposition 5.4. Then I'sai has the
same homotopy type as C .

In the following we will describe some special properties of the Salvetti complex of
a real arrangement A. As pointed out by Gel’fand & Rybnikov [GR] the construction of
Tsa1 is entirely combinatorial in terms of L, so everything that will be said is also true for
the Salvetti complex I'sy; of an oriented matroid L.

Proposition 5.4 shows that the vertices of I's, correspond to the intervals [T, T, and
the maximal cells, all of dimension d, correspond to the intervals [0,7] in £. Hence, both
vertices and maximal cells of Tg,; are in bijection with the set of regions of A.

The fact that I'gy; = T ﬁ},)m,, is d-dimensional seems to be a quite special property of
complexified arrangements.

Example 5.6. Consider the complex arrangement B in €? defined by {z,w, (1 + i)w +
(2 —7)z}. One computes s()(1,1) = (+++), stN(6,1) = (i++), sW(i,s + 3) = (ii+) and
s{1(.7) = (i44). This yields a chain

(++4) < ((+4) < (ii+) < (@)

of length 3 in JCEB,,,,, SO Pﬁf,)m,, has dimension 3.

There is of course an analogous cell complex I"l(:zo)mp for the s().stratification of AT. Its
barycentric subdivision sd(F,(;?,)mp) appears in the work of Orlik [02]. The order-preserving
map ¢ : K — K restricts to )ng)m,, —_ ICgian, and therefore provides a simplicial
map

¢a: sd(TR) ) — sd(Tsar).

comp

This simplicial map was shown to be a homotopy equivalence by Arvola [Ar]. We remark
that the dimension of Fg?,)m,, is usually higher than d. In fact, whenever the matroid of A
has two disjoint hyperplanes (e.g., for generic arrangements of at least 2d — 2 hyperplanes),
this complex has dimension 2d — 2.

In the following, a cell in a regular cell complex will be called zonotopal if its boundary
complex is combinatorially isomorphic to a zonotope. For facts about zonotopes. and in

particular the polarity between real arrangements and zonotopes, see [BLSWZ, Section
2.9).

Proposition 5.7. Let I's,; be the Salvetti complex of an essential complexified arrange-
ment A® in €. Suppose that the number of k-dimensional cells in Tsq; is fy. for 0 < k < d.
Then

(a) fo = fq4 = number of regions of A.

(b) The f-vector (fo, f1s..., fa) depends only on the underlying matroid.

() XTsat) = fo = fr+ fo— ...+ (=1)4f; = 0.

(d) (yf)fo <fr < 2k(d;1)fo, for 0 < k < d.
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(e)
(f)

(2)
(h)

If A is a simplicial arrangement, then fi = (z) fo, for 0 < k < d.
If A is a generic arrangement, then

d~k-1 —b )
fk=2’°+1<:> S <" k 1), for0<k <d.

=0 1

All cells of T's,; are zonotopal.
Every maximal cell in T's,; has boundary complex isomorphic to Z 4 the zonotope
polar to A, and touches all the vertices.

Proof. The statements about the face numbers f; concern the enumeration of upper
intervals [Y, T'] with corank(Y') = k, in the face lattice £ of A (Proposition 5.4).

(a)
(b)

(¢)

(g)

(h)

This was already mentioned.

This is a consequence of the result of Bayer & Sturmfels [BS] that the flag vector of
L only depends on the underlying matroid, see (BLSWZ, Corollary 4.6.3).

For each fixed region T we have that Yocyep(=1)cor2nk(Y) = 0 because this is the
reduced Euler characteristic of a polytope (a region of A). Summing this equation
over T gives formula (c).

An alternative way to derive this is to substitute ¢ = —1 in the formula of Theorem
7.1, and use the fact that x,,(1) = 0 for every matroid M.

and (e) The lower bound stems form the fact that an interval [0,7] in £ has at
ledst ({) elements of corank k, with equality if and only if [0,77] is boolean [BLSWZ,
Exercise 4.4]. That A is simplicial means precisely that all intervals [0, T] are boolean.
The upper bound is a special case of a result of Varchenko [V] on the average number
of k-faces of a d-cell in an arrangement, see also [BLSWZ, Proposition 4.6.9].

That A is generic means that the intersection lattice L is a truncated boolean algebra
(its matroid is the (d — 1)-uniform matroid). The expression is therefore a special
case of the formula in [BLSWZ, Exercise 4.32]. It can be computed from [BLSWZ,
Theorem 4.6.2].

Take a closed Salvetti cell oly,r]- Proposition 5.4 shows that there is a unique cell
olyr,yrer] C opy,1] for every Y' < Y in L°P, that these cells are all the cells contained
i o[y,r7. and that the partial ordering of these cells is isomorphic to £%,,. Now use
that (£\0)°? is the face poset of the zonotope Z,, which shows that £, is itself the
face poset of a zonotope.

Apply the argument in (g) to the case ¥ = 0. 0

Proposition 5.7 remains true for the Salvetti complex of an arbitrary oriented matroid.

The same proof applies. For part (h) the zonotope Z, must then be replaced by the
“opposite big sphere” T'°P(L), see [BLSWZ, Corollary 4.3.4], and (g) must be similarly
adjusted.

We close this section with a characterization of complexified arrangements in terms

of their matroids M and MM, defined in Section 4. Actually, what we characterize are
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complex arrangements that are isomorphic to a complexified arrangement AT via an iso-
morphism of complex vector spaces. This is clearly the case if and only if all minimal
dependencies between the forms ¢, € (€4)* can be scaled to have non-zero real coeffi-
cients.

Proposition 5.8. LetB = {H,,..., H,} be the arrangement in €% defined by the linear
forms y,...,¢,, lIet KU be the face poset of its s(1)-stratification, and let M and .MIR be
the associated matroids. Then the following conditions are equivalent:

(i) B is (C-linearly isomorphic to) a complexified arrangement.

(ii) K1) = LoiL, where £ C {-+,—,0}" is the face poset of some real arrangement.
(iil) M = MR
(iv) r(MR) = r(M).

Proof. The implication (i)==(ii) was derived in Theorem 5.1. For this, observe that the
K_stratification is independent of change of coordinates in C¢.

To see (ii)==(ii1), assume K = Loil and let Re(Z) be some flat of M®, Now
Z can be written as Z = XoiY with XY € C C K, and i¥Y = 0oiY € K. We get
Re(Z) = Re(Xo0iY) = Re(iY) = Ze(iY), so Re(Z) is also a flat of M. With Proposition
4.5 this implies L = L™ and hence (iii).

The equivalence (iii)<=(iv) follows from Proposition 4.5, because a strong map be-
tween two matroids on the same ground set is the identity if and only if they have the
same rank [W].

Firally, assume that M and MR are isomorphic, and assume that {1,...,d} is a basis
for them. Then we can choose coordinates in €¢ such that £o(2) = z,, for 1 < a < d
But now every other linear form ¢, (b > d) depends on {¢4,...,£3} IR-linearly, that is, its
defining equation is real. O



6. Homology of the Link.

The cohomology algebra H *(Cy; Z) of the complement C, of a complex arrangement
has been computed in work of Arnol’d [A] and Brieskorn [Br]. Its combinatorial nature
was shown by Orlik & Solomon [OS], see also Falk [F1]. Our approach to this problem
differs from the by now standard one [01] in that we first obtain an explicit description of
the homology of the link, and then use Alexander duality. Our tools are quite elementary
(everything that is needed can be learned from Munkres [Mu]), and very explicit, providing
basis elements that are represented by geometric spheres in the link. We do not use any
differentiable or algebraic structure, so that everything (except for the sign pattern of the
relations) generalizes to the setting of “2-pseudoarrangements”, see Section 8.

For the following, let B = {Hi,...,H,} be a complex arrangement in €%, and let K
be the s(M).stratification (or any refinement). This induces on every minor (i.e., restriction
of a subarrangement) of B a combinatorial stratification that refines the s(!)-stratifiction
of the minor. Thus every s(!)-stratum of a minor intersects the unit sphere in a pure
subcomplex (a ball or a sphere) of Tk, so that it can be identified with the corresponding
cellular chain in Tk.

The computations will be in terms of cellular homology [Mu, §39], where they are most
easily and economically done. As is well known, computations in simplicial homology (after
barycentric subdivision) or singular theory yield isomorphic results.

For the broken circuit construction below we will need a linear ordering on the set of
hyperplanes. The linear ordering of B = {Hj,..., H,} is always given by the indices of its
hyperplanes.

Let M be the matroid of B, of rank r = r(M), whose ground set [n] we identify with
B. If B is not empty we can consider the deletion

B = B\Hn = {Hl,..- ,Hn—1}9

whose matroid is the deletion M’ = M\n. B' is again an arrangement in €%, and it inherits
the obvious linear order from B.
Similarly, we consider the restriction

B":=B|ny,={H.NH,:1<a<n}.
This is an arrangement in H,, & €?-1, whose matroid is the simplification of the contrac-

tion M /n that is obtained by deletion of all but one element in each parallelism class. We
prefer to describe this as

B"={H,NHp:1<a<n; HyNnH, # H, N H, for a < b},

so that the hyperplanes in B"” and the elements of M" are indexed by {a : HyN H, #
Ho W H, for b > a}, and they inherit the obvious linear order.
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The arrangement B is essential if (1B = {0}, that is, if its rank r := codim((B) =
r(M) coincides with the dimension d. Usually, we do not assume that B is essential — this
would make the inductions more complicated. Therefore, only r < d is guaranteed.

Note that B, B’ are arrangements in €C?, whereas B" is an arrangement in H,. Thus
the corresponding links are subsets D, D' C S24-1 whereas D" C S24-3 after an identifi-
cation of H,, with €4-1,

The method of “deletion and contraction” can be used to derive properties of B
recursively from knowledge of B’ and B". In the following, we will construct H,(D; Z)
this way. This enables us to give a combinatorial description of a basis of ﬁ*(D; 7Z) in
terms of the “broken circuit complex”, for which we need the definition, its recursive
construction, and the face numbers.

Definition 6.1. The broken circuits of M are the sets C\min(C), formed by deleting
the smallest element from a circuit C of M. The broken circuit complezx BC(M) is the
collection of all nonempty subsets of E that do not contain a broken circuit.

The broken circuit complex is known to be a pure (r — 1)-dimensional subcomplex
of the matroid complex, that is. all its facets (maximal faces) are bases of the matroid.
Furthermore, the number f; of i-dimensional faces of BC(M) is given by the characteristic
polynomial x of M via the Whitney-Rota formula

LA ; 1
1+ 3 fint = (<t x(=2). (61)
ol i=1
It can easily be derived from the simple recursive property given by the following lemma,
which we also exploit in our homology computation. We refer to [Bry], [BZ] and [B2] for
additional information about broken circuit complexes.

Lemma 6.2. (Brylawski [Bry]) Let M be a simple matroid on the linearly ordered
ground set [n], M' = M\n the deletion of the largest element n, M" the simplification of

the contraction M /n obtained by deleting all elements with a smaller parallel element (as
above). Then

BC(M) =BC(M') U {ITUn:IeBc(M")} u {{n}}.

Let B be an arrangement in €%, let X be the s(!)-stratification or any combinatorial
subdivision of it, and let M be its matroid. We will now construct the (cellular) cycles
that generate the homology of D.

Let A C [n] be an independent set of size k > 0. Then

Li={zeC:sM,(2)) € {+,—,0} fora € A}
is a real subspace of dimension 2d — k. In this subspace,
Ca={z e C:sV(lu(z)) € {0,+} for a € A}
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is the intersection of k closed halfspaces whose orthogonal vectors £, (a € A) are linearly
independent. Thus C4 is a closed, full-dimensional cone (of dimension 2d — k)in L4. It
is a proper subset of L4 because A # §. The intersection of the cone with the unit sphere
in €4 is

ca:=C4xn §2d-1

This c4 is a topological (2d — k — 1)-ball which in the s(!)-stratification may be subdivided.
It determines (up to a sign) a cellular (2d — k — 1)-chain which we will also denote by ca.
This chain is supported with (£1)-coefficients by all (2d — k — 1)-cells Z € X which have
Z(A) = (4...+). Here Z(A) denotes the restriction of the sign vector Z to the positions
indexed by A.

The boundary of the (2d — k — 1)-ball cy4 is the (2d — k — 2)-sphere

da:=0Can S,
Since the boundary of the cone Cy is given by
8Ca={z€ Cx:£,(z) =0 for some a € A},

this sphere is a subcomplex of D. The corresponding cellular chain will also be denoted
by d4. It is supported, with £1-coefficients, by all (2d — k — 2)-cells W such that W(A4) e
{+,0}# contains exactly one O-entry.

In the following theorem we compute the homology of D with integer coefficients. For
our computations we consistently use reduced homology, as derived from the augmented
(cellular) chain complex, see [Mu]. This implies in particular that

Z, fT=0,
0, otherwise.

H_(T;Z) = {

Theorem 6.3. Let B be a complex arrangement in €%, D = D, its link, and M its
matroid. Then the homology of D is free, and

{{(da) : A e Bc(M), |A] =2d -2~}

is a Z-basis of H;(D; 7Z), for i > 0.
Proof. We proceed by induction on n = |B|, with a trivial start at n = 0, where 55 = 0,
D =0,Bc(M) =0, H(D) = 0 for i > 0.

Now consider $24=! as a cell complex (in the s(_stratification), so that D, D' and
S:=H,N §%-1 2 §2d-3 5., subcomplexes with D' US = D and D' NS = D". For this
we get the Mayer-Vietoris sequence in reduced homology, with integer coefficients:

Gh=) o RS o

- — H(D") 5 J (D) e Hi(s) 25, Hi(D) = H,_,(D") — --.
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where 51,72 7% j4 are induced by inclusions.
For ¢ > 0, we know by induction that H;_;(D") is generated by

Bi = {(d}): AeBc(M"), |Al=2(d=1)~2~(i—1)=2d -3 — i}.

Now, Aun € BC(M) for all (da) € B”_, by Lemma 6.2. We can write daun = ¢y + €4 n>
where ¢! is the chain corresponding to the independent set 4 in the restriction B”, and
€4n is a chain on D'. [The underlying spaces can be described by ¢} = SN daun and
e4n = D' Ndayn.] Using Oy , = —dc'y = £d'}, we can compute

Ou(daun) = (s, ~32)7100E + j8) " daun)
((es =32) 7 8(ela,n, €4))

{

(

H

(Ji’ —jf)—l(idﬁ'&, F ,f,i))
= (£d").
This implies that 0, is surjective, hence
(G2, =32) : Hia(D") — Hisy (D) @ HiLy ()
is the zero-map for i > 0. Thus we get short exact sequences
. 0 — Hy(D')@Hi(S) — H(D) — H,_,(D") — 0

for i > 0. Because ﬁi_l(D”) is free by induction, we can use ¢ : I~L-__1(D”) —_ ﬁ,-(D)
with ¢((d'})) := {(daun) to split this sequence, and get

ﬁ,(D) = ﬁ,‘(D')EBﬁ,‘-](D")GBﬁ,’(S).

Thus, I~L-(D) is again free. A basis for it can be assembled from the bases of the summands:
if (S) denotes a generator of ﬁQd..g(S), then clearly ji((S)) = #(d(n}). Furthermore, if 4
is independent with n ¢ A, then we get J3({d4)) = £(da) by construction. Thus we get
as a basis for ﬁi(D) the set of all homology classes (da) with |A| = 2d — 2 — i such that
A lies in

BC(M') U {AUn: A4 €BC(M")} U {{n}}.

By Lemma 6.2, this yields the right result.
The case of i = 0 is easily treated separately (by inspection of the Mayer-Vietoris
sequence, or directly). . O

The Whitney-Rota formula (6.1) together with the formula
rank(Hi(D; Z)) = faas—i,
for the ranks of the free abelian groups H,(D; ZZ) leads to the following conclusion.
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Corollary 6.4.

Y rank(Hi(DyZ) ¢ = (=t)24=7=2y(t) = 272,

i>0

Theorem 6.3 implies that D has “no homology below half the dimension”: fI,-(D; Z) =
0 for 7 < d — 2. This can be strengthened as follows.

Corollary 6.5. (Milnor [Mi})
The Iink D is homotopically (d — 3)-connected.

Proof. This is vacuous for d < 2 and clear for d = 3. Since homology vanishes below
dimension d—2, we need only check that D is simply-connected (by the Hurewicz theorem).
This can be done by induction on 7, just as in the proof of Theorem 6.3, using the Seifert-
van Kampen theorem. A
Alternatively, one can use a k-connectivity version of the Nerve Theorem, as in (B3,
(10.6)] — this way one does not even use the homology computation of this section. U

Corollary 6.5 is a special case of a much more general result of Milnor [Mi], which he
proves with methods from Morse theory. We remark that for complexified arrangements
AC the (d — 3)-connectivity of D s can very easily be seen from the results of Section 5.
Namely, observe that ICfil,zk = IC(I)\ngf,znp in this case contains the complete (d—2)-skeleton
of KV since r&},)m,, = I'sqr is d-dimensional. Thus £(1) 2 §24-1 354 jts subcomplex IC,(il,zk
have the same (d — 2)-skeleton. But (d — 3)-connectivity is carried by the (d — 2)-skeleton

for any regular CW complex, so the (d — 3)-connectivity of S2¢-! implies that of le,lrzL



7. Cohomology of the Complement.

From our description in Theorem 6.3 of the homology of the link of a complex arrangement,
Alexander duality [Mu, §71] immediately yields the structure of the cohomology groups of
the complement:

Theorem 7.1. (Brieskorn [Br], Orlik & Solomon [0S])
Let C' = C, be the complement of a complex arrangement B of rank r in C¢. Then the
cohomology H*(C; 7Z) of C is free, and its ranks are given by

¥ rank(f(C; Z))E = (~1)x(~1) - 1.

>0

In particular, Hi(C; ZZ)=0fori > r.
The goal of the present section is to establish three additional pieces of information:

(1) we construct explicit (simplicial) cocycles cd on A(Kcomp) (following the Russian
preprint version of Gel'fand & Rybnikov [GR]) such that {(cA) : A € BC(M)} is a
ZZ-basis of ﬁ*(C’; Z),

(2) we give a proof that the cocycles ¢4 and the cycles d4 are Alexander duals of each
other,

(3) we determine the structure of the relations in the cohomology algebra H*(C; 7Z) (first
achieved by Orlik & Solomon [0S]), and comment on the role of complex structure
for these relations.

Let B = {H,,...,H,} again be a complex arrangement in C?. Let (1) be the face poset
of the s(V)_stratification of B. Thus the elements of KMW\0 represent both sign vectors and
cells of the s stratification of S24-1, [t will be useful to switch freely between the two
interpretations.

In the following we again allow that the cell complex under consideration is possibly
a subdivision of K1), In this case the sign vector Z € {i,j,+,—,0}" denotes a possibly
subdivided cell, or cellular chain, in X(1),

We may consider XV 1 {{} to be the augmented face poset of a 2d-ball. To construct
the cellular chain complex D, (K(1);7Z) [Mu, §39] and to compute cellular (co)homology
with it, we choose an orientation for every cell of K(1). This provides a function ) that
assigns a sign A(Z:W) € {+1, -1} to every covering relation Z < W, so that cellular
homology on subcomplexes of T' k) can be computed with the boundary operator

W = NZ:W) Z.
z

At the same time, a coboundary operator to compute cohomology on subcomplexes of
Iy1) is then given by
60Z =X MZ:W) .
1%
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Note that & 1s at the same time a boundary operator for subcomplexes of I'}f,,.

Such an orientation function A can explicitly be constructed for every regular cell
complex, see {CF]. The condition which characterizes ) is that

MZ:WHNW"U) + MZ:W")MW™U) = 0

for 7(U) = r(Z) + 2, where W/, W" are the two elements W that satisfy Z < W < U.
We set A(Z:W) = 0 whenever W does not cover Z. By reorienting the vertices and the

maximal cells of 52¢~!, we may also assume that A(0:W) = +1for 0 < Wand A(Z:1) = +1

for 7 < 1.

(1) Construction of a basis for cohomology. Recall that the order complex A(Kﬁiin,,

vields the barycentric subdivision of the cell complex Leomp. Following the Russian preprint

version of [GR]. we consider for a € [n] the 1-cochain c[{;} on A(Kcomp) defined by

g gy {1 i Zs=4and Z] =1,
3 (Z2<2) {O otherwise.

The coboundary of c{;} vanishes:

f, bea(Z2<Z'<2") =cfNZ <2 =Nz < 2y + N2 < 2
1-140=0 if(2,,2!,2") = (+.i,1),
{0-1+1 =0 if(Z24,2!,2") = (+,+1),
0-040=0 otherwise.

We can now take cup products of these cocycles, to define
ci = cga‘} ~ o~ c‘{;"} € Ck(A(K:comp))‘

for every (ordered) subset 4 = {ay,.. .yak}. € [n]. Since cup products of cocycles are
cocycles, we have

fef =0 forall AC [n].

Explicitly, the cocycles c4 are given (using the simplicial description of cup product) by
+ for s < ¢,

v§<Z°<Z‘<-~-<Z’°)={1 ifzs(“’)z{i for s > 1,
0 otherwise.

The following theorem combines results from Orlik & Solomon [OS]. Bjorner [B1] {or

Jambu & Leborgne [JL]) and Gel'fand & Rybnikov [GR].
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Theorem 7.2.  Let B be a complex arrangement in € with complement C = Cy and
matroid A{. Then
{{cA): A €BC(M), |A] =i}

is a Z-basis of HI(C,; Z) for all 1 > 0.

Proof. In the following D* will denote cellular and C* will denote simplicial cochain com-
plexes. Recall that A(Kcomp) is the barycentric subdivision of I comp- Lhe corresponding
cochain map

sd? : Ci(AUCcomp)) -— Di(rcomp)

is the dual of the subdivision operator [Mu, §17], and induces an isomorphism in cohomol-
ogy. Therefore it suffices to show that the cellular cochains ¢4 = sdﬂ(cg) give rise to a
ZZ-basis

{{c?):4e BC(M)}

for H Trom p: &) in cellular cohomology. This will be achieved by the following observation
(2). together with Theorem 8.3. O

(2) Alexander duality () — (d4). Using the orientation function A, we can express
the subdivision operator sd: by

., sd(Z) = Y M2%2%)..... A(ZF-1.z¥) [2°, Z,..., 2%,

when Z is a cell of rank p(Z) = 2d ~ k, where the sum is over all chains of the form
Z2=2<2"< ... < Z<1. To verify this formula, observe that the right hand side
expression involves every maximal simplex in the barycentric subdivision of the dual cell
of Z exactly once, with coefficient +1. By direct calculation we see that this sd: satisfies
9sd.Z = sd;6Z. Thus the algebraic subdivision operator is a chain map, so its dual sd* is
a cochain map. We use it to define for every ordered independent set A = {ai,...,ax} <a
k-cochain
¢t = sd”(cﬁ) € Dk(FcomP;Z),
which 13 given b,,y
cH(Z) = ci(sdy(2))

C(AZ%2Y) . A2k gk

ifp(Z)=2d—k, Z(A) = (+...+) and

Z=2Z°27'...,Z% is the associated A-chain of Lemm= 4.6(i1),
0 otherwise.

Alexander duality "Mu, §71] asserts an isomorphism
HY(C,: ) = Hogor(Dy; Z)
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for all . Note that both groups vanish for k < 0. For k > 0, the Alexander duality

isomorphism is given by

~ L Be
Hk(rcompgz) = H2d—1—k<r9rlink;z) = H2d—2—k(rlink;z)'

The first isomorphism L is Lefschetz duality for the relative manifold (T, T'jink) [Mu, The-
orem 70.2], and maps

CA € Dk(rcomp; Z)
to the relative homology class of

¢y = Z cN2)Z € Dogey k(T Tiink; Z2).
Zercomp

Here w= use that T'ippmyp is the complex of dual blocks of T that do not meet the link,
and orientations for the cellular complexes D*(Tcomp; Z) and D, (T, Tjink; ZZ) are chosen
compatinly (by the same orientation function )), as in Mu, proof of Theorem 65.1]. The
second :somorphism 8, is the connecting homomorphism of the long exact sequence in
reduced zomology for the pair (T, [jing). It maps {c’y) to the homology class of

dy :=0cy € Dygeg—i(Tlink; B).

We claim that ¢4 = *cly and d4 = £d';, so that the homology class of d 4 is Alexander
dual (up to a sign) to the cohomology class of ¢4. To see this, observe that for every a
the formula for cg’} defines a cocycle on the complement of the hyperplane H,, that
is, on A {Z € K : Z, # 0}). Taking cup products, we get that ¢4 is a cocycle on
A{Z € KV 1 Z, # 0forall a € A}). Applying sd’, we get that c4 is a cocycle on
{Z €K™ :2Z, #0forall a € A}, which is the complement poset corresponding to the
subarrangement B(A) = {H, : a € A}.

This implies that 8c¢', is supported only on {Z e X : Z, = 0for somea € A},
that is, the support of 8¢/, is in D(A) = Usea Sa. Now note that ¢/, has +1-coefficients
exactly on the (2d — k — 1)-cells with Z(A4) = (+...+). Thus ¢’y is (up to a sign) the
chain of :he subdivided cell ¢4 described in Section 6, and ac!, is therefore the chain of

the (2d ~ & — 2)-sphere d 4. u

(3) Relations in H*(C,; ).

We will now use Theorem 7.2 to derive “most of” the multiplicative structure of the
cohomolegy algebra H*(C,;Z). Here we pass to non-reduced cohomology in order to
obtain a unit.

First we note that by Theorem 7.2, the cohomology algebra H*(C,;ZZ) is generated

by its unic together with the 1-dimensional classes (cga]' (1 <a< nj, since

e <C3ak})



by definition.

Using the anti-commutativity of the cup product in cohomology, this implies that the
cchomology algebra can be written as a quotient of the exterior algebra A*ZZ". if a basis
{e1,... e} of Z" is identified with the basis {{c{'}), ..., (ci")} of H1(C,: ).

For the following, let A = {ay,... yar}. be a circuit of the matroid M. The broken
circutt complex of the corresponding submatroid is

BC(M(4)) = 24\ {4, 4\{a:},0}.

Now consider the subarrangement B(A4) = {H,,....,H,,} of B. whose complement Cy4
contains C = Cp.
By Theorem 7.2, we get that

{{lch): A€ BC(1I(A))}

is a ZZ-basis for ﬁ'{CE(A); Z). From this we get in particular that ﬁ"(C,(A}:ZZ) = 0. Thus
the cohomology class of the cochain c£ vanishes, and the same holds for its restriction to
C.. We conclude that

(cA) =0  for every circuit A of M.

4

(Note that by Lemma 4.6(i), we get in fact ¢* = sd%c2 = 0 if A is dependent in MR,
However, if 4 is only dependent in M, then the cocycle ¢# = sd*c4 need not vanish: see
Example 5.6.]

But even more is true: Since <c§\{a1}) is not in the basis, it can be written as a linear
combination of the cohomology classes (cz\{a‘}) with 2 <1 < k. However, changing the
numbering of the hyperplanes/elements, we find that each of the ¥ classes (02\{“‘} ) with
1 £ ¢ < k can be written as a linear combination of the others, while every subset of k-1
of them is linearly independent over ZZ. Hence there is a linear dependence of the form

'
3

k .
3 e (eatlee,
1=1

with ¢; € {+1,-1}.

Corollary 7.3. Let B = {H1,...,H,} be a complex arrangement in €¢. Then the
cohomology algebra of the complement is generated by the classes (c{Aa}), 1<asn It
has a presentation

0 — I — A™Z"- T, E(Cyi Ly — 1.
aj

defiied by (e, 1= ci
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The relation ideal I¢ is generated by elements of the form
k
Loty A AEy AL Neg,, (%)
i=1

for circuits 4 = {ay,...,ar}_, with ¢ € {+1,-1}.

Proof. We have seen above that H*(C;ZZ) has a presentation as stated. To see that the
relations (*) generate the ideal I, observe that they allow us to take any class ¢4 for
which 4 contains a broken circuit and write it as a ZZ-linear combination of classes of
lexicographically smaller sets A’ <., A. Iterating the procedure, we can write every ¢ in
terms of the basis given by Theorem 7.2. Thus the relations (x) generate the ideal. (This
is the standard “straightening” technique to show that the broken circuit complex yields
a basis of the Orlik-Solomon algebra, see [B2)). 0

The precise form of the relations, namely ¢; = (1), was given by Orlik & Solomon
.OS]. This does not follow directly from the combinatorics of the s(*)-stratification. for _
reasons that we will soon explain. However, it is easily derived in deRham cohomology.
Under the isomorphism between simplicial and deRham theory, the generators c_{;} are
mapped to the logarithmic differential forms

1 d¢,
o Vi 27Ti Za )
Now if A = {a1,...,a;} is a circuit, then a simple computation with differential forms
shows \
Z(-—l)"——de“‘ NeonSen g _ g
pot £a, £, s,

so that in fact the coefficients in Corollary 7.3 can be chosen as ¢; = (1)

At first sight it may seem surprising that one needs a detour to deRham theory
to derive this. However, this can be explained by the observation that in a more general
setting (Section 8), the result of Theorem 7.2 (and hence Corollary 7.3) stays valid, whereas
the sign patterns of the relations () change. In fact, one can show [Z2] that if one
considers arran"géments of four 2-dimensional real subspaces in IR* for which any two have
intersection {0}, then the pattern of the coefficients ; in a presentation of the cohomology
algebra does not in general coincide with that of an arrangement with a complex structure.
Nevertheless, such an arrangement admits a stratification of the s(1.type, as we will see
in the next section.
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8. 2-Pseudoarrangements.

The techniques we have used for the analysis of complex arrangements are quite elementary,
and thus quite general. It has been suggested that key results (construction of the Salvetti
complex, structure of the cohomology algebra) should extend to more general situations.
Two results in this direction are:
- Gel'fand & Rybnikov [GR] construct the Salvetti complex of an oriented matroid, and
~ Goresky & MacPherson [GM] compute the cohomology groups of arrangements of
codimension 2 subspaces with even-dimensional intersections.
In the following, we outline a concept of 2-pseudoarrangements, which contains the case
of complex arrangements, and also the just mentioned generalizations. as special cases.
The main results of this paper (construction of cell complexes for the complements, s1)-
siratifications, homology and connectivity of the link, cohomology of the complement) all
Lave straightforward extensions to this greater generality — with the same proofs.

The axiomatic theory of 2-pseudoarrangements (and their combinatorial counterpart:
2-matroids) is not complete and will be discussed in a separate paper [Z2]. We use, however,
thie axiomatic theory of (real) 1-pseudoarrangements and their equivalence with oriented
matroids. The key result there is the PL Topological Representation Theorem of Folkman
& Lawrence [FL}-and Edmonds & Mandel [EM] (see [BLSWZ, Chapter 3]), which implies
that every 1-pseudoarrangement has the structure of a PL cell complex.

Definjtion 8.1. (see [BLSWZ, Section 5.1])
(1) Let S be a (homeomorphic) embedding of S*=1 in $*. Then the complement S*\S
has two connected components St and S, called the sides of S. .
S is a pseudosphere if its embedding is tame, that is, if the closed sides S+ and S-
are homeomorphic to closed k-balls.
(2) A 1-pseudoarrangement (or, arrangement of pseudospheres) is a finite set A = {S, :
a € ‘n]} of pseudospheres in S*, such that
(A1) Sa :=(N,e4 Sa is homeomorphic to a sphere, for all A C [n] (where S = 0 is
allowed), and
(A2) If S4 S, for some A C [n], a € [n]\A, then S4 N S, is a pseudosphere in S
whose sides are S4 N S} and Sy N Sy,
(3! The pseudgarrangement A = {S, : a € [n]} is essential if NogpnjSa = 0.
(4] A signed pseudoarrangement is a pseudoarrangement A = {S, : a € [n]} with a fixed
choice of a positive side S} and a negative side S; for every S, € A.
(5) The position of x € S* with respect to a 1-pseudoarrangement A = {S, : a € [n]} is
given by a position vector s®(x) € {+, —,0}™ whose a-th entry tells whether x € S7.
X € 57 orx € S,. The set of all such position vectors L, = siR(Sk‘} is a poset under
the coordinate-wise ordering of signs induced by:

+ -
N/
0
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'6) The cells of A are the maximal subsets of S* on which the map sﬁl} DSk — L,
is constant. The cells whose position vectors have no zero entry are called topes (or
TegIons ).

Theorem 8.2. (Edmonds & Mandel [EM]) .
Every signed 1-pseudoarrangement 4 in S* induces a PL cell decomposition T4 of S*.
Its face poset is naturally identified with the poset £, C {+, —, 0}n.

The s*/- and s(®)-stratifications of complex arrangements that we have worked with in
previous sections are for their definitions strongly dependent on the choice of linear forms.
[0 the following definition of a 2-pseudoarrangement this is reflected by the need to be able
10 represent a codimension two object as the intersection of two objects of codimension
one.

Definition 8.3. A 2.pseudoarrangement is a finite set B = {S1,...,5n} of (2d — 3)-

spheres in §79-1 satisfying the following two properties:
i) [Nac.s Sa is a subsphere of even codimension, for all A C [n],
i) there exists a 1-pseudoarrangement {Ty,....Tn, Uy...., Uy} in $2¢=! such that S, =

T.n Uy for1 <a<n.
4 1-pseudoarrangement such as in (ii) is called a real freme for B.

Definition 8.3 can be extended to “k-pseudoarrangements”, see Remark 9.3.

Exa;n})le 8.4. For every complex arrangement B = {H1,...,H,} in €% there is an
associated real arrangement

B® = {gRe ... HRe gIm plmy
iz € = IR*, whose hyperplanes are defined by

HRe = {ze?: Im(¢,(z)) = 0},
Hm —(zeC: Re(¢,(z)) = 0}.

With this set-up, we get that
H, = H}}e n H«Em

? 2 . . .
Tiaus every complex arrangement yields a 2-pseudoarrangement (after intersection with
$*#=1), and every choice of linear forms ¢, yields a real frame.

Example 8.5. Goresky & MacPherson [GM, p. 257] consider arrangements of subspaces
of codimension 2 in IR?? with the condition that all intersections of subfamilies have even
codimensions. They observe that such arrangements can have non-representable matroids,
sc they are much more general than complex arrangements.

Subspace arrangements with the “even intersection condition” are examples of 2-
ps-udoarrangements: for this we again write every subspace of codimension 2 as the inter-

scruon of two real hyperplanes and intersect with $24=1,
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Example 8.6. If L is the face poset of 2 1-pseudoarrangement in S%~!, then £Lx £ is the
face poset of the real frame of a 2-pseudoarrangement in $?¢=1 which we will refer to as a
complezified pseudoarrangement. To see this, one can use the Topological Representation
Theorem for oriented matroids: £ is the covector span of an oriented matroid, and £Lx L is
the covector span of the direct sum of the oriented matroid with itself. Geometrically, the
complexified pseudoarrangement can be constructed as the join [Mu, §62] of the complex
I'r with itself.

The preceding has a combinatorial reformulation for oriented matroids, because of the
one-to-one correspondence between l-pseudoarrangements and oriented matroids. This
associates with an oriented matroid £ C {+, —,0}" (in terms of covectors) its complez-
tfication K = LoiL. Just as for real arrangements in Section 5, this gives the X(1) face
poset of the complexification of the corresponding 1-pseudoarrangement, as can be seen
from Lemma 8.9 below.

To perform the Salvetti construction iz this coatext, we have to show (Theorem 8.11)
that KO/ is the face poset of a PL cell complex (then the Salvetti complex is a subcomplex
of T(K!1)°P). The resulting “Salvetti complex of an oriented matroid” is the complex
considered by Gel’fand & Rybnikov [GR.. We will see that it is homotopy equivalent
to the complement S24=1\(|J7_, S,). where {Sy,....S,} is the complexification of the 1-
pseudoarrangement corresponding to L.

After these examples we will now start to develop the theory of 2-pseudoarrangements.
This will be done only up to a point where it is evident that the proofs for complex
arrangements from the earlier sections generalize. '

Definition 8.7. Let B = {S},...,5,} bea 2-pseudoarrangement in $?¢=1, and choose
a signed real frame A = {Th,...\Tn, Uy, U}

(1) Let

sgl) . g2d-1 | {i.}, +,=.0}"

be defined (for1 <a<n,x € §2d=1) py:

3 4y

t, ifxeTft,

5 xeT,
(sgl)(x)) =(+, fxeT,nUF
2 - fxeT,nUr,
0, ifxeT,nl,.



be defined (for 1 <a < 2n,x € S2d=1) by:

fl<a<n and xe T,
, f1<a<n and xe 7T,
ifl1<a<n and x€T,,
ifn+1<a<2n and xe UF_,
, fn+1<a<2n and xe U~

a-—n?

, Un4+1<a<2n and x€U,_,.

(00), =

I +2 1 +

o

\

13) Let KV := s()(524-1) and K := s(2)(S?4~1). These are posets with the ordering
induced as subsets of {1, j,+,—,0}" and {+,—,0}2". (See Figures 2.1 and 2.2).

1) The decomposition of $29=1 into fibers of s(!) will be called the s(1)-stratification of
B, and similarly for s(?),

Let £, be the covector lattice of the oriented matroid of the chosen real frame ATt
is clear that X(® = £,\C. so the topological theory of such covector lattices is available
{sze Chapters 4 and 5 of BLSWZ)).

In the sequel we will assume that the 2-pseudoarrangement B is essential, i.e., that
(2—1 Sa = 0. This implies that A is essential, and hence that £, = 0WX® is a ranked
oset of total rank 2d. Also, we will often suppress the subscript “B” from the notation.

It follows from the connection with oriented matroids that X2 is the face poset of a
regula/r cell decomposition of §24-1 having |JB = 5 U...U S, as a subcomplex. It is not
so obvious that the same is true about X(). This will be shown in Theorem 8.11.

We will write (¥, X) for sign vectors in K(2), letting ¥ € {+.~,0}" denote the first
half (the “T-part”) and X € {+, ~,0}" the second half (the “U-part”) of the vector. Also,
the composition of complex sign vectors (Definition 4.1) will be used.

Lemma 8.9. The assignment (Y, X) = XoiY defines a mapping
s: K@ -, x®

that is order-preserving and surjective. In particular,

.
1

KV = {XoiY : (Y,X) e K?}.

Proof. One sees by coordinate-wise checking that
o(s(x)) = sW(x), (8.1)

for all x € 5241, Hence. o is well-defined and surjective. That o is order-preserving is
shown precisely as in the proof of Theorem 5.1(vi), ¥
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Proposition 8.10. ForZ € K9, let B, = {x € $%-1.:s()x) < Z}. Then By is a
closed ball with boundary 8Bz = {x € §%4-1 . s(x) < Z}.

Proof. It follows from formula (8.1) that
Bz = {x € 5% :s(x) € 671 (kL)) (8.2)

The idea is now to write this in terms of £(2) = £,\0, and then to use oriented matroid
theory to conclude that B is a ball.
Define a real sign vector Y'Z and a set of such FZ as follows:

+, ifZ, =1,
YaZ = {‘1 ifZa=ja

0, otherwise,

XeF? < X,=2, forallacRe(Z).

Ther the definition of ¢ shows that
o7HZ) = {(YE,X)e KDY : X ¢ FT}, (8.3)

“o7M (KLY = (VX)) €KDY <¥Z and X < X' for some X' € FZ3. (8.4)

Note that the surjectivity of ¢ implies the existence of such (Y2,X) € K@, and choosing
a point x € §2¢=1 such that s(1)(x) = Z generically we see that such (YZ,X) € K® exists
with Ze(X) = Ze(Z). This last observation is needed for the forward set inclusion in (8.4).

Combining (8.2) with (8.4) we see that the set Bz is described by the following
inequalities and equalities in §294-1;

Y, <+, Z, =i
Yas-y ifZa:j
Y, =0, if Z, € {+,—,0}
. Xa<$Zoy 2,6 {+,-}
’ X, =0, if Zg =0

Furthermore, by (8.3) there exist feasible points that achieve equality in all inequalities.
Hence. by Lemma 5.1.8 of [BLSWZ) applied to the subarrangement

A = A\{U, :a € [n]\Re(2Z)}

it follows that Bz is a ball. The description of the boundary §B7 is a consequence of the
same iemina. C



Theorem 8.11. Let B be a 2-pseudoarrangement in S24~1 and let K1) be the poset of
sign vectors of its s'V-stratification (with respect to some real frame). Then
(1) the strata of the s'V.stratification are the open cells of a PL regular CW decomposition
'Y of 52d-1,
(ii) KO is the face poset of T1).
(i) JB =S5,U...US, is a subcomplex of PV swith face poset

Kiiy = {ZeXW:2, =0for somea € (n]}.

Proof. Proposition 8.10 shows that {By : Z € K1} gives a covering of $24-1 with closed
balls whose interiors partition S$2¢-!, F urthermore, it shows that the bouadary of each
such ball of positive dimension is a union of balls from the same family. Hence, using
the “ball complex” characterization of regular CW complexes (see Definition 4.7.4 and
associated comments in [BLSWZ]). part (i) except for “PL" and part (i1) already follow.
Part (iii) is clear from the construction.

The s(®-stratification gives a regular cell complex I'®) with face poset (2 = £,\0
which refines I'?). But T'® = T4 is PL, as shown by Theorem 8.2, hence sois 1), [J

Corollary 8.12. The poset (}C“)\ICfilrzk)"P is the face poset of a regular CW complex
T'comp which is homotopy equivalent to Szd'l\(U B).

Proof’ This follows from the theorem together with Proposition 3.1. 0

With this the results for complex arrangements in this paper up to Theorem 3.5
have been generalized to 2-pseudoarangements (for the s(M)-stratification). To be able to
continue with the homology and cohomology computations we have to firs: develop the
combinatorics of KX(})-posets a little more in this general setting.

Proposition 8.13. Let KV C {i,j,+,—-,0}" be the face poset of an s(V.stratified
2-pseudoarrangement. Then

(i) K satisfies the properties (1), (2), (3) and (3') of Theorem 4.3,

(i) The poset 0K satisfies the properties of Proposition 4.4.

Proof. We willyuse the representation X = {XciY : (Y. X) € K{®} givea by Lemma
$.9, and the fact that the real sign vector system K2 C {+,—,0}2" satisfies the covector
axioms (L1), (L2), (L3) and (L3') for oriented matroids [EM] 'BLSWZ, Secticn 4.1]. These
axioms, applied to KX(?), are:

(L1) X € K implies that —Y € K2,
(L2) X, X7 € K implies that XoX' ¢ K@),
(L3) if X, X' € K@ and a € §(X,X"). then there exists X" ¢ K?) such that XY =0 and

Xy = (XoX')y = (X'oX), for all b g S(X, X).
(L37) 3 VX' € K with X' € X and XoX' = X. then there exists 1" € X' %) such that
A< X and X! = X, for all a € S(X, 7).
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Each property (k). 1 < k < 3', of Theorem 4.3 can now be derived for X!/ from the
corresponding property (Lk) for K(2), We will give the details for two cases.
Case b = 2.
ZoW = (XoiY)o(X'01Y") = Xo(i¥oX")oiY' =

= Xo(X'0iY)oiY' = (XoX')o(iY 0iY') =

= {XoX')oi(YoY'), using Lemma 4.2.
Case b = 3: Let Z = XoiY and W = X'oiY'. If Z, = +i and W, = —Z,, then eliminate
in position a between the two vectors (Y, X), (Y, X') € K(2) to get (Y",X") e K@, If

Z, = +1 and W, = —Z,, then similarly eliminate in position a+n. In either case the
vector U := X" oiY" € K1) will have the right properties.
For part (ii) the proof given for Proposition 4.4 applies. 0

Proposition 8.14. Let K) be the face poset of an s()-stratified 2-pseudoarrangement.
Thern the set families

L ={Ze(W): W e K®YUu {[n]}, and

!
é

L® = {Re(W): W e KD} u {[n]},
order=d by inclusion, are geometric lattices.

Proof. For L™ this is easy to deduce from the existing theory. Namely, L® determines the
underlving matroid of the oriented matroid .M® of the 1-pseudoarrangement {T3,...,T,},
by Proposition 4.1.13 of [BLSWZ). (Recall that {T3,...,Ts,Uy,...,Un} is the chosen real
frame.)

For the analysis of L we will go back to Definition 8.3. Let Lg denote the intersection
lattice of B, that is, the set of all intersections of subfamilies S4 = [, Sa, ordered by
reverse inclusion. This is an atomic lattice with least element S5 = $29=1 and greatest
element Spny = 0. Let r(S4) := Lcodim(S,). By the even codimension condition this rank
function has range [d], and the atoms S1,..., S, of Lg are exactly the elements of rank 1.

It remains only to check the semimodularity condition: If Sy € Sk, then r(S4NSy) =
r(Sa4'+ 1. This is a consequence of

cocim(S4 M8x) = codim(SaNTiNUx) < codim(SaNTr)+1 < codim(Sy) + 2,

which follows from axiom (A2) in the Définition 8.1(2) of a 1-pseudoarrangement.

We have shown that Lg is a geometric lattice. Now use that the mapping A — S4
determines an isomorphism L — Lg, as is easy to see by choosing points generically on
each subsphere and taking the zero-set of their s(}).vectors.

With a 2-pseudoarrangement B we can associate two matroids M = M(B) and MR,
defined as the matroids of the geometric lattices L and L®. The proof of Proposition 8.14
shiows that ./ depends only on B, whereas M™® depends on the choice of a real frame for
5.



The concrete meaning of the two matroids M and MR for the case of complex arrange-
ments was discussed in Section 4. The example of [GM, p. 257 shows that the matroid
M may be non-representable over every field, even if B comes from an arrangement of
codimension 2 real linear subspaces. Also, the matroid MR may fail to be realizable.

Lemma 8.15. Let K(!) be the face poset of an s().stratified 2-pseudoarrangement.
Then the statements in Lemma 4.6 remain valid,

Proof. For part (i) let Z = Z° < Z! < ... < Z* be an A-chain. Then Re(Z!) is a flat
of the matroid M™® with a; ¢ Re(Z') and a; € Re(Z!) for t > 1. Thus a; is not in the

MR _closure of {a,,... ;ar}. By induction, we find that A is independent.
For part (ii) one can use the same proof as for Lemma 4.6(ii), where the hyperplanes
H E} are now replaced by the pseudospheres T, i O

We have now assembled enough of the general picture to assert that the results of
Sections 6 and 7 are valid for every 2-pseudoarrangement. All necessary components for
the proofs in those sections have been established in this greater generality.

Using the matroid M = M(B) and the s(V-stratification induced by a real frame, we
can construct spherical cycles d4 in the link ICI(,}TZ,C as in Section 6. and cocycles ¢ on the

chain complex of the complement ICEE,Zn,,, as in Section 7.

Theorem 8.16. Let B = {S;,...,5,} be a 2-pseudoarrangement in S%¢-!, D, =
S1U, ..U Sy its link, Cy = S24-1\D, its complement, and M its matroid. Then
(i) tHe homology of D, is free, and

{{da) : A€ BC(M), |A|=2d-2—1i}
1s a ZZ-basis of f{g(D,;Z), fori>0,
(i) Dy is (d ~ 3)-connected,
(1) the cohomology of C, is free, and
{{c2): A € Bc(M), |4]| =i}

s a Z-basis of ﬁ‘(Cs;Z) for all i > 0. Furthermore, H*(C,:Z) has a presentation
as in Corollary 7.3,
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9. Greater Generality.

The setting of Section 8 does not fully reveal the generality of the methods developed in
this paper. In this section we will therefore mention a few extensions. Since the ideas are
the same, but the necessary notation for their formulation in the more general settings
may obscure their simplicity, we have chosen to keep the discussion very informal here.

9.1. Arrangements of Polyhedra. A polyhedronin IR¢ is by definition the solution set
of a feasible finite set of linear equations and non-strict linear inequalities. Equivalently,
it is a non-empty intersection of finitely many affine hyperplanes and closed half-spaces.
E.g., every affine subspace is a polyhedron. We will call a finite set P = {Py,...,P,} of
polyhedra P, an arrangement.

Suppose that we want to construct a finite regular CW complex having the homotopy
type of the complement C, = IR4\(P; U...U P,). This can be done as follows.

First take an arrangement A = {H,,...,H,} of affine hyperplanes in IR? such that
every P, can be obtained as an intersection of some hyperplanes and half-spaces coming
from A. For instance, A can be put together as the union of minimal such arrangements
chosen individually for each P,, a € [n]. Next, embed IR¢ into IR4+! by the mapping
x = (x.1), and let A" = {H{,H{,...,H!} be the central hyperplane arrangement in
IR?¥! defined by Hj = {x € IR%*! : z44) = 0} and H! = spanH,, for 1 < a < s. Finally,
let £ L4 be the face poset of the regular cell decomposition I' 4 of S¢ induced by the
intersections HINS4, 0< a < s. This cell complexis PL, since it is polytopal. Polytopality
follows from known facts as in the proof of Theorem 2.6.

Now, let Ty := {x € Sd . zi+1 < 0} U {x € Sd . 2441 > 0 and X/:Dd-j.l e
Py U...U P,}. This is by construction a subcomplex of I' 4, and S¢\Iy is by radial
projection homeomorphic to C,. Let Ly be the face poset of I'g, £y C £. It follows from
Proposition 3.1 that (£\L£o)°” is the face poset of a regular CW complex I'comp which is
homotopy equivalent to C,.

Essentially the same construction has been considered for arrangements of subspaces
by Orlik [02]. He obtains that the chain complex A(L£\Lo), i.e., the barycentric subdivision
of I'comp, is homotopy equivalent to C,,.

There is 2 still more general version of the preceding which models complements of
unions of polyhedra in 1-pseudoarrangements [BLSWZ, Section 10.1]. For this, the more
general proof for the PL property from Theorem 8.2 is needed.

9.2. Arrangements of Subspaces. To achieve greater economy with the number
of cells needed for the cell complex T'comp one can use the idea of the s(D._stratification,
suitably generalized. In Section 9.3 this will be described in a way that covers a special
class of arrangements of linear subspaces. The formulation for general arrangemen:s of
Linear subspaces (with no restrictions on their dimensions) should be <lear. Arrangements
of affine subspaces can be treated in the same way after a reduction to the linear case via
an embedding of IR? into IR4*!, as explained in Section 9.1.
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Given an arrangement A = {L;.....L,} of linear subspaces in IR¢, the s(!).strati-
fication requires the choice of a flag of subspaces

RY=NO 5 N 5 5 ylke) = Lg,

with k, = codim(L,), for each 1 < a < n. Then there is a poset I, of signs recording
the position of x € IR with respect to L,, and providing the entry in position a in the
sign vector s(!)(x), see Section 9.3. The poset of such sign vectors s()(IR%) has a filter
which via Proposition 3.1 provides a regular cell complex I'comp having the homotopy type
of C, =IR4\(L; U...UL,).

The method for (co)homology computations in this paper breaks down in this gen-
erality. For this we need some matroid structure. In Section 9.3 a suitable framework
with such structure will be described. A combinatorial formula for the linear cohomology
structure of C, for any subspace arrangement was given by Goresky & MacPherson [GM].
It shows that the cohomology of C is in general not torsion-free.

9.3. k-Pseudoarrangements. Define a k-pseudocrrangement to be a finite set B =
{S1..... Sn} of (k(d = 1) — 1)-spheres in $*¥?~! such that:
(1) Sa:=NaeaS, is a subsphere and codim(S4) = 0 (mod k), for all A C [n],
{ii) there exists a 1-pseudoarrangement {Taj}1<a<n,1<j<k in S¥¢=1 such that S, = Ty N
o NTgp,foralll1 <a <n.
This, specializes to Definition 8.3 for k¥ = 2. The T,;’s need not be pairwise distinct.
Examples of 4-pseudoarrangements are given by hyperplane arrangements in quaternionic
vector spaces.
Most of what is done in Section 8 goes through in this setting. The subspheres S4
ordered by reverse inclusion form a geometric lattice, and this provides the matroid M(B).
Let us describe the construction of the s(V)- and s(¥)-stratifications. For this choose
a real frame {T,;} as in part (ii). The s*)-stratification is the cell decomposition of
S*4=1 induced by this l-arrangement, and its corresponding poset of sign vectors K(¥) C
{+,—,0}F".
The s(V)-stratification requires the flag of intermediate spheres
Sk=l=TO@O 57 5 5T® = 5,

p] 4

where TV =T,; n...N T,;. The set of signs in this case is
Tr={0,41,-1,42,-2, ... +k, =k}

with partial order: s <t <= is| < |t|, for all s,t € . The position of a point x € S¥4~1
with respect to the subsphere S, is given by 0if x € S, and by +s (resp. —s) if x is
on the positive {resp. negative) side of T(¥=s+!) in T¢¥~%)  Finally, the position vector
s'H(x) ¢ Tx" is the vector which in the a-coordinate records the position of x with respect

to S,.



The poset of position vectors s((S*d-1) C £," is a CW poset which can be split into
a part giving a cell complex for [ JB = Sy U...U S, as well as a cell complex Tcomp that is
homotopy equivalent to $¥?=1\ | J B. The topological properties of the “link” |UB and the
complement §¥¢=1\ | | B derived for the k = 2 case in this paper generalize.

For linear pseudoarrangements (for which every S, is an intersection of S¥¢=! with a
real vector space of codimension k in IR*?) the freeness and ranks of cohomology follow from
the work of Goresky & MacPherson [GM, p. 239]. Our approach adds some information also
in the linear case, namely combinarially constructed Z-bases for homology and cohomology
and the fact that the link {JB is (d — 3)-connected, independently of .

Figure 9.1 shows the poset T4 of quaternionic signs, as used for the s(!)-stratification
of quaternionic hyperplane arrangements. We have here relabeled 2 — i, 3 +— j, 4 — £ in
accordance with the customary notation for a basis of the quaternions.

~k

;><;
1><
;><:
5 \0/

Figure 9.1. Quaternionic sign poset.

9.4. k-Matroids. Let I denote the poset of signs defined in Section 9.3. For sign
vectors Z, W € Z\" define the composition ZoW and the separation set S(Z,W) as in
parts (iii) and (iv) of Definition 4.1. We define a k-matroid to be a family of sign vectors
K C ;" satisfying the following axioms:

(0) 0ek.

(1) Z € X implies that —Z ¢ XK.

(2) Z.W € K implies that ZoW € X.

(3) Z.W € Kywith a € S(Z,W) implies that there exists a vector U € X such that

Ua < Z5,We and Uy = (ZoW)y = (WoZ), for all b ¢ S(Z, W).

Thus. 1.matroids are the same thing as oriented matroids (given in terms of their cov-
ectors). The K(¥ face posets of complex arrangements (Theorem 4.3), and also of 2-
pseudoarrangements {Proposition 8.13), are examples of 2-matroids. More generally, the
K1) augmented face posets of k- pseudoarrangements are k-matroids.

The most interes:ing case of k-matroids (except for k = 1, i.e., oriented matroids) is
that of k = 2. The re Iatlonshlp between 2-pseudoarranrrements and 2- matroids. with or
without extra “complex” structure, will be further studied in [Z2].

We remark that :he process of complexification of an oriented matroid £ — LoiL.
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described in Example 8.6, can be generalized so that it converts a k-matroid into a pk-
matroid, for any k,p > 1.
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