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1. Introduction

This paper will describe some recent developments in an area where
combinatorics and complexity theory on one hand and geometry and topol-
ogy on the other have interacted in several fruitful ways. By a subspace
arrangement we mean a finite collection of affine subspaces in Euclidean
space R™. There is a long tradition of work on hyperplane arrangements,
i.e., concerning subspaces of codimension 1. Here, however, the empha-
sis will be entirely on arrangements of subspaces of arbitrary dimensions,
about which much less is known.
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To motivate and prepare for the main topic, I will begin with a few com-
ments about the study of hyperplane arrangements. There are two some-
what separate traditions here. One is combinatorial and studies mainly
enumerative and structural properties of R-arrangements (real hyperplanes
in R"). The other is topological and mainly concerned with the topology
of spaces associated with C-arrangements (complex hyperplanes in ).
These two traditions were pursued more or less separately for a long time,
although reflection arrangements (of finite Coxeter groups) always provided
an area of interaction. A more unified view of the field has emerged in re-
cent years, and much could be said about the vigour and breadth of current
research on hyperplane arrangements. However, this has recently been done
in two book-length expositions, see Bjorner, LasVergnas, Sturmfels, White
& Ziegler [BLSWZ] and Orlik & Terao [OT1], of which the former mostly
deals with the combinatorial and the latter with the topological aspects.
So, my comments on hyperplane arrangements can be very brief.

An affine hyperplane cuts E” into two connected regions. Several hy-
perplanes disconnect F:" into more regions, some of which may be bounded
and others not. This simple fact makes the beginning of the combinatorial
study of hyperplane arrangements. How many regions make up its com-
plement? How many bounded regions are there? What can be said about
the structure of these regions, their numbers of faces of various dimen-
sions. their incidences. etc.? For instance. look at the line arrangement in
Figure 1

Figure 1.

It divides B2 into 12 regions. of which 2 are bounded. We can also observe
that it contains simple intersection points (where only two lines meet) and
triangular regions. These are all special cases of general facts, see [BLSWZ,
Chapters 4 and 6}.

The enumeration of regions of various kinds in the complement of a real
hyperplane arrangement has a long history going back to the mid-1800’s,
and many nice formulas for special cases were discovered over the years.
However, a satisfactory explanation and general formula was not achieved
until 1975, when Zaslavsky published his enumerative theory [Za). His main
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finding is that the number of regions of an arrangement A is determined
by the intersection lattice L4 (defined in Section 2) in terms of its Mdbius
function u.

Theorem 1.1 [Za]. Let A be a hyperplane arrangement in R™. Then

#{regions} = Z |n (0,z)|

z€La

> w(02)

r€la

#{bounded regions} =

This result gives a first indication of the important role played by inter-
section lattices in the theory of arrangements. We will later see many other
examples of the amount of information encoded into these combinatorial
objects. Figure 2 depicts the intersection lattice of the arrangement from
Figure 1. with all values p (0,z) of its M&bius function indicated.

a 1 1 3

Figure 2.

A complex hyperplane in C* also disconnects the space C* = R, but
only in a higher-dimensional sense: its complement is 0-connected (i.e.,
arcwise connected) but not 1-connected (simply connected). This can be
easily visulized only for the case n = 1.i.e.. for the hyperplane {0} in C.

If A is an arrangement of complex hyperplanes in C*, then its comple-
ment M4 (i.e.. those points of C" that do not lie on any of the hyperplanes
in A) is a space with non-trivial tppology. The relevant combinatorial
invariants are the Betti numbers 3' (Ma), i.e., the ranks of the singular
cohomology groups H "(M4). Recall that B°(T) is the number of con-
nected components, for any space T, so that the Betti number sequence
B(Ma) = (8°8"....) is the natural generalization of the region-count that
we met in connection with R-arrangements. Note also that B (M4) =0
for all i > 0 for an B-arrangement A (all regions are contractible cones), so
Theorem 1.1 in fact gives complete information about the Betti numbers
in this case.

The sequences F(Af4) were determined for the complexified braid ar-
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rangement (soon to he defined) by Arnol’d [Ar]] in 1969, and more gener-
ally for all complexified reflection arrangements by Brieskorn [Br] in 1971.
Brieskorn also showed that the cohomology groups H' (A 4) are torsion-free
for all complex hyperplane arrangements A. The general rule for computing
B (M 4) was found by Orlik and Solomon [0S] in 1980. As in Theorem 1.1

it involves the intersection lattice L4 and its Mobius function p.

Theorem 1.2 [OS]. Lef A be a complex hyperplane arrangement in C*
with complement M 4. Then

g (M= Y. |u(bz)| . foralli

T€L A
codim®(z)=i

Here codim®(2) = n — dim®(z). where dimc(x) is the complez dimension

of z.

Theorems 1.1 and 1.2 are clearly related, and it is interesting to com-
pare them in case A is an P-arrangement and AC its complexification. By
this we mean that the same real forms (;(z) = 0 that define the hyper-
planes of A in " are used to define the complex hyperplanes of AC in C*.
It is easy to see that A and AT lLave isomorphic intersection lattices, so
the following invariance of combinatorial properties under complexification
can be deduced from Theorems 1.1 and 1.2:

#{regions of M4} = Z B (M 4¢)
i0
(1.1) #{bounded regions of A4} = |\ (M4e)]

For instance, the complexification of the line arrangement A in Figure 1
is an arrangement of 5 complex lines in C? whose complement Myc is a
4-manifold with Betti numbers 3 (2 4¢) = (1.5,6,0,0) and Euler charac-
teristic \ (M 4c) = 2. as can be quickly seen from Figure 2 and Theorem 1.2.

There is one particular family of hyperplane arrangements which has
been the starting point for many investigations and which today occu-
pies an in every sense central position in the theory. This is the family
of braid arrangements A, » and their complexifications .AS‘._, (the nota-
tion will be explained in Section 3.1), defined in terms of linear forms by
Ano = {z; — 2;]1 <i < j < n). This is the reflection arrangement of
the symmetric group S, (acting on R” by permuting coordinates), and it
is easy to identify its intersection lattice with the partition lattice I, (i.e.,
all partitions of the set {1,... ,n} ordered by refinement). It was shown in
1962 by Fadell, Fox and Neuwirth [FaN] [FoN] that the fundamental group
of the complement of A% , is the pure braid group, while all its other ho-
motopy groups vanish. In particular, .AS'Q is a K(m,1) space. This result
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was in 1972 extended by Deligne [De] to all reflection arrangements (and
a little beyond), but otherwise few general results are known about homo-
topy properties of complements of complex arrangements. See [OT1] for
more about the braid arrangement and the topology of complex hyperplane
arrangements generally.

So, what about general subspace arrangements? What are the relevant
questions to ask, both from a combinatorial and from a topological point
of view? I hope to have made it clear with the preceding discussion that
the fundamental question, whose answer would indicate whether a useful
general theory exists or not, is whether a combinatorial formula for the
Betti numbers of the complement M4 of a general subspace arrangement
A in terms of its intersection lattice L4 (or some similar combinatorial
gadget) can be found.

Such a Betti number formula of striking simplicity and elegance was
in the mid 1980s found by Goresky and MacPherson (published in 1988).

Theorem 1.3 [GM]. Let A be a subspace arrangement in R” with com-
plement M4. Then

Bi (Ma) = Z -“~codin1 (r)=2-1 (0,2‘) :

r€La-1{0}

In this forniula 34 (0. x) is the rank of the d-dimensional reduced sim-
plicial homology group of the order complex of the open interval (0,1‘) in
La. The meaning of these terms will be explained in Section 2.4, and a
more complete discussion of the Goresky-MacPherson result (a formula for
the actual cohomology groups) will be given in Section 7.

Theorem 1.3 contains the Betti number formulas of Theorems 1.1 and
1.2 as special cases. This is easy to see because of a special relation, due
to Folkman [Fo]. which for B-arrangements takes the form:

. (_l)codlmlrly (0,1.) , ifi=0
1.2 Bco im (r)-2-i (U.2) = . .
(12 ann -2 (0.3) {0 Lifi#0

and for C-arrangements:

- _ _ codim®(x) A - s C
(1.3) Bo. codimeir)—2-i (0,2) = { (=1 #(0.2) i= COd.lm (=) .
0 ,otherwise
This kind of relation is quite special and depends on the fact that the inter-
vals [0, 2] are geometric lattices in the case of hyperplane arrangements (see
Theorem 4.5.1). In general we find that 34 (0,z) # 0 for several dimensions
d, so the Goresky-MacPherson forinula cannot be simplified to a form where
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only the Mobius function of L4 occurs. This may seem discouraging for
potential applications, since a very rich combinatorial theory exists for the
Mobius function, making explicit computations possible. However, there
are also some combinatorial tools for computing Betti numbers of finite
posets, and although more cumbersome to use than the Mobius function,
such tools combined with Theorem 1.3 have produced explicit calculations
in some cases. This will be exemplified in Section 8.

The breakthrough of Goresky and MacPherson not only opened up
the area of subspace arrangements as a promising field of study, it has also
provided a new perspective on complex hyperplane arrangements. The
viewpoint of [GM] is to see these as just a special kind of arrangement of
real subspaces of codimension 2 in R2n = C*. Continuing in this direction,
one is led to single out a class called “c-arrangements” of arrangements of
real subspaces of codimension ¢ which preserve the essential features from
the hyperplane theory. This is done by Goresky & MacPherson [GM], who
observe that the crucial combinatorial fact that make “hyperplane-type”
results true is that the intersetion lattice is a geometric lattice. This guaran-
tees vanishing of homology as in (1.2) and (1.3). Thus, most general facts
about C-hvperplane arrangements can be generalized to 2-arrangements
(and to c-arrangements). except for some fine details concerning the multi-
plicative structure of the cohomology algebra, as was shown by Ziegler [z1).
Here both F.- and C-hyperplane arrangements will be treated primarily as
special cases of c-arrangements. see Section 4.2.

The material of this paper is organized in the following way. In Sec-
tions 2-5 1 will discuss elementary combinatorial aspects of subspace ar-
rangements. Several examples will be given, showing how subspace ar-
rangements naturally arise in combinatorial situations, and a general look
at mtersection lattices will be taken.

The basic topological facts are presented in Sections 6-8. This includes
a discussion not only of the complement of an arrangement, but also of the
union of its hyperplanes. The two spaces are of course homologically related
via Alexander duality.

Sections 9 and 10 are devoted to connections with complexity the-
ory. The general idea is that measures of topological complexity, such as
the covering number of a map. the Euler characteristic or the Betti num-
bers computable via Theorem 1.3. can somehow be converted to measures
of computationa) complexity for computational problems with geometric
content.

The final sections contain some brief mention of connections with var-
jous other topics. and in particular with ring theory. The latter stems
from the fact that the union of a subspace arrangement is an algebraic
variety, whose coordinate ring in some cases has interesting combinatorial
properties.
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2. Basic definitions

2.1. A subspace arrangement (or affine subspace arrangement) A =
{Ki1,..., K} in B" is a finite collection of affine proper subspaces K;.
It is called central if all I\; are linear subspaces, i.e., if 0 € I;. Since all
questions treated are invariant with respect to translations we can usually
consider an arrangement to be central if Ky N...N K, # 0.

A d-dimensional subspace z of F:" is said to have codimension n — d:
codim(z) = n — dim(x). A subspace arrangement A = {Ny,..., K¢} will
be called
(i) simple, if Ni C N impliesi = jforall 1 <4,j <1,

(i) pure, if dim (K;) = dim(RKj), forall 1 <i,j <t

(i) d-dimensional. if d = max dim ().
1<i<t
(1) c-codimensional. if ¢ = n<1i1<1 codim (Iv;),
1<i<1

Finally, A is a c-arrangcment if A is central, pure ¢c-codimensional and
¢ divides codim(r) for all intersections 2 = K;, N...N K;,. See §4.2 for
more about this concept.

Due to the space limitations I will only discuss affine and central sub-
space arrangements here. There are also other related concepts, such as
projective arrangcmenis and spherical arrangcments, for which I must re-
fer to the literature. See c¢.g. Goresky & MacPherson [GM] or Ziegler &
Zivaljevi¢ [22).

2.2. Two important spaces associated with an arrangement A =
{N1..... K} in B are:

t
Va = U KNi and Myu=R"-V,,

i=]

called the union and complement. Both are topological spaces as subspaces
of R" (M4 is an n-dimensional manifold), and V4 also has the structure
of a real algebraic variety, being the union of spaces defined by systems of
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linear equations. We will by f"’A denote the one-point caml)\actiﬁcation of
V.4, which is a subspace of the one-point compactification R" = S™. Note
that with this we achieve that V4 and M4 are complementary subspaces
of S".

If A is central we define

Vi=1anstTt  MY=ManSTT o,

where S"~! is the unit sphere in B". The union V4 is contractible in
the central case, but the (singularity) link V§ carries an interesting topo-
logy. Note that in this case the compactification of the union equals the
suspension of the link: V4 = susp(V}).

2.3. The intersection semilattice Ly of an arrangement A =
{K,,.. ,K} is the collection of all non-empty intersections Ki,n...n
K, 1< <...<1, £H, ordered by reverse inclusion: r <y z 2y
This is a meet-semilattice, i.e., a partially ordered set such that a greatest
lower bound (or meci) 2 Ay exists for all z,y € La. There is a bottom ele-
ment 0 = E" below all the others, but in general no top element. Figures 1
and 2 illustrate this concept. see also Section 4.

If A is centra}. then there is also a top element 1=nA=FK;N...NK,
and a least upper bound (or join) tVy = z2Nyexistsin L4 forallz,y € L.
So, we may speak of the infersection latlice L 4 in this case.

Given two arrangements A and B in ", let us say that A is embedded
in Bif A C Ls. In this case L4 has a join-preserving embedding in Lg,
meaning that Ly C L and 2 Vay = Vi y for all z,y € Lx such that
2V y exists.

2.4. e will make frequent use of the order complex of a poset (finite par-
tially ordered set). so the definitions and some basic facts will be reviewed
here. See [Bj2] for more details and references, and also for a condensed
review of the topological notions used.

For a poset P and elements z,y € P, x < y, define

(x.y)y={:€Plx<:<y}
[r.y]={: € Pz <<y},
P> ={:€P|:>r},

and similarly for P27, P<?, PS7 The order complex A(P) is the abstract
simplicial complex whose vertices are the elements of P and whose simplices
are the chains xg < 2; < ... < Tk ﬁ;(P) denotes the reduced simplicial
homology group of A(P) with integer coefficients. We will often consider
the order complex of an open interval (z, y), and to simplify notation we will
write A(z,y) = A((2,y)) and f],-(x,y) = H;((z,y)), etc. When speaking
about topological properties of a lattice L we will always have the complex

8
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A (0,1) in mind.
The Betti numbers 3;(P) are defined by 3;i(P) = rank Hi(P). Itisa
basic fact, due to Ph. Hall in the 1930s (see [St2, p. 120]), that the Mobius

function u(z,y) is the reduced Euler characteristic of the order complex of
the open interval (z,y):

(2.4.1) pley) =Y (=1) Biz.y).

i>-1

3. Examples

Just as hyperplane arrangements naturally arise from graphs (repre-
sent each edge (i, j) by a hyperplane x; = 2;), so subspace arrangements
arise from hypergraphs. This and other examples of subspace arrange-
ments (e.g., coming from reflection groups) will be mentioned in this sec-
tion. Other examples arise from the constructions described in § 5. By a
hypergraph H C 2V we mean a finite ground set V (usually taken to be
[n] = {1,...,n}) together with a collection H of nonempty subsets (e.g., a
simplicial complex).

3.1. For each subset § = {i1.....i,} C[n},s > 2, let ks = {z € R"|
27, = ...=2;,}. Then a hypergraph H C 201 (without singletons) deter-
mines the subspace arrangement Ay = {Ns | S € H}. A special case of
such hypcrgraph arrangements merits special mention, namely when M con-
sists of all k-element subsets on [n]. This is called the k-equal arrangement
and denoted A,, ;. Note that for k = 2 this is the braid arrangement, whose
intersection lattice is T, (the lattice of all partitions of the set [n]). Since
every subspace Ng is the intersection of hyperplanes x; = z;, we see that
every hypergraph arrangement Ay is embedded in the braid arrangement
A, 2. The intersection lattice of the k-equal arrangement A, i is the lattice
I1,, ;- of partitions of [n] with no blocks of sizes 2,3,... ,k — 1. Since the
k-equal arrangements have been studied in considerable detail (in {BL2],
[BLY]. [BW]) they will be frequently used as examples in the following.

3.2. Let {b;..... b,} be a basis of E.". For each subset S = {i,...,4,}
C [n] let K% = span {b,,,...,b;,}. Then H C 2["] determines the sub-
space arrangement By = {IN§ | S € H}. We will call arrangements of this
type Boolean: they are all embedded in the coordinate hyperplane arrange-
ment spanned by the chosen basis, whose intersection lattice is the Boolean
algebra of all subsets of [n]. This construction is particularly interesting
for simplicial complexes A, since the union of a Boolean arrangement Ba
is an algebraic variety whose coordinate ring is the Stanley-Reisner ring
of A (§ 11), and whose topology is closely related to that of A (§ 8.1).

9



10 Anders Bjorner

Furtherimore. the intersection lattice of Ba is antiisomorphic to the face
lattice of A.

3.3. If 7 = (B),....B;) is a nontrivial partition of the set [n], then
let K = Kp,n...NNKpg, = {z € R” | i,j € By = zi = zj, forall
1<i,j<n1<k<p). The shape of 7 is the sequence of block sizes |B;|
arranged in non-increasing order; it is a partition of the number n. Note

that every sublattice of Il,, is the intersection lattice of an arrangement of
subspaces of type Ry.

Given a nontrivial number partition A b n, let
Ay = {Iy | 7 € I, and shape (7) = A}.

This is an orbil arrangement in the sense that A is the orbit of any sin-
gle subspace N, under the natural action of S, or R" (permutation of
coordinates). Note that all such orbit arrangements are embedded in the
braid arrangement. which is the special case A21,..1). More generally,
the k-equal arrangement A, i is the orbit arrangement Ar,.. 1)

The intersection lattice of A, is the join-sublattice of I, that is join-
generated by all set partitions of shape A. For instance, for the rectangular
shape A = (d.d,....d) the intersection lattice of Ax is the lattice of “d-
divisible” set partitions (for which all block sizes are divisible by d}, studied
by Calderbank, Hanlon & Robinson [CHR], Sagan [Sag) and Wachs [Wa).

3.4. Let G be a finite subgroup of GL(E™) and K a proper subspace
of B™. Then the orhit A¢g v of N under the action of G is a subspace
arrangement. The most interesting case is when G is a finite reflection
group (Coxeter group) and " is an intersection of reflecting hyperplanes.
When specialized to the symmetric group S, this gives precisely the class
of orbit arrangements described in § 3.3. :

4. The intersection semilattice

4.1. The intersection semilattice L4 of an arrangement A was defined
in § 2.3. One example was shown in Figure 2, and two more are given in
Figure 4 (based on the F:3-arrangements shown in Figure 3).

10



Subspace arrangements 11

(a) (b)

_._.._..O-__..__.

codim

Figure §

The semilattices are in Figure 4 drawn with their elements on different
levels to emphasize that in addition to the order relation there is a rank

function r : Ly — Il given by r(z) = codim (z). This rank function
satisfies:

(i) r0)=0
(4.1.1) () < y=r(z) < ry)

(#ii) r(z Vy)+r(z Ay) < r(x)+ r(y), if 2 Vy exists.

11



12 Anders Bjorner

The combinatorial information about A that is important resides in the
pair (L4, 7) and not in the order structure of L4 alone.

It is natural to ask, given a finite semilattice L = (L,A) and a function
r : L — [{satisfying conditions (4.1.1), how can one know if(L,r)=(La,r)
for some subspace arrangement .47 Questions of this type seem to have
first been asked in this generality by A. M. Vershik [Vel, Ve2]. There is no
hope for a reasonable answer to the question of an effective characterization -
of rank-preserving representability, since it contains as a special case the
question of representability over R of geometric lattices (or matroids), a
problem which is known to be polynomially equivalent to the existential
theory of the real numbers, and hence is N P-hard — see Bokowski &
Sturmfels [BS] and Shor [Sh].

However, if we forget the rank function and ask only to represent a
given semilattice L as the intersection semilattice L4 of some arrangement
A, then the situation improves: every L can be so represented by some
arrangement A embedded in a braid arrangement Aj 2 for suitable large n.

This follows from a result of Pudlak & Tuma [PT] stating that every finite
Jattice can be lattice embedded into a finite partition lattice. See Rival &
Stanford [RS] for a good survey of lattice results of this kind.

Since every semilattice L is representable as an intersection semilattice
L4, one can go on and ask more about the representing arrangements A.
One such question that has been studied is: what is the minimal dimension
of A such that L = L4? A result of Lovész (see (10.2.1)) implies that for
every n there is a semilattice L of height 2 (maximal chains have 3 elements)
which is not representable as L4 for any central subspace arrangement A
in B, Such an L is. for N sufficiently large, given by the subsets of
[2N] of sizes 0. 1, and 2, except for {i — 1.i},i=2.4,... ,2N, ordered by
inclusion. A non-constructive proof of the same result was given by Sapir &
Scheinerman [SaS). See also Ziegler [Z4] for a discussion of these questions.

4.2. A geometric lattice is a finite lattice that is semimodular and atomic.
This is an important class of lattices and discussed in many places, see e.g.
Birkhoff [Bi], Crapo & Rota [CR], Welsh [We] or White (W1, W2, W3]
A geometric lattice is essentially the same thing as a matroid (§ 12.2), see
e.g. [CR] or [\W1, Chapter 3] for the details of this correspondence.

A geometric lattice L has a rank functionr: L — I4, where »(2') denotes
the common length of all maximal chains from 0 to z. The following fact
was observed by Goresky & MacPherson [GM]:

Proposition 4.2.1. If A is a c-arrangement then L 4 is a geomelric latlice,
and codim (z) =c-7r(z) forallz € La.

A l-arrangement is the same thing as a central real hyperplane ar-
rangement. Central complex hyperplane arrangements are examples of 2-
arrangements, but not conversely: Goresky & MacPherson [GM] construct

12
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a 2-arrangement of nine 4-planes in RS = C® which if it were realizable
by complex hyperplanes would violate the theorem of Pappus. A smaller
example of a 2-arrangement without complex structure, consisting of four
2-planes in B* = C2, was later given by Ziegler [Z1]. So, the class of
c-arrangements strictly contains the real and complex central hyperplane
arrangements and preserve the property that the intersection lattice is ge-
ometric. Note that in this case the rank function (=codimension) is de-
ducible from the order structure alone.

The representation problem arises again: given a geometric lattice L
(equivalently, a matroid) and a positive integer c, is L “c-representable”,
meaning is L = L4 for some c-arrangement A? As was already men-
tioned, there is no hope for a good answer for the most restrictive case
¢ = 1. However, it is easy to see using “c-plexification” (§ 5.2) that ev-
ery t-representable geometric lattice is ct-representable for all ¢ € Z4, so
one cannot a priori rule out the possibility that every geometric lattice is
c-representable for some ¢ > 2. However, this is not the case: L. Lovasz
has shown (personal communication) that e.g. the Vamos matroid is not
c-representable for any ¢. His argument is that a certain rank-function in-
equality due to Ingleton {In] (also in Welsh [We]. p. 158) must hold in every
c-representable matroid. So, the question of c-representability of matroids
is open. but probably hopeless.

4.3. Geometric lattices have a top element and therefore do not arise from
non-central subspace arrangements. However, there is a more general no-
tion of geometric semilattice which specializes to that of geometric lattice
precisely when there is a top element. Due to the space constraints this is
not the place to define or enter a discussion of geometric semilattices, see
Wachs & Walker [WW] for this. Let it suffice to say that if A is an affine
arrangement of real or complex hyperplanes then Lu is a geometric semi-
lattice. The obvious-sceming generalization to “affine c-arrangements” is,
however. problematic (see Ziegler [Z2]). so that geometric semilattices seem
for the time being best suited for the study of hyperplane arrangements.

4.4. We will assume familiarity with the Mébius function p(z,y) of a
poset, see e.g. Stanley [St2] for an account of the basic theory. Whereas
the Mébius function of a geometric lattice has some non-trivial proper-
ties (such as the sign property (=1AFI=M¥)yu(z y) > 0 discovered by
G.-C. Rota [Ro)) this is not the case for intersection semilattices L4 in
general. for the simple reason that every finite semilattice is of this kind
(§ 4.1).

Define the characteristic polynomial of a subspace arrangement A in
R” by

(4.4.1) Paill) = Z p (0, z) 194m=),
Tela

13
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Again, there is much to be said about such polynomials if L4 is a ge-
ometric lattice (see [W2, Chapter 7)), hardly any of which survives the
generalization to arbitrary subspace arrangements (cf. § 8.2). However,
computations in [BLY] and [BL2] for the k-equal arrangements show that
the Mobius function and characteristic polynomial has interesting mathe-

matical structure in special cases. I will quote the following results from
[BL2]:

Theorem 4.4.1. Let p,  and Py (1) be the Mébius function and char-
acteristic polynomial of the intersection latiice of Ani. Furthermore, let

ay,...,ap_1 be the roots of the polynomial pr(z) = l+;r+’+:+.. +(i—'_‘_.—lly
Then

() fos (0.1) = =(n = NI 07",
() Pus(=1)= nl(k — VATl arm=% = — (") T e 0.9).
(i) o0, Pas(DEr = ()]

Here is an explicitly computed example:

Hi.3 (U ]) = 0
(4.4.2) Pss(t) = 1% = 200" + 4513 — 2612
Psa(=1) = =90 = —=pa3(0,1)

4.5. What can be said about the topology of intersection lattices L4?
Again, nothing much in general. since by § 3.2 the face lattice of every
simplicial complex A is (up to order-reversal) the intersection lattice of a
Boolean arrangement Ba. Let us however for later use record the fact that
geometric (semi)lattices have good topological properties.

Theorem 4.5.1. Let L obe either a geomedric lattice of rank r or a
geometric semilattice of rank v — 1 augmented with a top element 1.

(i) Then L has the homotopy typc of a wedge of lp (01)| copies of the
(r —2) -dimecusional sphere.

- (0,1 P S R
(ii)H,-(L).—_{““‘ W ipi=r-2

0 . otherwise

For geometric lattices this result was proved by Folkman [Fo] (part (ii))
and Bjorner [Bj1] (part (i)), and the extension to geometric semilattices is
due to Wachs & Walker [WW]. See also [Bj3] and [Z2].

The intersection lattices of some orbit arrangements A, (see § 3.3) also
have well-behaved topological structure. Part (i) of the following result was

14



Subspace arrangements 15

first shown by M. Wachs, see Sagan [Sag] and Wachs [Wa]; part (ii) is due
to Bjorner & Welker [BW].

Theorem 4.5.2. (i) Let A = (d,d,...,d). Then La, (the lattice of
partitions with block sizes divisible by d) has the homotopy type of a wedge
of spheres of dimension (—"3 -2).

(i) Let A = (k,1....,1). Then La, = oy (the lattice of partitions with
no blocks of size2,3,... . k—1) has the homotopy type of a wedge of spheres
of dimensions n —3 —t(k—=2), for1 <k < {21

So, in these cases all homology groups are torsion-free. Also, the same
good topological behaviour is found in all lower intervals [0, z], which will
later be of importance.

5. Operations on arrangements

The class of all subspace arrangements is closed under various simple
constructions. and these constructions are combinatorially tractable in the
sense that they behave well on the level of intersection lattices. This makes
it easy to construct new arrangements from old ones, and the flexibility in
this respect is of course greater than within the class of hyperplane ar-
rangements. 1 will here list a few basic constructions, the proofs of claimed
properties are immediate.

5.1. Let A be a subspace arrangement in B" and L4 its intersection
lattice with rank function r(x) = codim ().

(i) The contraction to ¥ € L4 is the arrangement {KNK'|K"' € A-
{K}}in K = F9 Its intersection lattice is the upper interval L;>-4I‘
with rank function r'(2) = r{2) — codim (N').

(i) The delction of K € L4 is the arrangement A — {K'} with intersection
lattice join-generated by the subset A — {K'} in La. The deletion of
all subspaces of A that don’t contain 2 € L4 gives a subarrangement
whose intersection lattice is the interval [0,1?] in L4. In particular,
by using contraction and deletion one sees that the class of ranked
intersection lattices is closed under taking intervals [y, z].

(ili) A generic section of A is defined as follows. Take a generic affine
hyperplane H in B" and let A’ = {HNN | K € A}. Then La: = {z €
L4 | r(z) < n} with the same rank function. Thus, by repeated generic
sections any upper truncation {z € La | v(z) < g} can be realized as
an intersection lattice.

(iv) The p-truncation of A,p 2> 1, is the arrangement of all intersections of
codimension p, ie., {z € La | r(z) = p}. In some cases, e.g. for p-
truncations of c-arrangements, the intersection lattice is then the lower
truncation {x € La | v(z) = Qorvr(x) 2 p} of L4. By if necessary

15



16 Anders Bjorner

adding more elements from L4 to the p-truncations one sees that this
lower truncation of L4 can always be realized as an intersection lattice.
Thus the class of ranked intersection lattices is closed under both upper
and lower truncation

As an example, the p-truncation of the braid arrangement is the family
of all spaces Ky (defined in § 3.3) for partitions # with n — p blocks. Note
that the sequence of p-truncations for p = 1,2,3,... provides a stratifica-
tion of the union and a dual stratification of the complement.

5.2. The algebraic process of complezification A — AC, ie., turning a
central arrangement A of real subspaces in R” into the arrangement AC of
complex subspaces in C* = R" defined by the same real equations, has
the following description on the combinatorial level. Since C* = R" @ i{R"
we can place two copies of A into C?, one into the real R"-part and one
into the imaginary E."-part. Then A% consists of all subspaces i + il{ of
C', for N € A.

This can be immediately gencralized to “c-plezification”, for ¢ > 2, an
operation that converts any central arrangement A in B" into an arrange-
ment A° in E: just put B = B" & ...@ R", place one copy of A in
each of the ¢ terms B”, and then take all subspaces K + ...+ K of R*?
generated by N € A. It is easy to see that Lac = L4, and that the rank
(codimension) function has been scaled: rac(2) = c-ra(z) for allz € L4.
The c-plexification of a hyperplane arrangement is clearly a c-arrangement.

The process of c-plexification can be said to originate in the work of
von Neumann [Ne]. He described how to construct lattice embeddings of
the full subspace lattice of F:" (or any other field) into that of " such
that dimension is multiplied by ¢, which is exactly what we are talking
about here. Constructions of such “stretch-embeddings™ for other classes
of geometric lattices were given by Bjorner & Lovész [BL1].

6. Topology of the union and link

As the study of subspace/hyperplane arrangements has developed, the
focus has been primarily on the complement A 4, as far as topology is con-
cerned. In some recent work (e.g. [BZ1], [Fa)], [JOS], [Vad], [ZZ]), the idea
has been to first work with the union, which has more combinatorial struc-
ture, and then pass to the complement via Alexander duality. Following
this trend 1 will here treat the union first.

6.1. The following result says that the union of an arrangement has the
same homotopy type as the order complex of its intersection lattice with
bottom element removed.

Theorem 6.1.1. For every affine arrangement: V4 =~ A (L;G).

16



Subspace arrangements 17

A version of this appears in Goresky & MacPherson [GM, Section
111.2.5).  Their formulation is a bit more involved, and (on p. 244) they
say “this result is surprisingly difficult to verify”. It was rediscovered by
Bjorner, Lovasz and Yao [BLY] in the simple form stated here and with an
extremely simple proof based on the nerve theorem: the covering of V4 by

the maximal subspaces K,..., K,, of A and the covering of A (Lié) by

the subcomplexes A (LEK') vt = 1,...,m, have the same nerve, and all
nonempty intersections are contractible. R

The homotopy type of the compactification V4 can also be computed
from combinatorial data, but this is considerably more difficult to prove.
The following fundamental result is due to Ziegler & Zivalevié [ZZ]. Here
S’ denotes the j-dimensional sphere, “*” denotes join of spaces, and “~”
denotes homotopy equivalence.

Theorem 6.1.2.  For cvery affine arrangement:

V4~ wedge (A (0,2) * Sdim(“) .

TGL:O

The proof of Ziegler & Zivaljevi¢ uses homotopy limits of diagrams of
spaces, a technique coming from semisimplicial topology. This method is
used in [ZZ] to prove several versions of their main result. For instance, if
A is central. the previous formula can be “de-suspended” to the following
formula for the link 1§ = Vg ng7-1,

Theorem 6.1.3.  For cvery central arrangement:

V4 o~ wedge (A (0.1) * Sdim(”—l) .

reL3®

Theorems 6.1.2 and 6.1.3 are best possible in at least two ways:
(1) the intersection lattice L4 alone (without the dimension function)
does not determine the homotopy type of l’:'A and V2 (only of V4), and
(2) the pair (L 4.dim(x)) does not determine \A’A or V{ up to homeomor-
phism. The latter can be seen from arrangements of 6 planes in R3. Also,
Ziegler {Z1] gives an example of non-homeomorphic links coming from two
2-arrangements of five 4-planes in F:® with identical ranked intersection
lattices.

Theorem 6.1.2 implies the following formula on the level of homology
groups:

Corvollary 6.1.4. ﬁ,‘ (\A'A> x> @r)ﬁ ﬁi—dim(r)—l (O,.’l‘).

17
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There are results on the homotopy type of the union of a subspace
arrangement or its compactification also by Nakamura [Nal] and Vassiliev
[Va3, Vad]. The former treats simple homotopy type of spherical and pro-
jective arrangements and the latter proves stable homotopy type. The form
of their results are in my opinion not as simple and explicit combinatorially
as the formulas of Ziegler and Zivaljevi¢ quoted above. I refer the reader
directly to [Nal] and [Va3, Va4] for information about their work.

6.2. It follows from the preceding results that the spaces VA,\7A and
Vi have the homotopy type of a wedge of spheres in many important
cases. All that is needed is (for V4) that Lio has this homotopy type, or
(for V4 and V3) that all lower intervals [0,z] in L4 have this homotopy
type. This is true for geometric (semi)lattices (Theorem 4.5.1) and their
truncations and for the intersection lattices of certain orbit arrangements
A, (Theorem 4.5.2), so the following conclusions can be drawn.

Theorem 6.2.1. The following spaces have the homotlopy type of a wedge

of spheres (of various dimensions):

(1) V4 and Ua. for any truncation A of an affine hyperplane arrangement
{over ¥ or ).

(i1) V2. for auy truncation A of a c-arrangement.

(i) V4, . for partitions X of hook or rectangular shape.

Note that the union of the 2-truncation of a real hyperplane arrange-
ment A (resp. the 4-truncation of a complex hyperplane arrangement) is
the singular locus of V4 considered as an algebraic variety, so such loci
and their compactifications and links are also covered by this result. The
“untruncated” version of part (ii) appeared with another proof in Bjorner
& Ziegler [BZ1]. the rest of Theorem 6.2.1is from Ziegler & Zivaljevié [ZZ)],

or is easily deducible from their results.

7. Topology of the complement

7.1. We now come to the result of Goresky & MacPherson [GM] cited in
the introduction.

Theorem 7.1.1. For every affine arrangement:

B (Ma)= @ Heodim (e)-2-i (0,) -

.rELab

This follows via Alexander duality in Pn = S" from Corollary 6.1.4.

18
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The original proof in [GM] uses stratified Morse theory. The result has
also been proved using spectral sequence methods by Jewell-Orlik-Shapiro
[JOS] and Vassiliev {Va4] and by induction and the Mayer-Vietoris sequence
by Hu [Hu] and Ziegler [Z4]. The Hu-Ziegler approach makes it possible
to relax the requirements on the sets k' € A, they need not be flat affine
subspaces — it suffices that they are topological balls in R” and that the
intersections are “nice”. Ziegler & Zivaljevi¢ [ZZ)] also prove a strengthening
of Theorem 6.1.2 in that generality, thus via Alexander duality providing
a different proof of Bu’s generalization of Theorem 7.1.1.

Theorem 7.1.1 is best possible in the sense that M4 is definitely not
determined up to homotopy type by the ranked intersection semilattice
(La, codim). For instance, take the arrangement in Figure 3a and move
one of the lines into another octant. This changes the homotopy type of
M4, but not L4 or the homotopy type of V4. There is a long-standing
conjecture due to P. Orlik that for complex hyperplane arrangements the
homotopy type of M4 is determined by the geometric lattice L4. This
now seems very doubtful in view of an example by Ziegler [Z1] of two 2-
arrangements of four 2-planes in F:* with the same geometric intersection
lattice but non-isomorphic cohomology algebras.

7.2.  Here are some general facts about homotopy groups of complements
of subspace arrangements of codimension greater than 2. The proof of part
(1) 1s elementary, part (ii) uses Theorem 7.1.1 and the Hurewicz theorem,
and part (iii) is based on a theorem of Serre. See Bjdrner & Welker [BW]
for the details.

Theorem 7.2.1. Lct A be c-codimensional, ¢ > 3. Then
(1) m(Ma)=0. fori<e-2,
(1) meoy (Ma) = ZF, for some k > #{N € A| codim (K) = c}

(1) T (AMA)Y# 0 (in fact. theve is an element of infinite order or an element
of ordcr two), for infinitely many dimensions i.

A famous result of Deligne [De] states that the complexification of a
simplicial real hyperplane arrangement is a K'(7,1) space. Recently three
papers with proofs of Deligne’s theorem have appeared: Cordovil [Co], Sal-
vetti [Sa2] and Paris [Pal]. The first two extend the result to a wider
combinatorial setting (simplicial oriented matroids), while the third gives
a particularly lucid analysis of the original theorem. Theorem 7.2.1 shows
that no more Eilenberg-MacLane spaces are to be found among comple-
ments of subspace arrangements, unless the codimension is 2.

7.3.  The following combinatorial formula for the Euler characteristic of
M4 can be deduced from Theorem 7.1.1 using some basic properties of
the Mobius function. See [BW] for the details. Here P4(t) denotes the
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characteristic polynomial of A (§ 4.4).

Theorem 7.3.1. Lel A bc an affine arrangement in R™. Then
(i) X (Ma) = (=1)"Pa(=1) = T (=1)4m =)y (0, 2).
z€l a

(i1) If A is central, then also

A (Ma)=-2- Z p(0,2).

€L A
codim (r) odd

It follows that y (M4) = 0 if A is central and codim (z) is even for all
r € L4. For the case of complex subspace arrangements the vanishing of
x (M4) is also a consequence of the fact that M4 is a fiber bundle with
fiber C . see Bjorner & Welker [BW]. If A is central and codim () is odd
for all 2 € L3P, then \ (M4) = 2.

7.4. Theorem 7.1.1 gives a description of the additive cohomology struc-
ture of M 4. When A is a complex hyperplane arrangement there is also a
well-known combinatorial description of the multiplicative structure, due
to Orlik & Solomon [OS]. Their presentation of the cohomology algebra
was extended to all 2-arrangements (except for the sign-pattern of the re-
lations) by Bjorner & Ziegler [BZ1].

Also, a linear basis for H* (A 4) was constructed in [BZ1] for any c-
arrangement 4. The clements of this basis are indexed by the so-called
“broken circuit complex™ of the underlying matroid, and the construc-
tion specializes to a well-known basis for the Orlik-Solomon algebra for C-
arrangements (see [W3. § 7.10]) and to a basis for the Varchenko-Gel’fand
ring [VG] for E-arrangements. The “broken circuit basis” of H™ (M4) con-
structed in [BZ1] consists of cohomology classes that are Alexander dual to
the fundamental cycles of a system of explicitly constructed spheres that
are embedded in V¢, for any c-arrangement A.

8. Consequences and examples

8.1. Let Ba be the Boolean subspace arrangement of a simplicial complex
A on n vertices. As was mentioned in § 3.2 the intersection lattice Lg, is
(apart from 0) the face lattice of A upside-down, so if z € Lg, corresponds
to the face o € A then the open interval (0, ) is antiisomorphic to the face
lattice of the link k(o) = {r € A|oUr € A. oNnT = 0}. Hence Theorems
6.1.2 and 7.1.1 imply:

20



Subspace arrangements 21

Theorem 8.1.1. (i) \/’L,: = wedge (lk(o) *Sl"l),
e

(i) H; (\’,,:) & fn=1-i (Mg, ) = @ﬁ‘""'“‘ (1k(c)).

From these formulas it is easy to see that the topology of unions and
complements of subspace arrangements can be almost arbitrarily bad. Take
any simplicial complex A, then Vs, will contain A = lk(0) as a compo-
nent in the wedge and H* (M, ) will have all homology groups of A as
summands. In particular, homology of subspace arrangements needs not
be torsion-free, as is the case for hyperplane arrangements. Using this con-
struction, Ziegler and Zivaljevié¢ [ZZ] showed that every finitely presented
group appears as the fundamental group of the link of some Boolean ar-
rangement. Jewell, Orlik and Shapiro [JOS] also discuss the very general
topological nature of subspace arrangements.

8.2. Having seen how bad things can get in general, let us now look
at some examples with good topological properties. First, let A be a ¢-
arrangement in B™ with characteristic polynomial P4(t). Since L4 is a
geometric lattice, known properties of such lattices (see W2, Chapter 7))
show that Pa(1) = 37, (-1 ) ;1= where w; are nonnegative integers,
we =1, and r = % -codim (NA). Goresky & MacPherson [GM] prove the
following:

Tlleoreln_8.2.1. Let A be a c-arrangement, ¢ > 2, and P4(t) =
Toizo (=1 wit" = Then

(1) all cohomology groups H (M 4) are torsion-free,
(i1) H' (M) # 0 if and only fi=tle-1)0<t1<r,
() Poin (Ma4)= wo+ w2~ 4 wot2e-D 4 4 wpime=1),

The good behaviour of I, i stated in Theorem 4.5.2 is also found in all
lower intervals [0.2] of T1,, ;. Using this and Theorem 7.1.1 the following
1s proved in Bjorner & Welker [BV].

Theorem 8.2.2. Let A= A, ; be a k-equal arrangement. Then
(1) H'(M4) 1s torsion-free, for all i,
(i) H' (Ma)# 0 if and only if i = t(k - 2),0<t< 2]

Several formulas for Betti numbers of M4, , are given in [BW), but no

closed formula for the Poincaré polynomial was found. Note however the

formula for the Euler characteristic x (M4, ,) = (=1)" Pa i (1) in terms
of the roots of the truncated exponential series given in Theorem 4.4.1.
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The Poincaré-polynomials of As 3 and its complexification are

Poin (M4, ,. 1) = 1+ 111t + 2043,
Poin (MS, ) = 1+ 206> + 45¢* + 36¢° + 20¢° + 10¢7,

which serves to illustrate the lack of relationship with the characteristic
polynomial P 3(1) = 6 — 20t? + 45¢3 — 26t? (except for the coincidence
of values at t = +1 that has already been explained). Actually, the three
polynomials are put together by the same atomic parts, namely the Betti
numbers of lower intervals [0, z] as explained by Theorem 7.1.1, but these
parts are combined and distributed over the various dimensions in differ-
ent ways. For instance, the only nonvanishing Betti numbers of Il¢ 3 are
B1 = B2 = 10, and these contribute to the homology of A¢ 3 (and -As,s) in
dimensions 1 and 2 (resp. 6 and 7), while their contribution to Ps s(t)} is
y (0,1) =—31+ 8, =0.

Part (1) of Theorem 4.5.2 uimplies the following for orbit arrangements
Ay with A of rectangular shape.

Theorem 8.2.3. Let A=(d.d,...,d). Then H (M4,) # 0 if and only
if i=0o0r i=n—25% -1, and all cohomology groups are torsion-free.

8.3. Let A and A’ be two subspace arrangements whose intersection lat-
tices are isomorphic (as abstract posets without rank function). Then
Sizoﬁ"(]\]A) = S,'zo,'i" (M 4/), as is shown by Theorem 7.1.1. In par-
ticular, the sum of Betti numbers of the complement is unchanged by
c-plexification. For ¢ = 2 (complexification) this is called the Af-property, a
concept with interesting algebraic-geometric background, see Orlik & Terao
[OT1] and Shapiro & Shapiro [ShS]. The work of Goresky & MacPherson
[GM] shows that for the class of spaces studied here the M-property is an
essentially combinatorial phenomenon.

8.4. If A is the p-truncation of a real hyperplane arrangement (§ 5.1)
then H' (M4) # 01f and only if i = p— 1. For instance, for p-truncations
of the braid arrangement the following is computed in [BL2]:

n—p

(8.4.1) rank {4 (MA(,,) =Y hrSp+r-1,r7)

r=1

Here S(m,r) is the Stirling number of the second kind, i.e., the number of
partitions of an m-set into r blocks.

Furthermore, the p-truncation of a complex hyperplane arrangement (p
even) in € has non-vanishing reduced cohomology precisely in dimensions
p—1,p,p+1...., % (p + codim (NA))—1, and similarly for c-arrangements.
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8.5. Consider the space R9[n, k] of all ordered n-tuples (z1,...,2n) of
points 2; € B9 such that no point occurs k times. This is a submanifold
of R4 called an ordered configuration space by Vassiliev [Vad}]. For d =1
we get the complement of the k-equal arrangement An i, and it is easy
to see that R9n, k] in general is the complement of the d-plexification of
An i Therefore, the cohomology of R%n, k) is governed by its intersection
lattice I1,, &, and it follows from Theorem 4.5.2 that H* (]Rd[n, L]) is torsion-
free. Betti numbers can be computed from Theorem 7.1.1, and this was
carried out by Bjérner & Welker [BW] for the cases d = 1 and d = 2
(complexification). It turns out that R?[n, k] = M,c  has non-vanishing
cohomology in dimension d if and only if d = 0 or there exist integers
1<m<t< |2 suchthat th <d+m—1t(k—2) <n Fork= 2 (the
space of n-tuples of distinct points in R9) non-zero cohomology occurs only
in dimensions that are multiples of d — 1, as shown by Theorem 8.2.1.

Let P! be the space of real monic polynomials of degree n: 2" +
a1=""1 4 ...+ day-1: + ay.a; € B. Similarly, let P2 be the space of
complex monic polynomials of degree n. These are just spaces of sequences
(ay.....an). 80 Pl = F" and P2 = . Let Ei. be the subspace of all
polynomials having some root of multiplicity k or higher. For i = 1,2 there
is a continuous map (surjective if i = 2)

(8.5.1) f,’l,“. :P_"A[n‘k]—-7-'7""7 —Ei,

which sends x € B:[n.k] resp. = € Cn, k] to the monic polynomial with
roots 1.2, ..., &n. This is a polynomial map having the elementary sym-
metric functions as coordinates. Note that f,';'k is invariant under the action
of S, on Ei[n.k] and this action is free on F:'[n,2] (all orbits are of size
n!). Thus for i = 2 there is an identification Pj — £3 = E?[n,2]/S,, and
this is even a diffeomorphism by a result of Arnol d (see [Va4, p. 19}). The
second space is the orbit space of the complement of the complexified braid
arrangement modulo permutation of coordinates, i.e. what Vassiliev [Va4]
calls the unordered configuration space of n distinct points in P?=C Itis
known to he a A (7. 1) space with the braid group as fundamental group.

Spaces of the type P, — £i i = 1,2, and other kinds of configuration
spaces, have been intensively studied by V. 1. Arnol"d and his school, see
Vassiliev’s book [Vad] for a general account. Let me here just quote one
result of Arnol’d [Ar2] (see [Vad4, p. 83]).

Theorem 8.5.1.

{z . fi=t(k-2),0<t< |7,

0 . otherwise.

It is interesting to compare this with Theorem 8.2.2, which shows that
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the space R![n, k] = M4, , has non-vanishing cohomology in exactly the
same dimensions. Is there a systematic explanation for this coincidence?

9. An application to computational complexity

9.1. Consider the following problem from theoretical computer science,
called the “k-equal problem”:

given n real numbers x,,2a,...,z, and an integer k > 2, how many
comparisons z; > z; are needed 1o decide if some k of them are equal:
T, =ri, = .= 25,7
We are talking about the number of comparisons needed by the best algo-
rithm in the worst case. Call this function ¥(n, k).

The answer for k = 2 (the “element distinctness problem”) was given
by Dobkin & Lipton [DL] in 1975:

(9.1.1) +(n.2) = O(nlogn)

I will comment. more on this in § 9.2. Let me now just remind the reader of
the notational conventions used: 4(n, k) = O(f(n, k)) means that there ex-
ists a constant (' such that 5(n, k) < C - f(n,k) for n sufficiently large
(and all 2 < k < n), s(n.k) = Qf(n,k)) means the same but with
v(n.k)y> C- f(n. k), and “©" means “both O and Q”.

The following solution to the k-equal problem was found by Bjorner,
Lovasz and Yao [BLYY):

Theorem 9.1.1. ~(n.k) = © (nlog22).

The upper bound uses fairly standard sorting arguments, and will not
concern us here. The lower bound. which is the difficult and more interest-
ing part, uses the topology of subspace arrangements.

In a geometric reformation the k-equal problem concerns the complex-
ity of deciding “r € V4, " for points » € B". Also, the comparisons
“z;—2; > 07 are special cases of linear tests “I(z) > 0, for linear forms
I(x). Thus from a geometric point of view we are led to study the more
general problem:

(9.1.2) given a subspace arrangemenl A, how many linear lests
are needed (by the best algorithm in the worst case) o
decide “z € V4" for poinis z € R"?

It is only natural to expect that the topological complexity of A, as mea-
sured by the cohomology of M4, should have some bearing on this algo-
rithmic complexity.
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9.2. The computational model for the kind of decision problems described
in § 9.1 is that of a linear decision tree. This is a ternary tree with each
interior node labelled by a linear form, the three outgoing edges labelled
by “<”, “=", “>”, and each leaf (exterior node) labelled YES or NO. The
inputs £ € B" enter the tree at the root node, then travel down the tree,
branching according to the tests performed, and finally reach a leaf where
the answer is read off. Figure 5 shows an arrangement A = {l,l3,ls} of
coplanar lines in R3. Let H,, H, and Hj be planes such that H; N H = ;.
A linear decision tree for the problem “z € V4?” is shown in Figure 6.

/

+
— /
4, 4, A
Figure 5.
O NO-leaf
H O YES-leaf

Figure 6.

Here is how Dobkin and Lipton proved the lower bound (9.1.1). Sup-
pose that T is a linear decision tree for the 2-equal problem. For each
NO-leaf w, let P, be the set of inputs that arrive at w after traversing
T. Clearly, P, is a convex subset of M, ,, and the complement My, is
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the disjoint union of all such sets P,.. In fact, each connected component
of M4, ., must be a disjoint union of sets P, and therefore the number
of components is less than or equal to the number of sets P,; i.e., to the
number of NO-leaves. The argument is of course perfectly general, and in
topological notation we have proved for any tree testing for membership in
an arrangement A:

(9.2.1) number of NO-leaves > 8° (My).

Now, it is well-known and easy to see that the complement of the braid
arrangement has n! regions (Weyl chambers), so the depth of T must be
at least logz(n!) = Q(nlogn), which proves the lower bound (9.1.1).

The method (9.2.1) for obtaining lower bounds is known as the “com-
ponent count method”. It was extended to algebraic decision trees (where
polynomial tests “p(z) > 0" are performed at the nodes) and algebraic
computation trees (described in § 10.1) by Steele & Yao [SY] and Ben-Or
[BOJ, and it has been successfully applied to several problems.

The component count method will clearly not work for the k-equal
problem. k > 2, since 3% (A 4) = 1 (the complement is connected). As
was argued in the introduction. the higher Betti numbers are the rele-
vant combinatorial (not only topological) invariants for general subspace
arrangements. and a bound such as (9.2.1) should be sought in terms of
these.

The following is proved in Bjdrner & Lovasz [BL2]. By the dimension
of a leaf w is meant dim P, (which is well-defined since P, is an open
convex polyhedron in its affine span).

Theorem 9.2.1. Let T bc a lincar decision tree for an arrangement A
i F". Then, for alli:

number of i-dimensional NO-leaves > " (My).

For instance. in Figures 5 and 6 we have 3 (M4) = (1,5,0) and there
are two 3-dimensional NO-leaves and six 2-dimensional ones.

Corollary 9.2.2. The number of {csts needed in problem (9.1.2) is bounded
below by either of:

(i) logs (Z g (MA))
i=0
(i) loga x (M),
(i) loga |z (0.1)].
The lower bound (ii) and a weaker version of (iii) was proved in Bjorner,
Lovasz and Yao [BLY] by a cell decomposition method: the cells P,, for
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all leaves u, “almost™ form a CW decomposition of]}i’:l = S,, having V4 as
a subcomplex. The formula results by refining this decomposition, taking
the expansion of the Euler characteristic as an alternating sum of numbers
of cells and grouping terms. All three bounds result from Theorem 9.2.1,
which is proved in [BL2] by induction on the size of the tree, using the
Mayer-Vietoris sequence on the topological side. The Euler characteristic
lower bound implied by Theorem 9.2.1 was extended to algebraic decision
and computation trees by Yao [Ya).

Now back to the k-equal problem. The geometric analysis of the prob-
lem has shown that we should seek to prove that |x (M, )| = |Pa i (=1)]
or |un x (0,1)] is large enough. This is not always true, however; the for-
mulas in Theorem 4.4.1 show that P, 3(—1) = patsz3(0,1) = 0 for all
n = 3 (mod 4). However, the same formulas can be used to prove that
these numbers are “large enough, often enough”, so that with the help of a
monotonicity property of the function y(n, k) the lower bound of Theorem
9.1.1 can finally be established.

9.3. The following “k-unequal problem” is another variation on the same
theme:

given n real numbers x1.22,... 2, and an inleger k > 2, how many
linear tests are nceded to decide if some k of them are pairwise distinct?

Let +'(n.k) denote this number. Note that this also contains the element
distinctness problem as a special case.

Geometrically this problem concerns testing for membership in the
(n—k+1)-truncation of the braid arrangement. Therefore the Betti number
formula (8.4.1) is relevant. Indeed. the general method of § 9.2 applies, and
leads to the following answer (see [BL2}):

Theoremn 9.3.1. +/(n.k) = O(nlogk).

10. More connections with complexity theory

10.1. How difficult is it to approximately (within ¢) find the roots of a
complex polynomial? This problem has been studied from many points of
view, using different computation models and complexity measures. See
Grigor’ev and Vorobjov [GV], Renegar [Re], Schénhage [Sc] and Smale
[Sm1] for an overview and further references.

An interesting topological method for getting lower bounds was intro-
duced by Smale [Sm2]. He uses algebraic computation trees as the model
of computation, and the number of branch nodes as complexity measure.
The result of Smale was later improved by Vassiliev [Val] to essentially
optimal form, by refinement of the same method. The topology of certain
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spaces closely related to the braid arrangement plays an intrisic role in this
work.

I will describe here a few aspects of the Smale-Vassiliev work, as the
space constraints-permit. Apart from the statement of the results I hope
to get across why the braid arrangement is relevant for this problem.

By an algebraic computation tree we will here understand the following.
The interior nodes are of two kinds: cemputation nodes and branching
nodes, the former with one son and the latter with two. An input string of
real numbers is fed into the tree at the root node and then the computation
proceeds as a downward path through the tree. At each computation node
a rational function is evaluated from arguments coming from the input
string or values computed earlier along the path. At each branching node
one of the rational functions already computed is compared to 0, and we
pass to the left or to the right depending on the outcome. The process
terminates when a leaf is reached, and the algorithm then presents some
of the values computed along the path as output. Clearly, the number of
leaves equals the number of branching nodes plus one.

A simple example of an algebraic computation tree is shown in Fig-
ure 7 to illustrate the definition. 1t computes the function Im(z)? +
l: CE=2- R((:)g\ for wiputs = = 2 + iy € T.

No Yes
‘f!=y2—51 fa=-’”2

Figure 7.

Now consider the following problem:

Given a compler polynomual p(z) = =" +a1z" P +.. .+ ap-12+an and
€>0. find &.,....& € T such that if z3,..., 2, are the rools of p(z)
suttably ordered then |§ — 2| < € for 1 <i < n.

Define the complexity T(n,¢) to be the smallest number of branching
nodes in any algebraic computation tree that accepts the string (ai, ..., an)
as input and at each leaf outputs strings (;.. .. ,&,) of e-approximate roots
as required.

The result. of Smale [Sm2] is that 7(n,€) > (log, n)"’/a, for sufficiently
small € > 0. The following strengthening is due to Vassiliev [Val, Vad].
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Here Dy (n) denotes the sum of the digits in the expansion of n in base D,
and the minimum is taken over all prime numbers p.

Theorem 10.1.1. »n — min Dy(n) < r(n,e) <n—-1,
for sufficiently small ¢ > 0.

Note that if n is a prime-power number then the two bounds coincide,
so T(n,e)=n~—1.

The method of Smale, also used by Vassiliev, hinges on the following
link between complexity and topology. The covering number (or Schwartz
genus) of a map f : X — Y of topological spaces is the size k of the
smallest open covering @y, ..., of ¥ such that maps g; : O; = X with
fog; = idp, exist.

Theorem 10.1.2.  Lct g(n) be the covering number of the map (8.5.1)
2 My _—PE~ 5. Then for all sufficiently smalle > 0: g(n) -1<
T(n, ¢€).

The idea. briefly, is to take an optimal tree T and for each leaf w look
at the set P, of all inputs that produce a computation path leading to
w. This creates a partition of ’P;; into 7(n, €} + 1 pieces P,, which after a
sequence of topological manipulations eventually is converted into an open
covering Oy.... . Qs 141 of PS = S5 having the required sections gi with
respect to the map f2 ..

The work that remains to prove the lower bound in Theorem 10.1.1 is
now to find a good estimate for the covering number of f,?'-_,. This part of
the proof is entirely topological. and it is here that Vassiliev was able to
improve on the estimate of Smale.

It should be mentioned that Vassiliev’s results go much further. For
instance, he proves that if n is a prime-power number then the complexity
of the problem of finding just one root within € is also equal to n — 1. He
has also extended these complexity results to the problem of finding ap-
proximate solutions to systems of polynomial equations in several variables
[Va2]. See [Vad. Chapt. 2] for a general account.

10.2. Representations of graphs by subspace arrangements have been
linked to questions in Boolean complexity theory in recent papers by
Razborov [Ra] and Pudlék & Rédl [PR], and their work poses some in-
triguing combinatorial questions.

Let k be a field (not necessarily B now) and G = ([t], E) a graph, [t] =
{1,...,t}. Then an affine subspace arrangement A4 = {Ky,...,K;}ink"
1s said to provide an affine representation of G if (i, j) € E < K; NK; # 0,
for all 7, . The minimal dimension n for which such a representation exists
is called the affine dimension of G, denoted adimy(G). Taking instead a
central arrangement A and demanding that (7,j) € E & A; N K; # {0}
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we get the parallel notions of a projective representation of G, and of G’s
projective dimension pdimy (G).

Ordering the vertices and edges of a graph G by inclusion, and adding
the empty set, we get a semilattice L(G) of height 2. A subspace represen-
tation of L(G) in the sense of § 4.1 gives a subspace representation of G
in the sense defined here, but not conversely (since distinct edges are not
required to correspond to distinct subspaces here).

Why are graphs related to Boolean functions in the first place? The
connection is this. Let f : {0,1}*® — {0,1} be a Boolean function de-
fined on strings of even length 2n: z = (2;,...,Zn, ¥1,...,¥n). Now, let
X =2{znma) apd ¥ = 21¥1.- wn} where 25 denotes the family of all
subsets of the set S. Then f~!(1) can be viewed as a collection of inci-
dence vectors describing pairs (x,y) € X x Y. Conversely, every bipartite
graph £ C .\ x Y can be coded back to a Boolean function f.

Let Gy be the bipartite graph corresponding to a Boolean function f.
Part (i) of the following result is due to Razborov [Ra], part (ii) to Pudlak
& Radl [PR].

Theorem 10.2.1.  For any ficld k and any Boolean function f:

(i) L(f) > adimy (Gy). where L(f) is the formula size of f in the basis
{—'. t\’,. V} .

(1) L'(f) > pdimg (Gy=2.where L'(f) 1s the minimal size of any branch-

g program computing f.

I refer the reader to the original papers and the references there for
descriptions of these complexity measures and their background, but it
should be clear why results about subspace representations of graphs have
potential applicability to the important problem of proving lower bounds
for the complexity of Boolean functions.

The best lower bound known for pdiny(G) is the following inequality
for the class of graphs Gy obtained by removing an N-to-N matching from
the complete graph KNon:

(10.2.1) pdimg (Gn) = Q(logN),

for every field k of characteristic other than 2. This result is due to
L. Lovasz, see Pudldk & Radl [PR]. Note that a collection of N pairs
of parallel lines in B.? shows that adimp (Gn) = 2 for all N.

What is needed for complexity theory is an explicit class of graphs G,
on t vertices (preferably bipartite) such that pdim (G,) or adim (G;) grows
sufficiently fast with t.
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11. Somnie ring-theoretic aspects

11.1. Let k be a field (not necessarily B or € in this section). If A is
a subspace arrangement in k" the union V4 is an affine algebraic variety,
with vanishing ideal 14 = {p € k{z1,... ,z,} | p(z) =0 for all z € K € A}
and coordinate ring k[A} = k[zy,...,2,])/14. This class of coordinate rings
(and their seminormalization) has been studied by Yuzvinsky [Yul, Yu2],
particularly with respect to the Cohen-Macaulay property. Here I will
mention a few facts about two particular cases that are of combinatorial
Interest.

The first case is the Boolean arrangement BY in k", corresponding
to a simplicial complex A on vertex set [n], cf. § 3.2. It is easy to see
[Yul] that the vanishing ideal I, is generated by all square-free monomials
zi,Z;,...2;, such that {iy,72,... .41} € A. Hence, the coordinate ring
k[A] of BY is the Stanlcy-Reisncr ring of A over k, also called face ring
[St1]. Some arrangement-theoretic aspects of such rings are discussed in
§11.2.

The second case is that of the k-equal arrangement Afﬁ,k ink”, cf. §3.1.
For each partition 7 of the set [n]. define the generalized Vandermonde
polynomial

(11.1.1) pr(eran) = (=),
i=j

where 7 = j denotes that 7 and j helong to the same block of 7. Let b(7)
be the number of blocks of #. The first part of the following result is due
to Li & Li [LL]. the second to DeLoera [Dell)].

Theorcem 11.1.1.  Lel 1, 4 be the vanishing ideal of Vsx .- Then
(1) {ps(x) | b7y =k =1} gcncraics I, ;.
(1) {pa(2) | b7y <k =1} 15 a universal Grobner basis for I, .

The ideal ], ; has an interesting connection to algorithmic graph the-
ory. The stability numbcr o(G) of a graph G = ([n}, E) is the maximum size
of a set S of mutually non-adjacent nodes (i.e., such that 7, € S implies
(7,7) € E). It is well-known that the computation of a(G) is NP-hard.
The following ring-theoretic characterization of a(G) was discovered by Li
& Li [LL):

(11.1.2) o(G) < k if and only if the polynomial I>] (zi — ;) belongs
i>j

(ij)eE
1o In.k -

Thus a(G) can in principle he computed using Grobner basis methods, but
the algorithm is inefficient from the viewpoint of complexity theory. See
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Lovasz [Lo] for a discussion of this and other approaches to the computation
of a(G).

Also the chromatic number x(G) of a graph G has an ideal-theoretic
characterization similar to (11.1.2), due to L. Lovédsz and D. Kleitman. The
ideal in question here is also the vanishing ideal of a subspace arrangement
(a truncation of the braid arrangement), and this ideal has a universal
Grobner basis consisting of certain polynomials of type (11.1.1). See Lovasz
[Lo] and DeLoera [DelL)].

11.2. Let A be a simplicial complex on vertex set [r], and let k be a field.
There are some interesting connections between the Boolean arrangement
BX in k" and its counterpart BE in P"; namely, certain ring-theoretic in-
variants of the coordinate ring k[A] can be computed from the topology of
the real singularity link V§ = Vgn N S™~1. 1 will here assume familiarity
with some basic facts about St.anfey-Reisner rings and commutative alge-
bra, see [St1] for definitions and explanations.

Let Va denote the one-point compactification of the variety VBBAA =

{z € B" | supp(z) € A}. Topologically lAA is the suspension of the link
Ve
A

Theorem 11.2.1. For any field k.
(i) dimk[A] = max{i | H; (\A"A;k) # 0},
(i) depth k[A) = min{i | H; (\A/A:k) # 0}.

Proof. The following formula for reduced singular homology with coeffi-
cients in k can be deduced from Theorem 8.1.1 via the Universal Coefficient
Theorem-

(11.2.1) By (Paik) = g Hicpio (koK)

It is known [St1. p. 63] that the Krull dimension of k[A] equals d = max lo].
o

Formula (11.2.1) shows that each ¢ of maximal size contributes a copy of

k to ﬁd <\A"A;k). since ke = @ for such 0. Also, for dimensional reasons

Hi=0ifi>d. This proves part (i).
A result of M. Hochster [St1, p. 70] implies that

(11.2.2)  depth k[A] = min{i | 17,-_|,,|_] (lIko;k) # 0 for some 0 € A}.
Together with (11.2.1) this gives part (it). [m]
This result shows that singular homology of the space f"A with co-
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efficients in k has strong formal similarity with Jocal cohomology of the
ring k[A]. The two concepts are sensitive to depth and dimension in the
same way. In the case k = F: this phenomenon seems related to the origi-
nal geometric motivation for Grothendieck’s definition of local cohomology
[Ha).

The singular homology H; (VA ; k) and the Jocal cohomology H' (k[A])

are usually not isomorphic (local cohomology is in most cases not even
finitely generated). However, they coincide in the following case. If A is
Buchsbaum (i.e., A is connected and ko is CM/k (soon to be defined) for
all 0 € A — {#}), then for all i < dim A:

(11.2.3) H, (ffA;k) = F. (8 k) = Hi(k[A).

The first isomorphisn is a consequence of (11.2.1), the second is due to
Schenze) [Sc].

Let us call a d-dimensional compact topological space X Cohen-
Macaulay over k (written “CAM/k™) if forall2 € X and all i< d

(11.2.4) Hi(N:k)= Hi(X\.N —2:k) = 0.

It is known from theorems of G. Reisner and J. Munkres [Stal, pp. 70-
71] that k[A] is a Cohen-Macaulay ring (i.e., dim = depth) if and only
if the geometric realization of A is C'Af/k as a space. Here are a few
more characterizations of Cohen-Macaulayness in terms of the real Boolean
arrangement Ba.

Theoremn 11.2.2.  The following are equivalent:
(i) k[A] s Cohen-Macaulay.

) Hi (V$:k) =0 for alli < dimA.
(in) V3 zs( AM/k.

(v) I ~1 (A ) =0 for alli < dimA.
(v) Va s CM/k.

(ii
1

Proof. The implications (iii) = (ii) = (iv) and (iii) = (v) = (iv) follow

from \A = susp 1§ and the definition (11.2.4). Theorem 11.2.1 shows that
(iv) = (1). So it remains to verify (i) = (ii).
Construct from A a new simplicial complex A on the vertex set [it] =

{-n,...,=1,1,... ,n}, defined by
€A o {i,-i}g&and{li|]i€d)eEA.

An equivalent geometric description is that A is the symmetrized simplicial
complex generated from A (geometrically realized as a subcomplex of the
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standard spherical simplex B} N S7=1) by reflections in the coordinate
hyperplanes. This picture also shows that A triangulates the space V3.
The complex A is obtained from A by repeated “doubling of points”; the n
vertices of A may be doubled in arbitrary order. It was shown by Baclawski
[Ba, Theorem 7.3] that the CM/k property is preserved both by doubling
and un-doubling of points. Hence, A is CM/k if and only if A is CM/k,
which proves that (i) < (iii). O

12. Cell complexes and matroids

12.1. To study the topology of M4 and ¥4 for a subspace arrangement
A in B" it can be useful to have an encoding of these spaces in terms of a
finite cell complex. Examples of such use of cell complexes are so far limited
to the case of complex hyperplane arrangements and c-arrangements (see
below), but the basic constructions are completely general.

The first construction of a cell complex for the complement is due to
Salvetti [Sal]. His construction, which is quite intricate, assumes that A is
the complexification of a real hyperplane arrangement A’ and describes M4
up to homotopy type in terms of the combinatorics of the real arrangement
A’. Salvetti's work was inspired by Deligne [De]. See Paris [Pal, Pa2] for
a discussion of Deligne's work from this point of view.

In 1990 Bjoérner and Ziegler [BZ1] had the idea of a very simple and
general construction of cell complexes for the complement. This idea was
communicated to P. Orlik. and a version of it was used by Orlik [Or] and
Orlik & Terao [OT1]. Another construction of cell complexes appears in
Nakamura [Na2]. who also considers infinite locally finite subspace arrange-
ments.

The idea of [BZ1. Sections 3 and 9] is the following. Let A =
{Ny,.. ,K{} be an arrangement of subspaces in B™, which for simplic-
ity we take to be central and essential (NA = {0}). Construct a regular
CW decomposition I' of S"~! which contains V4 as a subcomplex, and
whose barycentric subdivision is a PL sphere (more about this in a mo-
ment). Let F4={0cel|o g3} Then a quite elementary argument
shows that the set T'4 ordered by reverse inclusion describes the cellular
incidence structure of a regular C1¥" complex I' 4 having the homotopy type
of M§, and hence of M 4.

There are two main ways of constructing the auxiliary complex T'.
(1) For each k' € A choose a flag of subspaces K=Ko¢eCK C

...Cc K. = E™ and put K_; = 0. Say that two points z,y € sn-1
are equivalent if for all k' € A: z and y belong to the same connected
component of K; — N;_y for some i > 0. Then the equivalence classes are

the open cells of a regular cell decomposition of S»~! that we may use asT.
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Salvetti’s complex [Sal] is equivalent to a special case of this construction.

(2) For each K € A choose € = codim(l) hyperplanes Hi, ..., He such
that ' = ~61H" and let A’ be the collection of all hyperplanes so chosen

for all ' € A. Say that z,y € S"~! are equivalent if for all H € A’: z and
y both belong to H or else to the same connected component of S*~ — H.
Then the equivalence classes are the open cells of a complex that can be
used as T. This is the method used by Orlik [Or] and Orlik & Terao [oT1].

Salvetti [Sal] used his cell complex to give a presentation of the fun-
damental group m (A1) for the complexification of a real hyperplane ar-
rangement. Bjorner & Ziegler [BZ1] used their cell complex in the case of
a c-arrangement to compute the homology of V§ and the cohomology of
M in terms of explicit bases, which are matched by Alexander duality,
and to determine the homotopy type of V3 (cf. Theorem 6.2.1 (ii)). In
the case of a complex hyperplane arrangement the “cellular” method leads
to a quite elementary proof (completely avoiding differential topology) of
the Brieskorn-Orlik-Solomon theorem on the structure of the cohomology
algebra of M4 [BZ1]. The fact that the cell complex T'4 for M4 and the
cell complex T — T4 for 4 are ~combinatorially dual” to each other, as
complementary subsets of cells in the spherical complex T, makes this class
of cell complexes particularly useful in combination with Alexander duality.

12.2. The combinatorial study of hyperplane arrangements is closely
linked to the theory of matroids. Matroids come in several versions, each
of which can be defined in a multitude of ways that I cannot discuss now,
see e.g. Aigner [Ai], Bjorner. Las Vergnas, Sturmfels, White & Ziegler
[BLSWZ], Welsh [We], or White [W1, W2, \V3]. Here is one approach that
is particularly uscful from the arrangements point of view.

Let A = {H,....,H} be a central arrangement of hyperplanes in
k7. Suppose given a finite set of symbols (or “signs”) £ and a function
s k" x A — ¥ which in some sense measures the “position” s(z, H)ofa
point 2 with respect to the hyperplane H. Then the position of x relative
to the arrangement A is indicated by a “sign vector”

s(x)=(s(x. My)....,s(x H))E T,
and the collection of all such sign vectors
(12.2.1) Mo (A) = {s(z) |z €Xk"} C &

is the associated “matroid”.

Now, suppose that k = P or k = C. and let Iy,...,1; be linear forms
such that H; = KNerl;.
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(1) If £ ={0,1} and

o o [0, ifl(z)=0
S (I'H')_{l,ifl;(:c);éo

then we get the (ordinary) matroid of A, in terms of its closed sets.
() k=F, ©T={0,+,-} and

0,ifli(z)=0
sY (e Hi)={ +,ifli(z)>0
-, ifli(z) <0

then we get the oriented matroid of A. in terms of its covectors.
B)Hk=C T={0+.~.ij}and ‘

0. fli(x)=0

+ ., i Imlj(2)) = 0. Re (l(x)) > 0
s (v . Hi)= ¢ — . if Im(li(x)) = 0.Re (l;(2)) < 0

o Im(li(x)) >0

JofIm{;(2) <0

then we get the compler matroid of A. (In (2) and (3) this depends, to be
accurate. on the choice of forms /;.)

The precise definition of these 3 kinds of matroids (which I will not
give) is in each case an axiomatization abstracting essential properties of
such sign vector systems A, (A) C ©'. Note that the set Mg (A) C {0,1},
i.e.. the ordinary matroid, ordered by reverse inclusion of supports, is iso-
morphic to the intersection lattice Ls. Matroids and oriented matroids
have been studied since many vears and have a quite developed theory, see
the already cited sources. Complex matroids, on the other hand, are a very
recent addition: the notion was initiated by Bjorner & Ziegler [BZ1], then
made precise and further studied by Ziegler [Z3]. It should be said that not
all matroids in either of the three classes arise from hyperplane arrange-
ments. However. it can be shown that every oriented matroid and complex
matroid corresponds to a topologically deformed hyperplane arrangement.

The general definition (12.2.1) applies equally well to affine hyperplane
arrangements, but little work has been done on the affine case as such. The
sign vector systems A (A) coming from real affine arrangements have
been studied by Karlander [Ka).

Other recent extensions and variations of the matroid concept are the
matroids with coefficients of Dress [Dr, DW]. the W P-matroids of Gel’fand
& Serganova [GSI, GS2], and the greedoids of Korte & Lovasz [KLS, BZ2].
The motivations for these concepts are mainly algebraic and algorithmic,
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and no clear connection with the theory of subspace arrangements can be
seen at this point.

The sign vectors Mg (A) of an oriented matroid coming from a central
hyperplane arrangement A in " correspond to the cells of a regular cell
decomposition of S"~! having V2 as a subcomplex (corresponding to those
sign vectors that have at least one “0” entry). The sign vectors M,c (A) of
a complex matroid coming from a hyperplane arrangement in C* describe
a cell decomposition of $"~! in a similar way. Thus these two kinds of
matroids contain descriptions of cell complexes for the link V3 and the
complement M4, by the construction described in § 12.1. Having the
same oriented or complex matroid structure is therefore a combinatorial
equivalence relation on hyperplane arrangements with powerful topological
consequences. Here is an example of a result obtained by elaborating this
connection (BEZ, BZ1): If for two real central hyperplane arrangements
there 1s a bijection between their sets of regions that preserves adjacency in
both dircctions. then the complements (and links) of their complerifications
are homeomorphic.

Topological uses of the matroid concept along completely different lines
appear in recent work of Gel'fand & MacPherson [GeM] and MacPherson
[M]. There oriented matroids are used to define a class of manifolds inter-
mediate between PL manifolds and differentiable manifolds, one purpose
being to obtain combinatorial formulas for Pontryagin classes. The work
of Mnév [Mul. Mn2] should also be mentioned, and in particular his “Uni-
versality Theorem™ showing that every semialgebraic set in R" is stably
equivalent (and hence homotopy equivalent) to the realization space of
some oriented matroid. See also [BLSWZ] for a discussion of realization
spaces.

From the viewpoint of this paper it is relevant to ask: Is there any
useful notion of “matroid™ for general subspace arrangements? One im-
mediate observation is that a matroid-like structure is provided by the
(ranked) intersection semilattice. This semilattice is extremely useful for
the general theory and specializes to the ordinary matroid in the hyper-
plane case (as we have seen). One could attempt to axiomatize this concept
as pairs {L.r) consisting of a A-semilattice L and a function r : L — N
satisfying conditions {(4.1.1). However, it is doubtful whether this would
give rise to a useful combinatorial theory. Also, there is little hope for a
good general notion on the level of oriented and complex matroids, due to
the great topological complexity that general subspace arrangements can
have. One miniscule step in this direction is the class of “c-matroids” de-
fined in [BZ1], which corresponds to the topologically well-behaved class of
c-arrangements. In conclusion, I think that the available information indi-
cates that matroid theory is a phenomenon which is essentially confined to
the setting of hyperplane arrangements.
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13. Final remarks and open problems

13.1.  There have been several recent papers on what might be called low-
dimensional subspace arrangements. This concerns mainly arrangements of
lines in affine or projective 3-space. Tools are developed to distinguish dif-
ferent equivalence classes of line arrangements (isotopy classification), and
to distinguish their 2-dimensional projections within the class of planar
line diagrams with above/below information at crossing points (weaving
diagrams). An interesting point is that an arrangement of skew lines in
R P3 is the same thing as a 2-arrangement in R?, and (after intersection
with the unit sphere) therefore the same thing as an arrangement of disjoint
great circles in 53, i.e., a certain kind of link in the sense of knot theory.
Therefore link invariants play an important role.

See Crapo & Penne [CP], Mazurovskii [Mal, Ma2, Ma3], Pach, Pol-
lack & Welzl [PPW], Penne [Pe], Richter-Gebert [RG), Viro [Vi], Viro &
Drobotuchina [V D], and Ziegler [Z1].

13.2. We have seen in § 8.2 several examples of c-codimensional arrange-
ments A for which H' (M) # Oonly ifiisa multiple of e— 1, and for which
V4 is homotopically a wedge of spheres (§ 6.2): namely, c-arrangements and
orbit arrangements A, for partitions A of hook and rectangular shape. Also
Theorem 8.5.1 has this flavor. 1s there a common underlying reason for such
periodicity of cohomology and such topologically well behaved links?

Perhaps what is needed is to find a good combinatorially defined class
of intersection lattices that can play for these well-behaved examples within
the general theory the role that geometric lattices play in the theory of hy-
perplane arrangements. Such lattices should have the homotopy type of a
wedge of spheres whose distribution in numbers and dimensions should be
signalled by combinatorial data. The class should be closed under taking
(lower) intervals, and should include the mentioned examples.

13.3. Let A, be the orbit arrangement (§ 3.3) corresponding to a parti-
tion A= (A du. oo An) A 2 A > <2 A 21, M+...4), = n. Define
numbers s > 0 and k > 2 by Ap = Apo1 = Ay = 1 and Apos =k > 1.
Let I, be the intersection lattice of Ay, i.e.. the subposet of II,, consisting

of all partitions of [n] that can be obtained as joins of partitions of shape
A

Conjecture 13.3.1. H. (I1,) is torsion-free, and

HiMh)#0 & i=p-2-1(k-2),0<t<[4).

Conjecture 13.3.2. H"(My, ) is torsion-free, and

~

H (M4)#0 © i=n—p-141(k-2),0<t< L£]-
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Conjecture 13.3.3. 11, and V§, have the homotopy type of a wedge of
spheres.

These statements are true for A = (k,1,...,1)and A = (k k... k).

13.4. Suppose that an arrangement A is stable under the action of some
finite group G on B Then G acts also on the intersection lattice L4 and
on the spaces V4 and M4, and there will be induced representations on
the homology of these spaces. This setup has been studied in several cases
for hyperplane arrangements (see [OT1, Chapter 6]), but not much seems
to have been done beyond that. For instance, one can ask [BW): what are
the homology representations arising from the action of S, on Ani?

13.5. Find (universal) Grobner bases or other useful combinatorial de-
scriptions of the vanishing ideals of orbit arrangements for finite Coxeter
groups (§ 3.3-4). Apparently only the case Ay has been dealt with (The-
orem 11.1.1).

13.6. With fow exceptions all arrangements considered in this paper are
defined over F.. However. much of what has been discussed makes sense
for subspace arrangements defined over other fields k, certainly all the al-
gebraic and combinatorial aspects (e.g. intersection lattices) carry over.
The problem with a general treatment (over arbitrary k other than R
or C) comes from the topological aspects. Nevertheless, whenever some
(co)homology theory exists for subsets of k™ one can attempt to use it as
a measure of complexity for such sets. This might be of use e.g. as a com-
plexity measure for computation or decision algorithms over finite fields.
A relevant question seems to be: Is there a Goresky-MacPherson formula
(Theorer 7.1.1) for subspace arrangements over finite fields?

13.7. Let A be a central arrangement of (n — 2)-dimensional subspaces
in E". No general effective procedure seem to be known for computing
the fundamental group of the complement A/4. For n < 3 the problem
is easy, and for n = 4 special methods are provided by knot theory, since
Mg =~ M4 is the complement in $3 of a “link”, of. § 13.1. The case of
complex hyperplane arrangenients is discussed in [OT1, Chapter 5]. What
is m (M4, )7 1s My, , a K(7,1)-space?

13.8. How much information about the topological structure of an ar-
rangement A is contained in the ranked intersection semilattice (La,T),
where r(z) = codim(z)? We have seen in Sections 6 and 7 that it deter-
mines \A/’A up to homotopy type and M4 up to the additive structure of
cohomology. and in general these results seem to be best possible. For the
special case of complex hyperplane arrangements the multiplicative struc-
ture of H* (M) is also combinatorially determined, as was shown by Orlik
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& Solomon [0S), and it is a long-standing conjecture of Orlik that M4 is
n fact determined by L4 up to homotopy type in this case. Ziegler [Z1]
has shown that multiplication in H* (M4) is not determined by L4 for 2-
arrangements, so the dividing lines in this area are subtle. See Chapter 1 of
Ziegler [Z4] for a comprehensive and up-to-date discussion of this question.

13.9. Let A = {K,,..., K} be a central subspace arrangement in R™.
Define

TA) ={p=(p1,...,pn) € B[z1,...,2,))" | p(K;) C Ki,1 < i < 1),

This is a module over B[z, ... yZn). For the case of hyperplane arrange-
ments this module was introduced and studied as a module of derivations
by H. Terao, see [OT1, Chapter 4]. A basic result of Terao [T] states that
if T(A) is a free module and A consists of hyperplanes, then the charac-
teristic polynomial P4(1) (§ 4.4) splits into linear factors over the integers.
It has been shown by S. Yuzvinsky (personal communication) that T(A) is
never free if codim(A) > 2, so it seems uncertain whether Terao’s theory
has any nontrivial extension beyond the hyperplane case.

13.10. There are several intriguing problems having to do with subspace
representations of graphs (§ 10.2) and of semilattices (§ 4.1). It would be
particularly useful to have an understanding of the combinatorial obstruc-
tions to subspace representations in a space of given dimension.
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