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On the homology of geometric lattices

ANDERS BJORNER

Introduction
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Folkman [8] that reduced homology
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-vanishing homology group I:I,‘Z(L) of such a lattice.

te the algebraic structure of I-_I,;z(L) to the geometric
structure of L. The key cOmponent in establishing such j

an algebraic basis for the free Abelian group I:I,hz(L). This is true, for instance,
for the family consisting of those bases of L which contain no broken circuit
under a given ordering of the points. Thus there ar
the enumerative result of G.-C. Rota and H. Whij
geometric lattices [10].

This paper is organized into 7 secti
Preliminary material. §2: A presentati

tney on broken circuits of finite

, and a method for blowing up cycles
in order homology is presented and then used to derive a rank inequality. §3:

Certain families of bases of a geometric lattice, called neat base-families, are

» and K. Baclawski’s result [1]
mbers of Whitney homology is deduced. Furthermore, it is
shown that the members of the broken circuit complex give rise to cycles whose
classes form a basis for Whitney homology. §6: A structure of combinatorial
geometry is naturally induced on the set of bases of a geometric lattice by
Tepresentation in order homology. This geometry is shown to be 2-partitionable.
§7: Let w, be the kth Whitney number of the first kind and I, the number of
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k -etement independent sets in a finite geometric lattice. We prove that

where n, is the minimum cardinality of a k-flat and M, is the maximum Mdbius
invariant of a k-flat. Finally, there are some remarks about the Whitney numbers
of infinite geometric lattices.

The author wants to thank B. Lindstrom and R. Stanley for helpful comments
on this paper.

1. Preliminaries

A geometric lattice is a semimodular point-lattice of finite length. Such a lattice
is complete and relatively complemented and every lattice-element x has a
well-defined rank equal to the length of any maximal chain from the minimum
element O to x. The rank of a geometric lattice L is the rank of its maximum
element 1: rank L =rank 1. When x <y in a geometric lattice L the interval
[x,y]={zeL|x=z=<y} is also a geometric lattice under the inherited order.
References [3] and [6] contain proofs of these and other properties basic to the
theory of geometric lattices.

For a geometric latice L let L, ={xe L |rank x =i} for 0=<i=<r=rank L. The
elements of L, are called points and the elements of L,_, are called hyperplanes of
L. The cardinality of a set A will be denoted by |A|.

PROPOSITION 1. Let L be an infinite geometric lattice of rank r. Then
Lyj=ILy|=--=|L_,{=|L|

Proof. Since L is a point-lattice (i.e., every element of L is a join of points) L,
must be infinite. Let 1<i=<(r—2) and assume that L, is infinite. Since L is
relatively complemented it is possible for every element x of L; to find two
elements y and z of L,,, such that x = y A z. Making such a choice for every x € Li
we obtain an injection L, — L?.,. Hence, L., is infinite and |L,|<|L%,|=|Li.l-
Reversing our argument we find that |L,.,|=<|L? =|L;|. Consequently, |L;|=|Li.|
for i=1.2....,r—2. The last equality of the proposition is a consequence of
L —1{0, 1} being the disjoint union of the sets L;, i=1,2,...,r—1.

The Mébius function w of a finite lattice L is that function of two lattice-
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variables which for all x, y € L satisfies

1’ if X =y
py)=¢= ¥ uxz), if x<y

X=z<y

0, if x£vy.

The essential properties of K can be learned from Rota’s paper [10]. For instance,
if L is a finite geometric lattice and xeL; then |u(0, x)|= (=1)'u(0, x)>0 [10, p.
3571

The following facts from basic Abelian group theory will be taken for granted.
An Abelian group is free if it is isomorphic to a direct sum of infinite cyclic

groups. A basis of a free Abelian group is a linearly independent set of
generators. The rank of a free Abelian

bases. If G is free Abelian and K is a
rank K =rank G.

2. Order homology

Let L be a lattice with universal bounds 0 and 1.
complex A(L) on the vertex set L-{0,1} by taking as k-simplices all chains
Yo<x;<:--<x, in L —{0, 1}. By convention, the empty set js considered to be

the unique (=1)-simplex of A(L). By the order homology of L, written HyL), we
Vzill understand the reduced simplicial homology of A(L) wit

H(L) =I:I,~(A(L), Z). This definition is somewhat elaborate
section 5.

The order homology of
Folkman [8, theorem 4.1].

We define a simplicial

h integer coefficients:
d at the beginning of

finite geometric lattices was first determined by J.

THEOREM 2.1. Let L be a geometric lattice of rank r. Then

0, if i#r-2
H(L)={zmou if i=r=2 and L is finite,
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Proof. The first two cases are proved in Folkman’s paper [8]. We will outline
alternative arguments for them, and then prove the third case. Since A(L) is
(r - 2)-dimensional we get right away that H;(L)=0 for i >r—2 and that H _,(L)
is free. being the subgroup of a free group.

Suppose first that L is finite. Then the order complex A(L) is shellable (see [4]
for definition and proof), so a standard application of the Mayer-Vietoris exact
sequence vields that H.(L)=0 for i <r—2. It then follows that rank H ,(L)=
|w(0, D). since (0, 1) by P. Hall’s theorem [10, p. 346] is the Euler characteristic
of order homology.

Suppose now that L is infinite. Let us first prove the vanishing of lower-
dimensional homology. Let p be an i-dimensional cycle, 0=<i=<r—3: that I,
p=Yr_ o (yh v ..., y¥). where for each k 1, €Z and 0<yf<yf<--- <yk<1
in L, and dp = 0. It is possible to select a finite set of points P < L such that the
join-sublattice of L that is join-generated in L by P, call it L', includes all
elements yr, 1=k=n, 0=j<i, and aiso the top element 1. L' is a finite
geometric lattice [3, Lemma 3, p. 84] of rank r and p is an i-cycle in L', so since
H,(L')=0 there must be an algebraic (i +1)-chain 7 in L' such that dr =p. But
then t is an (i + 1)-chain also in L and d7=p shows that p is an i-boundary.
Hence. H(L)=0 for i <r—2.

[t remains to prove that rank H._,(L)=|L| when L is infinite. The following
argument is based on Proposition 2.3. The result is implied also by Theorem 4.2.

H, ,(L}is a subgroup of the (r—2)-dimensional chain-group C,_,(L) which is
freely generated by the maximal chains of L —{0, 1}. Hence,

ILV=rank C, ,(L)=rank H,fz(L)-

If r=2 then rank Ho(L)=|L| since for any given pelL,, the set
{p—qlgeL,—{p}} is a basis of Hy(L).

We proceed by induction on r. Assume that the result is true for lattices of
rank < (r - 1). r=3. Pick a hyperplane x in L, and let x={pe L, | p£x}. Now use
the induction assumption and Proposition 2.3 to settle the following two cases. It
Ix!=|L| then

rank H, »(L)= x| - rank H,5(0, ) =|L| - 1=|L].

If |x|<|Li then, by Proposition 1, [0, x}|=|L,—x|=|L,|= |L| and therefore

rank H, »(L)=|x| - rank H, ([0, x])=1-|L|=|L|.

In the remainder of this section we will present a method for manipulating
cycles in order homology of geometric lattices and exemplify its usefulness.
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We want to show that dp, =0.

;s Kk

dp, = d(Z a

i=1

& ; i
o-'p>= Z a, dl(p.pvyi,....,pVYyia)
i

r—2 . . ;
+ Y =DV Y PV Y - PV YD)
£=1
=17y L Y2, )]
—1)? y » A,..., A
Z( ’ lz:l al(p’ pVYh ’ j p Y2
re o k . R , i i
+ Y Z DY @y, e YR PV Y PV YD)
€=1j=1 i=1 !
r=1 ) k ) N .
+ Z ("l),+' Z ai(ylla'~-7 '_’ "7Yr72’x)-
=1 i=1
By (a) we get that
L _ )
(B Z a(yi. ..., e Y x)=0 for j#FEr-1.

Since the map ¢ :[0. x]— [p, 1] defined by ¢(y)=p vy is order-preserving and
injective. (a) also entails that

k.

{v) Zai(P,PV)’L-M. o L pVvyi)=0 for j#1,

Ve PVYie....pVY, 2)=0 for

j#€ and

Substituting (), (v) and (8) into our earlier expression we get

k

dp,= Y, a(pv YL pvyh, ...

i=1

2k
- Z Z a(y',. ..

€=1i=1

,PVYi—2)

Vet PVYE o PV Y2)

j# e+
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r—2 k
+ ) Zch@h.n,ykpvybb.u,pvykﬁ

€=1i=1

k
=2 & ¥h .,y
i=1
k ‘ »
:_Z allpvyi,...,pvyi )
- Z (yll,---,y;_l,p\/y},...,pvyi_z)
+ Z (Yi1,...,Yie’—l,pvyi(,...,pvyi;z)—(y‘l,,__’yi_2)]_—.0‘ O
¢

It will be convenient in the sequel to have a special symbol for the set of points
not on a given hyperplane x: for x €L, letx={peL, | p£x}.

PROPOSITION 2.3. Let L be a geometric lattice of rank r and x a hyperplane
of L. Then

rank H,_,(L)= x| - rank H, ([0, x]).

Proof. Suppose that r=2. Then A([0, x])={D}, so rank H_, (o0, x])=1, and
the set {p—x | pex} is a basis of Hy(L), so rank Hy(L)=x].

Suppose that r =3. We know that the two homology groups involved are free.
Let {p'|ie I} be a basis of H,_ 500, x]) and let G be the subgroup of H,_,(L)
generated by {p},| (i, p)e I xx}. If we can show that the p;, are linearly indepen-
dent, and hence a basis of G, it follows that

rank H, ,(L)=rank G = I xx|=|I| - |x],
which is what we want to prove.

Let{p', p*, ..., p*} be a finite linearly independent set of cycles in H,_5([0, x])
and {p,, p,...,p,} a finite subset of X. Assume that

i i bstp:), =0, bxz eZ.
t=]s=1

To see that all b, must be equal to zero; let us suppose that one is not, say
bi; # 0. Then the linear independence of the p* implies that r =y¥_ 1 bp*#0. Let
T=3¥"1 a0’ be the expansion of 7 as a linear combination of (r—3)-simplices o
of A([0, x]). That 7#0 means that a;# 0 for some i, let us say that a,#0. The
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linear combination (¢'),, contains a unique term +¢*, where a¥ is an (r—2)-

simplex of A(L) and p, € o*. Since the map ¢:y+~> p, vy sends [0, x] injectively
into [p;, 1] the cvcle (7),, must contain the term +a,0*. But (1), =X 1 bpy,,
and if v=2 then no simplex occurring in the expansion of Y;_, Y% ; byp; can
contain p,. Hence, };_, Y¥_, b,p; would contain the term +a,0%*, a;# 0, which
contradicts our assumption that it equals zero.

In the finite case Proposition 2.3 is equivalent to | (0, 1)| =[x} * {£(0, x)|. This
inequality was previously obtained by C. Greene [9, corollary 1].

3. Geometric bases and broken circuits

In this section we will define and construct for any geometric lattice L certain
families of subsets of L; which we call neat base-families in L. Their significance
for order homology will be demonstrated in section 4.

DEFINITION:

(3.1) If rank L =1, then {{1}} is a neat base-family.

(3.2) Assume that neat base-families are defined and exist in all geometric
lattices of rank=(r—1) and that rank L =r. Pick an arbitrary point
p e L, and for every hyperplane he L,_; such that h# p let B, be a neat
base-family in [0, h]. Then

B={AU{p}|Aeh9th}

is a neat base-family in L.

The point p used in the last step of the defining construction will be called the
distinguished point of B. E.g. in a rank 2 geometric lattice the collection of all
2-subsets of points containing a certain point p is a neat base-family with
distinguished point p, and every neat base-family is of this form.

Let L be a geometric lattice of rank r. A set {b;, b,,...,b,}= L, issaid tobea
base of L if n=r and V7, b, =1. The following facts are easy to prove by
induction on rank L.

PROPOSITION 3.3. Every member of a neat base-family in L with disting-
uished point p is a base of L containing p.
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PROPOSITION 3.4. Let peL, and {Aikicr be a collection of bases of L such
that pe (.1 A, and assume that A;—{p} and A, —{p} span different hyperplanes
when i# j. Then there exists a neat base-family B in L such that A, e B foralliel

and p is the distinguished point of B.

PROPOSITION 3.5. Let B be a neat base-family in L. Then |J 4.5 A =L,.

PROPOSITION 3.6. A neat base-family B in a geometric lattice I has

|w(0, 1| members if L is finite and |L| members if L is infinite.

Proof. First consider the finite case. The claim is true when rank L = 1. For

higher ranks let p and B, have the same meaning as in (3.2). By induction then

Bl= Y B,/= Y |(0, h)]=u(0, 1)

hzp h#p

The first equality, i.e. that B, NB, = when h# h, follows from the fact
that members of B, span h; (Proposition 3.3). The second equality is the
induction assumption, while the third is a consequence of Weisner’s theorem [10,
p. 351].

In the infinite case we have by Propositions 1 and 3.5 that {Uacs Al=|L}, and
by 3.3 that |A{=rank L <« for all A eB. Hence, IB|=|L|.

Neat base-families can be constructed non-inductively by ordering the points
of a geometric lattice. The idea underlying the following construction was first
used by H. Whitney in studying chromatic polynomials of graphs and later
generalized to finite geometric lattices by G.-C. Rota [10, p. 358].

Let L be a geometric lattice of rank r. Every set A c L, of points satisfies
rank (v A)<|A| If equality holds A is said to be independent, otherwise depen-
dent. Thus, A is a base of L if and only if A is maximal independent. The
minimal dependent subsets of L, are called circuits. Now, let {2 be a well-ordering

of the set L. If C is a circuit and p is the least element of C, then C—{p} will be
called a broken circuit.

LEMMA 3.7. Let xeL and D<L,N][o0, x]. Then D is a broken circuit in
[0, x] if and only if it is a broken circuit in L.

e v
- ey

SR e e ar, St vt o
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T —
R e
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Proof. The verification is straight-forward using the fact that C< L, N[0, x] is
a circuit in [0, x] if and only if C is a circuit in L. Of course, the points of [0, x]
are well-ordered by the restriction of (2.

PROPOSITION 3.8. Let L be a geometric lattice of rankr and Q a well-
ordering of the points L,. Then the collection BC of all r-element subsets of L,
which coniain no broken circuit is a neat base-family in L.

Proof. The members of BC are bases of L since they may not contain any
circuit. Let p be the least element of L,. If p¢ A for some A €BC then since
Ip}U A is dependent it contains a circuit C. In case p¢ C, then D < C< A for the
broken circuit D produced by C. In case peC, then since p is least in L,
the set C—{p} is a broken circuit and C—{p}< A. Hence, since A € BC must not
contain any broken circuit, we conclude that pe A for all A €BC. For each
hyperplane heL,_, such that p£h let B, ={A—{p}|AeBC, v(A—-{p})=h}
Since the theorem is trivially true when rank L = 1, it will inductively be sufficient
to show that B, coincides with the family C, of all (r—1)-element subsets of
L, N[0. h] which contain no broken circuit in [0, h] under the restriction of (2.

Suppose that S< L, N[0, k). If S€B,, then S U{p} contains no broken circuit
in L. Bv Lemma 3.7 therefore S cannot contain any broken circuit in [0, h], that
is. § € C,.. Suppose conversely that S € C,.. If S U{p} contains a broken circuit D in
L then D < S since no element precedes p. But by Lemma 3.7 this contradicts
S eC,. Therefore, SU{p}cB and SeB,.

An immediate consequence is the following extension of the Whitney-Rota
theorem [10, Corollary 1, p. 359].

COROLLARY 3.9. The number of i-element subsets of L, which contain no
broken circuit equals Sy.p |pw(0,x)| if L is finite and equals |L| if L is infinite,

Proof. Let BC, = {i-element subsets of L, which contain no broken circuit in
L} and for each x € L; let B, ={i-element subsets of L, N[0, x] which contain no
broken circuit in [0. x]}. Then BC; = U, B, and B, N\B, = J if x#y, as can be
seen from Lemma 3.7 and the fact that v A = x if A eB,. Thus [BC,|=Y,.. Bl
Since by the foregoing theorem the collections B, are neat base-families in their
respective intervals the result follows from Propositions 1 and 3.6.

Not all neat base-families in a geometric lattice can be characterized as
avoiding the broken circuits induced by a well-ordering of the points. Consider for
instance the lattice of flats of the following combinatorial geometry (Figure 1):
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Figure 1.

Let B be the neat base-family with distinguished point p obtained by (3.2)
from choosing {xa, xy}, {yb, yz} and {zc, zx} as the neat base-families in the
nontrivial hyperplanes which lie outside p. If for some linear order of the points

the members of B did not contain any broken circuit, then x < y, y<z and z<x
under (2, which is impossible.

4. Bases for homology

Our purpose in introducing neat base-families
important algebraic role in the non-vanishing ho
lattice. However, before this can be done we must
H,_ (L) as a class of distinguished cycles.

Let A={b,,b,, ..., b.}, r=2, be an ordered base of a geometric lattice L. To
each permutation me®, of the indices we associate a maximal chain o, of
L—{0,1}, ie., an (r—2)-simplex of the complex A(L), by

is to show that they play an
mology group of a geometric
explain how bases of L enter

On = (b'rr(lb b-rr(l)\/bﬂ'(Zn R b‘rr(l)Vb‘rr(Z)v e Vb‘rr(v—l))'

We claim that

pa= 2 (-1)7g,

eSS,

is an (r—2)-cycle ((=1)" equals 1 or —1 depending on whether 1 is an even or
odd permutation). A direct computation verifies this.

r—1

dPA = Z (=~ Z (_1)j+1(bﬁ(1;, Cees e, bn(l)v Tt Vb-rr(r—l))

TeS, j=1 J

=L VT L )b,

Te@,

> bna)V Tt wa(j—l)’

bn(l)V‘ t Vbn(j+1)» R
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For any fixed j a given term in the sum to the right occurs exactly twice and then
with 7(j) and #(j+ 1) transposed and all other (i) equal, so that all terms cancel
out in pairs. Hence, dp, = 0.

We call the cycles p, obtained from a base in this way elementary cycles.
Another ordering of the base A can at most cause a change of sign of p,. Since
this is irrelevant for our purposes we may henceforth think of the relationship
between unordered bases of L and elementary cycles of H _,(L) as a one-one
correspondence.

The following lemma points out that if an elementary cycle is “blown up™ by
the technique explained in section 2 (Lemma 2.2) we get a new elementary cycle.

LEMMA 4.1. Let L be a geometric lattice of rank r=3, xeL,_,, peL, and
p£x. If Cis a base of [0, x] then

(Pc)p = Pcup-
Proof. Naturally, the equality is only correct up to a + or — sign depending

on the orderings chosen. Let C={c, ¢s,...,¢,_;} and give CU{p}, which is a
base of L, the ordering p<c¢,<c¢,<--*<c,.;. Then

)y = 2 (=D"(a,(O)),

Te®S, |

= Z (“Dﬂ[(l), PVCray-- -, PVCrhV """ V Corir=2y)
e,
r—2 )
+ Y (=1 Cna - - -
¢

=1

s CahV" " "V ey PV CryV " " "V Cnieys - - s

pVverVvV: 'V Cﬁ(r-2>)

-1
+(_l)r (Cﬂ-(ln'-'ac'n'(l)v. ) 'VC.,,(,,,I))]

=Y (-1)’0.(CUP) = pcup-

ve®,

THEOREM 4.2. Let L be a geometric lattice of rank r=2 and let B be a neat
base-family in L. Then the elementary cycles {p, | A €B} form a basis of the free
group H, (L).

Proof. Suppose that A eB. If p, is the distinguished point of B let y,_;~
(A —{p}h. If p, is the distinguished point of the neat base-family B, , in
[0,y, ,], which exists by Definition (3.2), let y,_,= v(A —{py, p.}). Continuing
like this we can inductively select a sequence of points py, pa, . - -

, D, such that
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A={p.ps.... Pt and a sequence of flats Ye=1> ¥r-2.. .., ¥y, =p, such that ¢* =
(Y1, ¥2,- ., ¥} is a maximal chain in L-{0, 1} or. €quivalently, an (r—2)-

simplex. The following observation is crucial:
4.3) zo% is a term in Pan A'eB, if and only if A = A",

Since y. =V /i_, ., p. clearly +¢% appears in p,. Suppose conversely that o%
appears in p,- for some A'cB. A’ must contain the distinguished point p,. Our
hypothesis demands that Yr-1= Vv C for some subset C of A’. Since y,_; has
rank (r—1) and p, cannot belong to C, we deduce that C=A"—{p,}. Since p, is
the distinguished point of B, .. to which A'—{p,} belongs, we find that P €
A’'—{pi}. Now. again Ye-2=VvD for some subset D of A’ to which p, and p,
cannot belong, so D= A'—{p., p.}. Repeating this argument we eventually find
that A" must contain p,, P2,...,and p, thatis, A'= 4.

It is an immediate consequence of (4.3) that {p, | A e B} is linearly indepen-
dent. We will prove the generating property in two steps dealing with the finite
and infinite cases respectively.

Suppose that L is finite. Let G be the subgroup of H, (L) generated by the
linearly independent set {pa | A €B}. Then G is a subgroup of maximal rank since
[B|={w(0, 1)} (Proposition 3.6) and rank H, 5(L)=|u(0, 1)| (Theorem 2.1). Con-
sequently, every element of the quotient group H,_,(L)/G is of finite order. If
peH (L) there must then be integers k # 0 and ls suchthatkp=Y, _» IApA. All
coefficients of terms in the expansion of the left member of this equation are
divisible by k. This must then be true also for the right member. In particular,

since by (4.3) the o’s-term has coefficient £1y, it follows that all 1, are divisible by
k. Hence,

la 19
p= Z T Pas *EZ,
AeB k k

so that G =H, ,(L).

Suppose next that L is infinite. We will then proceed as follows. Let B” be the
collection of all bases of L which contain p, the distinguished point of B. By
Proposition 3.3 B< B, We will prove first that {p, | A €B”} generates H, _,(L)
and then for every A e B” that p, is a linear combination of some pc with C, e B.
C D) Let p=Y* 1(yi, Vo, yiy), e Z—{0}, yieL,, be an (r—2)-cycle of

H, (L) Let L' be the join-sublattice of L that is join-generated in L by

{p,yl, Vi, ... ¥h L'is also a geometric lattice (see e.g. [3, Lemma 3, p. 84]).
We claim that vieL' for all 1=i<k and l=j=r—1. This is easily seen as

follows using induction on j. Assume that Vi-1€L' for 1<i=<k. Since p is a cycle
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the non-zero term =4,(y,, ..., ., Y& ...,Yyi_) of dp must be cancelled by some
1 1 y

other non-zero terms of the same form. This means that for some €# iy =y; for
i#s—1 and y{_,#yi_,. Hence, yi=y! vy, and, consequently, yie L'. This
argument also shows that rank L' =rank L, hence any base of L' is also a base of
L.

We have shown that p is a cycle also of H, ,(L". Since L' is finite it has
already been shown that p =Y/, wpa, u €Z, for some bases A, of L' belonging
to a neat base-family in L' with distinguished point p. But this means that p is a
linear combination of elementary cycles corresponding to bases A; of L which all
contain p. Hence. {p, | A € B*} generates H (L)

(i) We will use induction over rank L to show for every infinite geometric
lattice L and neat base-family B with distinguished point p in L that the span of
{pc | CeBY} in H _,(L) includes {ps | A €B"}.

If rank L =2 then B =B, so the statement is true.

Assume that the statement is true for rank<(r—1) and that rank L =r. Pick a
base AeB’. Let h be the hyperplane spanned by A —{p}, and let B, =
IDcL,|DU{p}eB, vD=h}. By (3.2) B, is a neat base-family in [0, h]l. A-{p}
is a base of [0, h], so by what we have already proved together with the induction
assumption p, _, = S, Iipp, for some D; eBy, r,€Z. Therefore, using Lemma 4.1
we find that

Pa =(0a o)p = (Z l}-pD.) = Z rpp,)p = Z tiPp,up
p

i=1 i=1 i=1

Since D, eB, implies that (D; U{p}) e B, we have shown that p, is in the span of
{oc ‘ CeB}.

Let us call a collection {A},.; of bases of a geometric lattice L such that
{paticr 1s @ basis of H (L) a fundamental base-family. Thus, Theorem 4.2 says
that a family of bases is fundamental if it is neat. The converse is, however, not
true. An easily available counterexample is that of a rank 2 lattice on n points
Dis Pas - - . » Pu: the base-family {{py, p2}, {P2, P} - - -5 {Pn-1s p.}} is fundamental but
not neat if n=4. For another counterexample, let L be the rank 3 lattice on
points py. pa. . ... ps having circuits {p,, p. psh, {Ps. Pas Ps} and {p, P2, pa, psh- L
has 8 bases and |(0, 1)} =4. Out of the 70 collections of 4 bases of L 45 are
fundamental base-families but only 13 are neat.

5. Whitney homology

Let P be a poset (partially ordered set) with least and greatest elements 0 and
1. Let C,(P) be the Abelian group which is freely generated by all i-chains
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@<, < <g; of elements of P—{0, 1}. We consider the empty set to be the
unique (—1)-chain so that C_(PY=Z. Of course, Ci(P)=0 whenever there is no
i-chain in P—{0, 1}. Define a differential d;:G(P)— C,_,(P) as usual by

di(ay, ay, . .. , ;)= Z (-D¥a,. . .. s a4, ..., a)
i=0

when i =0 and C,(P)# 0, and let d; =0 otherwise. The homology of the algebraic
complex .

(CPLd) =5 (P o L (p) 2y .

is the reduced order homology of P. We write

H,(P)=H,((C(P). d))=Ker d/Im d,, .

For a poset P with least element 0 let D,(P) be the Abelian group freely
generated by all i-chains a,<a,<-- - <a; of elements of P—{0}, this time
however letting D ,(P)=0. For all i such that i>0 and D;(P)#0 define a
differential d%: D,(P) — D,_,(P) by

t
i—1
dag,a1,...,a)= T (~V(ay.....4,... . a).
=0

Let d¥ =0 for all other i, The homology of the algebraic complex (D(P), d¥) is
the Whitney homology of P, studied by K. Baclawski in [1]. We write H¥(P)=
Ker d¥/Im d%¥

i+1e
In this section we construct an isomorphism which relates the Whitney
mology groups of P to the order homology groups of lower intervals of P. The
hitney homology of geometric lattices is then easily computed.

ho
Y

THEOREM 5.1. For every poset P with 0 and every icZ

HYP)= & A_,(0,x).

xeP—{0}

Proof. For x€ P—{0} let D,(x) be the subgroup of D;(P) generated by all
i-chains q,<q,<-- - <a; with a,=x. Clearly, D,(P)=@,_, Di{(x) for all ieZ.
Since the differential d ¥ is so defined that d% (Di(x))= D,_(x) it is also clear that
diw:@x>(, d¥(x), where d™(x) denotes the restriction of d to D,(x). Let a

S e o e
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homomorphism  f,: G, ([0, x])) = Di(x)  be induced by the mapping
fiitag. ay. ..., a, ;)= (ay. ay, . .., a;_;. x) whenever C_,(0,x])#0,and let f; =0
otherwise. Clearly, f, is an isomorphism for all i and the following diagram

commutes

s G0 ] — € ([0, 1D~ € L0, XD

b |

d d¥ix)

RPN Di+1(x‘ (wa‘(x;\Di(x) gDiVl(x)__) P

where d,(x) is the differential of the complex (C([0, x]), d) defined in the
beginning of this section. Hence,

D H1([0.x)= B (Kerdiy(x)/Im di(x))
= @D (Ker d"(x)/Im d¥,(x))
= (6)30 Ker d?(x))/(@o Im diVL(x))

= Ker (QBO diw(x))/lm (E?O diV.VH(x)>
=Ker d¥/Im dY,=HYP).

The finite case of the following theorem is due to K. Baclawski [1, theorem
3.5]. The infinite case was conjectured by him (personal communication).

THEOREM 5.2. Let L be a geometric lattice of rank r. Then HY(L) is free for

all ieZ and
Y |w(0,x), if 0=<i=r—1 and L is finite,
xeLl;.,
rank HY(L =4 |L]|. if 0=i=<r—1 and L is infinite,
0, otherwise

Proof. Suppose that 0=i=r—1. Since H,_,([0,x])#0 if and only if x€ T
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Theorem 5.1 gives

HYL)= & A _,(0.x).

Since the summands on the right are free so is HY(L), and rank HY(L)=
Yxer.., Tank H,_ ([0, x]). Thus the result follows from Theorem 2.1 and Proposi-
tion 1.

As was previously done for the order homology of a geometric lattice, we will
now go on and describe an explicit basis for Whitney homology in terms of
geometric structure. This will first require a more careful analysis of the
isomorphism in Theorem 5.1.

Let P be a poset with 0. Define a map

(53) ¢: EB{ }ml([o, x])— H¥(P)
0

xeP—

as follows. An element of @, .., H,_,([0, x]) is of the form @, ., [p, ], where p.isa
cycle in C_ ([0, x]) and [p,] is its homology class and only finitely many p, are
non-zero.

Ifo. =% n(af,ab, ..., a"#0let , =2k hlal, ab, ... ak x) and if p, =
(et p, =0. Now define

@ (X@O (. J) = [X; px].
Itis easy to check that Ys>0 Py is a cycle in D,(P) and that its homology class does
not depend on the choice of representatives p,. So ¢, is a well-defined group-
homomorphism. In fact, ¢ is an isomorphism, as can be seen either by
straightforward verification or by observing that ¢, coincides with the isomorph-
ism constructed to prove Theorem 5.1.

Now, let L be a geometric lattice of rank r and let A ={pi,ps ..., pi-1tS L,
be a nonvoid independent set. Define

Pa = Z (—l)ﬂ(an, Pu)VPr2p -+ -5 D)V Po2s V' 'V Priis))-

e,

Just as in section 4 one verifies that d¥p, =0, so g, is a cycle in D,(L). We call
the cycles pa of this form elementary cycles in Whitney homology. Notice that if
¥=vA and p, is the elementary cycle in H;_,([0, x]) in the sense of section 4,
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then the two meanings of p,. as defined in this and the preceding paragraph,
coincide.

Fori=1,2,.... r let BC, denote the family of i-element subsets of L; which
contain no broken circuit under some well-ordering of L,.

THEOREM 5.4, Let L be a geometric lattice of rank r and let 0<i=<r—1.
Then the homology classes of elementary cycles [p, ], A eBC,.,. form a basis of the
free group HY(L).

Proof. By Theorem 4.2 each group H,_,([0, x]). x € L;.,, has a basis consisting
of elementary cycles p,. where A €BC,,, (cf. also the proof of Corollary 3.9).
Under the isomorphism (5.3) ¢, : D, _, H,_,([0.x])— HY(L) the basis element
p. is sent 10 [p4 ] as explained above.

6. Combinatorial geometry of bases

The representation of bases A of a finite geometric lattice L as elementary
cvcles p, 1n the free Abelian group H,_,(L) (cf. section 4) induces the structure of
a combinatorial geometry (cf. [6] or [11]), let us call it B(L),on the set of bases of L
by linear independence in H,_,(L). Theorem 4.2 shows that rank (L) = {u(0, 1)].
Clearly. a collection of bases in L is a base in the geometry #B(L) if the correspond-
ing elementary cycles form a basis of the group H,_,(L). We do not know whether
also the converse is true. that is, whether @B(L) must be a unimodular geometry
(this question was raised by R. Stanley). In any case, every standard matrix
representation of @B(L) with respect to a neat base-family vields a matrix with
entries 0 or =1, as can be seen from property (4.3). In this section we will prove a
partition property of ®(L) which is weaker than unimodularity (cf. Baclawski and
White [2, Theorem 5]} but which will be useful in the next section.

A combinatorial geometry G on a set S is said to be 2-partitionable if for
every x € S there is a partition S —{x}=8,US,. S; NS, =, such that x¢ S, and
x¢ S, (S, denotes the span of S; in G).

PROPOSITION 6. The geometry B(L) is 2-partitionable.

Proof. Suppose that A ={a;,a,,...,a}cL, is a base of L, and let ¢~
a,va,v---va andd =a, va,_,v- - va,_;., fori=1,2,.... r For every cycle
p=Yta, t,<Z, in H_-(L) denote the support of p, ie., the set {o; | #0}, by
supp p. Thus. the chains o =(cy, ¢3,...,¢) and 7=(d,, ds, ..., d,_;) lie in the

support of the elementary cycle p,. In fact, ¢ and 7 fully determine p, (and hence
A) in the sense of the following claim: If o, 7 e supp pg for a base B of L then
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B = A. Taking this claim momentarily for granted we can partition the set Sa of
all bases of L except A into S, ={Be Sa | o esupp pg} and S, =S84 —S,. Suppose
that np, =3%_, tpg, n,t,€Z, n#0. for some bases B; of L, B;# A. Then it is
necessary that o € supp pg, and Tesupp pg for some bases B;and B, 1<j. k<e.
This implies that B; €S, and, because of the claim. that B, €S,. Thus p, is not in
the linear span of {pg | B€S,} nor in the linear span of {pg | B€S,}, i.e., A¢ S,
and A¢S,.

To prove the claim we observe that if E,,E,cB and x,= VvE, and x,= vE,
then x; Ax,=Vv(E,NE,). The assumption that o, 7 €supp pg implies that G =
vCG and d,=vD, for suitable subsets C.D,cB, i=1,2,...,r. Thus
vIGND,., D=¢Ard,, = (ava,v - va)r(q VaVveva)=a;,so{a}=
CND,.,,cBfori=12,...,rie., A=B.

The geometry structure we are considering can be extended from bases to all
independent sets by representing these by elementary cycles in Whitney homo-
logy. For a geometric lattice L or rank r and k=1,2,...,r we define the
combinatorial geometry $4, (L) on the set of k-element independent sets A = L,
by linear independence among the elements [pa] in the free Abelian group
HY (L) (cf. section 5). The analysis of Whitney homology in section 5 shows that
SN (L)= D1, B(0, x]) (where the summation sign denotes matroid direct sum,
cf. [11]) so the added generality yields nothing really new.

7. Independence numbers and Whitney numbers

Let L be a geometric lattice of rank r. For any integer k satisfying 1=k <r
consider the following three cardinal numbers:
a = erLk rank Hlﬁz([O, x]),
b, =rank H}Y (L),
¢, = the number of k-element subsets of L, which contain no broken circuit
under a given well-ordering of L,.

It is known from the work of K. Baclawski [1], J. Folkman [8] and G.-C. Rota
[10] that the three numbers are equal when L is finite. We have shown in section
5 that they are equal in general. Define the Whitney numbers of the first kind w,
for k=1,2,...,r as the common value W, = a, = b, = ¢,. By the Whitney num-
bers of the second kind W, we understand the numbers W, =|L,|, k=1,2,...,r.
Finally, the independence number I, k=1,2, . .. , 1, is the number of k-element
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independent subsets of L,. Clearly, W, =w, =I,. While Whitney and indepen-
dence numbers of finite geometric lattices pose several intriguing problems, we
have seen that for infinite geometric lattices L and 1=sk=<r: W, =w, =1, =|L|
(except W, = 1),

In the remainder of this section we restrict attention to the finite case. for
which we wish to derive refinements of the relation w, =1I,. Recall that a
geometric lattice L is said to be irreducible if it is not the product of nontrivial
factors. Also. L is said to be r-uniform if all r-element subsets of L, are bases of
L.

THEOREM 7.1. Let L be a finite geometric lattice of rank r having n points
and b(L» bases. Then

(i) g,um. Di=b(L)=3(w(0, 1)+ 1) |0, 1)),

and if L is irreducible
... H
(it —tn—r){r—11< b(L).
r

Furthermore. equality occurs for the lower bound in (i) if and only if L is r-uniform.

COROLLARY 7.2. Fork=1.2,...,r:
m M, +1
“k‘LWkSIkS kz - Wi,

where m, =min,_, [{peL,|p=x} and M, =max,., |n(0, x)|.

Proof. For pe L, let b,(L) denote the number of bases of L which contain p.
Since anv neat base-family in L with distinguished point p has | (0, 1)] members
which are bases of L containing p (Propositions 3.3 and 3.6), we get |u(0, 1)|=<
b,(L). Summing both sides over all points of L we obtain n- lw(0, Di=
Soer b (Ly=r-b(L). which is the first half of (i). This inequality shows that
(0. 1) = b(L) with equality only if n =r. Hence, |1(0, 1){=b(L) if and only if L
is Boolean. For every pe L, letp=1{heL,_, | p£h}. Using Weisner’s theorem [10,
p. 351] we get

(0. 1= Y w0 by = Y, b([0, k] =b,(L).

hzp hep
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Thus, |0, D{=b,(L) if and only if the intervals [0. h] are Boolean for all h ep.
Consequently, n-|w(0, D)|=r-b(L) if and only if the intervals [0, h] are Boolean
for all he L._,, which is equivalent with saying that L is r-uniform.

For the second halif of (i) we utilize the geometry structure B(L) on the set of
bases of L which was defined in the previous section. It has been shown by M.
Feinberg [7. corollary 4.2] (cf. also Baclawski and White [2]) that a finite

. +1
2-partitionable vector geometry of rank p on v points satisfies v =< <p2 ) The

geometry B(L) is of rank |u(0, 1)] on b(L) points and was shown in section 6 to be
2-partitionable.

Finally, T. Brylawski has shown [5] that if L is irreducible and not isomorphic
to a certain geometric lattice H, then | (0, 1)|=(n—r)}(r—1). Combining with (i)
and observing that Brylawski’s inequality is strict for r-uniform lattices we obtain
(ii). The exceptional lattice H is the lattice of flats of the parallel connection of
three 3-point lines, and it is easy to check that (ii) is valid also for H.

To obtain the corollary we observe that for every x € L, the theorem gives

%l{p eL,|p=x}- |0, x)|=L(x)=3(u(0, x)|+1) |0, x)|,

where I, (x) denotes the number of k-element independent sets A < L, for which
VA =x. Since w, =3, |n(0,x)| and L =Y, ., L(x) the inequalities are ob-
tained by summation over L,.

G. Dinolt and U. Murty have shown for every irreducible finite geometric
lattice L satisfying n=2r that b(L)=max 2(n—r)r—1)—r+ 3, 3n—7), see pp.
298-300 of [11]. The inequality 7.1 (ii) improves this bound. Since the truncation
of an irreducible geometric lattice is again irreducible we can derive from 7.1 (it)
also the foliowing bounds.

COROLLARY 7.3. If L is irreducible then fork=1,2,....r:

%(n—k)(k—1)<lk.
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Addendum

(i) The question stated in section 6 has been answered in the negative by B.
Lindstrdm (Europ. J. Combinatorics, 2 (1981), 61-63). He shows that the
geometry %B(L) is not unimodular if L is the r-uniform geometric lattice on n
points and 2<r<n-2.

(i) The homology of geometric lattices receives considerable attention in an
interesting recent paper by P. Orlik and L. Solomon (Invent. Math. 56
(1980), 167-189). Their treatment of Whitney homology is closely related to
ours.
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