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1. Introduction :

In this chapter we discuss some of the ways in which topology has been used in combina-
torics. The emphasis is on methods for solving genuine combinatorial problems, and the
selection of material reflects this aim. '

The chapter is divided into two parts. In Part I a number of examples are presented
which illustrate different uses of topology. In Part II we have gathered a number of
combinatorial tools which have proven useful for manipulating the topological structure
found in combinatorial situations. Also, a brief review of relevant parts of combinatorial
topology is given. Part II is intended mainly for reference purposes. :

Among the examples in Part I one can discern at least 4 ways in which topology enters
the combinatorial sphere. Of course, it is in the nature of such comments that no rigid
demarcation lines could or should be drawn. Also, other connections between topology
and combinatorics may well follow different paths.

In the first three examples (Sections 2—4) topology enters this way. First a relevant
simplicial complex is identified in the combinatorial context. Then it is shown that this
complex has sufficiently favorable properties to allow application of some theorem of
algebraic topology, which implies the combinatorial conclusion.

A different approach is seen in Section 5 and in B4rdny’s proof in Section 4. There the
combinatorial configuration is represented in concrete fashion in IR? or on the d-sphere,
and a topological result for Euclidean space (Borsuk’s Theorem) has the desired effect on
the configuration.

The case of oriented matroids (Section 7) is unique. For these combinatorial objects
there is a topological representation theorem, saying that oriented matroids are the same
thing as arrangements of pseudospheres in a sphere. Of course, in this situation the
topological perspective is always at hand as an alternative way of looking at these objects.
Some non-trivial properties of oriented matroids find particularly simple proofs this way.

Homotopy results in combinatorics sometimes arise as follows. Say we want to define
some property P at all vertices of a connected graph G = (V, E). We start by defining
P at some root node r, and then give a rule for how to define P at v’s neighbors having
already defined it at veV. The problem of consistency arises: Can different paths from
r to v lead to different definitions of P at v? One strategy for dealing with this is to
define “elementary homotopies”, meaning certain pairs of paths which can be exchanged
without affecting the result (usually such pairs form small circuits such as triangles and
squares). Then we need a “homotopy theorem” saying that any path from r to v can be
deformed into any other such path using elementary homotopies. Tutte’s and Maurer’s
homotopy theorems (Sections 6 and 8) are of this kind. From a topological point of view,
the “elementary homotopies” mean that certain 2-cells are attached to the graph, and the
homotopy theorem then says that the resulting 2-complex is simply connected.

Being topologically k-connected has a direct combinatorial meaning for £ = 0 (con-
nected), and as we have seen also for k¥ = 1 (simply connected). The way that higher
connectivity influences combinatorics is more subtle, see the examples in Sections 4 and
6. )

Notation and terminology is explained in Part II. We treat simplicial complexes and
posets almost interchangeably. The order complex of a poset and the poset of faces of
a complex — these two constructions take posets to complexes and vice versa, and no
ambiguity can arise from the topological point of view.



The author would like to thank L. Lovész for several helpful suggestions which have
influenced the presentation in this chapter.

Part I. EXAMPLES

2. The Evasiveness Conjecture

By a graph property we shall understand a property which is isomorphism invariant:
if G; ® G5 then G; has the property if and only if G5 does. The following discussion
will usually concern graphs having some fixed vertex set V. These graphs can simply be
identified with the various subsets of (‘2,) Also, it is convenient to identify a graph property

with the subset of the power set 2(3) which consists of all graphs having the property.

Let each graph G be represented by its n x n adjacency matrix Mg (the superdiagonal
part of course suffices), n = card V. Suppose that we are to algorithmically decide whether
G has a certain given property P from this adjacency matrix. The allowed algorithms may
inspect only one entry of Mg at a time. The problem is: How many entries in Mg must the
best P-testing algorithm inspect in the worst case G to decide whether G € P (i.e., G has
property P)? This number is called the argument complexity of P, written ¢(P). Clearly,
0 < ¢(P) < (3). The properties of complexity 0 are called trivial. They are the properties
which all graphs have or which no graphs have. The properties of maximal complexity (3)
are called evasive. For them no algorithm can be guaranteed to perform with less than
complete information about the graph.

Let us call a graph property P C 2(3) monotone if it is preserved under deletion of
edges. For instance, being circuit-free or planar are monotone properties. Since testing for
the negation of a property P has the same argument complexity as testing for P, it is
reasonable to call monotone also those properties which are preserved under addition of
edges, such as being connected or having chromatic number > k.

Work by several authors (for a survey, see Bollob4s (1978), Chpt. 8) has led to the
following conjecture.

(2.1) Evasiveness Conjecture. Every nontrivial monotone graph property is evasive.
The best partial result known is the following.

(2.2)  Theorem. [Kahn, Saks and Sturtevant (1984)]

The evasiveness conjecture is true for properties of graphs on a prime-power
number of vertices.

Let us sketch the proof of Kahn, Saks and Sturtevant to show the way in which topology
is used.

Suppose that card V = p¥ | p prime, and that P # 9 is a monotone nonevasive graph
property. P is a family of subsets of (‘;) closed under the formation of subsets — ie.,
a simplicial complex. The conclusion we want to draw is that P is trivial, which, since
P # 0, must mean that (‘2’)67—7 — l.e., topologically P is the full simplex.

These two facts are crucial:

(2.3)  The geometric realization |P| is contractible.
(2.4) There exists a group T of simplicial automorphisms of P which acts transitively
on (‘;) and which has a normal p-subgroup I'y, such that I'/T is cyclic.



For (2.3) one argues that the monotone property P is not evasive in the algorithmic
sense defined above if and only if as a simplicial complex P is nonevasive in the recursive
sense of (10.1). By (10.1) all nonevasive complexes are contractible.

The group T needed in (2.4) is constructed as follows. Identify V with the finite field
GF(pF). Let T = {z > az+b| a,b € GF(p*),a # 0} and I'y = {z — z+b|b € GF(p")}.
The assumption that P is an isomorphism-invariant property of graphs on V means that
if v is any permutation of V — in particular, if ¥ € ' — then A € P if and only if
7(A) € P. Hence, T is a group of simplicial automorphisms of P. One checks that I is
doubly transitive on V = GF(p*) and that the subgroup I'y; has the required properties.

By a theorem of R. Oliver, any action of a finite group I', having a subgroup I'; with the
stated properties, on a finite Zy-acyclic simplicial complex must have stationary points.
Since our complex P is Z,-acyclic (being contractible), this means that there exists some
point z € |P| such that 4(z) = z for all ¥ € . The point z is carried by the relative
interior of a unique face G € P, and the fact that z is stationary implies that 1G)=G
for all v € T'. But since T is transitive on (‘2,) this is impossible unless G = (‘2,) Hence,
(%) € P, and we are done.

For non-prime-power cardinalities the evasiveness conjecture remains open.

3. Fixed Points in Posets

A poset P is said to have the fixed point property if every order-preserving self-map
f: P — P has a fixed point z = f(z). It was shown by A. C. Davis and A. Tarski that a
lattice has the fixed point property if and only if it is complete (meaning that meets and
Joins exist for subsets of arbitrary cardinality). It has long been an open problem to find
some characterization of the finite posets which have the fixed point property. See Rival
(1985) for references to work in this area. In the absence of such a characterization work
has been directed toward finding nontrivial classes of finite posets which have the fixed
point property. For this the Lefschetz fixed point theorem has proved to be useful.

Let L be a finite lattice and 2 € L. Then y is said to be a complement of z, written

yLlzifyAz=0and yvz= 1. Let Co(z) = {y € Lly L z}. The lattice L is called
complemented if Co(z) # @ for all 2z € L.

A finite lattice L has the fixed point property, this is very easy to see. It is more

interesting to look at the proper part L = L — {0,1} of the lattice, which may or may not
have the fixed point property.

(3.1)  Theorem. [Baclawski and Bjérner (1979, 1981)]
Let L be a finite lattice and z € L. Then the poset L — Co(z) has the fixed
point property. In particular, if L is noncomplemented then L has the fixed point
property.

By (11.11) the order complex A(L — Co(z)) is contractible, and therefore by Lefschetz’
theorem it has the topological fixed point property. From this the result easily follows.

Of course, the preceding argument is applicable to any Q-acyclic finite poset (see (10.1)
for some other combinatorially defined classes of such). Also, with this method one can

prove more about the combinatorial structure of the fixed point sets P/ = {z € Plz =
f(z)} than merely that they are nonempty.

.

Let A be an oriented simplicial complex and f: A—-Aa simplicial map. Say that a
face 7 € AU {8} is fixed if f(r) = 7 as a set, and let ¢} (f) be the number of fixed i-faces
whose orientation is preserved and @7 (f) the number whose orientation is reversed. The



Hopf trace formula shows that if A is Q-acyclic then 0 = Li>—1(=1) (¥ () = ¢7 ().
Now,if f : P — P is an order-preserving poset map then a chain 7 in P is fixed if and only
if it is point-wise fixed, and orientation is always preserved. Hence, the right-hand side
specializes to the Mébius number u(P/), or reduced Euler characteristic, i.e., the number
of even length chains in P/ minus the number of odd length ones (where the empty chain

counts as odd).

(3.2)  Theorem. [Baclawski and Bjérner (1979)]
Let f: P — P be an order-preserving mapping of a finite Q-acylic poset (e.g.,
a dismantlable poset or the proper part of a noncomplemented lattice). Then
w(PI) = 0.

The result shows that for instance two incomparable points cannot alone form a fixed
point set in an acyclic poset. For other finite posets with the fixed point property such
fixed point sets are, however, possible.

4. Kneser’s Conjecture

Consider the collection of all n-element subsets of a (2n + k)-element set, n > L2201t
is easy to partition this collection into k + 2 classes so that every pair of n-sets within the
same class has nonempty intersection. Can the same be done with only k£ + 1 classes? M.
Kneser conjectured in 1955 that the answer is negative, and this was later confirmed by
L. Lovisz.

(4.1)  Theorem. [Lovész (1978))
If the n-subsets of a (2n + k)-element set are partitioned into k + 1 classes, then
some class will contain a pair of disjoint n-sets.

Lovasz’s proof relies on Borsuk’s Theorem (13.1). Soon after Lovdsz’s breakthrough a
simpler way of deducing Kneser’s Conjecture from Borsuk’s Theorem was discovered by
Barany (1978). However, Lovdsz’s proof is applicable also to other situations and hence of
greater general interest.

Let us first sketch Bardny’s proof. By a theorem of D. Gale, for n,k > 1 there exist
2n +k points on the sphere S* such that any open hemisphere contains at least n of them.
Partition the n-subsets of these points into classes Co,C1,...,Cr. For 0 < i < k, let O; be
the set of all points z € S* such that the open hemisphere around z contains an n-subset
from the class C;. Then (Oi)o<i<k gives a covering of S* by open sets. Part () of Borsuk’s
Theorem (13.1) implies that one of the sets, say Ok, contains antipodal points. But the
open hemispheres around these points are disjoint and both contain n-subsets from the
class Cx. Hence, Cx contains a pair of disjoint n-sets.

For Lovdsz’s proof it is best to think of the problem in graph-theoretic terms. Define a
graph K G, x as follows: The vertices are the n-subsets of some fixed (2n + k)-element set
X and the edges are formed by the pairs of disjoint n-sets. Then Theorem (4.1) can be
reformulated: The Kneser graph K G, x is not (k + 1)-colorable.

For any graph G = (V, E) let M(G) denote the simplicial complex, called the neigh-
borhood complex, whose vertex set is V and whose simplices are those sets of vertices
which have a common neighbor. The topology of this complex has surprising combinatorial
consequences.

(4.2)  Theorem. [Lovész (1978)]
For any finite graph G, if N(G) is (k—1)-connected, then G is not (k+1)-colorable.

To prove Theorem (4.1) it will then suffice to show that N(K G, x) is (k — 1)-connected.



This is easily done as follows. Let P = {4 C X|n < card A < n + k}. Ordered by
containment P is a subposet of the Boolean lattice B(X) of all subsets of X. B(X) is
shellable (10.10) (iv), hence by (10.13) so is also P. As a k-dimensional shellable complex
P is (k — 1)-connected (10.2). Let C be the crosscut of n-element sets. By (11.4) P and
the crosscut complex I'(P,C) are homotopy equivalent. It follows that T'(P, C), which is
the same thing as N(K G, t), is also (k — 1)-connected.

The known proofs for Theorem (4.2) are more involved. A very elegant functorial
argument was given by Walker (1983), which we will sketch here in briefest possible fashion.
The same general argument was also found by Lovasz (unpublished lecture notes) as a
variation of his original proof. For more details see Walker (1983) and also the expository
treatment in Bjorner (1985).

Take the following facts on faith: For each graph G there exists a subcomplex N(G)
of the barycentric subdivision of A’(G) and a simplicial mapping v : N(G) — N(G) with
the following properties:

(1) N(G) and N(G) are of the same homotopy type,

(2) the pair (N(G),v) is an antipodality space,

(3) (N(Km),v) = (S™2,a), ie., complete graphs go to spheres as antipodality spaces,

(4) every graph map g : Gi — G, (mapping of the nodes which takes edges to edges)
induces an equivariant map § : N(G;) — N(G,). (Walker shows that N (.) actually
is a functor from the category of finite graphs and graph maps to the category of
antipodality spaces and homotopy classes of equivariant maps.)

To prove Theorem (4.2), suppose that a graph G is (k + 1)-colorable. This is clearly
equivalent to the existence of a graph map G — Kyy; to the complete graph on k 4 1

nodes. Hence, we deduce the existence of an equivariant map N(G) — N(Kyyq) = SF-1.

So by part (v) of Borsuk’s Theorem (13.1), we conclude that A/(G), and hence N(G), is
not (k — 1)-connected.

A different application of Theorem (4.2) is given in Lovasz (1983).

The following generalized “Kneser” conjecture was made by P. Erdés in 1973 and
recently proved.

(4.3)  Theorem. [Alon, Frankl and Lovisz (1986)]
Let »,t > 1 and k > 0. If the n-subsets of a (tn + (¢ — 1)k)-element set are

partitioned into k + 1 classes, then some class will contain ¢ pairwise disjoint
n-sets.

The proof is analogous to Lovész’s proof of Theorem (4.1). For general t-uniform
hypergraphs H a suitable neighborhood complex C(H) is defined. It is shown that if ¢
is a prime and C(H) is (k(t — 1) — 1)-connected then H is not (k + 1)-colorable. To prove
this for odd primes ¢ the Barany — Shlosman — Sziics Theorem (13.3) is used rather than
Borsuk’s Theorem. See Alon, Frankl and Lovész (1986) for the details.

5. Discrete Applications of Borsuk’s Theorem

One of the most famous consequences of Borsuk’s Theorem is undoubtedly the Ham
Sandwich Theorem (13.2). This result, or some version of the “ham sandwich” reasoning
which leads to it, can be used in certain combinatorial situations to prove that composite
configurations can be split in a balanced way. Two examples of this, due to N. Alon and
coauthors, will be given in this section. For other applications of Borsuk’s Theorem to
combinatorics, see Bardny and Lovasz (1982), Yao and Yao (1985), and Section 4.



Suppose that 2n points are given in general position in the plane IR2, half colored red
and the other half blue. It is a well known elementary problem to show that the red
points can be connected to the blue points by n nonintersecting straight line segments.
A quick argument goes like this. Of the n! ways to match the blue and red points using
straight line segments, choose one which minimizes the sum of the lengths. If two of its
lines intersect, they could be replaced by the sides of the quadrilateral that they span, and
a new matching of even shorter length would resualt. No such elementary proof is known
for the following generalization to higher dimensions.

(5.1)  Theorem. [Akiyama and Alon (1985)]
Let A be a set of d - n points in general position (no more that d points on any
hyperplane) in R%. Let A = A; UA,U...U Aq be a partition of A into d pairwise
disjoint sets of size n. Then there exist n pairwise disjoint (d — 1)-dimensional

simplices, such that each simplex intersects each set A; in one of its vertices,
1<i<d.

The idea of Akiyama and Alon is to surround each point peA by a small ball of radius
€, where ¢ is small enough that no hyperplane intersects more than d such balls. Give each
ball a uniform mass distribution of measure 1/n. Then each color class A,1<1i<d,is
naturally associated with its n balls, forming a measurable set of measure 1. By the Ham
Sandwich Theorem (13.2) there exists a hyperplane H which simultaneously bisects each
color class. If n is odd, then H must intersect at least one ball from each A;. General
position immediately implies that H must intersect precisely one ball from each A;, and
in fact bisect this ball. By induction on n, the points on each side of H can now be
assembled into disjoint simplices, and finally the points in H form one more such simplex.
The argument if n is even is similar, but in that case H might have to be slightly moved
to divide the points correctly for the induction step.

The other example has a more “applied” background. Suppose that k thieves steal a
necklace with k - n jewels. There are ¢ kinds of jewels on it, with k - a; jewels of type
t,1 <7 < t. The thieves want to divide the necklace fairly between them, wasting as little
as possible of the precious metal in the links between Jjewels. They need to know in how
many places they must cut the necklace? If the jewels of each kind appear contiguously
on the opened necklace, then at least ¢(k — 1) cuts must be made. This number of cuts in
fact always suffices. (Of course, what the thieves must really need is a fast algorithm for
where to place these cuts.)

(5.2) Theorem. [Alon and West (1986), Alon (1987)]
Every open necklace with k - a; beads of color i,1 < i < t, can be cut in at most
t(k — 1) places so that the resulting segments can be arranged into k piles with
exactly a; beads of color 7 in each pile, 1 < i < ¢.

The idea for the proof is to turn the situation into a continuous problem by placing the
open necklace (scaled to length 1) on the unit interval, and then to use a “ham sandwich”
type argument there. For & = 2 this was done in Alon and West (1986) using Borsuk’s
Theorem. The extension to general k was achieved in Alon (1987) using the Bardny -
Shlosman — Sziics Theorem (13.3).

6. Matroids and Greedoids

This and the next two sections are devoted to topological aspects of matroids and of two of
their relatives — oriented matroids and greedoids. Basic topological facts about matroid
complexes and geometric lattices are mentioned in (10.10).

The following result was proven by E. Gyéry and L. Lovész in response to a conjecture
by A. Frank and S. Maurer.
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(6.1)  Theorem. [Lovész (1977), Gyory (1978)]
Let G = (V,E) be a k-connected graph, {v1,v2,...,v} a set of k vertices, and
n1,M2,..., Nk positive integers with ny + ny 4 ... + ny = |[V]. Then there exists
a partition {V,Va,...,Vi} of V such that v; € Vi, Vil = n; and V; spans a , /
connected subgraph of G, =1,2,... k. i

The proof of Lovdsz uses topological methods, that of Gyéry does not. At the end of
this section Lovdsz proof will be outlined for the case k¥ = 3 in order to illustrate its
use of topological reasoning. Jt relies on the connectivity of a certain polyhedral complex
associated with certain forests in G. Similar complexes can be defined over the bases of a
matroid, and more generally over the bases of a greedoid. Since the greedoid formulation
contains the others as special cases, we shall use it in this section to develop the general
result.

A set system (E,F),F C 2F  is called a greedoid if the following axioms are satisfied:
(G1) 0erF,
(G2)  for all nonempty A € F there exists an z € A such that 4 — z € F,
(G3)  if A,B € F and |A| > |B|, then there exists an z € A — B such that B U z € F.

If also the extra condition (G4) is satisfied, then (E,F) is called an interval greedoid:
(G4) fACBCC,A,B,CeFand AUz,C Uz € F for some z € E — C, then also
BuzelF,

The sets in F are called feasible and the maximal feasible sets bases. All bases have the
same cardinality r, which is the rank of the greedoid.

The only examples which will be of concern here are matroids (feasible sets = inde-
pendent sets) and branching greedoids of rooted graphs (feasible sets = edge sets which
form a tree containing the root node). Both are interval greedoids. For other examples and
further information about greedoids, see e.g. Korte and Lovész (1983) or Bjorner, Korte
and Lovész (1985).

The feasible sets of a greedoid do not form a simplicial complex other than in the matroid
case. However, as a poset, 7 = F — {0} ordered by inclusion gives a useful topology. A
greedoid (E, F) is called k-connected if for each A € F there exists B € F with A B
and |B — A| = min(k,r — |A|) and such that C € F for every A C C C B. Matroids are
r-connected, and the branching greedoid of a k-connected rooted graph is k-connected.

(6.2)  Theorem. [Bjorner, Korte and Lovisz (1985)]
Let (E,F) be a k-connected interval greedoid (k > 2). Then the poset of feasible
sets (F,C) is (k — 2)-connected.

This result follows from (10.10) (ifi) via (11.4), since for the crosscut C of minimal
elements in F the crosscut complex I'(F,C) is a matroid complex of rank > k.

Let B be the collection of all bases in a greedoid (E, F) of rank r. Two bases B; and B,
are adjacentif By N By € F and |B; N By| = r — 1. Attaching edges between all adjacent
pairs we get a graph with vertex set B, the basis graph.

The shortest circuits in the basis graph can be explicitly described. There are two kinds
of triangles and one kind of square (quadrilateral):

(6.3) Three bases AUz, AUy, AU z, where A € F,|A|l = r — 1, span a triangle of the
first kind.

(6.4)  Three bases AUz Uy, AUz Uz AU yU z, where A € F |A| = r — 2, span a
triangle of the second kind.
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(6.5) Four bases AUz U4, AUz Uv,AUyUu,AUyU v, where A ¢ F Al =r -2,
Sspan a square.

For branching greedoids triangles of the second kind cannot occur.

Now, attach a 2-cell (a “membrane”) into each triangle and square. This gives a 2-
dimensional regular cell complex K, which we call the basis complex.

It is a straightforward combinatorial exercise to check that the basis complex of any
2-connected greedoid of rank < 2 is 1-connected (i.e., connected and simply connected).
For rank 2 (the only non-trivial case) this follows directly from the exchange axiom (G3).
In higher ranks the following is true.

(6.6)  Theorem. [Bjorner, Korte and Lovasz (1985)]
The basis complex X of any 3-connected interval greedoid is 1-connected.

In order to illustrate some of the tools given in Part II, we give a short proof
of this. Let P be the poset of closed cells of K ordered by inclusion, and let Q be
the top three levels of (F,C), i.e., the feasible sets of rank r — 2,r — 1 and r. Let
f + P — Q be the order-reversing map which sends each cell 7 to the intersection
of the bases which span 7. By (6.2) and (10.12) the poset Q is 1-connected, so by
(11.1) we only have to check that the fibers fY(Q>4) are 1-connected for all A € Q.
Butif r(A) =r—14,1=0,1,2, then f71(@>4) is the basis complex of the rank i greedoid
obtained by contracting A, and we have a.lr_eady checked that basis complexes of rank < 2
greedoids are 1-connected.

Let P= BiB;...B;and Q = ByByyy. .. By be paths in the basis graph of a matroid,
and let PQ = ByB,...By4Bgy, ... By be their concatenation. Say that paths PQ and
PRQ differ by an elementary homotopy if R is of the form BCB,BCDB or BCDERB
with B = By.

 (6.7)  Theorem. [Maurer (1973)]

Let P and P’ be any two paths with the same endpoints in the basis graph
of a matroid. Then P can be transformed into P’ by a sequence of elementary
homotopies. B -

Maurer’s “Homotopy Theorem” (6.7) is clearly a combinatorial reformulation of (6.6)
in the matroid case. An application to oriented matroids will be given in the next section.

Time has come to return attention to Theorem (6.1). The following outline of the proof
for the £ = 3 case is quoted from Lovisz (1979) (with some adjustments in square brackets
to better suit the present discussion):

“So let G be a 3-connected graph, v;,v;,v5 € V(G) and n; + ng + n3 = |V(G)|. Take a
new point a and connect it to vy, vy, and vs. Consider the topological space K constructed
for this new graph G”. [ In our language, K is the basis complex of the branching greedoid
determined by the rooted graph (G’,a). This greedoid, whose bases are the spanning trees
of G', is 3-connected.] For each spanning tree T of G', let fi(T) denote the number of
points in T accessible from a along the edge (a,v;)(i = 1,2). Then the mapping

f:Tw (f1(T), (1))

maps the vertices of K onto lattice points of the plane. Let us subdivide each quadri-
lateral 2-cell in K by a diagonal into two triangles; in this way we obtain a triangu-
lation K of K. Extend f affinely to each such triangle so as to obtain a continuous
mapping of K into the plane. Obviously, the image of K is contained in the triangle
A={z2>0,y>0,z+y < n}. We are going to show that the mapping is onto A.



“Let us pick three spanning trees, Ty, T, T3 first such that f(N) = (n,0), f(T3) =
(0,n), f(T3) = (0,0). Obviously, such trees exist. Next, by applying | the fact that the
basis graph of a 2-connected greedoid is connected ] to the graph G’ — (a,v3), we select
a polygon Py; in K connecting Ty to T, and having f3(z) = 0 at all points. Thus f(Pi2)
connects (n,0) to (0,n) along the side of the triangle A with these endpoints. Let Py3 and
P3; be defined analogously.

“By [Theorem (6.6)], P12+ P33+ P3; can be contracted in K to a single point. Therefore,
f(Pi2) + f(Pa3) + f(Ps1) can be contracted in f(K) to a single point. But “obviously”
(or, rather, by applying the well-known fact that the boundary of a triangle cannot be
contracted to a single point in the triangle with one interior point taken out), f(K) must
cover the whole triangle A. So in particular the point (n;,7;) belongs to the image of K,
and therefore it belongs to the image of a triangle of K. But it is easy to see that this
implies that (ny,ng) is the image of one of the vertices of K; i.e., there exists a spanning
tree T with

fi(T)=n1, fo(T) = na.
The three components of T — a now yield the desired partition of V(G).”

Theorem (6.6) is a special case of a more general result saying that for any k-connected
interval greedoid a certain higher-dimensional basis complex is (k — 2)-connected. This
more general result implies Theorem (6.1) for arbitrary k by extension of the ideas we
have just seen in the k = 3 case. See Lovész (1977) and Bjorner, Korte and Lovasz (1985)
for complete details.

7. Oriented Matroids

Let E be a finite set with a fixed-point free involution z — z* (ie,z* # 1z
z € E). Write A* = {z*|z € A}, for subsets A C E. An oriented matroid @
such a set together with a family C of nonempty subsets such that

(OM1) Cis a clutter (i.e., C; # C; implies Cy € Cy for all C4,C; €C),

(OM2) fC eCthen C*€Cand CNC* =0,

(OM3) If C4,C, € C,C, # C3 and z € C; N C}, then there exists D € C such that
D (; C] U C2 - {.’L',l“}.

z** for all
(E,*,C) is

The sets in C are called circuits of the oriented matroid ©. For elements z € E let
z = {z,z*},and let A = {z|z € A}, A C E, and ¢ = {C|C ¢ C}. The system C
satisfies the usual matroid circuit exchange axioms, so @ = (E,C) is a matroid, called the
underlying matroid of O. Not all matroids arise from oriented matroids in this way; those
that do are called orientable. A subset B C E is called a basis of @ if B is a basis of ©.
The rank of O equals the rank of O. See Bland and LasVergnas (1978) and Folkman and
Lawrence (1978) for more information about oriented matroids.

Two topics from the theory of oriented matroids will be discussed in this section.
Most important is the topological representation theorem of Folkman and Lawrence
(1978), which states that every oriented matroid can be realized by an arrangement of
pseudospheres. As an application we show how such realizations lead to quick proofs of.
some combinatorial properties of rank 3 oriented matroids. However, we begin by sketching
(following LasVergnas (1978)) how Maurer’s Homotopy Theorem (6.7) can be used to
deduce the existence of a determinantal sign function.

The fundamental models for oriented matroids are sets of vectors in IR% and the relation
of positive linear dependence (or more generally, positive linear dependence of vectors over
any ordered field). Suppose that E is a finite subset of R? — {0} such that E = —E, and
forz € E'let 2* = —z. A subset A C E is positive - linearly dependent if £ ¢4 A,z = 0 for
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some real coefficients A; > 0, not all equal to zero. Let C be the family of all inclusionwise
minimal positive - linearly dependent subsets of E, except those of the form {z,z*},z € E.
Equivalently, C consists of all subsets of E which form the vertex set of a simplex of
dimension > 2 containing the origin in its relative interior. Oriented matroids (E,*,C)
which arise in this way are called linear over IR. Not all oriented matroids are isomorphic
to linear ones.

Just like ordinary matroids, oriented matroids can be characterized in several ways. We
shall discuss a characteristic property of the set of bases B of an oriented matroid, namely
that a determinant can be defined up to sign (but not magnitude).

Let us review some essential features of the function ¢ : 8 — {+1, -1}, taking ordered
bases of a linear oriented matroid (E,*,C), E C IR?, to the sign of their determinants. A
function 5 can be defined for certain pairs of ordered bases B and A’ in IR? as follows:

(7.1)  Suppose 8 and B’ are permutations of the same basis B. Let n(3,8') = +1if they
are of the same parity and = —1 otherwise.

(7.2)  Suppose 8 = z123...2,_1yand B’ = z12,...2,_,2 with y # z.Let (8,8 = +1
if y and z are on the same side of the hyperplane spanned by {zy,...,2z,_1}, and
= —1 otherwise.

Now, once we choose an ordered basis B and put det(fp) := +1, the function det(B)
and its sign 6(8) is determined for all ordered bases 8 by the usual rules of linear algebra.
But the function 6(8) is also combinatorially determined, because any pair of ordered
bases can be connected by a chain of steps of type (7.1) or (7.2) and we have: If 8 and '
are ordered bases as in (7.1) or (7.2) then §(8) = n(8,8') - 6(8").

The preceding discussion points the way how to generalize the determinantal sign
function to all oriented matroids. First, to cast (7.2) in a form which is more compatible
with the axiom system (OM1) — (OM3), we replace it by the following reformulation:

(7.2)  Suppose B = z123...7,_3y and B’ = T1T2...Zr12 With y # 2z, and if y # 2*
let {C,C*} be the unique pair of circuits such that in the underlying matroid
{#,2 c C C {a4,...,%,,7,%}. Put 7(B,8') = +1 if one of y and z lies in C and
the other in C*, and put 7(8,8') = —1 otherwise.

(7.3)  Theorem. [LasVergnas (1978)]
Let B be the set of ordered bases of an oriented matroid, and let B € B. There

exists a unique function § : B — {+1, -1} such that 0(Bo)=+1andif 3,8 € B
are related as in (7.1) or (7.2)" then §(8) = n(3,5") - 6(8").

The proof runs as follows. Define a graph on the vertex set B by connecting pairs
{8, B’} which are related as in (7.1) or (7.2)’ by an edge. The graph is clearly connected,
and there is a projection 7 : B — B to the basis graph B of the underlying matroid. Now,
put 8(8o) := +1, and for 8 € B define

6(B) = My n(B; -1, Bs)

for some choice of path £y,81,...,6, = B8 in B. The proof is complete once we show
that this definition is independent of the choice of path from Sy to 8. If P, and P, are two
such paths then by Theorem (6.7) their projections 7(P;) and 7(P,) in the basis graph
differ by a sequence of elementary homotopies. Thus the checking is reduced to verifying

OE n(aiy,00) = 1
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for closed paths ag, @,...,a; = ag in B whose projection in B is an edge BC B, triangle
BCDB or square BCDEB. However, the basis configurations which give triangles or
squares in the basis graph are explicitly characterized in (6.3) - (6.5), and this way the
checking is brought down to a manageable size. See LasVergnas (1978) for the details.

To pave the way for the representation theorem for oriented matroids it is best to
again look at the linear case for motivation. The representation theorem in fact says that
any intuition gained from the linear case is going to be essentially correct (modulo some
topological deformation which cannot be too bad) for general oriented matroids.

Let E be a finite subset of R? — {0} such that E = —E, and let O = (E, +,C) be the
linear oriented matroid as previously discussed. Foreache € E = {z = {z,2z*}|z € E}, let
H. be the hyperplane orthogonal to the line spanned by e. The arrangement of hyperplanes
H = {Hcle € E} contains all information about O, since one can go from H, back to a
pair of opposite normal vectors, and the definition of the sets which form circuits in @
(i.e., the sets in C) is independent of the length of vectors. By intersecting with the sphere
S ' = {y e RY || y ||= 1} we can alternatively look at the arrangement of spheres
S = {H.nS% e € E}, which is merely a collection of equatorial {d — 2)-spheres inside
the (d — 1)-sphere. Clearly: linear oriented matroids, arrangements of hyperplanes and
arrangements of spheres are the same thing.

When thinking about a linear oriented matroid (E,+,C) as an arrangement of spheres
it is useful to visualize elements ¢ € E as closed hemispheres H, = {y € S%!|(y,z) > 0}.
Then a subset A C E belongs to C if and only if AN A* = @ and A is minimal such that
U.’L‘EAEI = Sd—l.

We shall need the following terminology. Denote by 70 = {y € S7|y;+1 = 0} the
standard equatorial subsphere of the standard sphere S7 = {y € R/*!| || y [l= 1}, and let
§it ={ye S|lyj+1 > 0} and S~ = —S§3+ denote the two closed hemispheres. A sphere
S is a topological space for which there is a homeomorphism f:S? — S with the standard
j-sphere, for some j > 0. A pseudosphere S’ in S is any image §' = F(590) of the equatorial
subsphere under such a homeomorphism. The pseudosphere S’ is the intersection of its
two sides (S)* = f(§7*) and (S')~ = f(S4~), which are homeomorphic to balls.

The crucial definition is this: An arrangement of pseudospheres (E,S) is a finite
collection S = {Sc|e € E} of pseudospheres S. in S4-! such that

(AP1) Every nonempty intersection S4 = MNecaSe, A C E, is a sphere.
(AP2) For every nonempty intersection S4 and all e € E, either S4 C S, or S4N S, is
a pseudosphere in S4 with sides S4 N St and Sy n Sc.

This definition is due to Folkman and Lawrence (1978). They actually required more,
but the additional assumptions in their definition were proved to be redundant by Mandel
(1982).

In analogy with the linear case (arrangement of spheres), an arrangement of pseudo-
spheres (E,S) gives rise to an oriented matroid (E,,C) as follows: put E = {S}|e €
E}u {S;le € E}, let (S})* = S- and vice versa, and define C to be the collection of the
minimal subsets A C E such that UA = S%-1 and AN A* = §. This way of constructing
oriented matroids is surprisingly general:
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(7.4)  Representation Theorem. [Folkman and Lawrence (1978)]
Every oriented matroid of rank d arises from some arrangement of pseudospheres
in S?-1 in the described fashion.

The proof of this result is fairly involved. First a poset is constructed from the oriented
matroid, and then it is shown, for instance by using (12.6), that this poset is the poset
of faces of some regular cell complex C. This_complex C provides the (d — 1)-sphere and

various subcomplexes the (d — 2)-subspheres forming the arrangement. The sphere C is

constructible (Edinonds and Maxndel (1978), Mandel (1982)), and even shellable (Lawrence
(1984)), which implies that the whole construction of C and the relevant subcomplexes can

¥ be carried out in piecewise linear topology. In particular, thi. means that no topological
pathologies need to be dealt with in representations of oriented matroids. Complete proofs
of (7.4) can be found in Folkman and Lawrence (1978), Mandel (1982), and Bjérner,
LasVergnas, Sturmfels, White and Ziegler (1988).

The representation theorem shows that all oriented matroids of rank 3 come from
arrangements of “pseudocircles” on the 2-sphere. This representation can be used for
quick proofs of some combinatorial properties as in the following application, which is due
to Edmonds and Mandel (1978) and .... The first part is a generalization of the Sylvester-
Gallai theorem (cf. Chapter ...), since a finite configuration of points in IR? is the same
thing as a linear orientable matroid of rank 3.

(7.5)  Theorem. [Edmonds and Mandel (1978),...]
Let M be an orientable matroid of rank 3. Then:
() M has a 2-point line,
(1i) if the points of M are 2-colored there exists a monochromatic line.

Here is how this result follows from (7.4). Represent the points of M as pseudocircles on
the 2-sphere. Then lines are maximal collections of pseudocircles with nonempty intersec-
tion (which is necessarily a O-sphere, i.e., two points). The arrangement of pseudocircles
gives a graph G whose vertices are the points of intersection and edges the segments of
pseudocircles between such points. Since this graph lies embedded in S? it is planar, and
since k(M) = 3 it is simple. We need the following lemma.

(7.6) Lemma. For any planarly embedded simple graph:
(1) some vertex has degree at most five, .
(12) if the edges are 2-colored then there exists a vertex around which the edges
of each color class are adjacent.

Part (i) is a well-known consequence of Euler’s formula (cf. Chapter ...). Part (i) is also
a consequence of Euler’s formula, but perhaps not as well known. It was used by Cauchy
in the proof of his Rigidity Theorem for 3-dimensional convex polytopes.

Now look at the graph G determined by the arrangement of pseudocircles. If all lines in
M have at least 3 points, then every vertex in G will have degree at least 6, in violation of
(7). If the pseudocircles are 2-colored and through every intersection point there is at least
one pseudocircle of each color, then the induced coloring of the edges of G will violate (19).

8. Tutte’s Homotopy Theorem

A matroid is called regular if it can be coordinatized over every field. In Tutte (1958)
a characterization is given of regular matroids in terms of forbidden minors. The proof
relies in an essential way on a “Homotopy Theorem”, expressing the 1-connectivity of
certain 2-dimensional complexes. Tutte's Homotopy Theorem was also used by R. Reid
(ca. 1971, unpublished) and Bixby (1979) to prove the forbidden minor characterization
for representability over GF(3). Both results (i.e., the characterizations of regular and



13

G F(3) matroids) where also proven by Seymour (1979) using a different method which
avoids use of the Homotopy Theorem.

Tutte’s Homotopy Theorem seems to be the oldest topological result of its kind in
combinatorics. Unfortunately it is quite technical both to state in full and to prove.
Complete details can be found in Tutte (1958) and Tutte (1965).

In this section we shall state the Homotopy Theorem in sufficient detail to explain
the way that it was used by Tutte to derive the characterization of regular matroids.
Familiarity with basic matroid theory will be assumed. See Chapter ... for this material.

Let L be a finite geometric lattice of raak r, and write L for the set of flats of rank 1;
so L™1 is the set of copoints, L7~2 the colines and L™~3 the coplanes. Flats X € I will
be thought of as subsets of the point set L! via X = {rellp< X}

Given any point @ € L! we define a graph TG(L,a) on the vertex set Li;l ={X ¢

L' ag X} as follows: two copoints X and Y “off a” (ie.,in the set L3 1) span an edge if
X AY is acoline and X UY # L' - a. On this graph we construct a 2-dimensional regular

cell complex TC(L, a) by attaching 2-cells into the triangles and squares of the following
kinds:

(8.1)  Triangles XY ZX for which rk(X AYANZ)>r-3.

(8.2) Squares XY ZTX for which rk(P) = r~3, where P= XAV AZA T, and either

the coline PV a is covered by exactly two copoints or else the interval [P,1] is
isomorphic to the lattice of flats of the Fano matroid F7 minus one of its points.

If L has no minor isomorphic to Fy, the dual of the Fano matroid, then (8.1) and (8.2)
describe all the 2-cells of the Tutte complex TC(L,a). This means that for the uses in
representation theory, and hence also for the purposes of this exposition, the definition
(8.1)~(8.2) of TC(L,a) is sufficient. In general it is necessary to attach 2-cells also into
certain squares XY ZTX for which rk(X AY A Z A T) = r — 4. The definition of these
squares (of the “corank 4 kind”) is fairly complicated, so we refrain from describing them
here.

(8.3)  Homotopy Theorem. [Tutte (1958)]
The complex TC(L,a) is 1-connected.

This statement of the Homotopy Theorem differs in form but not in content from the
statement in Tutte (1958). Tutte has remarked about his theorem (in Tutte (1979), p. 446)
that “the proof ... is long, but it is purely graph-theoretical and geometrical in nature. I
am rather surprised that it seems to have acquired a reputation for extreme difficulty.”
No significant simplification of the original proof seems to be known, other than in special
cases. One such caseis if X UY # L! — q for all pairs X,Y of copoints “off a” such that
X AY is a coline. Then the top three levels of L — [a, i] form a poset which is 1-connected
by (10.10) (iv) and (10.13), and the 1-connectivity can be transferred to TC(L,a) by an
application of the Fiber Theorem (11.1), similar to the proof of Theorem (6.6). A simpler
and more conceptual proof of Tutte’s theorem in full strength would be of definite interest.

The combinatorial meaning of the Homotopy Theorem is that any two copoints X and
Y “off a” can be connected “off a” by a path in the Tutte graph TG(L,a), and that any
two such paths differ by a sequence of elementary homotopies of type XYX, XYZX asin
(8.1), or XY ZTX as in (8.2) or of the corank 4 kind. (Compare the discussion preceding
Theorem (6.7).)

Let us now have a look at how this is used in representation theory.
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(84)  Theorem. [Tutte (1958)]
A matroid is regular if and only if it contains no minor isomorphic to the 4-point
line U3, the Fano plane F or its dual Fy.

The difficult direction is to prove sufficiency of the exclusion of these three minors. The
following coordinatizability criterion is used: A matroid M = (E,T) is regular if and only
if for every copoint X of the lattice of flats there is a function fx : E— {0,+1,~1} such
that f;l(O) = X and for every triple X1, X2, X3 of copoints whose intersection is a, coline
there exists 71,72,73 € {41, -1} such that nfx, +72fx; + ¥3fx, = 0.

The proof that any matroid with no minor of type U, F7 or F7 is regular proceeds
by induction on the size of the ground set. Suppose that M = (E,T) is such a matroid
and let L be its lattice of flats. Pick any point a € E = L! and let M’ = M — 4 be the
restriction of M to E — a and L’ its lattice of flats. By induction M’ is regular and hence
for all copoints Y € L’ there exist functions fy tE—-a— {0,+1, —1} with the required
properties. We may assume that a is not an isthmus, so rank L = rank L' (the isthmus
case is easily handled by simpler means). The crux now is to construct good functions fx
for all X € L™~! from the given functions fy Y € (L)1, We will describe here only how
this is done when X ¥ a, since this is where the Homotopy Theorem is used.

fXe L’ZZI then X € (L)1, so a function [ is already defined on all of E — ¢. Put
fx 1= f% on FE — a, and define fx(a) as follows.

First, define a function t{(X,Y) from edges {X,Y} of the Tutte graph TG(L,a) to
{+1,-1} by putting ¢(X,Y) = fx(p)- fy(p) for any p € E~ (X UY Ua). By the definition
of TG(L,a) the set E— (X UY Ua) is nonempty, and one shows that the existence of two
elements p and ¢ in this set with fx(p)- fr(p) # fx(q)- fr(q) implies the presence of a
U4 minor.

Next, pick some X, € erj,l and put fx,(a) := 1. For every other X ¢ erzl, choose
some path X, Xy,...,X, = X in the graph TG(L,a) and put

(8.9) fx(a):= H?=1t(X,'_.1,X,‘).

By Theorem (8.3) such paths exist and any two of them differ by a sequence of
elementary homotopies. Hence, to verify that the definition (8.5) is independent of the
choice of path from Xg to X it suffices to check that

I (X, Xi) = 1

for all closed paths Xo,X;,..., X = Xo,k = 2,3,4, corresponding to the elementary
homotopies. This brings the verification down to a few manageable cases, and it is here
that the assumption about no Fy or F? minors is used.

Having sketched how the Homotopy Theorem is used to make definition (8.5) possible,
our immediate aim with this section is accomplished and we leave the rest of the proof of
Theorem (8.4) aside.
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Part II. TOOLS

The rest of this chapter is devoted to a review of some definitions and results from combi-
natorial topology that have proven to be particularly useful in combinatorics. The material
in Sections 9 (simplicial complexes), 12 (cell complexes) and 13 (Borsuk’s theorem) is of a
very general nature and detailed treatments can be found in many topology books. Specific
references will therefore be given only sporadically. Most topics in Sections 10 and 11, on
the other hand, are of a more special nature, and more substantial references (and even
some proofs) will be given.

Many of the results mentioned have been discussed in a large number of papers and
books. When relevant, our policy has been to reference the original source (when known to
us) and some more recent papers that contribute simple proofs, extensions or up-to-date
discussion (a subjective choice). We apologize for any inaccuracy or omission that may
unintentionally have occured.

9. Combinatorial Topology

This section will review basic facts concerning simplicial complexes. Good general refer-
ences are Munkres (1984a) and Spanier (1966). Basic notions such as (topological) space,
continuous map and homeomorphism will be considered known.

Simplicial complexes and posets

(9.1) An (abstract) simplicial complex A = (V,A) is a set V (the vertex set) together
with a family A of nonempty finite subsets of V (called simplices or faces) such that
@ #o0Cr1e€ Aimplies 0 € A. Usually, V' = UA (shorthand for V = Usea0o) so V can
be suppressed from the notation. The dimension of a face ¢ is dimo = card o — 1, the
dimension of A is dim A = maxXyes dimo. A d-dimensional complex is pure if every face
is contained in a d-face (i.e., d-dimensional face).

Let A* = {k-faces of A} and ASF = Uj<kA7, for k > 0. The elements of A® = V and
Al are called vertices and edges, respectively. If A is pure d-dimensional the elements of
A? are called facets (or chambers). AS¥ is the k-skeleton of A. It is a subcomplex of A.

A (geometric) simplicial complex is a polyhedral complex in R? (in the sense of (12.1))
whose cells are geometric simplices (the convex hull of affinely independent point-sets). If
I is a geometric simplicial complex then the family of extreme-point-sets of cells in T form
an abstract simplicial complex A(T) which is finite. Conversely, if A is a d-dimensional
finite abstract simplicial complex then there exist geometric simplicial complexes T in
R+ such that A(T) = A. The underlying space UT of any such I', unique up to linear
homeomorphism, is called the geometric realization (or space) of A, denoted by |A[. Thus,
abstract and geometric simplicial complexes are equivalent notions in the finite case (to be
precise, when finite-dimensional, denumerable and locally finite). The geometric realization

|A] of arbitrary infinite abstract simplicial complexes A can be constructed as in Spanier
(1966).

A simplicial map f : Ay — A, is a mapping f : AY — A such that f(o) € A, for all
0 € Ay. By affine extension across simplices it induces a continuous map |f| : [Aq1] — [Aq].

(9.2) Let P = (P,<) be a poset (partially ordered set). A totally ordered subset
To < 1 < ... < zx is called a chain of length k. The supremum of this number over
all chains in P is the rank (or length) of P. If all maximal chains have the same finite
length then P is pure. P is a lattice if every pair of elements z,y € P has a least upper
bound (join) z V y and a greatest lower bound (meet) z A y.
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For z € P,let P>y, Py, P<z, Pc; be defined by Poy={yeP:y>z} etc. Forz<y
define the open interval (z,y) = P5, N P, and the closed interval (z,9] = Psz N Pg,.
A bottom element 0 and a top element 1 in P are elements satisfying 0 < z < 1 for all
z € P.If both 0 and 1 exist, P is bounded. Then P = P — {0,1} denotes the proper part
of P. For arbitrary poset P,P = P U {0,1} denotes P extended by new top and bottom
elements (so, card (P\P) = 2).

Let P be a pure poset of rank r. For z € P, let r(z) = rank (P<z). The rank function
r: P — {0,1,...,r} is bijective on each maximal chain. It decomposes P into rank levels
P ={zeP:r(z)=14},0<i<r.

(9.3) The face poset P(A) = (A,C) of a simplicial complex A is the set of faces ordered
by inclusion. The face lattice of A is P(A) = P(A) U {0, 1}. It is a lattice. P(A) is pure
fl A is pure, and rank P(A) = dim A.

The order complex A(P) of a poset P is the simplicial complex on vertex set P
whose k-faces are the k-chains zo < z; < ... < z4 in P. A poset map f : P, — P,
which is order-preserving (z < y implies f(z) < f(y)) or order-reversing (z < y implies
f(z) 2 f(y)) is simplicial f: A(P) — A(P,), and therefore induces a continuous map
Lf1 - 1A(P)] — JA(P2).

For a simplicial complex A, let sdA = A(P(A)), called the (first) barycentric subdi-
vision (due to its geometric version). A basic fact is that A and sdA are homeomorphic.
Therefore, passage between simplicial complexes and posets via the mappings P(-) and
A(-) does not affect the topology, and from a topological point of view simplicial complexes
and posets can be considered essentially equivalent notions.

The geometric realization |P| = |A(P)] associates a topological space with every poset
P. In this chapter, whenever we make topological statements about a poset P we have
the space |P| in mind. [ There exists at least one other way of associating an interesting
topology with a poset P; namely, let the order-ideals (sets A satisfying z < y € A implies
z € A)in P be the open sets of a topology on P. In this ideal topology the continuous maps
are precisely the order-preserving maps and “homotopy” has a combinatorial meaning.
See Stong (1966). The ideal topology is also relevant for sheaf cohomology over posets
(Baclawski (1975), Yuzvinsky (1987)) and has surprising connections with the order
complex topology (McCord (1966)). ]

(9.4) Let T be a topological space, =~ an equivalence relation on T, and = : T — T/
= the projection map. The quotient T/ & is made into a topological space by letting
A C T/ =~ be open iff 7=}(A) is open in T. If S;,i € 1, are pairwise disjoint subsets of
T, then T/(S;)icr denotes the quotient space obtained by identifying the points within
each set S;,i € I. E.g., cone (T) = T x [0,1])/(T x {1}) is the cone over T, and susp
(T) =T x[0,1]/(T x {0},T x {1}) is the suspension of T. The d-ball modulo its boundary
is homeomorphic to the d-sphere: B4/S%-1 = gd

If (T, 2i)ier,zi € Ti, is a family of pointed pairwise disjoint spaces, then the wedge
of this family is UierTi/(Uier{z:}). The join of two spaces 17 and T, is the space
T+ Ty = T x T2 X [0, 1]/({(t, 2,0))z € T2}, {(y, 3, |y € T1})ieTs vers-

The join of two simplicial complexes Ay and A, (with A9 N A = @) is the complex
Ar*xAy =AUAU{oUT|o € Ayand T € Az}, Further, the cone over A and suspension
of A are the complexes cone (A) = AxT, susp (A) = A*Ty, where I; is the 0-dimensional
complex with i vertices, 1 = 1,2. There is a homeomorphism

(9.5) |A1 # Ag] = [Ay] % | Ay
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(In case A; and A; are not locally finite the topology of the right-hand side may need
to be modified to the associated compactly generated topology, see Walker (1988).) In
particular, | cone (A)| & cone (|A[) and | susp (A)| & susp (a.

The direct product P x Q of two posets is the cartesian product set ordered by
(z,y) < (¢,y)if z < 2’ in P and y < ¢ in Q. The join (or ordinal sum) P« Q
of two posets is their disjoint union ordered by making each element of P earlier than
each element of Q and otherwise keeping the given orderings whithin P and Q. Clearly,
A(P+Q) = A(P) + AQ).

There are the following homeomorphisms (Quillen (1978), Walker (1988)):

(9.6) |7 x Q| =|P|x[qQ],

(9.7) (P X Q)52 = |Poal #|Q5yl.

(98) Iz, 9), (", ¥ = susp (I(z,2")| # |(3,¥")]), if ¢ < 2" in P and y < ¢/ in Q.

(Again, special care has to be taken with the topology of the right-hand sides if the
participating order complexes are not locally finite.)

(9.9) Let A be a simplicial complex and ¢ € A U {0}. Then define the subcomplexes:
deletion dipa(0) = {r € Alrno = @}, star sta(o) = {r € AlrUo € A} and link
lka(o) = {r € Ajrno =0 and TUG € A). Clearly, di(o) N st(o) = lk(o) and
o x k(o) = st(0). If o € A® then also dl(0) U st(o) = A; and dl(9) = st(@) = Ik(B) = A.

Homotopy and homology

(9.10) Two mappings fo, f; : Ty — T; of topological spaces are homotopic (written Jo~ f1)
if there exists a mapping (called a homotopy) F : T x [0,1] — T such that F(¢,0) = fo(t)
and F(t,1) = fi(t) for all t € Ty. (All mappings between topological spaces are assumed
to be continuous.) The spaces Ty and 7T, are of the same homotopy type (or homotopy
equivalent) if there exist mappings f; : T, — T3 and f; : T — T such that fyo0 f; ~ tdr,
and f; o f; ~ idy,. Denote this by T} ~ T3. A space which is homotopy equivalent to a
point is called contractible.

Let %1 = {z € RY|[z| = 1} and B? = {z € RY||z|] < 1} denote the standard
(d — 1)-sphere and d-ball, respectively. Note that S-! = 9,8° = { two points } and
B? = { point }. A space T is k-connected if for 0 < ¢ < k each mapping f:S' > T
can be extended to a mapping f : B**! — T such that f(z) = f(z) for all z € S'. In
particular, 0-connected means arcwise connected. The property of being k-connected is a
homotopy invariant (i.e., is transferred to other spaces of the same homotopy type). ¢ is
(d — 1)-connected but not d-connected, B? is contractible. It is convenjent to define the
following degenerate cases: (—1)-connected means “nonempty”, and every space (whether
empty or not) is k-connected for k < —2.

A simplicial complex A is contractible iff A is k-connected for all k > 0 (or, for all
0 < k < dim A). The corresponding statement for general spaces is false in the nontrivial
direction. Furthermore, a simplicial complex is k-connected iff its (k + 1)-skeleton is k-
connected.
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Let 7(T) = =;(T,z) denote the set of homotopy classes of maps f : S* — T such
that f((1,0,...,0)) = z, from the i-sphere to a pointed topological space (T,z),z € T,
t > 0. For ¢ > 1 there exists a composition that makes 7(T) into a group, the i-th
homotopy group of T (at the point z). For i > 2, the group 7i(T) is Abelian. m{(T) is the
fundamental group, and T is simply connected if 71(T) = 0. The space T is k-connected
iff 7i(T,z) =0forall 0 <i<kandzeT. So, 1-connected means simply connected and
arcwise connected.

(9.11) For the definitions of simplicial homology groups Hi(A,G) and reduced simplicial

homology groups fI,-(A,G’) of a complex A with coefficients in an Abelian group G, we
refer to Munkres (1984a) or Spanier (1966).

Let Hi(A) = Hi(A,Z). The degenerate case

; _JZz , i=-1,

H‘(@)“{ 0 , i#-1,
should be noted. For A # @ , Hi(A) = Ofor all i < 0 and all i > dimA, and
Ho(A) = Z°71, where c is the number of connected components of A. H;(A) = Hy(A) for
all i # —1,0, H_1(A) = 0 and Ho(A) = Ho(A) ® Z.

For a finite simplicial complex A let 8; = rank Hi(A) = dimg Hi(A,Q),i > 0. The
Betti numbers f3; satisfy the Euler-Poincaré formula

(9.12) E,‘Zo(—l)i card (A') = 2520(—1)iﬂ,‘.

Either side of (9.12) can be taken as the definition of the Euler characteristic x(A).
The reduced Euler characteristic is X(A) = x(A) - 1. Formula (9.12) is valid with
Bi = dimyg Hi(A,k) for an arbitrary field k, although the individual integers §; may
depend on k. Additional relations exist between the face-count numbers fi = card (AY)
and the Betti numbers §; (Bjorner and Kalai (1988)). Much is known about, the f-vectors
f(A) = (fo, f1,-..) for various special classes of complexes A, see Chapter XX.

Two complexes of the same homotopy type have isomorphic homology groups in all
dimensions. A complex A is k-hom-connected (over G) if Hi(A,G) = 0 for all i < k.
So, (—1)-hom-connected means nonempty and 0-hom-connected means nonempty and
connected. Further, A is G-acyclic if fI;(A,G) =0forall 1€ Z.

We now list some relations between homotopy properties and homology of a complex
A, which are frequently useful. They are consequences of the theorems of Hurewicz and
Whitehead (Spanier (1966)).

(9.13)  Ais k-connected iff A is k-hom-connected (over Z) and simply connected, k > 1.
(9.14) A is contractible iff A is Z-acyclic and simply connected.

(9.15) If A is simply connected, H;(A) = 0fori # d > 1, and Hy(A) = ZF then A is
homotopy equivalent to a wedge of k d-spheres.

(9.16)  Assume dim A =d > 0. Then A is (d—1)-connected iff A is homotopy equivalent
to a wedge of d-spheres.

The analogues of (9.14)-(9.16) may fail for non-triangulable spaces.



19

The following is a consequence of Alexander duality on the (n —2)-sphere. For combina-
torial applications of Poincaré duality and the related hard Lefschetz theorem, see Stanley
(1980).

(9.17) Combinatorial Alexander Duality. Let A C 2Y.V ¢ A, be a simplicial
complex, card V' = n, and let A* = {S € 2V\{0,V}|V\S ¢ A}. (Note that
A*™ = A.) Let k be a field. Then H;(A,k) = H,_3_;(A",k), for all i € Z.

We end this section with some very useful elementary lemmas

Suppose A is a simplicial complex and T a space. Let C : A — 27 be order-preserving
(le, C(o) CC(T) C T,forallc C 7in A). A mapping f : |A| — T is carried by C if
f(lo]) C©C(o) for all 0 € A. Let k € Z; U {o0}.

(9.18) Carrier Lemma. Assume that C(o) is min(k, dim(o))-connected for all o € A.
Then:
(1) if f,g:|AS*| - T are both carried by C, then f ~ g,
(i1) there exists a mapping |AS**}| — T carried by C.

In particular, if C(0) is always contractible then |A| can replace the skeleta in (i) and
(i1) (k = oo case). Carrier lemmas of various kinds are common in topology. For proofs of
this version, see Lundell and Weingram (1969) or Walker (1981b).

(9.19) Contractible Subcomplex Lemma. If Aq is a contractible subcomplex of a
simplicial complex A, then the projection map |A| — |A[/|Ao] is a homotopy
equivalence.

This is a consequence of the homotopy extension property for simplicial pairs (see Brown
(1968) and Bjorner and Walker (1983)).

(9.20) Gluing Lemmas. Examples of simple gluing lemmas for simplicial complexes
Ay and A, are:
(i) if A; and Ay N A, are contractible, then Ay UA, ~ Ay,
(i) if Ay and A; are k-connected and A; N A, (k — 1)-connected, then A; U A,
is k-connected,
(iii) if Aj U Az and Aj N A, are k-connected, then so are also A; and A,

Such results are often special cases of the theorems in Section 11, especially (11.2).
Otherwise they can be deduced from the Mayer-Vietoris long exact sequence and the
Seifert-van Kampen theorem.

A general principle for gluing homotopies appears in Brown (1968), p. 240, and Mather
(1966). It gives a convenient proof for part (i) of the following lemma. For the remaining
parts use (9.19) and (9.20).

(9.21) Lemma. Let A = AgUA; U...UA, be a simplicial complex, and assume
A,’ﬂAjQAofOI‘B.HlSi(an.
(3) If A; is contractible, 1 € i < n, then
A~ AgUUL, cone (Ag N A).

(L.e., raise a cone independently over each subcomplex Ag N A;.)
(#) If A; is contractible, 0 < i < n, then

A >~ wedge 1¢icn 5Usp (Ao N A;).

(#19) If A; is k-connected and Ag N A; (k — 1)-connected, 0 < i < n, then A is
k-connected.



20

(iv) If A and Ao N A; are k-connected, 1 < i < n, then all A; are k-connected,
0<t<n.

10. Special Complexes
Some classes of complexes which are frequently encountered in combinatorics will be
reviewed.

Collapsible and shellable complexes

(10.1) Let A be a simplicial complex, and suppose that ¢ € A is a proper face of exactly
one simplex 7 € A. Then the complex A’ = A\{o,7} is obtained from A by an elementary
collapse (and A is obtained from A’ by an elementary anticollapse). Note that A’ ~ A. If
A can be reduced to a single point by a sequence of elementary collapse steps, then A is
collapsible.

The class of nonevasive complexes is recursively defined as follows: (i) a single vertex is
nonevasive, (1) if for some z € A® both lka(z) and dla(z) are nonevasive, then so is A.

The following logical implications are strict (i.e., converses are false):
cone == nonevasive == collapsible = contractible == Z-acyclic.
(Furthermore, for an arbitrary field k : Z-acyclic = k-acyclic = Q-acyclic == Xx=0)

Nonevasive complexes were defined by Kahn, Saks and Sturtevant (1984) to model
the notion of argument complexity discussed in Section 2. Collapsibility has long been
studied in combinatorial topology. Noteworthy is the fact that two simply connected finite
complexes A and A’ are homotopy equivalent iff a sequence of elementary collapses and
elementary anticollapses can transform A into A’ (see Cohen (1973)). In particular, the
contractible complexes are precisely the complexes that collapse/anticollapse to a point.

An element z in a poset P is irreducible if P, has a least element or P, a greatest
element. A finite poset is dismantlable if successive removal of irreducibles leads to a single-
element poset. A dismantlable poset is nonevasive. [By Stong (1966), “dismantlable” is
equivalent to “contractible” in the ideal topology mentioned in (9.3).] A directed poset
{{for all z,y € P there exists z € P such that z,y < z) is contractible.

(10.2) Let A be a pure d-dimensional simplicial complex, and suppose that the k-face o
is a subset of exactly one d-face 7. Then the complex A’ = A\{7|o C v C r} is obtained
from A by a (k,d)-collapse. If ¢ # 7, then A’ ~ A. If A can be reduced to a single
d-simplex by a sequence of (k,d)-collapses, 0 < k < d, then A is shellable.

A pure simplicial complex A is vertex-decomposable if either (i) A = 0, (i)) A
consists of a single vertex, or (iii) for some z € A both lka(z) and dis(z) are vertex-
decomposable. E.g., every simplex and simplex-boundary is vertex-decomposable. The
class of constructible complexes is defined by: (i) every simplex and @ is constructible, (i)
if A1,A2 and Ay N A; are constructible and dim A; = dim A; = 1 + dim Aj; N Az, then
A U A, is constructible.

The following logical implications among these properties of a pure d-dimensional
complex are strict:
vertex-decomposable = shellable ==> constructible = (d — 1)-connected.
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The first implication as well as the definition of vertex-decomposable complexes is due
to Provan and Billera (1980). The concept of shellability has an interesting history going
back to the 19th century, see Griinbaum (1967). Constructible complexes were defined by
M. Hochster, see Stanley (1977).

_ Shellability is usually regarded as a way of putting together (rather than collapsing —
| taking apart) a complex. Therefore the following alternative definition is more common: A
"o finite pure d-dimensional complex A is shellable if its d-faces can be ordered 01,02,...,04
o 4 so that (801 U...U804_1)Néoy is a pure (d — 1)-dimensional complex for 2 < k < t, where
Gy i_;/‘ y \ é0; = 2°7\{0}. In words, the requirement is that the k-th facet o, intersects the union of
e ) ; the preceding ones along a part of its boundary which is a union of maximal proper faces

i

' of o%. Such an ordering of the facets is called a shelling.

If 0 € A and A is a shellable (or constructible) complex, then so is lka (o). Shellability

I s;}\jv/' P is also preserved by some other constructions on complexes and posets such as (10.13).
k ‘ .y ; Several basic properties of simplicial shellability (also for infinite complexes) are reviewed
* in Bjorner (1984b). Shellability of cell complexes is discussed in Danaraj and Klee (1974)
i and Bjorner (1984a). To establish shellability of (order complexes of) posets, a special

FE AL method exists called lexicographic shellability. See Bjorner, Garsia and Stanley (1982) or
R ~ Bjorner and Wachs (1983) for details.

Vit ‘\_ (10.3) Simplicial PL spheres and PL balls are defined in (12.2), (PL = piecewise linear).
Lo 372" The property of being PL is a combinatorial property — whether a geometric simplicial

A e complex A is PL depends only on the abstract simplicial complex A. For PL topology
see Hudson (1969).

For showing that specific complexes are homeomorphic to spheres or balls, the following
result is frequently useful.

(10.4) Theorem. Let A be a constructible d-dimensional simplicial complex.
(i) If every (d — 1)-face is contained in exactly two d-faces, then A is a PL sphere.
(ii) If every (d — 1)-face is contained in one or two d-faces, both cases occurring,
then A is a PL ball.

(10.4) follows from some basic PL topology (see Hudson (1969), p. 39), and should
probably be considered a folk theorem. For shellable A it appears in Bing (1965) and
Danaraj and Klee (1974).

If Ais a triangulation of the d-sphere and o € A*, then lka (o) has the same homology
as the (d — 1 — k)-sphere. If ¢ € AP, then there is even homotopy equivalence between
lka(o) and S%1. However, if A is a PL d-sphere and o € A*, then lka(o) is itself a PL
(d — 1 — k)-sphere.

Cohen-Macaulay complexes

(10.5) Let k be a field or the ring of integers Z. A finite-dimensional simplicial complex
A is Cohen-Macaulay over k (written CM/k or CM if k is understood or irrelevant)
if lka(o) is (dimlka(0) — 1)-hom-connected over k for all o € A U {#}. Further, A is
homotopy-Cohen-Macaulay if lka(o) is (dim lka (o) — 1)-connected for all & € A U {0}.

The following implications are strict:

constructible == homotopy—CM == CM/Z = CM/k => CM/Q,

for an arbitrary field k of characteristic # 0. The first implication follows from the fact
that constructibility implies (d — 1)-connectivity and is inherited by links, the second
implication follows from (9.13), and the rest via the Universal Coefficient Theorem. In
particular, shellable complexes are CM.



An important aspect of finite CM complexes A is that they have an equivalent
ring-theoretic definition. Suppose that A® = {z,,z,,.. .sZn}, and consider the ideal I
in the polynomial ring k[z,,2,,...,z,] generated by monomials Ti, Tiy ...z, such that
{17,'1,17,’2,...,:1:,'*} EA1<4 < <...< 4 < n,k > 1. Let k[A] = k[zl,...,z,,]/I,
called the Stanley-Reisner ring (or face ring) of A. Then A is CM/k iff the ring k[A]
is Cohen-Macaulay in the sense of commutative algebra (Reisner (1976)). An exposition
of the ring-theoretic aspects of simplicial complexes, and their combinatorial use, can be
found in Stanley (1983). There other ring-theoretically motivated classes of complexes,
such as Gorenstein complexes and Buchsbaum complexes, are also discussed. Other ap-
proaches to the ring-theoretic aspects of complexes and to Reisner’s theorem can be found
in Baclawski and Garsia (1981) and Yuzvinsky (1987).

Cohen-Macaulay complexes and posets were introduced around 1974-75 in the work
of Baclawski (1976) (1980), Hochster (1977), Reisner (1976) and Stanley (1975) (1977).
The notion of homotopy-C M first appeared in Quillen (1978). Bjorner, Garsia and Stanley
(1982) give an elementary introduction to C M posets. A notable combinatorial application
of Cohen-Macaulayness is Stanley’s proof of tight upper bounds for the number of faces
that can occur in each dimension for triangulations with n vertices of the d-sphere (Stanley
(1975), (1983)). An application to lower bounds is given in Stanley (1987).

(10.6) Define a pure d-dimensional complex A to be strongly connected (or dually
connected) if each pair of facets 0,7 € A% can be connected by a sequence of facets
0 = 00,01,...,0, =T, s0 that dim(o;_;1 No;) =d - 1for1 < i< n. Every CM complex
Is pure and strongly connected. This follows from the following lemma, which is proved
by induction on dim A.

(10.7) Lemma. Let A be a finite-dimensional simplicial complex, and assume that
lka(o) is connected for all o € A U {$} such that dim(lka(e)) > 1. Then A is
pure and strongly connected.

The property of being CM is topologically invariant: whether A is CM/k or not depends
only on the topology of {A{. This is implied by the following reformulation of C Mness,
due to Munkres (1984b).

(10.8) Theorem. A finite-dimensional complex A is CM/k iff its space T = |A]
satisfies: Hy(T;k) = Hi{(T,T\p;k)=0forall pe T and i < dim A.

In this formulation H; denotes reduced singular homology and H; relative singular
homology with coefficients in k. A consequence of (10.8) is that if M is a triangulable
manifold (with or without boundary) and H;(M) = 0 for i < dim M, then every
triangulation of M is CM. For instance: (1) every triangulation of the d-sphere, d-
ball or R? is CM/Z, but not necessarily homotopy-CM (beware: homotopy-CM is not
topologically invariant), (2) a triangulation of real projective d-space is CM/k iff char
k # 2.

(10.9) The definition of Cohen-Macaulay posets (posets P such that A(P) is CM)
deserves a small comment. Let. P be a poset of finite rank and o : 2o<21<...< T} a
chainin P. Then lka(p)(0) = Pczo*(Z0,21)*. . #(2k_1,24)* P>, . For arbitrary complexes
Ay and Ay, if Ay is kj-(hom)-connected and A, ka-(hom)-connected then A; x A, is
(k1 + k2 + 2)-(hom)-connected. Therefore, P is CM (resp. homotopy-CM) iff every open

interval (z,y) in P is (rank (z,y) — 1)-hom-connected (resp. (rank (z,y) ~ 1)-connected).

(10.10) An abundance of shellable and CM simplicial complexes appear in combina-
torics. Only a few examples can be mentioned here.
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(1) The boundary complex of a simplicial convex polytope is shellable (Bruggesser and
Mani (1971), Danaraj and Klee (1974)). Every simplicial PL sphere is the boundary
of a shellable ball (Pachner (1986)). There exist non-shellable triangulations of the
3-ball (Rudin (1958)) and of the 5-sphere (see below). Shellability of spheres and balls
is surveyed in Danaraj and Klee (1978).

(i) The following implications are valid for any simplicial sphere: constructible —>
PL = homotopy-CM. The 5-sphere admits triangulations that are non-homotopy-
CM (Edwards (1975)), and also PL triangulations that are non-constructible (Mandel
(1982)).

(12) The complex of independent sets in a matroid is constructible (Stanley (1977))
and vertex-decomposable (Provan and Billera (1980)). More generally, the complex
generated by the basis-complements is a greedoid is vertex-decomposable (Bjorner
Korte and Lovész (1985)).

3

(iv) Every semimodular (in particular, every geometric or modular) lattice of finite rank is
CM (Folkman (1966)) and shellable (Bjérner (1980)). For any element  in a geometric
lattice L, the poset L\[z, 1] is shellable (Wachs and Walker (1986)).

(v) Tits buildings are CM (Solomon-Tits, see Solomon (1969)) and shellable (Bjérner
(1984b)). The topology of more general group geometries has been studied by M.
Ronan, S. Smith, J. Tits and others with a view to uses in group theory. See Smith
(1985) for information and further references.

(vi) The poset of elementary Abelian p-subgroups of a finite group was shown by Quillen
(1978) to be homotopy-CM in some cases. The full subgroup lattice of a finite
group G is shellable (or CM) iff G is supersolvable (Bjérner (1980)). Various posets
of subgroups have been studied from a topological point of view by K. Brown, J.
Thévenaz and others. See Thévenaz (1987) for a guide to this literature.

Induced subcomplexes

Connectivity, Cohen-Macaulayness, etc., is under certain circumstances inherited by suit-
able subcomplexes. For a simplicial complex A and A C A%, let Ay = {c e Ao C A}
(the induced subcomplex on A).

(10.11) Lemma. Let A be a finite-dimensional complex, and 4 C V = A°. Assume
that lka(o) is k-connected for all o € Ay\4- Then Ay is k-connected iff A is
k-connected.

(10.12) Lemma. Let P be a poset of finite rank and A a subset. Assume that Ps, is
k-connected for all z € P\A. Then A is k-connected iff P is k-connected.
Proof. These lemmas are equivalent. We start with (10.12). Let f : A — P be the
‘embedding map. For z € P, )
As, ,ifz e A,
fH(Pes) = =
P)z nA y if z ¢ A.

Now, A5 is contractible (being a cone), and P5, N 4 is k-connected by induction on
rank (P). The result therefore follows by (11.1) (ii).
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To prove (10.11), let P = P(A)and Q = {r € A | TN A # @} C P. Since
P, = P(lka(0)) is k-connected for all o € P\Q, (10.12) applies. On the other hand,
by (11.8) the map f(r) = 7N A on Q induces homotopy equivalence between Q and
flQ)=P(A4). o

The homology versions of (10.11) and (10.12), obtained by using k-hom-connectivity
throughout, can be proven by a parallel method. Also, if the hypothesis “k-connected”
were replaced by “contractible” in (10.11) and (10.12), then the conclusion would be that
A4 and A (resp. A and P) are homotopy equivalent.

(10.13) Type-selection Theorem. Let A be a pure simplicial complex, A C A® and
m € IN. Suppose that card (A N o) = m for every facet 0 € A. If A is CM/k,
homotopy-CM or shellable, then the same property is inherited by A 4.

For C M ness this result was proven in varying degrees of generality by Baclawski (1980),
Munkres (1984b), Stanley (1979) and Walker (1981a). It follows at once from (10.11). For
shellability, proofs appear in Bj6rner (1980) (1984b).

11. Combinatorial Homotopy Theorems
In this section we collect some tools for manipulating homotopies and the homotopy type
of complexes, which have proven to be useful in combinatorics.

Some of these results concern simplicial maps f : A — P from a simplicial complex A
to a poset P. Such a map sends vertices of A to elements of P in such a way that each
0 € A is mapped to a chain in P. In particular, an order-preserving or order-reversing
mapping of posets ¢ — P is of this type.

(11.1)  Fiber Theorem. [Quillen (1978), Walker (1981b)]
Let f: A — P be a simplicial map from a simplicial complex A to a poset P.
(7) Suppose all fibers f~1(Ps5.),z € P, are contractible. Then f induces homotopy
equivalence between A and P.
(ii) Suppose all fibers f~'(P5,),z € P, are k-connected. Then A is k-connected
if and only if P is k-connected.

Proof. Suppose that all fibers are contractible. Then the mapping C(o) = f~Y(Pomino),
o € A(P), is a contractible carrier from A(P) to |A|. By Lemma (9.18) (11) there
exists 2 continuous map g : A(P) — A carried by C, i.e., g(|o]) C |f~1(Psmino)|, for
every chain 0 € A(P). One sees that g is a homotopy inverse to f as follows, using
(9.18) (i): C'(0) = {Pominol,o € A(P), is contractible and carries f o g and idp, and
C'"(x) = If‘l(PZminf(,r))l,w € A, is contractible and carries g o f and ida. Hence,
fog~idpand go f ~ ida.

The second part is proved analogously by passing to (k + 1)-skeleta and using k-
connected carriers in Lemma (9.18). o

The nerve of a family of sets (A;);es is the simplicial complex A = N(A;) defined on
the vertex set I so that a finite subset o C I is in A/ precisely when Nico A; # 0.

(11.2) Nerve Theorem. [Borsuk (1948), Bjorner, Korte and Loviész (1985)]
Let A be a simplicial complex (or, a regular cell complex) and (A;)ies a family
of subcomplexes such that A = U;crA;.
(i) Suppose every nonempty finite intersection A;, NA;,N...NA; is contractible.
Then A and the nerve M(A;) are homotopy equivalent.
(1i) Suppose every nonempty finite intersection A;; NA, N...NA;, is (k—t+1)-
connected. Then A is k-connected if and only if N (A;) is k-connected.
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Proof. For convenience, assume that the covering of A by the A;’s is locally finite,
meaning that each vertex of A belongs to only finitely many subcomplexes A;. (The case
of more general coverings requires a slightly different argument.)

Let @ = P(A) and P = P(N(4;)) be the face posets. Define a mapping f : Q — P
by m —— {i € I|r € A;}. Clearly f is order-reversing, so f : A(Q) — P is simplicial. The
fiber at o € P is f~'(P>s) = Nie,A;. Part (i) now follows from Theorem (11.1). Also, if
all nonempty finite intersections are k-connected, part (i) follows the same way. In the

stated generality, part (ii) can be proven by the method used for Theorem 4.10 in Bjérner,
Korte and Lovész (1985). o

The Nerve Theorem has several versions for coverings of a topological space by sub-
spaces. The earliest of these seem to be due to Leray (1945) and Weil (1952). Discussions
of results of this kind can be found in Wu (1962) and McCord (1967). We state here a
version which seems suitable for possible use in combinatorics. An application to oriented
matroids appears in Edelman (1984).

(11.3) Nerve Theorem. [Weil (1952), Wu (1962), McCord (1967)]
Let X be a triangulable space and (Ai)ics a locally finite family of open subsets
(or a finite family of closed subsets) such that X = UicrA;. If every nonempty
intersection Aiy N Ai, N...N A;, is contractible, then X and the nerve A(4;) are
homotopy equivalent.

By locally finite is meant that each point of X lies in at most finitely many sets A4;. We
warn that Theorem (11.3) is false for locally finite coverings by closed sets and also for
too general spaces X. For a counterexample in the first case, take X to be the unit circle
and A; = {62’""|H_Ll <t < 3},i=1,2,.... In the second case one can e.g. let X be the
wedge of two topologist’s combs A; and A (as in Spanier (1966),Ex. 5, p. 56).

The conclusions in part (ii) of Theorems (11.1) and (11.2) can be strengthened: In
(11.1), if all fibers are k-connected, then f induces isomorphisms of homotopy groups
mi(A) = 7(P), for all ¢ < k. Consequently, if in (11.2) all nonempty finite intersections
Ay NAG N...N A, are k-connected, then m;(A) 2 m,(AM(A,)), for all i < k. A similar
k-connectivity version of Theorem (11.3) appears in Wu (1962).

Let P be a poset. A subset C C P is called a crosscut if (1) C is an antichain, (2)
for every finite chain o in P there exists some element in C which is comparable to each
element in o, (3) if A C C is bounded (i.e., has an upper bound or a lower bound in pP)
then the join VA or the meet AA exists in P. For instance, the atoms of a lattice L of
finite length form a crosscut in L and in L.

A crosscut C in P determines the simplicial complex I'( P,C) consisting of the bounded
subsets of C.

(11.4)  Crosscut Theorem. [Rota (1964), Folkman (1966), Lakser (1971), Bjérner
(1981)]

The crosscut complex I'(P,C) and P are homotopy equivalent.

Proof. For z € C, let A, = A(Pgz U Pyp). Then (Az)zec is a covering of A(P),
by condition (2), and every nonempty intersection is a cone, by condition (3), and hence
contractible. Since I'(P,C) = N(A;), Theorem (11.2) implies the result. o

(11.5) Bipartite Relation Theorem.[Dowker (1952), Mather (1966)]
Suppose G = (V, V1, E), E C Vo X V4, is a bipartite graph, and let A;,z = 0,1,
be the simplicial complex whose faces are all finite subsets o C V; which have a
common neighbor in V;_;. Then Ag and A, are homotopy equivalent.
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Proof. First delete any isolated vertices from G. This does not affect Ag and A;. Now,
for every z € V; let A consist of all finite subsets of {y € Vo|(y,z) € E}. Then (A;)zev,
is a covering of Ao with contractible nonempty intersections. The nerve of this covering is
Ay, s0 Theorem (11.2) applies. o '

Theorems (11.2) (1), (11.4) and (11.5) are equivalent in the sense that either one implies
the other two. The following is a variation of the Fiber Theorem (11.1).

(11.6) Ideal Relation Theorem. [Quillen (1978)]
Let P and @ be posets and suppose that R C P x Q is a relation such that
(z,¥) < (2',¢') € R implies that (z,y) € R. (lLe., R is an order ideal in
the product poset.) Suppose furthermore that R, = {y € Q|(z,y) € R} and
R, = {z € P|(z,y) € R} are contractible for all z € P and y € Q. Then P and
@) are homotopy equivalent.

Proof. By symmetry if suffices to show that P and R are homotopy equivalent.
By Theorem (11.1) it suffices for this to show that the fiber 7~(P5;) is contractible
for all z € P, where 7 : R — P is the projection map w(z,y)—: z. Let F; =
771 (P>;) = {(z,y) € R|z > z}, and let p : F; — R, be the projection plz,y) = y.
Now, p~1((Rz)3y) = {(z,w) € Frjw > y} = {(2,w) € R|(z,w) > (z,y)} is a cone and
hence contractible, for all y € R,. So by the Fiber Theorem F is homotopic to R, which
by assumption is contractible. (Remark: There is an obvious k-connectivity version also
of this result.) o

(11.7)  Order Homotopy Theorem.[Quillen (1978)]
Let f,g : A — P be simplicial maps from a simplicial complex A to a poset P.
If f(z) < g(z) for every vertex z of A, then f and g are homotopic.

Proof. For each face 0 € A,let C(0) = f(0)U g(o). The minimal element in the chain
f(o) is below every other element in C(¢). So the order complex of C(o) is a cone, and

hence contractible. Since C (. ) carries both f and g, these maps are homotopic by Lemma
(9.18). o

(11.8)  Corollary. Let f : P — P be an order-preserving map such that f(z) > z for
all z € P. Then f induces homotopy equivalence between P and f(P).

If also f%(z) = f(z) for all z € P (f is a closure operator on P) then f(P)is a strong
deformation retract of P. The hypotheses of (11.7) and (11.8) can be weakened to that
f(z) and g(z) [resp., f(z) and z] are comparable for all z.

Call a poset P join-contractible (via p), if for some element p € P the join (least upper
bound) p V z exists for all z € P. Define meet-contractible in dual fashion.

(11.9)  Corollary. [Quillen (1978)]
If P is join-contractible then P is contractible.

Proof. Since  <pVvz > p, for all z € P, Theorem (11.7) shows that id ~ p Vv id ~ p,
i.e., the identity map on P is homotopic to the constant map p. a

(11.10) Lemma.[Bjorner and Walker (1983)]Let f,g : A — P be simplicial maps. Sup-
pose for each pair of vertices (z,y) such that {z,y} € A that either {f(z),g(y)}
has an upper bound u in P such that the meet u A z exists for all z > f(z),
or {f(z),9(y)} has a lower bound £ in P such that the join £V z exists for all
z < g(y). Then f and ¢ are homotopic.

Proof. For 0 € A, let C(0) = {2z € P|z > min f(0)} U {2z € P|z < maxg(o)}. If
z,y € o are such that f(z) = min f(o) and ¢g(y) = maxg(o), and u,£ € P are as in the
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statement of the lemma, one sees that either C(o) is meet-contractible via u or else C(¢)
is join-contractible via £. So, C is contractible and carries f and g. By Lemma (9.18) the
conclusion follows. o

The set of complements Co(z) of an element z in a bounded lattice L is defined in
Section 3. Recall that L = L — {0,1}.

(11.11) Homotopy Complementation Theorem. [Bjérner (1981),
Walker (1981b), Bjorner and Walker (1983)]
Let L be a bounded lattice and z € L.
(1) The poset L — Co(z) is contractible. In particular, if L is noncomplemented
then L is contractible.
(#) If Co(2) is an antichain, then

L ~ wedge susp (L<y * Ls,).
y€Co(z)

Proof. For part (i) it suffices to observe that the constant map f(z) = 2 and the
identity map g(y) = y on the poset P = L — Co(z) satisfy the hypothesis of Lemma
(11.10). Part (#1) then follows by (9.21) (ii). o

Suppose that L is a bounded lattice whose proper part is not contractible. Then by
part () every element z has a complement in L. This conclusion can be strengthened in at
least two ways: (1) [Lovasz and Schrijver (unpublished)]Every chain zo < 77 < ... < Ty in
L has a complementing chain yo > 1 > ... > y (i-e., z; L y; for 0 < ¢ < k); (2) [Bjorner
(1981)]Every element z € L has a complement which is a join of atoms (assuming atoms
exist).

12. Cell Complexes

Most classes of cell complexes differ from the simplicial case in that a purely combinatorial
description of these objects as such cannot be given. However, the two classes defined here,
polyhedral complexes and regular CW complexes, are sufficiently close to the simplicial
case to allow a similar combinatorial approach in many cases. For simplicity only finite
complexes will be considered.

Good general references for polyhedral complexes are Griinbaum (1967) and Hudson
(1969), and for cell complexes Lundell and Weingram (1969). Cell complexes are discussed
in many books on algebraic topology such as Munkres (1984a) and Spanier (1966).

Polyhedral complexes

(12.1) A convex polytope 7 is a bounded subset of IR? which is the solution set of a finite
number of linear equalities and inequalities. Any nonempty subset obtained by changing
some of the inequalities to equalities is a face of 7. Equivalently, 7 C R? is a convex
polytope iff 7 is the convex hull of a finite set of points in IR%. See Chapter XX (Polytopal
complexes and their relatives) for more information about convex polytopes.

A polyhedral complex (or convex cell complex) T is a finite collection of convex polytopes
in IR? such that (i)if 7 € T and o is a face of 7 then o € Iyand (#f)ifr,7 € Tand rNT # 0
then 7 N 7 is a face of both 7 and 7. The members of I' are called cells. The underlying
space of I' is |I'| = UT', with the topology induced as a subset of R?. If every cell in T
is a simplex (the convex hull of an affinely independent set of points) then T is called
a (geometric) simplicial complex. The dimension of a cell equals the linear dimension of
its affine span, and dimI' = max,er dim . Further terminology, such as vertices, edges,
facets, pure, k-skeleton, face poset, face lattice, etc., is defined just as in the simplicial
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case, see (9.1) and (9.3).

(12.2) A polyhedral complex I'y is a subdivision of another such complex I'; if [Ty = |T7]
and every cell of T'; is a subset of some cell of I';. The abstract simplicial complex A(P(T)),
i.e., the order complex of I'’s face poset, has geometric realizations (by choosing as new
vertices an interior point in each cell) that subdivide T. Every polyhedral complex can
also be simplicially subdivided without introducing new vertices.

Let £¢ denote the complex consisting of a geometric d-simplex and all its faces, and
let 62 denote its boundary. These complexes provide the simplest triangulations of the
d-ball and the (d — 1)-sphere, respectively. A polyhedral complex I is called a PL d-ball
(or PL (d~ 1)-sphere) if it admits a subdivision whose face poset is isomorphic to the face
poset of some subdivision of £¢ (resp. §X%). This is equivalent to saying that there exists
a homeomorphism [['| — |E¢| (resp. || — |6X¢|) which is induced by a simplicial map
(a piece-wise linear, or PL, map). The boundary complex of a convex d-polytope is a PL
(d - 1)-sphere. PL balls and spheres enjoy several good properties that are not shared by
general polyhedral decompositions of the d-ball and (d — 1)-sphere and that make them
favorable to work with. See also (10.3) and (10.4).

Regular cell complexes

(12.3) By “cell complex” we will here understand what in topology is usually called a
“finite CW complex”.

Let X be a Hausdorfl space. A subset ¢ is called an open d-cell if there exists a
mapping f : B? — X whose restriction to the interior of the d-ball is a homeomorphism
f : Int(B%) — o. The dimension dimo = d is well-defined by this. The closure & is the
corresponding closed cell. It is true that f(B?) = &, but & is not necessarily homeomorphic
to B4, We write ¢ = a\o.

A cell complex C is a finite collection of pairwise disjoint sets together with a Hausdorff
topology on their union |C| = UC such that:

(1) each o € C is an open cell in |C], and
(i1) ¢ C C<4m7 (the union of all cells in C of dimension less than dim o), for all o € C.

Then C is also called a cell decomposition of the space |C|. Furthermore, C is regular if
each closed cell & in C is homeomorphic to a ball.

The cell decomposition of the d-sphere into one 0-cell and one d-cell (a point and its
complement in S%) is not regular. Every polyhedral complex is a regular cell complex (the
interiors of the convex polytopes are the open cells). Regular cell complexes are more
general than polyhedral complexes in several ways. For instance, it is allowed that the
intersection of two closed cells can have nontrivial topological structure.

(12.4) From now on only regular cell complexes will be considered. Two particular
properties make a regular complex C favorable from a combinatorial point of view (see
Lundell and Weingram (1969) for proofs):

(1) The boundary & of each cell o € C is a union of lower-dimensional cells (a subcomplex).
Hence, the situation resembles that of polyhedral complexes: each closed d-cell 7 is
homeomorphic to B, and its boundary & (homeomorphic to $4-1) has a regular cell
decomposition provided by the cells that intersect &. Define the face poset P(C) as
the set of all closed cells ordered by containment. The poset rank in P(C) of any o € €
equals dimo.

(i1) [C] = |A(P(C))), i.e., the order complex of P(C) is homeomorphic to |C|. Geometrically,
this means that regular cell complexes admit “barycentric subdivisions”. From a
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combinatorial point of view it means that regular cell complexes can be interpreted
as a class of posets without any loss of topological information.

Because of (i), regular cell complexes can be characterized in the following way: A
family of balls (homeomorphs of B%,d > 0) in a Hausdorff space X is the set of closed
cells of a regular cell complex iff the interiors of the balls partition X and the boundary
of each ball is a union of other balls. This is what Mandel (1982) calls a “ball complex”.

An important consequence of (ii) is that a d-dimensional regular cell complex C can
always be “realized” in R?**! by a simplicial complex, so that every closed cell in C is
a triangulated ball (a cone over a simplicial sphere). We will call C a PL cell complex
(suppressing the word “regular”) if every such ball is PL.

The figure shows a regular cell decomposition C of the 2-sphere, its face poset P(C),
and its simplicial representation A(P(C)), where each original 2-cell is triangulated into 4
triangles, etc.

]
€ n
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(12.5) Given a finite poset P, does there exist a regular cell complex (or even a
polyhedral complex) C such that P = P(C); and if so, what is its topology and how
can C be constructed from P? This question is discussed in Bjdrner (1984a) and Mandel
(1982). One answer is that P is isomorphic to the face poset of some regular cell complex
iff A(P<z) is homeomorphic to a sphere for all z € P. However, since it has been proven
that simplicial spheres cannot be recognized algorithmically this is not a fully satisfactory
answer. The question of how to recognize the face posets of polyhedral complexes is one
version of the Steinitz problem (see Chapter X X, Section 4).

For the cellular interpretation of posets the following result, derivable from (10.4), has
proven useful in practice. See Bjorner (1984a) and Mandel (1982) for further details and
other similar results. Let us call a poset P thin if every closed interval of rank 2 has 4
elements (two “in the middle”). Also, P U {0} will denote P with a new minimum element

0 adjoined, and P = Pu {0,1} as usual.

(12.6) Theorem. Let P be a pure finite poset of rank d. Assume that A(P) is con-
structible.
(i) If P U {0} is thin, then P = P(C) for some PL cell complex C homotopy
equivalent to a wedge of d-spheres.
(#) If P is thin, then P P(C) for some PL cell decomposition of the d-sphere.
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13. Borsuk’s Theorem

Let p be a prime. By a Z,-space we understand a pair (T,v) where T is a topological
space and v : T — T is a fixed-point free continuous mapping of order p (i.e., v = id).
A mapping f : Ty — T, of Z,-spaces (T, v),¢ = 1,2, is equivariant if vy o f=fou.
A Zy-space is often called an antipodality space. The standard example is (S, a), the
d-sphere with its antipodal map a(z) = —z.

Borsuk’s Theorem has several applications in combinatorics (see Sections 4 and 5).
We state five equivalent versions. Proofs and ramifications appear in many topology
books, see e.g. Dugundji and Granas (1982). Steinlein (1985) gives an extensive survey of
generalizations, applications and references.

(13.1) Borsuk’s Theorem. [Borsuk (1933)]
(9) If S¢ is covered by d + 1 subsets, all closed or all open, then one of these must
contain a pair of antipodal points. (Borsuk-Liusternik-Schnirelman)
(1) For every continuous mapping f : S¢ — IRY there exists a point z such that
f(z) = f(—z). (Borsuk-Ulam)
(1i1) For every odd (f(~y) = —f(y) for all y) continuous mapping f : S¢ — RY
there exists z for which f(z) = 0. (Borsuk-Ulam)
(iv) There exists no equivariant map S™ — 89, if n > d.
(v) For any d-connected antipodality space T, there exists no equivariant map
T — s¢.

(13.2) Corollary: “Ham Sandwich Theorem”.

Given d bounded and Lebesgue measurable sets in IR? there exists some affine
hyperplane that simultaneously bisects them all.

We end by stating a useful generalization of the Borsuk- Ulam Theorem to Z,-spaces for
p > 2. First a few definitions, see Barany, Shlosman and Sziics (1981) for complete details.
Let p be a prime and n > 1. Take p disjoint copies of the n(p — 1)-dimensional ball and
identify their boundaries. Call this space Xn,p- There exists a mapping v : S™r-1)-1 _,
S™r=1)~1 of the identified boundary which makes it into a Z,-space. Extend this mapping
to X, » as follows. If (y,7,¢) denotes the point of X, p from the ¢:th ball with radius r and

S™r=1)-1_coordinate Y, then put v(y,r,q) = (vy,r,q + 1), where g + 1 is reduced modulo
p. This mapping v makes X, , into a Z,-space. (Note that (Xn,2,7) = (5™, a).)

(13.3) Theorem. [Barany, Shlosman and Sziics (1981)]
For every continuous mapping f : Xnp — IR there exists a point z such that

flzy=flvz)=...= f(l/p_lx).
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