COMBINATORIAL REMARKS ON PARTITIONS OF A
MULTIPARTITE NUMBER
‘34 ,'/]t a T s

By G. R. BLAKLEY £—

mtroduction. A partition of an integer m is uniquely determined by
he multiplicity of each summand occurring in it. Thus the representa-
=14+ 1+1+4 2+ 54 5 is equivalent to the function v given by
=0,0(1) = 3,0(2) = 1,0(3) = 0,2(4) = 0,v(5) = 2,v(6) = --- =p(15) = 0.
ntly partitions of m into nonnegative parts correspond to functions
don {0, 1, --- , m} and partitions of m into nonzero (i.e. positive) parts
etions defined on {1, 2, --- , m}. This definition has an obvious general-
n to partitions of multipartite numbers where it simplifies combinatorial
s

titions considered as functions and as lattice points of convex solids.
* case Latin Jetters denote real numbers or functions, Latin capital letters
A X B is the Cartesian product of A and B. 4 =~ B means that 4 and B
he same number of elements. ¢ is the empty set. F,={8=b,,---,b,) : b,
onnegative integer for each j, 1 < j < n} is the set of n-partite numbers.
ition |8/ =b,4-- - - +b, is the weight of and G, = {u=(m,, - -+ ,m,) e F, :
it}. 0= (0, -+ 0) is the zero element of F,. Lete;; = 1foreachj, e;; = 0
4. Then e(j) = (¢;1, -~ , e foreachj,1 <j<n. B < umeansd; < m;
fuch j, 1 <7< n B < umeansB < pand 8 # u

ver case Greek letters always represent elements of ¥, and when one
as an index in a sum, product or union it runs through all values in F,
g stated restrictions, if any. If T C F, then B(T) = {v : T — F,} is the
nonnegative integer valued functions with domain T. If T={t:0 <t < u}
B(T) is written B(p). If T = {£ : £ < u} then B(T) is written B,(u).

nition. LetreF, , Let T = T(w) = {£e G, :£ < u}. If S isa finite
of G, let S* = SU {e(1), €(2), -+, e(n)}.

Ps(u) = {veB(S*): EIXS:‘EU(E) = pu};

P(uw) = P(p);

U(w) = {ve B : ﬂ;( vg) =r};

P.(w) = P M U,(w;

0.() = {veByp) : ;;sv(s) = u, ;v(a =r}.
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336 G. R. BLAKLEY

Ps(u) is thus the set of partitions of s into elements taken from S* or, in
other words, into elements which either belong to S or are of weight 1. This
odd-looking definition is motivated by the fact that not all non-zero multipartite
numbers p can be partitioned into elements of S in general although all can be
partitioned by choosing a collection of summands (with multiplicities) from
S and letting elements of weight 1 “take up the slack” in a unique way. Another
reason for this approach is given after Theorem 3 below. P(u) is the set of
partitions of 4 into nonzero parts. P.(u) the set of partitions of p into precisely
r nonzero parts, @.(u) the set of partitions of u into precisely r parts, some
of which may be zero. From the ordered pair definition of a function it follows
easily that Ps(u), P(6), Po(6), Qu(0), @.(6), Q=(6), - - - are singleton sets. Further-
more if u 5 6 then Qu(u) = Po(u) = P1(6) = P,(6) = -+ = . These facts
are assumed without explicit mention throughout §3.

It is easy to see that

Pw = UPw, Q= U P

and

Ps(p) == {ve B(S) : g;sz~(s> < uf.

If
S = {6(1) = (slly 781n)7 o0 70'(0 = (Stly "';stn)}y

then the last relation has an obvious interpretation putting Pgs(p) into one
one correspondence with the lattice points of a convex solid: To be specific

Ps(u) = {(zl N R .foreachj, 1<j<n, > s < my
i=1

Look at the particular case of P(p) = Pr{u), where Tw) = {BeG:8 <
There are ([[izicn (m; + 1)) — n — 1 elements of T(x) and they could
arranged in a linear order. But, after all, a vector is only a function defi
on a finite set and no geometrical properties of a solid are changed by
numbering of coordinate axes. Consequently, it is sufficient from a geome’
point of view to say that

Plu) = {{(8,vp) : B T(w} :for eachj, 1<ij<mn, > bws < mi}

BeT (8)

No similar geometrical representations of P.(u) and Q.(n) are app
However if n = 1, whence p = m, the solid is a simplexcand

Tuporem 1. If2<r,mand S = [s:, "~ , S}, then
Pa(m) s (@, oo+ &) e Fucy t8a2s + o F 8@ S i
Pim) 2 {(@ay o Tm) 8 Fpmy 3202+ - + mz, < m}
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Um) = (@, Zm) e Fry 122+ o0 + z. <1}
P(m) 2 (e, -, 2)eF,y 122+ - +rz, < m— )
Q.m) = {(@s, o+, x)eFoy 120+ - + rz, < mi.

Proof. The case of Ps(m) has aleady been discussed. P(m) is the special
case S=1{2, ---,m} of this. If8={2, ---r},ib is well known that P,(m + r) =
Q.(m) =~ Pg(m). The relation for U.(m) follows directly from its definition
and the fact that

{a, @) eFniz + - + z, =1}
\ﬁ{(x27"' yxm)SFm—l:x2+ M +.T,,,S7'}.

Let ps(u) be the number of elements in Ps(u). Similarly p(u), u,(s), p- (1), g-(8)-

3. Recurrence formulas. Theorem 1 and the discussion preceding it not
only tell what certain sets of partitions “Jook like” but also give a representation
of partitions which seems suitable to computer usé& of which more in a forth-
coming paper. However, for enumerating partitions of fairly small multipartite
sumbers recurrence formulas provide a more useful tool: Furthermore, it is
. possible to use inductive arguments based on these formulas to get information
sbout the asymptotic behavior of the functions mentioned above, although
this is not necessarily the best approach.
 IfkeF,,1 <k < nisfixed, let E(j, k, 7, p) = {ve.(u): > v(y) j, the sum
ing over v such that e(k) < v}. To return to the language in which parti-
ons are usually discussed, E(j, k, r, ») 18 the set of partitions of the multi-
artite number u into r summands (summands equal to zero allowed) of which
yecisely j have strictly positive k-th positions. Evidently there are no more
han m, such summands since otherwise they could not add to u. And every
artition v £ Q, (1) must belong to E(, k, r, 1) for some j, 1 < j < r. Therefore
Qw= U EGkmnw.

i<min {r,mg}
Jut if j < min {r, .}, then
EGErw= U QB X Qi — 8 — jelk).

B<u—mie(k)
A, w) = (6,8 1 <min {r,m}, B s~ mue(k)} .

Q.(w) = A(U) 0.-.8) X Qi — B — ie(k)).

P.(p) = U) Po_i(B) X Qulu — 8 — k).

A(r,p
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Consequently N . rz
’ § [ SR CA ¢ : I
LemMma 1. e

¢.(u) = Z) 0o B i — B — te(k))

Alr,p

o) = Y Y o Bpu — B — ielk)).

A(r,p) i=0

Now ¢o(8) = 1 and go(u) = 0if p 5 6. A routine calculation shows that

THEOREM 2.

0.(u + rlsel) = ¢.() + 20 6(8)g—(n — B+ (1 + rr + ye®)),

where the summation i over {({, 2,9, 8) 10 <t <s—1, 0<az<(r—1I—1,
1<y<r—18<u— mek)}

Ift = (@, 22, -+ , Ta), then let pt = Jlicicnmi and let u = £ mod B8 if
m, = z; mod b; for each j, 1 < j < n Wright [4] has shown that if r, B are
fixed and g is a variable obeying the restriction 4 = 8 mod (), Y, -+,
then ¢,(x) is a polynomial in p in the sense that there is some fixed v such that

(Ir(p') = Z Cr.ﬁ.‘ép'i'
<y

where the ¢, 5.; depend only on 7, 8, &
An alternative proof of this follows from Theorem 2. For ¢;() = 1 identically,
From the induction hypothesis (that for each 7, 1 < ¢ < r — 1, the function
g:(u) is a polynomial in p when the m; are suitably restricted to residue classes
mod !) it follows in a straightforward fashion that the right-hand side of ¥
equation in Theorem 2 is a polynomial in s for fixed p. Thus so is the Teft
But it is an elementary matter to verify that if ¢.(p) is a polynomial in eael
m, separately, then it is a polynomial in p.
Since p, (1) = ¢.(r) — ¢-1(n), it is not difficult to see that a similar statement
holds regarding p.(p). [1] contains a detailed proof of this based on an anal
of Theorem 2.
Let

H(u,8) = {jeFi:i8 < u}
and
J,B) = ljeF,: 0 <8 < pl

TueoreM 3. If 8isnot an element of the finite sel Tandif TV {8} =8 C
then

psw) = 2o prle — ).

ieH (. B)
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Proof. 1f j & H(u, B), then there are precisely pr(u — jB) partitions v £ Ps(u)

¢h that v(3) = j.

Let 8 = {o(1) = (55, * , Sw)y ===, 0k) = (8.2, -+~ , )} be a finite
bset of @, and let A = \(S) = (I, - -+ , L) be defined by setting I; = 11 sii,
¢ product being over 7, 1 < ¢ < k, such that s;; > 0. It can be proved by
eans of a finite induction based on Theorem 3 that S uniquely determines
finite set ¥ = {K,, --- , K,} of half cones with vertices at 6 such that
' K, = F, and such that if the variable u is confined to the cone K, for
me fixed w and is further restricted by the requirement that x = 8 mod A,
here 8 is arbitrary but fixed, then ps(u) is a polynomial of degree k in u.
n other words, to fixed S, 8, w there corresponds a representation

ps(u) = gcs.w,ﬁ,e;ﬁ

here |¢| < k for each £ in the (therefore finite) set X, and where cs. ., ,5.; depends
nly on S, w, 8, £. For example, if S = {(1, 3)}, then the number ps((my , ma))
partitions of 4 = (m, , m,) into parts taken from the set {(0,1), 1,0), (1, 3)}
given by the rule

ps(imy, my)) = 1+ my, my, = 3m ;

pS((ml ’ m2>> =1 + \:%] y my S 3m1 .

This gives an example of what can be learned from a recurrence formula
like Theorem 2 and also gives another argument for regarding the definition
of ps(u) as a natural one, for k is the number of elements of S, not of 8*. This

result is known for n = 1 [2] in which case, of course, there is no hint of the

existence of the half cones K, .

LemMa 2. If 6 < B, then
2ou) = 2 pl—iB).
e (u,B)

veP{(p)

Proof. The number of v ¢ P(u) such that 1 < j < »(8) is just p(u_— jB).
By definition 6 | v if there is some b & F, such that v = bé. o(v) = 2515 &
If £ 0, then d; is the positive greatest common divisor of the components

of £. It is easy to see that

LEMMA 3.
(G, :0<y<uolvt=1{678:0<BZ uielpl

LemMmaA 1.

wp) = 2, o@pu — B).

8<psp
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Proof. It follows from Lemmas 2 and 3 that

> 2 BuB)

f<f<p veP(n)

> Bp(u — i8)

0<B<p jed (2. 8)

> 2 (e — )

f<y<up &ly

2 op — 7).

f<y<py

it

up(p)

I

[

Lemma 4 is a generalization of an identity in [3]. It can also be proved
by the use of generating functions.

TrEOREM 4. If e(k) < p, then
1 .
pw) = - 2 2 biple — 3B).
27
The sum above is over
@mwlstmhﬁs%&~
Proof. If ¢ # 6, then
) 1
of) = 2 &
dldg
Consequently Lemma 4 gives
mp(w) = Z Z zp(p — /d
= 2 X X aplu — dB — zel))/d,

where the double sum above is over {(§,d) : e(k) < £ < y, d | d;} and the trip}
sum is over

1
{(x,, ,d, 81 <z < my ,d I 2,8 < E(# - mke(k))}
The theorem now follows from the one-dimensional case of Lemma, 3.
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