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P (C2) for all ¢, Cye? and xe G, N C,, yeC,\C,, there exists
i€ ¢ such that ye C, C (C, U Cy)\x.

BWhitney [15] used the properties (C1) and (C2) to abstract linear depen-
nce, calling a set E together with a set € of subsets of E satisfying (CI)
d (C2) a matroid. (The term combinatorial pregeometry is also used to
Rscribe such systems.) Not all matroids arise as above from vector spaces,
matroids retain much of the fundamental structure of vector spaces. For
gample, the notions of rank, bases, flats, hyperplanes, and orthogonals
gneralize in the context of matroids. However, matroids do not capture
[rtain sign properties of vector spaces over ordered fields. For example, let
2= (V, E) be a 2-connected graph, let 4 be the (0, +1)-vertex-edge inci-
fnce matrix of an orientation of G and let # be the null space of 4 in RE.
m..oc the orientation of G is lost in passing from the elementary vectors of %
b their supports, but is deducible (up to reversing all edges) from the signed
orts (St(a), S(«)) of the elementary o € 2, which distinguish the subsets
V(@) ={ec E: ale) > 0} and S7(a) ={ec E: afe) < 0} of S(«x).
w._ this paper we introduce and develop a theory of oriented matroids
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mt generalizes the structure of signed supports of elementary vectors of a
clor space over an ordered field. Oriented matroids thus provide a richer
straction than matroids of vector spaces over ordered fields. In particular,
e can generalize in the context of oriented matroids notions usually

ssociated with oriented graphs, linear programming and convex polyhedra.

In this paper we define oriented matroids and develop their ?:am_.smnﬁ_‘,
properties, which lead to generalizations of known results concerning 9«0&& :
graphs, convex polytopes, and linear programming. Duals and minors of o:Q.:QW
matroids are defined. It is shown that every coordinatization (representation) ; ] . . e
of a matroid over an ordered field induces an orientation of the matroid. Examples Camion [4], Fulkerson [8], and Rockafellar [13] previously investigated

of matroids that are orientable but not coordinatizable and of matroids that are combinatorial nature of a number of interesting theorems concerning
not orientable are presented. We show that a binary matroid is orientable if »2_. gctor spaces over ordered fields. Several of the theorems and proofs in
only if it is unimodular (regular), and that every unimodular matroid has an 1 13] translate directly into the context of oriented matrois. In fact,
orientation that is induced by a coordinatization and is unique in a certain Bockafellar in [13] suggested that one should be able to axiomatize a system
straightforward sense. ¥ “signed” or “oriented” matroids that would abstract the combinatorial
ructure of signed supports of elementary vectors in ordered vector spaces.
flinty’s work on digraphoids [12], which gave the first notion of matroid
Xientations and partially motivated Camion, Fulkerson, and Rockafellar,
clearly too restrictive for this purpose. The broader notion of orienta-
ity presented here achieves the abstraction that Rockafellar foresaw.
FIn the next section we present five axiomatizations of oriented matroids
nd prove their equivalence. The subject of oriented matroid duality is
pturally developed within the establishment of that equivalence. The
maining four sections concern: (3) examples and interpretatjions; (4)
pinors of oriented matroids: (5) systems whose minimal elements farm an
ricnted matroid: and (61 binary o ented m ,

1. INTRODUCTION

Let F be a field, let £ be 4 finite set. and denote by F* the vector space .
mappings from £ to F. The supporr of x e FE is defined to be the set S(a)
lee E: x(e) # 01, 3

Let £ be a vector subspace of FE. A nonzero vector n € .2 is an elementd
vector of 4 1f S(a) is minimal (with respect to inclusion) among the suppo .
of all nonzero !(dc::n,. in.#. The set % of supports of elementary vectors of &
has the following properties: é

§2)). It is assumed that the reader has some familiarity with matroid theory.
itney’s original paper on the subject [15], the paper by Tutte [14], and the
ook by Crapo and Rota [7] are appropriate references.

(Cl)y Ce% implies C - .. and

Co.Coc%and C, 7. Cyoimply &, Gy
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96 BLAND AND LAS VERGNAS ORIENTABILITY OF MATROIDS i

2. ORIENTED MATROIDS w.,.. dhe key condition of the signed elimination properties (1) and (II) that
¥ Mtes to orientation is that

Ve define a signed set X to be a set X, called the set underlying X, and;
mapping sge(x) : X — {—1, 1}, called the signature of X. Let X be a sigii§
set. The sets X+ ={xeX :sgx(x) =1} and X~ = {x e X : sgx(x) = 4
describe X in a convenient way. The opposite of X, denoted —JX,, is the sight
set having (—X)* = X~ and (—X)~ = X*; we write ¥ = +X if eith
Y=Xor Y= —X If X is a subset of some set E, then X will be om:
signed subset of E, and if X = &, then we write X = &.

X CXruX,  and X, CXp U X, 2.1)

#he signed elimination properties, the underlying matroid structure and
ructure pertaining specifically to orientation are intimately tied. By
Woking matroid duality (orthogonality), one can define oriented matroids
m. ch a way that properties pertaining solely to orientation are divorced n
Hatural way from those properties that stem only from the underlying
ftroid structure.

het M = (E, %) be a matroid. A set 0 of signed sets satisfying @ = % and
k- 0 = {—X: X e0) will be called a circuit signature of M. Accordingly,
Yocircuit signature of M is a circuit signature of M~, the dual (or orthogonal)

THEOREM 2.1. Let E be a finite set and let O be a set of signed subsets of3
such that -

(0) forall Xe0, X #+ @ and —X €0; and for all X, , X, €0, .N»h
implies X, = £X,. ;
Then the following two properties are equivalent:

() for all X, X, €0 such that Xy # —X,, and all x e (X;+ N N»nv
(X3~ N X1, there exists X, €0 such that X;+ C(Xi+t U Xp*)\x and X,
(X~ U X

(D) for all Xy, X,€C, xe(Xyt N X,™) U (X~ O Xpt) and y e (X
X)W (X \X,h), there exists Xy, € @ such that Xt C (X, VU X,H)\N
XomC(X;- VX )\x, and y e Xy .

‘.

ITHEOREM 2.2, Let M be a matroid on a finite set E, let O be a circuit signa-
i , . . .
of M and let @’ be a cocircuit signature of M.

(a) Then the following three properties are equivalent:
(I1h) forall Xe Oand Y € O suchthat ! X N'Y | = 2or 3,
Theorem 2.1 will be proved in the second part of this section. ; g XN YHUX-NY)# 3 and (X*OY)UX NYT) £ o)

We define an oriented matroid to be a structure (E, (), as above, that satis}
fies (0) and (I). .

For @ a set of signed sets, let @ ={X : XeO}. If M = (E, 0) is an oriented!
matroid, then M = (E, @) is a matroid, since (0) and (I) clearly imply]
Lehman’s circuit axioms for M [11]. Note that (0) and (11) imply Whitney’s
circuit axioms [15]. If one relaxes (1) by requiring that y € X;\.X, , rather tharf
y e (X, M\X,0) U (X "\X,") 2 X,\X,, then the resulting property (1)
obviously stronger than (I) but weaker than (II), and is, by Theorem 2.1}
equivalent to both, under condition (0). In the form (I}}), the eliminatiom
property for oriented matroids most closely resembles Whitney’s circuif}
elimination axiom. In Section 5 we will see that when the condition

av) forall XeOand YeO suchthat X NY # &,

N

B X*NYHUAX - NY)# @ and (X*NY)UX-NYH) £

- (V) Jor all e € E and all partitions of E into subsets R, G, B, W with
B R U G, exactly one of the following holds:

(1) there exists X € O such that

X-nG =

i
,

ec XCRUOUGUBRB and X-NR

X, C X, implies X; = X, (i) there exists Y € (' such that

is dropped from (0), then (1) and (1I) are no longer equivalent, while Qﬂ“ ecYCRUGU W and FUR—=Y NG — o
and CC are. -

t M bhe a matrod .
of m : (E, 0)1s an oriented matroid and @ == ¢, :5: o 1s called an orientationd
of M and each X = ¢ is culled a :%:QC circuit of (E, ). If there exists mu,

orientation of M, then M is called orientable.

E- (b)) Furthermore. & is an arientation of A if and only if there exics a
Pocircuit signature C— of M such that for ¢ = C+ the properties (111), (1V),
ind (V) are satisficd. In fuct, if ¢ is an orientation of M, then C* is unique.
Ind by symmetry O+ is an orientation of M*.

@ sel of signed subsets §
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It is evident from Theorem 2.2 that a matroid is orientable if and only §
its dual is orientable. Given an orientation @ of M, the orientation 0+ of M}
described in part (b) of the theorem will be called the dual (orthogonal) of &
Similarly (E, 0*) is called the dual (orthogonal) of (E, ©). Note that the unf
queness result in Theorem 2.2b implies that (0Y)* = 0, thus we speak of duz
pairs of orientations and dual pairs of oriented matroids.
The properties (111), (1V), and (V) of Theorem 2.2 are related to conditio
that Minty gave for digraphoids [12]. (That relationship is discussed if
Section 6.) We will see in the next section that (IH) and (IV) abstract thd
notion of orthogonality. Accordingly, signed sets X and Y having eithef
XY =c or(XtnYHu(X-n Y)# @ and (X* N Y-)u (X-n ¥4
= o will be called orthogonal, and (V) will be called the orthogonality
property of dual pairs of oriented matroids. 3
In the remainder of this section we will, after briefly introducing so
useful operations on matroid signatures, prove Theorems 2.1 and 2.2. Thel
reader may wish to read Section 3, which provides examples and inter
pretations of oriented matroids, before reading these proofs. 1
Given X, a signed subset of E, and 4 C E, the signed set Z having Z+ =]
(XNA U XN A4) and Z- = (X~\4) U (X* N A4) is said to be obtained
from X by reversing signs on A and is denoted by Z = zX. Thus —X = pX.)
For @ a circuit signature of a matroid M on E and A4 C E, the circuit signature
40 of M obtained from @ by reversing signs on A is defined by 40 = {aX:;
Xe0). :
Note that properties (I) and (II) of Theorem 2.1 are invariant under this 4
operation. Similarly, properties (11 I), (IV), and (V) of Theorem 2.2 obviously
hold for @, ¢ if and only if they hold for 40, 40’ forall A C E. ,
Let O be a circuit signature of a matroid M on £ and let e E. The set
0O\e obtained by deleting e in O is defined by O\e ={X <0 : e¢ X}. Note that ]
O\e is a circuit signature of the matroid minor of M obtained by deleting e.
In order to define the corresponding contraction operation we adopt the |
tollowing notation. If X is a signed set, then X\e denotes the signed set Z §
having Z+= X+\e and Z- -= X~\e. For 0 a set of signed sets, define Min(0) §
to be the set of minimal members of 0, ie., Min(0) = {Xe0: X €0 and ]
X' CXimply X’ = X). The set Ole obtained by contracting e in € is defined to }
be Min{X\e: X e, X\e +# @}. Of course, @le is a circuit signature of Mle, ]
the matroid minor of M obtained by contracting e. The single element deletion
and contraction operations described above will be very useful in the follow-
ing proofs. The general subject of oriented matroid minors will be addressed
Section 4.

SUC

directly in

Proof of Theorem 2.1

It is clear that (11) implies (I). We will use the contraction and Qm_ozg
operations to inductively prove that (1) implies (I1).

XeOe such that x Wm CX\eand X+ C X,
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fLet O be a circuit signature of a matroid M on E and suppose that ¢
tisfies (I). It is obvious that @je also satisfies (I). In order to prove that @fe
ptisfies (I) we give two preliminary results.

LeMMA 2.1.1. Let X, €0 with X, = @ and let X, €0 have X,\X, = {e}
jithe € X,* and X,~ % @. Then there is a signed circuit X € O having X- = ©

(X\X;7) +eCX.

¥ Proof. Let xe X,~. By (I) there exists X, e such that X,*C CARY
&, \x and X3~ C (X;~ U Xpo)\x = X,-\x. Tt follows that e € X, , otherwise
&z C X, , and since e € X,"\ X, , we have e € X,*. Also

X\ X C X, (2.2)

fotherwise by eliminating e from X, and X, we get a circuit of ¢ properly
contained in X, . .

-+~ Now suppose that y € X,*\ X, . If we use (I) to eliminate e from .\5 and
—X,, then we get X,' €0 having X;" C X, U X;\e C X, thus by (0) it must
 be that X, = +-X, X, = 0. ]
'xe X,7\X;, and y e X,"\ X5, so by (1) x and y do not agree in sign in X;’, a
contradiction. Therefore X,* C X, , so by (2.2) we have lep/»\wxv +eC X"
L If X,” = o, then the conclusion of the lemma is satisfied by X = X, .
- Otherwise, we can repeat the argument above with X, in place of X, . Thus
we obtain X,e0 A 4
' X;~ & X, The procedure can be repeated at most | X,~ | times until it
| terminates with a circuit X, e ¢ satisfying (X;\X,™) -+ e C X, and X~

. Note that x, y € X;%, since x, y € X, and X,~ = . But

having X" 2(X,\X,7) + e 2(X)\Xy7) +e and X G

LEMMA 2.1.2. Let X€O and ec E. For all x<Xie there is a circuit

X-Cx-

Proof. By reversing signs on X~ we see that it mcaommMO mm:&:m:. the
lemma in the case X~ = . If Xle e (je, then obviously X == X'e satisfies
the conditions of the lemma. Suppose that X'e ¢ Cje, so there exists Z e @
having o = ZieC Xandee Z*. If Z- = ¢, thenset Z, = Z. If Z- = o.
then by Lemma 2.1.1 with X; = X and X, = Z there exists Z, € ¢ such that
Zy = o and e€ £, C X — e. By reversing e in ¢, applying Lemma 2.1.1
with X; = X and X, = —Z,, then reversing e back again, we see that there
isa Z,eC such that ec Z,CX +e Z,e¢-=- v and X1Z,C Z,. Now

Zieelie and 7, 0 — for i=1.2 and Z, U Z. =X <o ve Ze or
xeZ,e.

LEMMA 2.1.3. Forany e € E both Cje and Ce satisfy (1).

Proof. Tt is clear that (e satisfies (1), since € satisfies (I). Let X, . X, < (e
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with X, = —X, and x ¢ X;* N X,~. There must exist X;, X, € ¢ such that

X, = Xye. X, = X,le, hence X; = —X, and x € X;* N X,~. By (1) we get

.\,\um.@ having Xy C (X7 U )\/\mg/x and X,~ C (X~ U X, )\x. Lemma 2.1.2
_:un:mm mrﬁ there is an X, Cle satisfying X, C(X° U X, M\, X, C
A\%|~l | \%vw?v,/-ﬂﬁ

“Now we can establish that ¢ satisfies (11). This is trivial when | E| = [;
suppose that it holds whenever | £ «<(p. Let E|=p 1> 2. Note that
the inductive hypothesis and Lemma 2.1.3 imply that (/e and (e satisfy (I1)
for all ee E. Let X,, X, € ( have the smallest possible value of | X,\ X, |
subject to the existence of elements x e (X;” N X,7) U (X~ N Xp7) and
v E (X X,T) U (X, X, ) such that there is no X € € satisfying

Xy (X U Xy,

X,” CX U X)), and reX;. (23

Since properties (1) and (I1) are invariant under reversal of signs on a subset
of E. there is no loss of generality in assuming that X,~ == o, X,"\X, = @.
Note that if | X,\X, == I, then Lemma 2.1.1 implies that (2.3) can be
sdtisfied by some X, € (, hence { X,\X, | == 2.

,m:bbomo that e € X,"\x, implying that ee X,”. Then X, = X,\e and
X, o= A S\e are in 5@,. which satisfies (IT). Thus there is some X, € Ofe such
that X,- C (5, U X\, Xy C(X; v X, ), and peX;. Now the
circuit X, e € having X, = X,e satisfies (2.3), since the sign of e is not

constrained by (2.3). So we may assume that X,~ == {x}, and (2.3) reduces to
Xy =, N C (X VU Xy, and yeA;. (2.4)
Let e e X,..\,. By Lemma 2.1.2 there is an X, e(/e such that X~ =2

and re X, CX I v g X)L set 7. X, IfxeX,, since X, == X,leelle,

which satisfies (I1[), there is a nonnegative Z € /e such that y eZC

ARV ). Let ZeC have 2 Zie If Z7 = o, then (2.4) 1s satisfied by
X, Z,s0Z {e'. Since ¢ € X, . we can apply (I) to establish the existence

of X, ¢ ¢ such that X3P (X, U Zyeand Xo C(X, UZ)e  {x.

Now there are two cases to consider:

(1) Suppose that ve X, . which implies Xy If vy =X, then

Vo X, aatisfies (2.4), s assume that ve X, Now v e XL so there is an
y repeating the arguments
clan X, ¢ satisfying (2.4)

3

N, . and ¢ - ¢ since e

clement ¢ <,

b N s " Loy b
Adbove tor ¢ oL ratn

VOSSN OTe
and
v, ogives an v that satisties (2.4,

Tviooso o certamndy X <X, . But since
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X, C(X, U Z)e (X, v X,)\e, we have X;\4&, C (X, A e, Therefore, by
the choice of X, and X, , the elimination property (11) must hold for X7, X'.
In particular since x € X, N X, and y € X;7\X;, there exists X3 satisfying
X C (XU X\, Xy (G X);\x, and yeX,. Since X, = {x}.
X~ = o, we see that Xy~ = &. Moreover, Xo' CX, U ZC X, U X, so
Nmum@mﬂCwmmv/,x,m:aﬁ.bim wm:mmoagkw.u_,::m%:moamgmg»w 28@:&6&.

Proof of Theorem 2.2

This proof is broken into several parts. First we establish the equivalence
of (1V) and (V) in part (a) of the theorem. We refer to a partition R, G, B, W
of E with R U G £ =, as in (V), as a 4-painting of E into red, green, blue,
and white elements.

Proof of (IV) = (V). Assume given a 4-painting R, G, B, W of Eand a
distinguished element e € R U G.

Suppose that X € ' satisfies alternative (i) of (V) and Y € (" satisfies alter-
native (ii} of (V). Then ee (X* N Y)Y (X-N Y-)and (X~ N YU (X~ N
Y+) = &, a contradiction. Hence alternatives (V.i) and (V.ii) cannot both
hold. We wiil now show by induction on the cardinality of R W G that at
least one of (V.i) and (V.ii) must hold.

Suppose that | RU G | == l,i.e. RV G =-{e}. and (V.i) fails. Then eis not
in the closure of B, so there is a hyperplane A of M such that BC H and
eé¢ H. Thus for some YeC' we have ec Y - EHC W ¢ and either
Y or — Y satisfies (V.ii).

Now assume that the result holds for all 4-paintings having no more than
p red and green elements, where p = 1. and that it fails for the 4-painting
R.G,B. W with ¢ RUG the distinguished element and R G
p 122

Select ¢ € RU G, e #e, and let R, G'.B.W and R",G".B" uwe.
respectively, be the 4-paintings obtained from R, G, B.W by repainting ¢’
first blue and then white. Since " R'U G = p. either (V.1) or (Vi) iy
satisfied with respect to R, G, B W and e= R UG Buta Y= satis-
fying (V.ii) for this painting would also satisfy (V.ii) for the original painting,
a contradiction. Hence (V.i) is satisfied by some X' < ¢ havingee N . R'Y

GuB. X nR Y-ngG' Furthermore. since (V.i) fails for the

original paintmg. ¢ = (X MRV AN G, Similarly . since R7 U G7 P

we know that there i a Ve such that e = 1 TROOGTU WY R
CBut then : | IR |

Ve () ande YT Ryo s TGy

\ ~ 3 . [IUPEPREEE B
4 poey N Ir

A P A i i P

onality condition 11V,

Proof of (Vi - (1V). Supposc that €. ¢ satisfies (V) and that Y20,
Y- ¢ with X and Y not orthogonal. Replacing ¥ by —1. if necessary. we
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tholds for all pairs of matroid signatures on fewer than | E | elements. Let
& €0 and Y €0’ with X and Y not orthogonal. We assume without loss of
generality that (X*+ N Y-) U (X~ N Y+) = &, since if that is not the case for
f X and Y, it is the case for X and — Y. Furthermore, we can reverse signs in ¢
wna 0 on X~V Y-, since (1) and (IV) are invariant under such reversals,
s0 we may assume that X— = Y- = .

am:@ﬁog that e e X\Y. Then Xle e /e and Y € "\e. But X\e and Y are not
forthogonal, yet the pair @fe, ¢'\e satisfies (III) and, by the inductive hypo-
_.,Eommm, (IV). Thus X C Y. Similarly Y C X, s0 X =Y.

L Suppose u, v € E\X, u # v. Since Y € @\u and Oju, 0'\u satisfies (II1), and
L hence (IV), it follows that X\u ¢ C/u. Thus there is some U € @ such that

can assume that (X* N YHU(X~"NY")# @ and (X*N Y U
X*NY)=g. Let R=X+UY" G=ERD2X-UY, B=W-=g
and distinguish any e e (X* N Y*+) U (X~ N Y-). Then X satisfies alternativ
(V.i) and Y satisfies (V.ii), a contradiction,

It is clear that property (1V) implies (I1I). Before completing the proof of]
part (a) of Theorem 2.2 by showing that (I1I) implies (IV), it will be useful t6
prove the following lemma, which establishes one of the implications in vmn
(b) of the theorem.

Lemma 2.2.1. If O, ¢ is a pair of circuit and cocircuit signatures of a
matroid and 0, O' satisfies (V), then each of O and O’ satisfies (I) and is, there-;
Sfore, a matroid orientation.

. W QUGS X +u. (2.6)

Proof. By symmetry, it is enough to show that @ satisfies (I). Let?
X1, Xp €0, with X, # —X; and x € (X;" N X,7) U (X~ 0 X,0). Oo:waﬂ.
the following 4-painting of E:

FSelect U so that | U~ N Y ! is minimized subject to (2.6). Note that
FU-N Y +# o since U\u € Ou must be orthogonalto Ye O'\u. Letwe U~ NY
.,,una observe that U, X € 0\v. Now O\v, @' [v satisfies (I1]) and, by the inductive
f hypothesis, it satisfies (1V). By Lemma 2.2.1 O\v satisfies (I) and, therefore,
E (I). Hence there exists ¥ e®\w such that P+C(X* U U*)\w and 7-C
F (X~ U U-)\w. Let Ve such that ¥ = V\v and observe that ¥ C(X U U)\
FwCX 4 u\w so uel/. But then ] CVCX +uand V-NnY=V-n
E X ¢ U~ N X, contradicting the choice of U. Hence there exist no distinct u
b and v in E\X, implying that | E!| < | X | + ~ = | Y| -+ 1. If ris the Whitney
- rank of the matroid (E, @) then | X | <r + | \:a Y| <IE| —r+1
- since X €0 and Y e O Therefore :ﬂ% YI+1ILK|E]l—r+2 so
Er<{2 and |E| <|X]|+1<r+2<4. So, Nm Y| <3 and ortho-
E gonality of X and Y follows from (III).

R = (X,"\Xp7) v (XpH\Xy), G = (X7\X,7) U (X7\ X0 ),
B =[(X," 0 X)) U (X 0 X))y, W= [E\(X, V X,)] + x,

and distinguish any e € X;\.X, C R U G. Suppose that Y € ¢’ satisfies alter-
native (V.ii) with respect to this 4-painting. Then e € (X;* N Y*) U (X, N YY)
and (X;7 N ¥Y7) U (X;~ N Y+) C{x}. Since the equivalence of (IV) and (V) |
has been established and the pair ¢, ¢’ satisfies (V), it must also satisfy (IV), 1
implying that

xe(X;F N YU (XN Y, 2.5

The following example indicates that if (III) is relaxed to require ortho-
* gonality only for those X €@, Ye ¢ having i X NY | =2, then (IV) is no
# longer implied. Let M be the four-point line, the self-dual matroid on a four-
" element set £ having as its circuits the four triples in E. Let ¢ and ¢ both be
E given by the rows and the opposites of the rows in the following 4 ~ 4
. array.

Butx e (X;" N X,7) U (X N X7 so by (2.5) xe (X, N Y- U (X, N Y,
yet (X" N Y7) U (X,™ N ¥Y*) == @, a contradiction. So alternative (V. =v
fails and (V.i) must hold. This implies the existence of some X e @ having
XCRUGUB =(X,uX,)\xand X* CRUBC X;*UX,*, X~ CGuU BC
X17 U X,~. Therefore the signed elimination property (I) is satisfied by 0.
Since @ is a matroid signature, it also satisfies (0) of Theorem 2.1, hence @ is

a matroid orientation. “ © e €

. . [+| - - O

Note that this proof, with no further work, indicates directly that @ and ¢’ 0 ,
satisfy the stronger elimination property (II). R R

il 0 . -

We will now use Lemma 2.2.1 to complete the proof of part (a) of
Theorem 2.2 by showing that (1) implies (TV).

)

Note that @, ¢’ does not satisfy (IV) (no oriented matroid can be self-dual).
but orthogonality is satisfied forall X € ¢, Y e ¢ having: X N Y =2
To complete the proof of Theorem 2.2 it suffices to establish

Proof of (111) = (1V). Let ¢, ¢ satisfy (I11I). Note that for any choice of
¢ e E it follows that Cle, ¢'\e and Ce, C'je also satisfy (11I). For | £ suffi-
ciently small the result must hold. Suppose that it fails for the pair @, ¢, but
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LemMa 2.2.2. If M = (E, ©) is an oriented matroid, then there is a uniqil
cocircuit signature 0+ of M such that O, O+ satisfies the orthogonality conditid
{av). SRE

To prove Lemma 2.2.2. we first recall a familiar property of matroids.

Lemma 2.2.3. Let M == (E, €) be a matroid. For any C€ € and e, €' € a
e + ¢, there exists D € 6+ such that C "\ D = {e, ¢'}.

Proof. The set Cle is independent in M, so (E\C) + e contains a dudl
base B*. Therefore there is a cocircuit D C B+ 4 ¢ C (E\C) U {e, ¢} and!
eeD Nowe'eCnDC{e e}, soecCn D,otherwise |CN D} =1.

From Lemma 2.2.3 we see that for any circuit signature ¢ of a matroid
there exists a cocircuit signature ¢ of M satisfying the condition

for every Y e there exists an element e e Y such that for all
ye Y,y e, there is some X e having X A Y ={e y} and X

orthogonal to Y. @.d.‘

Proof of Lemma 2.2.2. Let @’ be any cocircuit signature of

Y is a cocircuit of the matroid M. Let x, ye X NY, x % y. By 3<Qm5m

signs in @ and @ and replacing X or Y by its opposite, if necessary, we oma

assume that X— = Y~ = ¢. Thus, x. ye Xt N Y.
We will first show %mﬁ there is a signed circuit Z € ¢ such that

xelZw, veZ,

Now Y e and the pair ¢, ¢’ satisfies (2.7). Hence there is an e € mco:
that for each z€ Y. z + e, there exists X, € having X. N Y = {e, z} mna X

orthogonal to Y. If e == x, then either Z == X, or Z = — X, wu:mmmm (2. mvf

and ife = ythen Z == X, or Z X, satisfies (2.8). Suppose that e £ x, w
Then, replacing X, or X, by its opposite. if necessary. we have

cX, X,

Ay

X, reX, N

and

By () there 1s a Ze¢ with 72X, U X, e, Z “(X, v X, je and
yeZi.SoxeZnNn YL ix vithusyeZ and (2.8) s satished.
Now we have xe Y- N Z-and ye X0 Z~. wz (11) there exists a signed

ind Y orthogonal for all Xe@, Y e such that [ X N Y|

M satisfying
(2.7). Suppose that X e @, Y € ¢", X and Y are not orthogonal, and | X N Y|
is as small as possible, subject to the conditions above. Since X and Y are not
orthogonal, X N'Y # @ and thus | X N Y | > 2, because X is a circuit mn.a,.

and ZnNY ={x, 1} @.mv“

ORIENTABILITY OF MATROIDS 10>

rcuit X' e with xe X'+ C(¥*uU ZH\y and X'-C (X~ U Z7)\y. Now
=NY= oandZ- NY ={y}so X'"N Y = @, implying that X" e is not
frthogonal to Y, since xe X* N Y+ and Y~ = &. Moreover, X' N Y £
KN Y, contradicting the choice of X. Therefore, all X €€, Y € (' are ortho-
onal, so (IV) is satisfied by ¢, @, ie., ¢ is dual to ¢. Moreover, by
emma 2.2.3 there can be at most one cocircuit signature ¢’ of M that has X
= 2, Hence ¢’ is
the unique cocircuit signature of 3 that is dual to C. This completes the

m._.o% of Theorem 2.2.

3. EXAMPLES

ExaMPLE 3.1. Oriented matroids coordinatizable over an ordered field.
Let F be an ordered field let £ be a finite set, and let # be a vector subspace

g of FE. Consider the set ¢ of signed supports of elementary vectors of # and
the set ¢’ of signed supports of elementary vectors of £~ the orthogonal
L complement of #. Clearly € is a circuit signature and (" is a cocircuit signature
E of the matroid (E, 0). If Xe @ and Y e (", then there are clementary vectors
@ae# and Be R+ such that X* =S*(a), X~ =S(a) and Y* = S(f).

- = S—(B). It follows that X and Y are orthogonal as signed sets, since

.mwna B are orthogonal vectors in FE. Thus the orthogonality property of

Theorem 2.2 is satisfied by @, ¢, (E, €) is an oriented matroid and - = ("

b we denote by S(#) the oriented matroid (£, ().

An oriented matroid M = (E, €) that arises in this way is said to be

* coordinatizable (or representable) over F. 1f, for a given ordering of £, 4 is an
L m % n matrix over F with # as its null space, then A is called a coordinatiza-
| tion of M. (More properly, we might call 4 a Whitney coordinatization on of
k. M and a Tutte coordinatization of M~.) In this case E can be considered to be

50 family {e, — a, ...., e, == a,} of points in F”, where a,...a, are the
b columns of A, and we say :f: M is the oriented matroid on E &23:::3\ by

.\Smﬁ: dependence in F.
i Example 3.1 yields

PROPOSITION 3.2,  All matroids coordinatizable over an ordered field are

i orientable.

~

For additional generality in Example 3.
let F he noncommutative. i.e.. an c_‘gﬁmg division ring. and let A be u left
(right) ~octor subspace © : U :
familiar with [4] will recognize M?: m(::o_n generahizes when F s an
b ordered unitary ring and A is a wnimodular module (see [4]). Thus. foi
example. any integral chain group # describes an oriented matroid.

I. and Proposition 3.2, we could
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ExaMPLE 3.3. Graphic oriented matroids. 4
PQ A be the (0, +1)-vertex-edge incidence matrix of a directed mawu.
(E, 0) be the oriented matroid coordinatized by A4

=(V,E)and let M =
,;o: O(0*) is the collection of edge sets of elementary circuits (cocircuits) if
I'.1f X € € and the corresponding circuit is traversed so that some e € X*i

encountered as a forward edge or some e € X~ is encountered as a 3<o_.mu
edge, then the set of all forward (reverse) edges so encountered will be XHX)3
For Y € 0+, removal of the edges of Y cuts a previously connected component]

of I' into two connected components, with every edge of ¥ having one}
vertex in each. Then Y* is the subset of ¥ crossing the cut in one a:on:o.

and Y~ consists of those edges of ¥ crossing the cut in the opposite direction.}
Hence the mo:o«i:m vnovomm:os which follows immediately from}
in (V), is a generalization of Minty’s g.:::w

Theorem 2.2 with G =
lemma for directed mqmv:m (see [12]).

PRroPOSITION 3.4. Let M = (E, 0) be an oriented matroid. Distinguish an
element e € E and partition E into subsets e € R, B, W. Then exactly one of Sw

following alternatives holds:

() there is a signed circuit X € O having e € X
“"NR=g;or

(i) there is a signed cocircuit Y € © having

eeYCRUW and YYNR=g.

Minty’s extension of his painting lemma from directed graphs to digra- ]
photds [12] is the special case of Proposition 3.4 for binary oriented matroids §
(as we shall see in Section 6). Camion [4], Fulkerson [8], and Rockafellar [13] -
extended the result further, to the case of oriented matroids coordinatizable -3

over an ordered field.

ExaMPLE 3.5. Affine coordinatizations of oriented matroids.

Let A be-an m < n matrix over an ordered field £ and let M = (E, 0) be |
be the (m « 1) » n matrix @

the oriented matroid coordinatized by A. Let 4
over F obtained from A by adding as a row the vector (I,..., 1) € F" and let
M = (E, €) be the oriented matroid coordinatized by A. We sav that A is an
affine coordinatization of M. Think of E as the family of points in F™ de-
scribed by the columns of 4. Then( is the set of w_.m:ma supportsof elementary

vectors of the subspace {v e FE: ¥ . x(e)e ~0and 3., xle) O} of FE;
we say that M is the oriented imaircid on E determiined by affine dependence
grer f.

We call a matroid orientation ¢ that arises as in Example 3.1 (or 2.5) a

canonical orientation of (£.{). In Example 3.3 we saw that a canonical

kcmﬁi
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jentation that is induced by the (0, +1)-vertex-edge incidence matrix of a
ected graph has a simple graphical interpretation. We will now give a
neral geometric interpretation of canonical matroid orientations.

B Let F be an ordered field, let m be a positive integer, let E be a finite family
Bf points in F, and let @ be the canonical matroid orientation determined by
Binear dependence over F in E. Recall that O is the set of signed supports of
elementary vectors of the subspace % C FE consisting of all « € F£ having
3 <z ofe) e equal to the zero vector in F™. Let Xe0. If | X| = |, then the
Isubset {X, — X} C @ can be trivially described. Suppose that | X'| > 2. Then
Hor some elementary vector a € # we have X = (S*(a), S7(«)) and
Deexafe) e =0.Letx, ye X, x #% y,50 a(x) # 0, o(y) # 0. If a(x) and a(y)
thave the same sign, then a(x) 4 o(y) # 0 so we have

[x) + (W] [ax) x + (1) ]
= — o) + e[ T ae)e]. (3.1

nmw\:&.s

rother words, if a(x) and «(y) have the same sign, then the vector subspace

Ebf F generated by X\{x, y} intersects the line segment between x and y. (We

adopt the convention that the subspace generated by the empty set consists
of the zero vector.) The converse can also be easily verified.

1. Having characterized 0 as above, we can give a geometric characterization
fof 0. Recall that the cocircuits of a matroid are the complements of hyper-

E planes. Assume that the rank of E in F™, i.e., the rank of M, is r < m. Then
i the hyperplanes of M correspond to the (r — 1)-dimensional subspaces of
| Fm generated by independent subsets of E; of course, if r = m then these
F (r — 1)-dimensional subspaces are hyperplanes in F™. It follows from
® Lemma 2.2.3, orthogonality, and the characterization of @ above that if

b YeO+and u,ve Y, u 5= v, then u and v have the same sign in Y if and only

0 they are on the same side of the vector subspace of F™ generated by E\Y.
These geometric interpretations remain interesting when the notion of

linear dependence is replaced by affine dependence. In the case when M is

i determined by affine dependence, we have 3,.x afe) = 0 in (3.1). Thus (3.1)
b.can be rewritten as

[x(x) = ()] o) x5 p) p]
- ﬁ Y .LqL» ﬁ Y o xfe) L.

eEX\{x,v} ee X\{x,y}

Therefore we have

PROPOSITION 3.6. Let F be an ordered field and let E be a finite family of
points in F™. Suppose that M = (E, C) is the oriented matroid on E determined

- by linear (affine) dependence over F. For X0 and x,y X, x # y, x and y
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Bof. Let O be the cocircuit signature of M having for each Y € @ with
B 5o €58, J1 <o < <, sgy(e; ) = (—1)mtimi =4 sg.(e; ), for
k< [, m << t. We will show that ¢, ¢’ satisfies (I1I), hence €@ is an o:osﬁm-
ind 0+ = @', Let Y be as above and suppose that X e with X =
s} EF, i) <ip < <ig,and [ XN Y| =2or 3 Lete and e
(32) with e’ =e¢;, =e¢; and ¢” = e; =e; . Then

»

agree in sign in X if and only if the linear (affine) subspace of F™ generated
X\{x, 3} intersects the line segment between x and y. Furthermore, for Y d
and u, ve Y, u % v, u and v have the same sign in Y if and only if u ang
are on the same side of the linear (affine) subspace of F™ generated by E\Yi§

ExXAMPLE 3.7. Minors of the Mobius geometry of Cheung and Crap))
Let E be a finite subset of R% and let € be the set of all subsets of E &
sisting of either four points on a common line, four points on 4 comnit
circle, or five points with no four on a common line or circle. Then
(E, €) is a matroid minor of the Mbius geometry introduced by O:m::m
Crapo [5].
M is coordinatizable over the reals. Let f: E — R*-be defined by f(a, ?
(a* + b% a, b, 1) for (a, b) € E. Then a subset T C E is dependent in M if alfg Fin the other. Let S ={ee E: ¢ <e < e'},sothatj, —j, =1 -+|S].
only if f(T)={f(e):ee T} is linearly dependent in R*! Hence . MD.N N < = @ and SN [E\(X U Y)] = c is even by (3.2). Therefore
Proposition 3.2 M is orientable. :.:l~ + e+ |SNX|+|SNY|=14ct+(g—p—1)+(m—
The canonical orientation @ of M induced by f, which can be 58688& 1 ),s0d=2g —p)+2m—1)—1+c.
R* as in Proposition 3.6, has an interesting interpretation in R?. Hyperplang < . . . . L
of M are intersections of E with circles and lines. Each triple in E anﬁmnamz.u he reader will .:oﬁo that ¢ is ocﬁ::mzm. 303 the m:awnw::m cocircuit
a hyperplane H that partitions E\H into two subsets (interior and exterid u.n:.:w of M with respect to H by reversing signs on either of the sets
points of a circle H, or the sets of points on either side of a line H), iEu.; his odd} or {e, : /r is even}.
form the positive and negative elements of the cocircuit £\H. It follows fron
orthogonality that if X € @ has | X'| = 4, then the signs in X of the &o:._m:..
of X alternate along the line or circle that they define. Suppose that X € 0 ha
| X | =35and x, ye X, x 5= y. Then X\{x, y} defines a line or circle H, mna
and y have the same sign in X if and only if the line segment joining 99.
crosses H. 3

sgx(e") = (— 1) sgx(e’)

A’ _v?lg.ivl2+fv

sgy(e”) = sgy(e’).

Miffices to show that d = (¢ — p) + (m — I) + (j,, — j;) is odd, since this
ies that ¢’ and e” have oEuom:n signs in one of X and Y and the same

[ExAMPLE 3.8.1. Free matroids.

Het E be an n-element set, and m:ﬁvomo that | <{r <<n — 1. The free

A,;SE. of rank r on E, denoted .#,", has as its gmom m: r-element subsets

‘COROLLARY 3.9.1. The free matroid F, has, Jor each order H of its

3 \ ents, an alternating orientation with respect to H.

ExampLE 3.8. Alternating orientations. E
A circuit signature ¢ of a matroid (E, 0) is said to be alternating wi ;

respect to an oaoﬁ H:e < e, << < e, of the elements of E if for eve

Proof. Let C and D be a circuit and cocircuit, respectively, of .%,". so
Cl=r+1land |D,=n—r+ 1. f|{CNnDi= 2 then CUD=E
d (3.2) is obviously satisfied for the pair C, D. Suppose that C N D -

X €0 with, say, X ={e; ...e;}, iy <l < - <y, sgele; )= —s e, ) , :

je 1 s — %\ { o B exl it & cvﬁ ¥, 2}, with x <<y <<z. Then | E(C U D)| = 1, say {e} = E\(Cu D). If

: : ¥, then ¢ == x and e” = y satisfy (3.2), otherwise ¢’ == 1 and e -- =,
sfy (3.2).

ProrositioN 3.9, Let the elements of E be denoted e, ..., ¢, and let H be;

the order e, < e, < < ¢, . If M~ (E. €) is a matroid with the property f Corollary 3.9.1 can be established directly by verifyving that for any n real
mbers #, < 1, << - 1, , the matrix
ok all et Do with L O A D 2 3. there exis
Jor ail [ DTG with i+ C 0 2 .E 3, W: ¢ C:i. s s
oot U Do " such thate e e implics e £ C 0 D and .
e Ble e e and e CU DY s even, (3.2) 1
i i i
ot I

then the alternating circuit signature C of (E, €) with respect to H is an orientas 3

tion of (E. ). an affine coordinatization of #,” that induces an alternating orientation.
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An example of a nonfree matroid that satisfies the hypothesis of Proposs ;“_ono C;=C*+e, i =5,..,8. Note that €,* = (0,* U{D,, D,, D,
:o.: w..@ is .So matroid M determined by affine dependence in R? on the si% fy W{D*}, where D; = D* + ¢;, j = 1,..., 4. Vémos @Mn [9]) showed that
points in Fig. 1. B, %) is not coordinatizable over m:w feld (or division ring). We will
% tploit the close resemblance between (E, ¥,) and the coordinatizable matroid
M, to describe how an orientation of (E, €,) can be constructed. Let @, and
¥, be a circuit signature and a cocircuit signature, respectively, of (E, €,)
having X €0, for all Xe®; with Xe ¥, and Y0, for all Y@+ with
Y € €,*~. The remaining circuits in &, yet to be signed into 0, are Cy, C;,

, Cg and the remaining cocircuits are D, , D,, D;, D, . Let X* € ¢, and
m%H with X* = C* and Y* = D*. For each C;, i = 5,..., 8, include in

90 signed sets X; and — X, described by

sgx(e) = sgxe) ifes=e,;,

FiG. 1. A nonfree matroid with an alternating orientation.
= sgy.(e) ife=e,;,
ExampLE 3.10. The noncoordinatizable Vamos matroid is orientable, #

Let M, = (E, 0,) be the oriented matroid determined by affine amnosag'm
over the reals on the set £ = {e, ,..., €5} C R® given in Fig. 2.

ind for each Y;,j = 1,.., 4include in @, the signed sets ¥, and — Y, having
sgyfe) = sgys(e) ife=e;,

e = —sgx«e) ife=c¢e;.

Note that for 1 < <j<4and 5 <i<8, X, and Y, are orthogonal since e,
as the same sign in X; and 5 m:a e; has opposite signs in X; and
Y; . Moreover, for any Xe0@,, Y e0, such that either X €%, or Y e €%,
.ﬁromosm_:% of X and Y follows from the fact that M, is an oriented Emﬁoa
gTherefore 0, is an orientation of the Vamos matroid (E, €,) and 0, = 0,*.

: ", The orientation @, is given explicitly by the set of signed sets described in
able I and their opposites. Each entry in the table gives the index set of the
:”_aBo:a in a circuit of the Vdmos matroid. The signed set X represented by

TABLE 1

The Orientation @, of the Vamos Matroid

4

o

FiG. 2. A pre-Vamos oriented matroid M, . 1356 12345 12367 12567 13467 23457 23578

. . . : . . 1378 12346 12368 12568 13468 23458 23678

Note that six of the eight points in £ are vertices of the unit cube, while § B o _ _

e; and ey are translations of the remaining two vertices of the cube some § 2456 12347 12457 12578 14567 23467 34567

small distance ¢ ~ 0 along the line determined by that pair of vertices Thus 2778 13743 13438 1R 14569 Y6 Taney

1y €y, g, ey and ey L ¢y, 05, €, are independent sets in A, The circuit o o ) i - o

C* =={e), ey, €5, ¢} and the cocircuit D* — {e5, e, , €;. ¢5) of M, play a | 5678 12357 12467 13457 14578 23567 3457
special role | : S. 2 — - _ o _

P ¢ in what follows ; 12358 12468 13458 1467 23568 34678

Let (E, €,) be the matroid having %, = ((; U {C; . Cy, C;, CH\{CH}, |

f 582b/24/1-8
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TABLE 1I
0,*, the Dual of 0,

1356 15678 12367 12567 13467 23457 23578
1378 25678 12368 12568 13468 23458 23678
2456 35678 12457 12578 14567 23467 34567
2478 45678 12458 12678 14568 23468 34568
1234 12357 12467 13457 14578 23567 34578

12358 12468 13458 14678 23568 34678

The cocircuits D, ,.
entries in the mmoosa column.
In demonstrating that @, is an orientation we have relied on the ms.:o::o

of @, and the fact that @, is an orientation of M, ; we have not mwoo&om:*

invoked the sign properties of ¢, that distinguish it from other orientations

of M, . Hence, any orientation of M, induces, as above, an orientation of M.
Other examples of noncoordinatizable orientable matroids are the non-
Desargues matroid, [9, Example 2], and a modification of the non-Pappus:

matroid, [9, Example 3].

ExaMpLE 3.11. Some nonorientable matroids.

Let r >> 3 be an integer and let E be a set of cardinality 2r, E = {e, ,..., &,

e/.....e,t. We denote by M, the matroid on E with the following circuits:

fe,, e/, e;,e/yfor | <<i<<j<r {eg,...e 1.6 €r,..,e}for I <i<ni
{e,,..., e,y and all (r + 1)-subsets of E not containing any of the preceding §

[r(r — 1)/2] 4+ r + 1 sets.

The involution ~ on F .\N%\\q.‘:m\,\w hv +{

is an ao\:o%\:re: Jrom M, to (M,)".

The proof is left to the reader.
Let @ denote the field of rational numbers.

., D, of the Vdmos matroid correspond to the first four

f circuits having X
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.., LEMMA 3.11.2. For allec E, M,\e and M,|e are coordinatizable over Q.

g, 0 =y Faforl <i<r—2and o, , =

PROPOSITION 3.12. For r > 4, M, is not orientable.

Before proving Proposition 3.12 it will be useful to state the following

Fsimple consequence of the signed elimination property (II).

LemmAa 3.12.1. Let M = (E,0) be an oriented matroid. Suppose that

NH » Xo €0, x e (Xyt N X,7) U (X~ N Xy, and that there is a unique circuit
b of M contained in (X, U X,)\x. Then there are exactly two signed circuits
b X,€0 and
E X, C X, (X~ VIOV XGH) C X

—X;€0 contained in (X; U Xo)\x, and (X;t U XpH\(X— v

Proof of Proposition 3.12. Suppose, contrary to the proposition, that ¢
_m an orientation of M, , r > 4. Denote by X;, for 2 <j < r, and Z signed
X, ={e, mHm e;,e/y and Z ={e), e,y ,..., e,}. By reversing

 signs in @ on a subset of £ and appropriately choosing each X; and Z from
k the pair of opposite signed circuits having the given underlying circuit, we
¢ can assume with no loss of generality that X,* = {e,, e;'}, X;~ = {ey, €5},
te;eX;tand {e;, e/} C X, for3<j<r ande, €Z-.

Note that C; = {e,, €,/ €;, ¢;} is the unique circuit of M, contained 5

%ﬁmm U X))\, (because r > 4). Since ¢,,¢e,'¢C;, e;€ Xt N (—X),
L e’ € X,t, it follows from Lemma 3.12.1 that e € (—X;)~ == X;*. Hr:m
i M\u+ = mmu » €1 wu X,m = A@ s mw‘v H,On.\ =2,

Similarly, for 2 <<j < r {e;,..., €;_4, mu.n €41 ----» €4 1s the unique circuit
om M, contained in (Z U X)ie,". By Lemma 3.12.1 e, Z+, hence Z— =
3@ and Z+ = {e, ,..., e,}.

Now, by Lemma 3.11.1 {e,,..., e,} 1s a cocircuit of M, . Let Y e+ have

f Y ={e,,...,e,} and ¢, € Y. It follows from oiromo:m:Q 0m \4 el mca

3 YOt that ¢ Y, 7 =2 yoeny Voooa— 1

[BRFE R . = .7 S 7 g - i

= gonality of Ze0and Yeo-

Proposition 3.12, Lemma 3.11.2, and Proposition 3.2 indicate that for all

b r >4 M, is not orientable, but all proper minors of M, are orientable.
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Therefore the matroids that collectively characterize orientable matroi poof. Note that M = (E, &) is the matroid minor of M obtained by

their exclusion as minors (in the spirit of [14]) are infinite in num@® acting A and deleting B and M* = (E, ). It is easy to see that the

Examples of rank 3 nonorientable matroids with all proper minors orient4g 0, 0+ satisfies the orthogonality property (IV), since any pair X &0,
oo:mmcosawﬁomvm:km%,%m%rmﬁ:m%”kfr%”ﬁmm:a

include the MacLane matroid (see [9]), as has been verified by Yves Kod

(CNRS, Paris) with the aid of a computer, and the Fano matroid. u\nlwww N M,; Thus it suffices to show that @ and @+ are signatures of /7.
The matroids M, are related to well-known matroids introduced grly 0 = —0. We must show that X,,X;eb0 and X, = X, imply X, =

Lazarson (see [9]). Let p > 2 be a prime scEcQ let GF(p) be the ,.,.. K, . It then follows that @ is a circuit signature O:S and by symmetry ¢+

field Z/pZ, and let E ={ey,..., epi1, € s, €p1, [} C AQEEVEH, whes .:..oz,oEH signature of M.

{€1,..., €5:1} is the canonical basis of (GF(p))?*:, f = e, + - + epy1 5. Buppose that X, , X, e @ and X, = X, . There exist X, , X, € ¢ such that

e, =f—e;,i=1,.,p+ 1. Let L, be the matroid on E determined ]

::omaam@o:ao:oom:AQEEvst.ﬁmeaonmrosoaEmﬁhsmmoooaimmnw

X\ and X; "B = o for i = 1,2. Suppose that X, = +X,, so
is an element ee(X,;* N X,) U (X,- N X,*) and an element e’ €
over a division ring F if and only if F has characteristic p. L, is the Faf
matroid. r

N X,7) U (X, N X,7). Since ¢ is an orientation and both e and ¢’ have
ame sign in X; and X;, i = I, 2, by the signed elimination property (I1)
0 there is some X; € @ having X,™ C (X;+ U X,Hle, X,— C (X~ U X;0)\e,
Rl e € X;\A. Therefore X; C (X, U Xy)\e, so X3 N B=g ande’ e(X,\A) C

ProposiTION 3.13.  For all prime numbers p > 2 M, is N..SSQGEN r 3 J
WU X)\(4 + e) = X,\e, contradicting the minimality of X, in (.

N\s/.\..

The proof is left to the reader. m,
It follows from Propositions 3.12 and 3.13 that for all prime numbeg
p > 3 the matroid L, is not orientable. L, is also nonorientable as alreaff
noted. i
Ingleton observed in [9] that for all prime numbers p 2> 3 L,\ f (and w?
M,.,) is coordinatizable over a division ring F if and only if F has cha
teristic p. 1t is not difficult to show that if the integer p > 3 is not prime, E‘_
M, is not coordinatizable over any division ring.

iven M = (E, 0), A and B as in Proposition 4.1 we say that M is the
ted matroid minor of M obtained by contracting A and deleting B, and,
course, M is the oriented Em:oa minor of M+ obtained by contracting B
fid deleting 4. If 4 = @, then 0 ={XeC: XN B = tr denoted %m and

3 = g, then 0 = gmz;\/mn Xe@ and X\4 # ¢}, denoted ¢ = C/A.
hm the analogous properties of matroid minors we easily get

g, () (M\A\B = M\(4 Y B);
p (i) (M/A)/B = M|(4 Y B);
...i_,cé (MJA\B == (M\B)/A.

4, MINORS OF ORIENTED MATROIDS

It is clear from Lemma 2.1.3 that minors of orientable matroids a
orientable. In this section we will discuss oriented matroid minors. First Wy
recall some notation from Section 2: (1) if X is a signed subset of E and
A C E, then (X\A4) denotes the signed set having (X\4)* = X*\4 and (X\4
= X-\A4; (2)if Ois a collection of signed subsets of E, then Min(() denotes thg
set of X e ¢ such that X is a (set-wise) minimal element of €. ,

w?ovomao: 4.1 can be restated in the form

ITHEOREM 4.3. [f M = (E,0) is an oriented matroid and A CE, then
§14 and M\ A are oriented matroids and (M] At = MA\A, (M\A)* = M+ A,

..._.Oﬁomm:o: 4.2 and Lemma 2.1.2 imply the following useful result.

PROPOSITION 4.1. Let M = (E, €) be an oriented matroid and let A and B X
be disjoint subsets of E. Then pPrOPOSITION 4.4, [f M = (E.C) is an oriented :ENSE\ A CE Xel. and

be X\A. then there exists X e C/A such that x & w. and X+ X Ty

O =MInfX' A XcC. X'Ad » o and X "B —

5. CARRIERS AND SPANS OF ORIENTED MATROIDS
o+ Min{Y'B: Y€ YB = o and Y O A = ¢} . ) . o : - . . . .
kIn this section we will discuss certaimn sets of signed sets whose minnimai

are matroid orientations and 0 = (O)*~. ponempty elements are the signed circuits of an oriented matroid. First we

X82b/24/1-9
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examine the effect of relaxing the requirement in (0) of Theorem N. AL
X, Xoe0and X, CX, imply X; =4X, .

PROPOSITION 5.1. Let O be any set of nonempty signed sets such 1
satisfies (1) and has 0 = Then for each X €@ there exists X'e Mi
such that X'+ C X+ and X'~ C X~ £

Proof. Let X, € 0have X;* C X+, X;7C X~,and | X {as small as possiy
If X, € Min(¢), then X' = X, satisfies the conclusion of the propos
Suppose that X, ¢ Min(0), so there exists X, €0 having X, m.xw. ,
X, €0 such that X, C X, and |(X;* N X;7) U (X~ 0 X)) is minimized;
ec(XotN X))V CP M X,*), which is nonempty by the choice of X;
(I) there exists X;e@ such that X+ C(X;" U Xph)le and X,~ C (X}
X, )\e. But then X; C X; and (X3t N X)) U (X5~ N X H) C (X, N
(X,~ O X;9))\e, contradicting the choice of X, .

THEOREM 5.2. Let O be a set of nonempty signed sets such that O sat
the elimination property (I) and has © = —0. Then Min(0) is the set e\ S
circuits of an oriented matroid.

Proof. Clearly X € Min(C) implies X # ¢ and —X¢€ Min(®). !

Suppose that X, , X, € Min(¢) with X, C Xjand X; # £X; . Let e € (X
X,7) U (X~ N X,*), which is nonempty since X; # £X, and @ # X, C2
By (I) there exists X, € ¢ such that X,* C (X;* U Xy¥)le and X,~ ﬂ@a
X,)\e, so X, C X,\e, contradicting X; € Min(0).

Now let X, , X, € Min(€), X; # +X,,andee(X;” N X,7) VY (X, 02
By (I) there is some X, € € such that X;* C (X, U Xy)le and Xy~ C (X173
X, )le. By Proposition 5.1 there exists X, € Min(€) such that X,* C X1
(X, U X,H)\e and X,~ € X3 C(X;~ U Xy7)le. Hence Min(@) satisfies §

Signed sets X7, X, having (X;* N X,7) U (X7 N X)) = 2 will be
compatible. The union X, U X, of compatible Zm:ma sets X; and X, is de
to be the signed set having (X; U Xy)™ == X;7 U X," and (X, W Xy
X,~ U X,~. Given mutually compatible signed sets X, ,..., X, in some se
signed sets 2, the union X, U X, U - U X, 18 said to have a conforn
decompsition in .2, ;

PROPOSITION 5.3. If € is a set of signed sets such that € satisfies (1 m_v a
has € - —C . then every X € C has a conformal decomposition in 7\:29. ,

Y s minimal n:r_vl to X & (: having no oo:mo __

c?cB??.::: in .ﬁ::: [here is o foss of generality in assuming Y7 = ¥

since all of property (134). Min((), and the subset of ¢ having oo:mo 1
decompositions in Min(¢) are invarniant under the reversal of m_m:v on

subset of E. By Proposition 5.1 there exists X; € Min(¢) having X;t C X+ af
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FX- = . 1t suffices to show that for each e e X\X, there is some
having X, = @ and e X,* C X+. Then by the choice of X each X,
g conformal decomposition in Min(0) giving (with X;) a conformal
osition of X in Min(®).
BeX\X, and let X, €0 have e X, C XTU X7 = X¥, X,m L X~V
g§X,*, and | X, | as small as possible (property (I7;) ensures that we
hd such an X, € 0). Suppose ¢’ € X,~. Then by (I L) there exists X; €0
fhat e € X,+ C (X;t U X,P)\e' C X+ and X3~ C (X1 U Xp0)\e C Xo\e,
icting the choice of X, . Thus X,~ = @ and e € X,™ C X*.

OREM 5.4. If 0 is a set of nonempty signed subsets of E that has ¢ =
bhen O satisfies (11,) if and only if O satisfies (11).

wm\. Clearly (II) implies (IL). Suppose that € satisfies (1{;) and has
0. Let X, , X, € € with xe (X;+ N X,7) U (X" N Xy7) and ye (X7 N
¥ (X;- N X,~). We must show that there exists

: €0 such that yeX,, X;© C (X" U Xy, and Xy C(X U
N\x. (5.1)

groposition 5.3 X; and X, have conformal decompositions in Min{€): in
Wular there must exist X', X, € Min(0) such that X;* C X, X;"C X~

X/, i=1,21x¢X/ fori=1o0r2 then X; = X/ wm:m:ow (5.1). :
W' X,', then it must be that x e (X;" N X;7) U (X;~ N X;%). Now,
W'— —0 and @ satisfies ( :v and hence (I), by Theorem 5.2 Min(0) is
ented matroid. So by property (I1) for Min(0), there exists X; € Min((")
Mhat yeX,, X" C(X"N XH)'x and X3 G (X,"u X )xand X,

€5 (5.1).

;‘.q_.nmaon will note that under the hypothesis of Theorem 5.4. the elimina-
property (I) is not equivalent to (I u_t_g and (I1). For example, let £ —=

B3} and let ¢ consist of the six signed subsets of £ described by

123,123,2.2,3,3.
HD — — (" and ¢ satisfies (1), but not ().
¥t @ of signed sets satisfying (1 5) and ¢ - —C will be called a carrier

E'matroid orientation Min(("). Proposition 5.3 indicates that for a given
éd matroid M - (E. () every carrier of ( is a subset of the set £7(().
ed span of (. consisting of all signed subsets of £ having conformal
npositions in ¢

“is an ordered fictd :
in a vector subspace # = FE. %m: A(C) s the set of f:u:aa m:nco:,
®tors in .. In fact, for any oriented matroid M == (£, (), 4 () retdins

B.0f the familiar properties that hold for the coordinatizable case. For
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example : @ € A'(0), since the empty signed set decomposes into an empty
union of signed circuits; H(0) = —A(0); 0C A0); A(0) satisfies the
elimination properties (I) and (1I) of Theorem 2.1; and the pair £(0), #(04)
satisfies the painting property (V) and the orthogonality properties (1II) and §
(1V) of Theorem 2.2 (in fact 2(0) is precisely the set of all signed subsets X §
of E having X orthogonal to all Y'e 0*). These conditions on signed spans %
of orientations are among the properties that Rockafellar [13] recognized
oriented matroids ought to have. ;

The effect of contractions and deletions on the signed span of an orienta-
tion ¢ on E is particularly easy to describe. Obviously A (0\e) = {X € X (0): {
e ¢ X} for all e € E. Furthermore, Proposition 4.4 implies that X'e € A (Ole) }
for every X € ¢ and e € E. Thus we have 3

PROPOSITION 5.5. Let M = (E, () be an c:.mim& matroid, let A and B be ]
disjoint subsets of E, and let ¢ = (0] A\B. Then A (0) ={X\4: X € A(0) and
XN B= o} 1

6. BINARY ORIENTED MATROIDS

Let E be a finite set. Recall that a subspace # of RE is unimodular (regular) §
if all elementary vectors of # are proportional to (0, -:1)-vectors. A matroid
M on E is binary if M is coordinatizable over GF(2) and M is unimodular
(regular) if M = S(#) for some unimodular subspace #Z C RE. 3

A digraphoid as defined by Minty in [12] is a dual pair of matroids M, M* 1
together with circuit signatures O and €+ of M and M*, respectively, such
that the following axiom is satisfied:

forall Xe@, YeO+, (X*NnY)Hu((X - NnY)= (XN YU (X-n Yl

It is obvious from the orthogonality property (1V) that a digraphoid is a
dual pair of oriented matroids. !

Actually digraphoids constituted the first attempt at axiomatizing oriented
matroids. However, the above axiom is too restrictive—Minty showed that
digraphoids are precisely the dual pairs of oriented matroids S(#), S(#*) for |
unimodular subspaces # of vector spaces RE (see [12, App. 1]). The main |

cesult of this section Is that binary oriented matroids are precisely the oriented 8

matroids S(#y that arise from unimodular subspaces #2 of RE and
digraphoids are. therefore. equivalent to dual pairs of binary ornented

matroids.

Theorem (Tutte (14, Proposition 751 A matroid M is unimodular if

&\
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 and only if M is binary and has no minor isomorphic to the Fano matroid (L, of
{ Example 3.11) or its dual.

PROPOSITION 6.1. A binary matroid is orientable if and only if it is a

E unimodular matroid.

~ Proof. Since minors of orientable matroids are orientable (see Section 4),

an orientable matroid can have no minor isomorphic to the Fano, matroid

or its dual. Hence by Tutte’s theorem above a binary orientable matroid is
unimodular. The converse is clear.

PROPOSITION 6.2. Let M and M’ be binary oriented matroids on a set E
having M = M'. Then there exists A C E such that M' = zM.

In order to prove Proposition 6.2 we will first give some preliminary
results.

‘Let M be a matroid on a set £. Whitney showed that the following two
properties are equivalent [15, Theorem 19]:

(i) forall x,y € E, x # y, there are circuits

C,y, Cy,..., Cr of M such that xeC,,yeC; and C; N Cyyy # @, for
i=0,.,k—1;

and
(i) forallx,yek, x #J, there is a circuit C of M containing x and y.

A matroid M having these properties is said to be connected (or irreducible).
A pair of circuits C, C’ of a matroid M with rank function p is called
modular if p(C) + p(C’) = p(C L C') + p(C N ).

LEMMA 6.2.1 (Tutte [14, Proposition 4.34]). Let M be a matroid on a set
E and let e be an element of E such that Me is connected. Suppose that C and C’
are distinct circuits of M having e € C N C'. Then there are circuits C=20C,,
Cyyoy Cie = C' of M such that {e} C C; N Cyyy and the pair Cy, Cioy is
modular for i =0, 1,....k — 1.

LEMMA 6.2.2. Let M be a connected matroid on E with no 2-element
circuits. Then there is an element e € E such that Me is connected.

Prooj. ) e
| E| = 3. Suppose that | [6] showed that for every e€ £
either M/fe or Mie1s connected. Lete e L and suppose that Mje is net connee-
ted. Then M\e is connected, and by the inductive hypothesis there exists

L The lemma is clenrly true for
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e’ € E\e such that (M\e)je’ is connected. Since M is connected there is some

circuit C of M having e, e’ € C. By the hypothesis of the lemma, | C{ = 3, so
C.e is a circuit of M/e’, e € C\¢’, and (C\e') N (E\{e, €'}) # ©. Since (M\e)/
e’ = (M/e’)\e is connected, it follows that M/e’ is connected.

LemMA 6.2.3 (Tutte [14, Proposition 5.35]). A matroid is binary if and
only if for all modular pairs of circuits C, C" of M such that C 0 C' +# & and
C + C', there are exactly three circuits contained in C'\J C’, namely, C, C',
and CAC’, the symmetric difference of C and C'. .

From Lemma 6.2.3 and the signed elimination property (I) we get

LEMMA 6.2.4. Let M = (E, C) be a binary oriented matroid. If X, Z €0,
X, Z is a modular pair in M and x, z€ X N Z, then sgx(x) - sge(z) == sgz(x)-
582(2).

We will need one more lemma. We say that a signed set X is carried by its
underlying set X.

LEMMA 6.2.5. Let M and M’ be binary oriented matroids on a set E having |
M — M'. Suppose that X, X, are distinct signed circuits of M such that

X, , X, is a modular pair of circuits and e € X; N X, .

(i) If X, and X, are signed circuits of M', then the opposite pair of signed N

circuits of M carried by X, 4 X, are signed circuits of M'.

(i) If1X,NX,| =2, X, is a signed circuit of M' and X;\e is a signed

circuit of M'le, then X, is a signed circuit of M'.

Proof. (i) By the signed elimination property (I), the signatures of the
signed circuits of M and M’ carried by X,4X, are completely determined, in
the same way, by X, and X, , and are thus equal.

(i) Let X, be a signed circuit of M’ such that X, = X," and X,\e =
Xy\e and let xe(X; N Xy)le. By Lemma 6.2.4 we have hm»%& @wﬁ@@ =
sgx,(€) 5gx,(X) and sgx (€) sgx(X) == sgx,(€) 5gx, (X)- On the other hand
.mmxwxv = sgy.(x), hence .ﬁx%& = &«&Amv, and therefore X, == X,

Proof of Proposition 6.2

The proof is by induction on | £ . Without loss of generality we may

suppose that | £

We consider

(1) Suppose first that M —- M has a 2-element circuit {e, €. We have
Mie = M"e, hence by the mnduclive hypothesis there cxists A" 2 Ec¢ osuch

that M'\e — 5(Me). Let X, and X, be signed circuits of M and M’, respec-

=7
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tively, carried by {e, ¢’} and having e’ € X;* N X" Weset 4 = 4" if X; = X,/
and 4 = A’ U {e} otherwise.

We show that M’ = zM. Let X’ be a signed circuit of M". Since M'\e =
a2(M\e) and X, = zX, we need only consider the case where e X’ and
X #{e, e} Now X; =X'A{e, e’} = X'\e + € is a circuit of Mie = M'\e

‘and X, , {e, '} is a modular pair of circuits. Hence by (i) of Lemma 6.2.5, X”

is a signed circuit of M.

(2) Suppose now that M = M’ has no 2-element circuit. By Lemma
6.2.2 there exists e € E such that Mfe = M’[/e is connected. Since M/e =
M'|e, by the inductive hypothesis there exists 4" C E\e such M’je = (Me).
Let X, be a signed circuit of M such that ee X, . | X, | = 2, hence X,\e is a
signed circuit of M/e. Now (X,\e) is a signed circuit of M'[e. Let X be the
signed circuit of M’ such that X’ = X and X'\e = 5(X;\e). Weset 4 == A’
if Xy = 5X,, A = A" U {e} otherwise.

We will now show that M’ = zM. Let X’ be a signed circuit of M'. Since
X, = zX, and M'[e = 4(MJe) we have only to consider the case where
X' % 4+X, and X’ is not a circuit of M’/e.

(2a)ec X"

- By Lemma 6.2.1 there are signed circuits X;, X, ,..., X; = X of M such
that X, = X', {e C X, N X,,,, and X, X, is a modular pair of circuits,

for i =0,1,...,k — 1. Now gX, = X, is a signed circuit of sz and M’,

aX; 1s a signed circuit of zM, and (gX;)\e is a signed circuit of M'fe, since
M'le = z(M/e). Hence by (ii) of Lemma 6.2.5 zX; is a signed circuit of M".
By induction on & we show in this way that zX, = zX is a circuit of M.
Since X = X', X' is a signed circuit of zM.

(2b) e ¢ X".

There is a signed circuit X;" of M” suchthate e X} and X{\e C X", X, X7
is a modular pair of circuits. Since M’ is binary there is a signed circuit X,
of M’ carried by X'4X," and we have X' = X,'4X,". Now e X", e X/,
hence X" and X, are signed circuits of ;M by (2a). Therefore by (i) of

Lemma 6.2.5 X" is a signed circuit of sM.

COROLLARY 6.2.6. Ler M be a binary oriented matroid on a set E. Then
there is a unimodular subspace Z of RE such that M = S(#).

Proof. By Proposition 6.1 there is a
that M - S{2). By Proposition 6.2 we
of E. Hence 47 -2 Ste#), where @ F
xedand e(x) = 1 if xe £1 4.

From Proposition 6.2 and Corollary 6.2.6 we immediately get
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COROLLARY 6.2.7 (Camion [3, Th. 4, Sect. 5.2], Brylawski and Lucas .
Prop. 4.2)). Let # and R’ be unimodular subspaces of RE having S(%) = S(4
Then there is a mapping € : E — {1, —1} such that R — . ,

fote added in proof. Recently, previously unpublished work on oriented matroids
e late Jon Folkman has appeared in summary from in the Ph.D. Thesis of Jim Lawrence
ity of Washington, Seattle, Summer 1975). Although Folkman’s approach to
d matroids differs noticeably from ours, his axiomatization is based on an elimination

that is clearly equivalent to (II) of our Theorem 2.1. Thus it is clear that the
tizations represented by Theorems 2.1 and 2.2, each of which one or both of us
developed before learning of Folkman's work, are equivalent to Folkman'’s axiomatiza-
It appears from his unpublished notes that Folkman was aware of the possibility of
IXiomatization of oriented matroids based on the orthogonality property (1V) of
brem 2.2, but, apparently, he never pursued it.

Corollary 6.2.7 is also implied by the recent work of both Bixby and mowaow.,‘
on matroids coordinatizable over GF(3).

COROLLARY 6.2.8. Let G be an undirected graph. Then every clmianm
of the polygon-matroid (respectively, the bond-matroid) of G corresponds 10

some orientation of the edges of G. ACKNOWLEDGMENT

. s paper is a synthesis of work that was undertaken separately by the authors and
in each case, completed in carly 1974, shortly before we learned from S. B. Maurer of

mmon interests. Our initial announcements of these results appeared in {1, 10].

Minty’s digraphoid axiom is the strengthening to the binary case of th
orthogonality axiom (IV). 1t should be clear from Proposition 6.2 and it§
corollaries that the corresponding strengthening of the circuit elimination]
axiom (I) is: 4 REFERENCES
G. BLAND, “Complementary Orthogonal Subspaces of R” and Orientability of
atroids,” Ph.D. Dissertation, Cornell University, May 1974.

T. H. BRYLAWSKI AND D. Lucas, “Uniquely Representable Combinatorial Geo-
¥ metries,” preprint, 1973,

. CaMION, “Matrices totalement unimodulaires et problémes combinatoires,” Thése,
niversité de Bruxelles, 1963.

W:P. CamioN, Modules unimodulaires, J. Combinatorial Theory 4 (1968), 301-362.

O A. CHEUNG AND H. H. CrAPO, A combinatorial perspective on algebraic geometry,
Advances in Math. 20 (1976), 388-414.

. H. H. CraPo, A higher invariant for matroids, J. Combinarorial Theory 2 (1967),
406-417.

H. H. CrAPO AND G.-C. RoTa, “Combinatorial Geometries,” M.1.T. Press, Cambridge,
b Mass., 1970.

. D. R. FuLkerson, Networks, frames, blocking systems, /n ‘“*Mathematics of the
Decision Sciences™ (G. B. Dantzig and A. F. Veinott, Jr., Eds.), pp. 303-334, Amer.
Math. Soc., Providence, R.I., 1968.

. A. W. INGLETON, Representation of matroids, /n ““Combinatorial Mathematics and
Its Applications” (D. J. A. Welsh, Ed.), pp.149-167, Academic Press, London)/
New York, 1971.

. M. Las VERGNAS, “Matroides orientables,” preprint, April 1974, announced in C. R.
Acad. Sci. Paris 280 (1975), 61-64.

A. LEnmaN, A solution to the Shannon switching game, J. SIAM 12 (1964), 687-725.
G. J. MiNTY, On the axiomatic foundations of the theories of directed linear graphs,
electrical networks, and network programming, J. Math. Mech. 15 (1966), 485-520,
reprinted in “Graph Theory,” M. A. A. Study No. 12, (D. R. Fulkerson, Ed.), Math.
§ Assoc. of America, 1975.

3. R. T. ROCKAFELLAR, The elementary vectors of a subspace of R®, in “Combinatorial
¢ Mathematics and Tts Appiications,” Proc. of the Chapel Hill Conf. (1967) (R. C.
v Bose and T. A. Dowiing, Eds.), pp. 104-12/, U
e Hill, 1969.

8, W.T. Turre, Lectures on matroids, J. Res. Nat. Bur. Stand. B 69 (1965), 1-47.

45. H. WraiT~ey, On the abstract properties of linear dependence, Amer. J. Math. 57
( 935), 507-553. Printed in Belgium

for all X;,X,€0, X, # —X,, having (X;* N X,7) U (X- N
X,*) 5= &, there exists X; € € such that X,* C (X;\Xp7) L (XN X )
and X;~ C (X\Xp) U (XX ).
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In this paper, the basic properties of oriented matroids are examined. A
Etopological representation theorem for oriented matroids is proven, utilizing
wﬁo notion of an “arrangement of pseudo-hemispheres.” The duality theorem
& of linear programming is extended to oriented matroids.

+

I. INTRODUCTION

. The study of matroids was begun by Whitney in [16], where one may see
fow a finite subset of a vector space yields, in a natural way, a matroid. The
hatroids embody a combinatorial presentation of familiar properties of the
inear dependence relations in such subsets of vector spaces.

. In a vector space over an ordered field one may wish to study the properties
f positive dependence relations (Davis, [3]). The natural analogue of the
Mmatroid in this setting is the “‘oriented matroid.” From a finite subset S of
fsuch a vector space comes an oriented matroid. From this, in turn, one may
derive the incidence structure associated with the cones generated by subsets
of S. Certain of these cones may be linear subspaces; indeed, underlying
f each oriented matroid will be an ordinary matroid structure (Theorem 2).
. The definition for oriented matroids used here is taken from unpublished
| notes of Jon Folkman, who died before completing them. Results from his
notes have been incorporated into this paper and enlarged upon in sections I1
and V.

In sections LI, {II, and VI we derive the basic properties of oriented
matroids. These properties are all well-known for the oriented matroids
arising from sets in vector spaces: for instance, for such oriented matroids
Theorem 22 is the duality theorem for lincar programming. (See Rockafellar

el iy v
HERE S 5

reviclo oo baon o
TGOS naNve oo o 4

[1]. He worked from a different definition, but 1t 15 the case that

* Much of this is taken from the doctoral dissertation of the second author: it was
completed at the University of Washington, where the author held a National Science
Foundation Graduate ellowship.
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between the simple d-arrangements of 2n pseudo-hemispheres, where d
dimension of the complex, and the simple (n — d)-arrangements of
Beeudo-hemispheres. (His terminology was slightly different.) Our duality
priented matroids may be viewed as an extension of this correspondence,
Bl as an extension of the similar correspondence given for arrangements
®riuine hyperplanes by McMullen in [9].
W¥Section V we develop a different characterization of the simple oriented
Rockafellar [12] felt that a broader theory of orientation ought td 0ids. This characterization is from Folkman’s notes.
which did not require that the underlying matroid be regular. Hel mzm presentation of the oriented matroids, basic properties of matroids
examples arising from real vector spaces of what one might mean b} e found to be of use, particularly in view of the underlying matroid
“orientation” of a matroid, and presented in this context a numbg _an:.o associated with an oriented matroid. Good discussions of matroids
interesting theorems, including the linear programming duality thes ; A_.,.cm found in Tutte [14], Klee [8], Crapo and Rota [2], and in the original
Bland’s presentation closely followed the ideas of Minty and Rock i m”o by Whitney [16]. Tutte [14] also describes the regular matroids.
He showed that his oriented matroids have several of the praperties give?
“realizable” oriented matroids by Rockafellar’s theorems. Here we
succeeded in showing that Rockafellar’s Theorem 7, the linear program
duality theorem, is also valid in the more general framework of ori
matroids. This is Theorem 22, below. Thus, analogues of all the theorcn
Rockafellar’s paper are seen to hold. :
Given a set of n points in a real vector space we can form the “G
transform” of the set to obtain a set of # points corresponding to thes8
another real vector space. (See Griinbaum [5].) These sets carry “di
oriented matroid structures. Bland’s definition in [1] is in terms of such
pairs, as is Minty’s definition for digraphoids in [10]. We discuss this du
in Chapter IlI, where the “hull functions” for oriented matroids wi
described and a class of hull functions forming a common generalizatio;
both the oriented and ordinary matroid hull functions will be examin
These are the hull functions of the *“‘gatroids.” 3
Section 1V contains, perhaps, our most interesting result. Here there is'
description of a means of representing oriented matroids in terms of “arra
ments of pseudohemispheres.” In the two-dimensional case these objects
the arrangements of pseudolines, a good discussion of which may be found§
Griinbaum [6]. We show that any arrangement of pseudo-hemisph
carries the structure of an oriented matroid (Theorem 16), and that from
oriented matroid there comes such an arrangement (Theorem 20). Thus #
establish a correspondence between the oriented matroids and the arrang$
ments of pseudo-hemispheres. 4
Halsey, in his doctoral dissertation [7], was interested in certain complex§
in the n-cube which could be obtained as the inverse image of the bounda
of the image of the cube under an orthogonal projection. 1n trying to amwod.w
these complexes combinatorially, he discovered a class of complexes whos§
topological duals may be identified with the *‘simple” arrangements off
pseudo-hemispheres. He found that there is a natural, bijective correspond

the oriented matroids he studied are the same as those described hef8
showed that those satisfying his definition also satisfy Folkman’s, m:.
we shall see that our oriented matroids have his properties.

Certain classes of oriented matroids had previously been studied.
[10] generalized the notion of a “directed graph” to that of a “‘digrapi®
Digraphoids are easily seen to correspond to (dual pairs of ) oriented
whose underlying matroids are “regular.”

11. CircuITS OF ORIENTED MATROIDS

BA\n involution on a set E is a function *: E — E such that (x*)* = x, for
Bch element x of E. If also x* 5 x, for each element x of E, then the involu-
is said to be fixed-point free. If * is an involution on E and S is a subset
E, then the set {x* | x € S} will be denoted by S*.

FA clutter of subsets of a set E is a collection € of subsets of £ such that if
N and B are in € with 4 C B, then 4 = B.

VAn oriented matroid is a triple (E, %, *), where E is a finite set, ¢ is a
Bllection of non-empty subsets of E, and * is a fixed-point free involution
._ E, such that:

(1) % is a clutter;
Q) IfSe®thenS*e% and SN S* =
(3) IfS, Te® xeSnT* and S 5 T* then there is a set C € € with

X ‘.OAMC T) ~ {x, x*}. We call the sets in € the circuits of the oriented
matroid (E, €, *). .

b Suppose that E is a finite set of non-zero vectors in a vector space Over an
Iordered field, and suppose £ = —E. Such a set is endowed with the structure
of an oriented matroid in the following way. For x in Elet x* = —x. Let
bbe the collection of subets C of E, minimal (with respect to set inclusion)
ssuch that:

3 (&) CnC= oo
k' (b) There exist positive real numbers o, (s € C) such that 3 e aes = U
That is, a subset C of E is in % if and only if it is the vertex set of a simplex
containing the origin in its relative interior but is not of the form {1, —u}.
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THEOREM 1. The triple (E, €, *) is an oriented matroid.

[] The first two conditions of the definition are obviously satisfied. In o&l
to verify the third, it is convenient to have the following notions. A x&nze
on E is a real-valued function p on E such that 3 .z p,x = 0. The relation 1
positive if p, is nonnegative for each x in E. Its support is the set {x € E'| p, # ow
A positive relation is minimal if its support is non-empty and properly,
contains the support of no other such positive relation. Obviously twg;
minimal positive relations have the same support if and only if they a_m.n
by a scalar multiple; and any non-zero positive relation may be written as
sum of minimal positive relations.

Now, suppose S and 7 are in %, xis in S 0 T*, and S #* T*. Since S and T
are in %, S and T are the supports of minimal positive relations « and B. <<o
may choose the relations « and B so that «, = f,. = | by taking appropriate ;
scalar multiples. Let p be the function on E with p, = a; + B if 5is neither §
x nor x*, and p, = 0 if s is x or x*. Then p is a positive relation, since: "

M Abv;mv = M AQm,wv + M Ammhv = M AQ.A,WV + M Amwhv =0.

SEE seS~{x} SET ~{x*} seE seE

S'is not contained in T*, so there is an element y of S ~ T*. Then p, = o, >0
since y is in the support of « but not of f, so p is non-zero. We may write: §

p=p1+tpe+ ot prs

where the p,’s are minimal positive relations. At least one of the p/’s, say py,
is positive on y. Then the support C of p, cannot be of the form {u, —u},
since —y cannot be in it. Therefore C is in %, and:

ye CC(SUT)~{x, x*

Hence (E, %, *) is an oriented matroid. [

Actually, the proof shows somewhat more than the definition requires;
namely:

(3) If Sand Tare in €, xeSNT*, and y €S ~ T*, then there is a
circuit C with:

veC L (SUT) ~{x, x* .

I'hic is true for all oriented matroids arising in the way aour:an above. We
" . hic t« Theorem 4

see that o ! | !
Oriented :E:o_af %,: may arise as in qrmonma ] 2:_ be called ‘.g::m?m
oriented matroids. We shall see that many propertics of the realizable
oriented matroids are shared by all oriented matroids.

ORIENTED MATROIDS 203

b It is well-known that any finite subset of a vector space is endowed with
ro structure of a matroid (Whitney [16]; Tutte [14]). If E is a finite set of
Bon-zero vectors in a vector space over an ordered field, with E = —E, and
HE, ¢, *) is the oriented matroid arising from this set, then it is possible to
fescribe the matroid associated with this set in terms of the oriented matroid
.&EQER. We show now that the analogous construction in any oriented
fmatroid yields a matroid.

Let ©® = (E, %, *) be an oriented matroid. For elements x of E, let

8% = {x, x*}. For subsets S of E let Sbe the set {X|xe S}, and let ¢ =
{C | Ce%}. The pair (E, %) will be called the underlying matroid of €. We
. will prove that it is actually a matroid; i.e., that:

(1) % is a clutter of non-empty subsets of E;

_«, and:

(2) If5, Te%, x85n T, and S % T, then there is a set C € 4 with

F CC(SuT)~(%.

§ - First, we need a lemma.

LEMMA. Suppose (E, €, *) is an oriented matroid. Suppose S and T are

.  circuits with S C T T*. Then either S = T or S = T*.

1 Suppose, on the contrary, that there is a circuit T for which we can find
acircuit SC Tu T* with § # T and S % T*. Let such a circuit S be chosen
with | S » T* | as small as possible. | S m 7* | == 0 since otherwise we would
have S C 7. Let x be an element of S N T*. Since S # T*, there is a circuit
C contained in (S U T) ~ {x, x*}. This circuit C can be neither 7 nor 7=
since it contains neither x nor x*. But:

CNT*C(SN T* ~{x},
so that:
iCNT* < SNT*

This cannot be the case, since ' SN T* was to be minimal, so no such
circuit 7 can exist, and the lemma is established. ™

) is an oriented matroid then the underlving matroid

THEOREM 2. If(E.%,

(E, ) is, indeed, a matroid.
o f1% s CHITIET O subsets ot F
ZOE suppose A. w € &. xe Ewith = 4N B and 4 - B. Circuits S and

7 of the oriented matroid may be chosen so that 4 -~ S, B = 7. v= 5, and
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x*e T. Then xeSn T* and, since S # T, S = T*. Therefore there is a
circuit C with:

CC(SUT) ~{x, x*}.

Then CeZ and CC(4 v B) ~{X}. [

Suppose, again, that (E, %, *) is an oriented matroid arising from a
subset E of a vector space over an ordered field. If 4 C Eand x € E, then x is
in the conical hull of A4 if and only if x is already in A4 or there is a circuit
C with:

(") x*eCCAU{x*.

For A C E, let h(A) be the union of the set 4 and {x € E | there is a circuit C
such that (*) holds). Then for realizable oriented matroids:

(1) A C h(A), for each subset 4 of E;
(2) A Ch(B)if ACB;

and
(3) h(h(A4)) = h(A).

Clearly the first two conditions also hold if A is defined similarly for an
oriented matroid that is not realizable. The third also holds, but is not so
immediate. That this is true is Theorem 5 below. First we need some other
results.

Lemma.  Suppose (E, €, *) is an oriented matroid. Suppose S and T are
circuits. pe TC{pt U S, and SNT % . Then there is a circuit C with
preCCi{p*tuSwithSCTuUC

] Let = be an element of SN T —= T ~{p}. Then there is a circuit C,
contained in (SU T*) ~{z. z*. C, N T* has fewer elements than T%,

since z* is not in C; .
Let C be a circuit chosen so that C n T* has as few elements as possible,

with:

(a) CCSuUTHuU{p:
by ¢~ S, C-~T.

Since (7, <atisties (atand (b1 € can have no more elements than C; | thercfore

Suppose there is an clement x other than p* contained in the set € N /™.
Then there 15 a circuit C, that 1s contained in the set (C U Tj ~x, 475 Then
C, is contained in the set S T* U {p. A*isin S and in T but not in Cg,
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so C, is neither S nor T. But Cy N T* is contained in (C N T*) ~ {x}, so
C, N T* has fewer elements than C n T* This cannot be the case, so
CNT*C{p*}ie., CCSU{p, p*}.

Suppose pe C. Then pe C N T and C # T, so there is circuit D with
DC(CUT* ~{p,p*.Then DCSuUS*soD=SorD=_5*

D =+ S, since otherwise SC C U T*; i.e., SC C. This cannot be the case
since C # S.

Suppose D = S*. Then S*C Cu T*. Then S*C T*. This cannot be
the case.

Therefore p ¢ C, so p*c CCS U {p*}.

Now, {p*} = C N T* and C  T*, so there is a circuit contained in
(CUT)~{p, p*CS. Since ¥ is a clutter, this circuit must equal S, and
SCTvC O

THEOREM 3. Let (E, %, *) be an oriented matroid, p< E, and {p} ¢ %.
Let €, = {Ce €| CCE~{p, p*}}. Let €, be the collection of all minimal
sets D contained in E ~ {p, p*} for which there is a set C€% with D =
C ~{p, p*}. Then both (E ~{p, p*}, €y, *) and (E ~{p, p*}, €,, *) are
oriented matroids.

[ It is obvious that (E ~{p, p*}, €,, *) is an oriented matroid, so we
verify only that (E ~ {p, p*}, €., *) is an oriented matroid.

The collection %, is a clutter of non-empty sets since its elements are the
minimal elements in another collection of non-empty sets.

If Se%,then S = C ~{p, p*} for some circuit Ce ¥, s0 S* = C* ~{p, p*},
and S* is also a minimal set of this form. Therefore S* €%, . Clearly
SNS*= 2.

Finally, suppose S and T are in €,, xe SN T* and S # T* Let § =
U~{p, p*tand T = V ~{p, p*}, where Uand Varein¥. Then x e U N V¥,
and U 5 V*. There is a circuit C in % contained in (U U V) ~ {x, x*}. Then
C ~ {p, p*} contains some element of %, , which is contained in (S T) ~
{p, p*}. as required. [

We will say that (£ ~{p, p*l, €, , *) arises from (£, %, *) be deletion of
{p, p*}, and that the oriented matroid (E ~{p, p*j, €, *) arises by
contraction of {p, p*}. 1f (E, €, *) arises as in Theorem 1, so that £ is in a
vector space over an ordered field, then the deletion of {p, p*} gives rise to
the oriented matroid determined by the set E ~ {p, p*} in the vector space,
while the contraction corresponds to the oriented matroid determined by the

P N S S & (o oK)
ai projection ol Lo~ 1p.p* «

Le 1l

"
fine through the points p and p~

THeorREM 4. If (E, 6, *) is an oriented matroid, S and T are circuits,
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xeSNT* andyeS ~ T*, then there is a circuit C with y € C C(SuT)~ _‘,

{x, x*}.

[J Suppose this is false. Pick an oriented matroid (E, €, *), so that E has

as few elements as possible, in which the theorem fails, for some choice of
S, T, x,and y. Let U be a circuit contained in (S U T) ~{x, x*}. There is an 4
element p of U with neither p nor p* in T, since otherwise UC T U T* 4

pisin S~ {x, x*}. p # y* since y*¢ SV T Since we have assumed the
theorem does not hold here, y cannot be in U, so p is not y.

Let (E,, %, *) be the contraction of (E, %, *) at {p, p*}. T contains
some element of &, , so there is an element V of ¥ with V ~{p, p*ret
and V ~{p, p*} C T. By the lemma, we may assume x* is in V. The set
S ~ {p} must itself be in %,. Then x isin S~ {p} and in (V ~{p, D%
y is in S ~ {p} but not in (V~{p, p™H*

Since E, has fewer elements than E, there must be an element W ~ {p, p*}
of #,, where W is in %, with y¢€ W ~ {p, p*}, and with W ~{p, p*}
contained in the set:

(S ~{ph) U (¥ ~{p, p)) ~ {x X"

We cannot have W C (S T) ~{x, x*},sopre W

Let (E,,%,,*) be the oriented matroid derived from (E, €, *) by
deletion of {x, x*}. Then U and W are contained in E,, and are therefore
elements of €,.pe U W*and y isin W ~ U*. Therefore thereis a circuit
R of €, (and thus in ¥) with ye RC(UV W) ~{p, p*}. But (UY W)~
{p, p*} is a subset of (S T) ~ {x, x*). 1t follows that R is a circuit satis-
fying the requirements of our theorem, contrary to the assumption that there
was no such circuit. ]

Let (E, €, *) be an oriented matroid. For each subset 4 of E let h(4) =
AuU{xekE] there is a circuit € with x* in C and with C contained in
AU

THEOREM 5. A(h(A)) = h(A), for each subset A of E.

7 Clearly A(A) C h(A(A)).
Suppose ¥ is not in h(A). We must show that y is not in A(2i(A)). Let Mbea
maximal set such that:
fa) A<M Z h(Ay:
and
(b) yisnot in A(M).

The set A satisfies {a) and (b). so there is such a maximal set.

ORIENTED MATROIDS 207

Suppose M # h(A4). Then there is an element x in (4) but not in M. Then
x is in A(A), but not in A4, so there is a circuit T with x¥e TC AU {x*}.

Note that x is in 4(A) and y is not in A(4), so y # X.

By the choice of M, y¢€ (M v {x}) ~ M. There is a circuit S with
y*eSCMuU{x,y*}. x€ S, since otherwise we would have y € A(M).
' Then xelSN T* and y* €S ~ T*. There is a circuit C with y* in C and
with C contained in (S U T) ~ {x, x*}, but this is contained in M U {y*}.
This cannot be the case, since y is not in h(M), so it must be the case that
M = h(A), and y is not in the set hM) = h(h(A). [

The function 4 will be called the hull function for the oriented matroid
(E,%, *). A characterization of such hull functions will be given in the next
section.

1II. HuLL FUNCTIONS

Let E be a finite set. Let P(E) denote the collection of all subsets of E. A
bumper function b for E is a function b: P(E) — P(E) which satisfies:

(1) A C b(A), for each subset 4 of E;
and:
(2) 1f A C B then b(4) C b(B).

The pair (E, b) is called a bumpered set.
The bumper function is called a hull function if it also satisfies:

(3) b(b(A)) = b(A), for each subset A of E.

The following theorem provides a characterization of hull functions that will
prove useful.

THEOREM 6.
only if:

If (E,b) is a bumpered set then b is a hull function if and

(3) Ifqeb(Av{p)andpe b(A). then g € b(A).

1 Suppose that (£, b) does not satisfy (3). Let M be a Bmxmam_m:vmﬁc%
E with b(b(M)) + b(M). Then b(b(M)) properly contains LM, and b(.
property conta M« e elements p and g, with pin A1) but not m M.
and ¢ in b(b(M)) but not in B(M). Then g is in b(bIM Jips)) b(M U pi
and p 1s in H(M), but g is ot in A(M). Therefore () is not satisfied.

Suppose that (K, b) satisfies (3). Suppose p = b(A) and g £ b(A U {pt). Then
g b(b(4)) —~ b(4). and (37} is satisfied. ,
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E, b, *) which can be obtained from (E, b, *) by switching the operations
lof deletion and contraction used to obtain the minor of (E, b, *). For
Bnstance, if (E ~{p, p*}, bo, *) 1 obtained from (E, b, *) by deleting p
nd contracting p*, then (E ~{p, P*}, by, *¥) can be obtained from (£, b, *)
by contracting p and deleting p*.

¥} If (E, b, *) is an involuted bumpered set then Theorem 6 insures that b is a
hull function if and only if (E, b, * fails to have certain involuted minors on
Rets E, of the form {p, p*, ¢, g*}. Since minors of (E, b, *) are duals of
fninors of (E, b, *), there is a similar condition on minors of (E, b, *) that

jinsures that b is a hull function. This is given by the following theorem.

Let (£, b) be a bumpered set and let * be an involution on E. Then 9
triple (E, b, *) is called an involuted bumpered set if:
(4) Forpek with p # p*,if pe HAv {p*}) thenpe b(A).

For instance, if (E, €, *)isan oriented matroid and A is its hull function then
it is obvious that (£, &, *) is an ivoluted bumpered set.

Tueorem 7. Let (E, b, *) be an involuted bumpered set. For any subset A
of E, let b(A) = AV {xeE]| x* is not in_the set b(E ~(AVY {x*N)}. §§,...
(E, b, *) is an involuted bumpered set, and b = b. .u..

I Tueorem 8. Let (E, b, *) be an involuted bumpered set. Then b is a hull
ction if and only if:

k. (5) Ifqeb(A4v{p)~ b(A), then p € b((4  {g*}) ~ {P})-
k[ Suppose b is a hull function. Suppose 4 C E with:

[] Condition (1) is clearly satisfied.
If ACBthen {xe E|x*¢ BE~ AV {x*})} is contained in

(xe E | x* ¢ (E ~(BY )

so the second condition is satisfied and (E, b) is a bumpered set. :
Suppose p* #p and p€ b4 U {p*). If peA then pe 6(A). Suppose § ;
p¢ A Since p€ b4V {p*), p* is not in B(E ~ (A {p*}) But then} ...Wua
peb(4)._Condition (4) is satisfied, and (E, b, *) is an involuted bumpered set. JE
That b = b is obvious when one notes that b is the bumper function such
that, if AV BU{p,p*} is a disjoint union, = E, p e b(A) if and only if §
preb®). O 1
The involuted bumpered set (£, b, *) is called the dual of (E, b, ¥). We
shall soon see that if (E, b, *) arises from an oriented matroid, then so does its }
dual; then both b and & will be hull functions.
If(E, b)isa bumpered set and p € E then the function b, such that bo(A4) = 1

: . cannot hold.
in — (i tion. f : .
b(4) ~ {p} for each set ACE {p} is also a bumper function The pair S Syppose b satisfies (5). We must show that & is a hull function. Suppose

. — N . X . : y ; . 3 E “

(E ,g.: b,) is the .m\m\:m:EQ minor of (E, b) obtained by deletion of p ] e 5(4 U {q}) and q € 5(4). We must show that p & 5A).

If b, is the function such that by(A4) = b4 Y {p}) ~ {p} for each subset ) )

4 of E ~{p), then the b ed set (£~ {p}, by) is the clementary minor S Suppose not. We may assume p*ed. Let B = E~(AU{p.q}). Then
of E ~ {pj, then the bumperec ¢ ~ S ) B since p < b(A), p* e b(BU{g)). Since p € b(4 U {g}) but not in AV {; C

of (E, b) obtained by contraction of p. : AU (g p*éb Si ECA) ~ « (o ok .
A minor of (E, b) is any pair (E, , by), where there is a set CC E~E, [ o(A)V hgs. pTE (B). Since ¢ € ?:1, Ao g* ¢ b((BY {p) ~iq")- This

. . ] t be th si holds.
With by(4) — BCU A) ~ C for cach subset 4 of F. I £ = EucuDis g e case, since (3) holds. T

@ qebAv{pT);

(b) g ¢ b(A).

e must show:
© peb((AuU{g*) ~{p).

wmcvvomm not. Let B = E~ (AU {p* g Since (c) does not hold,
p* € 5B N {p}), and therefore p* € b(B). From (b) it follows that ¢* €
KB {p*}). Therefore g* € b(B), since b is a hull function. But then (a)

a disjoint union, this minor is obtained from (E, b) by deletion of D and 4 An invoiuted bumpered set (E, /. ) will be called a gatroid (generalized
contraction of C. (E.b)is a minor of itself, and any other minor of (£, b) ,.v. § matroid) if both # and £ are hull functions: i.e.. if 4 is a hull function and
may be obtained as an elementary minor of some minor of (E. b). 2 E ") satisfies condition (5). In case the involution on E fixes each element
it (£ A *Vis an involuted humpered set and if (L, b,) is a minor with of £. these conditions reduce to the usual definition of a matroid in terms of
[, - EgT. then (Fy- by 1 also un n red mpered set. 1t p€ E 2 its hull function. condition (5) reducing to the exchange axiom. Such gatroids
there are four possibilities for cuch involuted minors on £ ~ip, p<i. We JI will sometimes be valled - Gutr metimes be cafled ore .
may delete p and p~, delete p and contract p~. delete p~ und contract p. OT S Gatroids in which no point is left fixed by the involution will be cal
contract both. Each involuted minor so obtained, being an involuted ariented. Condition (5) will be called the cxchange wxioni | gatroids

bumpered set, will have a dual: this dual will be a minor of the dual of J& If(E,%.7) is an oriented matroid and A is its hull function, then (£. /1. 7)
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is easily seen to satisfy the exchange axiom, so (£, &, *) is an orient®
gatroid. In such a gatroid we have, for any subset A of E, h(A*) = h(AR
Any gatroid for which this is true will be called symmetric. Soon we
see that the symmetric, oriented gatroids are precisely the ones that corf
from oriented matroids. The map that takes the oriented matroid (E, %,
to the symmetric, oriented gatroid (E, h, *), where h is the hull function
the oriented matroid, is a bijection. .

First, we give a decomposition theorem for the symmetric gatroids.
following lemma will be required.

(@) peh((BY B*) ~{gq}) ~h(BY B*) ~ {g, *),

(b) peh(BY B*) ~h(BY B*) ~1{q}).

Bn either case it follows from the exchange axiom and symmetry that
7, ¢} C h((B U B* U {p}) ~{g, g*}). By the lemma, {q, ¢*y Ch((BY B*) ~
¥g, ¢*}). This cannot be the case, since then pe h(B ~{gh) v (B~ {gh*).
Therefore B = B*C AN E,, and pe H(A N Ey). [

Let (E, h, *) be a symmetric oriented gatroid. Let € be the collection of
fminimal subsets C of E with the following properties:

LEMMA. Suppose (E, h, ™) Is a gatroid, ACE, p¢c hAV{g}), p # p*,]
: (1) C# gand CNCH = &,

and g = q*. Then p € h(A).
t 1

[] Suppose not. Then, by the exchange axiom, ¢ is in the set h((A Y {p*}) ~] fand
{g}). Then A(4 {p*)) contains g, so h(A v {p*}) contains h(A U {q}).
Therefore pe k(AW {p*}),s0 p€E h(A), contradicting the assumption. {1

() C*ChQC).

m«% is the set of circuits of (E, h, *). 1f h is the hull function for an oriented
Emﬁoa it is obvious that % is precisely the set of circuits of this oriented
. matroid. We will show below that if (E, h, *) and € are as we have it here
 then (E, €, *) will always be an oriented matroid. This is Theorem 11. Some
E other results will be useful.

Suppose that (£, by, *) and (E,, by, *) are involuted bumpered sets, 1
with E, and E, disjoint. For subsets A of E, where E = E; U E,, let:

b(A) == b(A O E) Y b4 N Ey).

LeMMA. Let (E, h, *) be a gatroid. Suppose p p*.q # q* peh(AIi{g)),
and p € (A U {g*}). Then p € h(A).

Then (E, b, *) is an involuted bumpered set, called the free join of the two
bumpered sets.

[ Suppose not. Then p € (A U {g*)) ~ h(A), so g is in h(A Y {p*}). But
 then A(4 U {p*}) contains hAU{g}), and peh(4V {p*}). But then
L AV {p*) contains A(4 U {g}),and p € h(4 U {p*}). This means p € h(A4). L

~

Tueorem 9. Let (E, h, *) be a symmetric gatroid. Then (E, h, ) is the
free join of a symmetric, ordinary gatroid and a symmetric, oriented gatroid.

1} Let E,={xekix + x*}. Let mmHﬁxmmﬂxHxJ. For ACE;
(i =1 or 2) let h(A) == h(A) " E;. Then (E, h;, *) is the minor obtained §
from (E, h, *) by deleting E ~ E, . Therefore, (E, h;, *¥) is a symmetric §
gatroid. It is oriented if i — 1 and it is ordinary if 7 = 2. We will show that
the gatroid (£, h, *) is the free join of these two gatroids.

Obviously £ = £, U E, . It is also clear that we have the inclusion:

LEMMA. Let (E, h, *) be a gatroid. Suppose p # p*, 4 # g%, and
b peh(4 VY {g, q*}). Then p € h(A Y {g)) or p € (A L {g™}).

(] This lemma is dual to the preceding one. In any nontrivial case, we
may choose a set B so that £ is the union of the pair-wise disjoint sets
A, B, and {p, p*, ¢, ¢*}. That p is in h(4 U {g, g*}) is, in the dual gatroid,
- simply that p is not in h(B). Therefore, p fails to be in at least one of the sets
L h(B Y {q}) and A(B U {g*}), by the lemma. This is clearlv equivalent to the

desired conclusion. 3

B(A) D h(A O EY O (4 O Ey),

for each subset 4 of E. It 1s necessary only to verify the reverse inclusion,
Suppose p € i), and poopT. It is immediate from the lemma that if 3
, .. ythen M is contained in £, . There-

, .
e a minimal subset of A4 with o

fore p € A N Ey). as required.
Now suppose p < A(A) with p - p* We must show that p is in AlA N EY).

LEMMA. Suppose p & h(S) ~ S Then ihere is asct
T 7L (7 3 ..

such thar T2 h

~

Vend T 0

/ 7 Let T, be a minimal subset of S with pa h(Ty). Let T 1, W {pT.
If ge T, then p € A(Ty) ~ W(Ty ~ ig}). 5o by the exchange drtom ¢ T

Therefore 7% C A(T).

Let B be a minimal subset of A with p in k(B B*). Suppose ¢ € B with
g - q7 Then pis in A(B U B*) but not in A((BY B*) ~ {q, ¢*}). Either:
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Clearly p* ¢ T,. Suppose T, contains elements u and u*. Then, by thd
preceding lemma, peh(T, ~{u}) or peh(T, ~{u*}), contradicting th
minimality of 7, . Therefore TN T* = . []

THEOREM 10. Let (E, h, *) be a symmetric, oriented gatroid. %:ﬁﬁam.,

i+

p € E and S is a minimal subset of E satisfying: ;

(@) peS~S*%
and

(b) p*eh(S).

Then S is a circuit of the gatroid.

[0 Suppose this is not correct. Pick a symmetric, oriented gatroid (£, A, *),1
S, and p, with E having as few elements as possible, so that the conditions, §
but not the conclusion, of the theorem are satisfied. Note that S N $* must }

be empty.

If ueS§S ~{p} then p* c KS) ~ h(S ~ {u}), by the minimality of S, so .,..
u* € A(S). Therefore S* C A(S). We must show that if T is a proper subset °

of S, with T 54 @, then T* is not contained in A(T). For this it will suffice
to show that, given any element ¢ of S ~ {p}, g* is not in &S ~ {p}), for p
cannot be in such a set T.

For A CE ~{gq, g*}, let:

ho(A4) = h(4 Y {q, ¢*}) ~{q, q*}.

Then (E ~{q, g*}, by, *) is the symmetric, oriented gatroid obtained by
contracting g and g*. E ~ {g, ¢*} has fewer elements than E, so the theorem
holds here.

Let R = S ~{g}. Then:

(a) pe R~R¥%;
and
(b) p*ehyR).

Suppose U is contained in R properly. Then p* ¢ (U U {q)}), if pe U,
since then U U {g} is contained in S properly, and must fail to satisfy one of
the conditions. Also, p* cannot be in A(U U {¢*}), since this is contained in
A(S ~{q}). Therefore, by a lemma, p* ¢ H(U U {q, g*}), so p* ¢ hy(U). It
follows that R is a B:::E_ mﬂ satisfying (a) and (b), so it is a minimal

non-empty set with R* 7
Suppose g7 € A(S ~{p}). Let 1T be a mimimal subset of S ~{p} with
g* e h(T). T is non-empty, since if ¢* were in A( <), then, by symmetry, ¢

éo:_a bein A( <), sop* would be in A(S ~{g}). Ifue Tthen u* e W({(T ~ {u}) U
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k {9)). By the preceding lemma T U {g} contains a non-empty subset ¥ such

Ethat V*Ch(V). If W=V ~{q}, W*Chy(W). This is contrary to the

;  minimality of R, since WC R ~ {p}. This cannot be the case. Therefore

g* ¢ h(S ~ {p}), and the theorem is established. [

This theorem has two important corollaries.

COROLLARY. Let S be a subset of E, and suppose, for each element p of

L S, p* € (S ~{p*)). Then S is the union of circuits.

[J For pe S let T be a minimal subset of S~ {p*} with p* e /(T) and
peT ~ T*. By the theorem, 7 is a circuit. Then for each element p of S

,, there is a circuit 7 with pe 7CS. [

COROLLARY. Let A be a subset of E with h(A) = A and A + E. Then A is

¥ the intersection of maximal such sets.

O This is dual to the preceding corollary. The set A4 satisfies the properties
h(4) = A and A # E if and only if, in the dual symmetric, oriented gatroid,
the set S = E ~ A4 is nonempty and has the property that for each p in S, p*
is included in the set A(S ~ {p*}). [

We are now in a position to establish that the triples (£, %, *) will indeed
be oriented matroids, for any symmetric, oriented gatroid (£, A, *).

THEOREM 11.  Let (E, h, *) be a symmetric, oriented gatroid. Let € be the
set of circuits of (E, h, *). Then (E, €, *) is an oriented matroid.

{J € is a clutter of non-empty subsets of E. Clearly, if C €% then C*e @
and CNC*= g
Suppose S and Tarein €, x€ SN T*, and S % T*. Let y be an element of
S~ T*. Then x € i(T ~ {x*}) and x* € A(S ~ {x}), so:
A(SVT)~{x, x*}) = h(SUT.
Therefore y* e A((SU T) ~ {x, x*}). If C is a minimal subset of (SuT)~

{x, x*} with y € C and y* € A(C) then, by Theorem 10, C is a circuit.
yeCCSUT)~{x, x*. [

The following theorem will complete our description of the correspondence
between the oriented matroids and the symmetric, oriented gatroids.

, O

PHEOREM o Lel (L, 1, T be u syininelric oriented gatroid with circuirs s .

Let g be the hull function for the oriented matroid (E, €, *). Then g h.

[ If A is a subset of E we must show that g(4) = h(4). Suppose that x is
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an element of g(4). If it is in A then, of course, it is in A(4). If it is not in Al
then there must be a circuit C with s* € CC 4 U {x*}. Then:

x € C* C h(C ~ {x*}) C h(A).

Suppose x € h(A) ~ A. Then there is a circuit S with x* e SC 4 U {x*}, E
by Theorem 10. Therefore, x € g(4). [ _

It follows from the results established that the correspondences we have
described are bijective. The mapping that gives, for an oriented matroid §
(E, €, *) with hull function A, the symmetric, oriented gatroid (E, h, *) is
the inverse of the mapping that gives, for a symmetric, oriented gatroid, the
oriented matroid with the same circuits.

By the dual of an oriented matroid (E, %, *), with hull function 4, we will
mean the oriented matroid (E, €, *), where % is the set of circuits of (E, &, *).

The following is a generalization of Minty’s “colored arc lemma.” It was
proven by Rockafellar in [12] for the realizable oriented matroids. Bland [1]
has already proven that it is true for oriented matroids, but we will find it
convenient to have it here in order to show that our oriented matroids are

in fact the same as those of Bland.

Py

THeoREM 13. Let (E, €, *) be an oriented matroid with dual (E, %, ™).
Suppose p € E, and that A and B are disjoint subsets of E ~{p, p*} with
AU BU {p, p*} = E. Then exactly one of the following holds:

(a) Thereis Ce® withpe CC AU {p};
(b) There is D € € with p*e DC BU {p*}.
[] Let 4 and % be the corresponding hull functions. The theorem follows

at once from the observation that it is equivalent to the statement that
p* e h(A) if and only if p is not in &(B). []

THroREM 14. Let (E, €, *) be an oriented matroid, with dual (E, %, *).
Let (E, %) and (E, €) be the underlying matroids. Suppose p € E, and A and B
are disjoint subsets of E ~{p} with AU BU {p} = E. Then exactly one
holds:

(@) Thereis Cc@ withpec CC AV {p};
(b) Thereis D e % with peDCBU{ph.

™ This follows

immediately from Theorem |3 by taking for A4 the set

o]
= RS I H s - i = PRI SRR Y *i
L X e Aitor Blhesetiv 2L v 31, ai 7 osUl

wly

It is

and (E, ) are dual.

an immediate consequence af this theorem that the matroids (E. %)
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« Bland [1] has given an axiomatization for dual pairs of oriented matroids.

b- Using our terminology this may be given in the following conditions, in

Py

f terms of the 4-tuple (E, %, €, *):

(a) % and € are collections of subsets of E such that if 4 and B are

£ in %(or, in ) and 4 C BU B*, then 4 = Bor A = B*;

(b) (E, %) and (E, &mv are dual matroids:
and
() If Ce% and De€ thenif CND +# o, C*ND # o.

He has shown that, given such a 4-tuple, (E, %, *) and (E, %, *) are (dual)
oriented matroids. We have seen already that if these are dual oriented
matroids, then the 4-tuple (E, €, €, *) satisfies (a) and (b). The following
theorem shows that it also satisfies (¢), completing the demonstration that

the two kinds of oriented matroids are the same.

THEOREM 15. Let (E, %, *) and (E, €, *) be dual oriented matroids.
Suppose Ce € and De€. Thenif CN D = &, C*ND # .

[J Suppose C* N D = . Let h be the hull function for the oriented
matroid (E, €, *). C*C E ~ D, so:

CCHC* CHE ~D) = E ~ D.

Therefore, CN D = 2. ]

IV. ARRANGEMENTS OF PSEUDO-HEMISPHERES

Let (£, €, *) be the oriented matroid arising from a subset £ of the real
vector space R4, as in Theorem 1. It is convenient here to view such realizable
oriented matroids in a different way.

Let S%-t be the unit sphere centered at the origin in R% For pe E let
o(p) = {xeS%1 | x-p =0}, so that o(p) is a closed hemisphere in S¢1.
The circuits C € ¥ may now be described as the minimal non-empty subsets C
of Ewith Cn C* = = and {J,cc o(p) = S*1.

By an arrangement of hemispheres we mean a collection £ of finitely many

closed hemispheres in S%* such that if «=§¢ then also —se€&. Any such
arrangement yields an oriented matroid (&, €, =) if we take s* = —s for
s &and if € is the collection of minimal subsets C of :

s e 4 S
and

() Uue s = 571
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Let (¢, €, *) be such an oriented matroid. Its hull function 4 is easy to§
describe. If s € ¢ then s € h(4) if and only if s contains (Vzeq X-

By considering minors of such oriented matroids, one gets a large class of §
oriented gatroids which are not symmetric. Let ¢ be an arrangement of 3
hemispheres in S%! and let R be a subset of S9-! which is the intersection of §
finitely many hemispheres of S*~. For AC ¢ let h(A) ={s€&|s contains 4
the set R N (Nies t)}- Then (€, A, *) is such a gatroid.

Many interesting results concerning arrangements of hemispheres may be 3
derived from the results of Shannon in [13], where arrangements of hyper- 3

planes in projective space are studied.

It is possible to derive oriented matroids from objects topologically
similar to arrangements of hemispheres. In fact, one can represent any
oriented matroid as that arising from some such “arrangement of pseudo-
hemispheres.”

A topological cell complex (Whitehead [15)]) is a triple (X, P, @), where P is
a finite partially ordered set with a least element, denoted by O, X is a Haus-
dorff topological space, and ¢ is a function from P to subsets of X, such that:

() ¢0)= a;

(2) If cand d are in P with ¢ # d then @(c) N ¢(d) = @;

(3) If cisin P then Ua<e @(d) is homeomorphic to a closed ball whose
interior is g(c) and whose boundary is Uac. @(d)-

Note that if (X, P, ¢) and (Y, Q, 7) are topological cell complexes with
P = Q, then X and Y may be identified by a homeomorphism in such a way
that the complexes are also identified.

A closed subcomplex of (X, P, @) is a triple (Y, O,
subset of X, O is a subset of P such that ifae Qand be P with b
b e Q, 7 is the restriction of ¢ to 0, and Y = Uqeo 7(a).

An arrangement of pseudo-hemispheres is a topological cell complex
(X, P, @), where X is a sphere provided with an Involutive homeomorphism *
without fixed-points. together with a collection ¢ of closed sub-complexes
each homeomorphic to a ball of the same dimension as X, such that:

N ¢ and s N s~ is the sphere bounding each;

(2) 1T ACE with 4 == A* then (Neea 5 1S EMpty OF & sphere; if also
then either 7 0 (Naer s O 100 (Ve s) 1s a closed ball;

), where Y is a closed
< a, then

[fsc & then s*c
roé

F O niCTSCCU

We will show that any such arrangement £ determines an oriented matrowd
(£.%, ), where ¢ is the coiiection of mimumal subsets €, called ciremits, of &

such that:
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(8 C+# o,and CNC*

- and

(®) Usees = X

This will be Theorem 16. First, we need three lemmas.

LEMMA. Let & be an arrangement of pseudo-hemispheres. Suppose A Cé¢.
Then the set V = X ~ (e §) is connected, or empry.

[] Let A = {s,, Sz »..., Snj- We proceed by induction on n, noting that
for n = 1 the result holds, since then V is homeomorphic to R Suppose
n > 1, and that the result is valid for sets of smaller cardinality. In particular,
V=X~ Cwu:m s; is connected; and, since & = {s, N sy Ns|s€E & is an
arrangement of pseudo-hemispheres in the sphere s, N sE, W=(snNs*~

ACH s;) is connected. Let d be the dimension of X. For each element ¢ of V"’

b choose an open neighborhood U(r) with +e U(z) C V', U(t) homeomorphic

to R4, and such that: (@) U@Q)C V' ~s, if t¢s,; (b) UOCV ~shif
t¢s*; and (c) U(t)Ns, and U(r) 0 sk both homeomorphic to closed
halfspaces in R if £ € 5, N 5. Suppose p and g are in V. Then p and ¢ are
in ¥, and since V' is connected, there are elements 1, of VI (0 <i<<m)
with p € U(t,), q € U(t,,), and u(t,_,) N U(t;) # @ for 1 < i < m. Since W is
connected we may assume that no ¢, is in X ~ s¥, and that if ¢, and r,., are
in 5, N s¥ then U(t) N Ut Ns, NsF # @. Then (UQtiy) ~s5,) O
(U(t;) ~ s,) is nonempty, for 1 < i < m. Since these subsets Uty ~ s, of V
are connected, p and g are in the same component of ¥, and ¥ is connected. []

(The set ¥ above can be shown to be homeomorphic to R¢; however,
we don’t use this here.)

Let & be an arrangement with circuits %. Let the arrangement & =
{snpnp*|seé~{p, p*}} have circuits €".

LEMMA. Suppose Ce %', UCE, and C={snpp isel] Further-
more, suppose that if s and t are in U then s ™ p O p* and 1 O p O p* are the
same sets if and only if s = t. Then U, U {p}, or U {p™iisinG.

ﬂ, mE.oo Ce’, (pNp*) ~(Uswrs) = o.and Uis a minimal set for
.2_:0: this holds. If X ~ ({J..rr 5) . then U« %, Otherwise ¥ ~ (U, 5)
is in one of the connected components of Y ~ (p N p*). so that one of

CUuf{prand U {p*isin.
. o Do and no D Then if:
Comismpnpt se D~ ipi.
Cisint  unless, ¢ — 2and C — C*.



218 FOLKMAN AND LAWRENCE

1 Let U = D ~{p). Since D ¥, we have:

Amv i H\W\r\zﬁcmmthvmﬁ.
Since this is an open set, it is contained in the interior of p; l.e., it misses
p N p*. Then:

b (p Dﬁ*v ZC«mQAhDﬁ Np*) = o.
If V is a proper subset of U then it is not true that X ~ (User 5) C p, since
D e%. This open, connected set meets both p and p*, and so must E.nﬂ
p O p*. Therefore U is a minimal set for which (b) holds, so the conclusion
follows. [

THEOREM 16. (€, €, *) is an oriented matroid.

(] We verify only the third condition of the definition, the others being
obvious. We preceed by induction on the dimension of X.

Suppose S and T are in €, x e (S N T%), and S = T*. .

First, suppose S M T* contains nothing other than x. Then, if U =
(S U T)~{x, x*}, we have:

X~)s=X~ ®lnlx~ U ®
mfmpt A mmm?& v A teT~{x*) v
CX ~ ) A (X ~{a)) = 2.
Therefore, since U N U* = ¢, U contains some element of ¥, as required.
Now suppose there is in SN 7* an element p  x. Let (¢, €', *) be the
oriented matroid corresponding to the arrangement £ = {s N p O pr¥lse

&~ {p, p*}}. Let:
Se={snpnp*lseS~{pj

and:
Ty={tnpnp*lteT ~{p"}

Let x, — x O p 0 p*. Either, say, | S, == 2, 0r S, and T, are in the collection
%', In the first case, there is an element y of & such that S = {x, », P}, 80 wwﬂﬁ

i ; / )
¥, is the set 0 p O p*. In this case, letting W be the set (T ~{x* p ) Jirs

we see that:

(p ™ p™Y ~ {) ¢ - fa NPTy~ ﬂ u (5) =

L4 ~

sel~{p*}

and Mo o minimal set for which this 1 true. Then ine set by =7 s 00 g
w* e - Woisin 77 Then. by the lemma. W. WU {pt.or WU ip~iisin 6.
] ; )

and this is the required circuit. Suppose the other case holds.
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If Sy = T§ then there are elements u of S ~ {x} and v of T ~ {x*}
with u # v* and u " p N p* = v* N p N p* Then either {u, v, p} € €
or{u, v, p*} € %.

If S, 5= T§ then there is C in € with:

CC(So U Tp) ~{xo, xo*}.
By the lemma there is D€ € with DC(SU T) ~{x, x*}. [

Suppose £ is actually an arrangement of genuine hemispheres of S¢. ¢ is
proper if Nye s = @. In this case £ determines a subdivision of the sphere,
a topological cell complex (and may also be viewed as an arrangement of
pseudohemispheres). If 4 is the hull function of the corresponding oriented
matroid, then the sets 4 C ¢ with h(4) = A correspond to the regions of the
sphere that may be represented as the intersection of the hemispheres that
contain them. The maximal such proper subsets of ¢ correspond to minimal
such regions—single points which may be represented as the intersection of
hemispheres in the arrangement. These points are called the vertices of the
arrangement. (See Shannon [13].)

If A is such a maximal, proper subset of & with #(4) = A4 we have seen
that £ ~ A4 is a circuit of the dual oriented matroid. Thus vertices of the
arrangement correspond to circuits of the dual oriented matroid. Similarly,
cells of the complex determined by the arrangement correspond to sets C
contained in ¢ which may be represented as a union of circuits of the dual
oriented matroid and such that Cn C* = &.

Let ¢ = (E, €, *) be an oriented matroid and let ¢ be the collection of
circuits of the dual oriented matroid. We call elements of € points of €.
If S is a union of points of and SN S* = ¢, then S is called a cell of C.

Let P be the partially ordered set of cells of ¢ ordered by inclusion. (P
includes the empty set.) We will show that there is a topological cell complex
(X, P, ¢), where X is a sphere. First, however, we need to develop some other
results.

Let 4 be a subset of £. Let #(A4), the rank of A, be the maximum number of
elements of a subset of R that is independent in the underlying matroid. The
rank of the oriented matroid is r(£); i.e., it is the rank of the underlying
matroid.

THEOREM 17, Let (= (E, %. %) be an oriented matroid of rank 2. Let

G5, and T be points of € avith U7 S T Then S ™ T is « subser of L

lw:nvomn\\,w.w?,_:.:,,w‘\.ﬁjnﬁ.\.c,\ru..,,ch«vT.«.(r,m:,JuE,ﬁ
pose S = 7 Then there is a point C contained in (S 7"y~ in p=' p7os

notinSw T soitisnotin U, If pisnotin Uthen pisnotin Cu U. contra-
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L TuEOREM 19. Suppose AU A* U {p,p*}=E, p¢ AU A*, andh(A Y

dicting the assumption that the underlying matroid has rank 2. H:mnmmo:w
. p, p*) C A U {p, p*}. Then one holds:

pel. [

For an oriented matroid @, let G(¢) denote the graph whose vertices aré
the points of @, with U and V adjacent provided U is neither V' nor V* and{
U U V contains no points of the oriented matroid other than U and V. Let]
G (€) denote the subgraph of G(€) spanned by vertices which contain p.

@) hA) =4V {pp*;

(b) (AU {p}) =AU {p}and (A {p*}) = AL {p™}.

[ Suppose A is not closed; i.e., that A # h(A). Then p or p* is in A(A).
We may assume that p € h(4). Suppose M is a minimal set with M C A4
- and p € A(M). If M is empty then p* is also in h(M), since h( ) = h(2)*.
Suppose g€ M. Then p is in A(M), but not in-h(M ~{q}), so:

THEOREM 18. Let O = (E, €, *) and let p be in E. Then if the rank o\@.
is at least 2, G(O) and G (O) are connected graphs. k

T1 We proceed by induction on the rank.

If the rank of ¢ is 2 and U and V are points of @, we must show there is a 1
path in G(€) from U to V. We may assume that U = Vand U # V*

Suppose that U is not adjacent to V. Then thereisa point SwithSC U U ¥,
other than U and V. By Theorem 17, S contains U N V. Therefore, since
S cannot contain ¥, U U S is properly contained in U U V.

Pick S, so that U v S, has as few elements as possible, with S; C U U V.
Then, according to the preceding paragraph, there can be no other point
contained in S; U U, so U is adjacent to S; . If S; and ¥ are not adjacent,
pick S, , a subset of S; U V, similarly. Proceeding in this way, we get a chain
U, S, S,,..., that must terminate in a point adjacent to V, since at each
stage | S, U V| decreases. This gives a path from U to V in G(0).

If, in the above, U and V are vertices of G (@), so that p isin U N V, then
all the sets S, will also contain p. Therefore G ,(€) is also connected.

Now suppose ¢ has rank greater than 2, and that the theorem has been
verified for oriented matroids of smaller rank.

Suppose U and V are points. Again we may assume that U # V' and
U = V* If U and ¥ both miss some element § of E, then U and V are
connected by a path in G(¢) because they are points of the oriented matroid
derived from ¢ by contracting at s and s*.

Otherwise, we may find elements §and 7 of U ~ Vand ¥ ~ U, respectively,
and a point S with SC E ~ {5, f!, since the rank of ¢ is bigger than 2. Then
U and S are connected by a path since they both miss {r, *}, and S and V' are
connected by a path since they miss {s, s*}, and S and }" are connected by a

g* e (M U {p*) Ch(AV {p*H C AV {p, p*}

Therefore, g*€ A, M*C A, and p* e h(M*)C h(A). Therefore, h(A) =

A {p,p*. . .
We see that either A4 is closed or (a) holds. If A is closed then, since

hA)C AU {p, p*}, both 4 U {p} and A U {p*} are closed. [

COROLLARY. Suppose D is a cell of € not containing p or p*. Then if
Du{p)isacell of O, DU {p*} is also a cell of C.

(] This is dual to the above theorem. Let A be the set £ ~ (Duip, p*}.
The situation in the dual oriented matroid is that of the above theorem. []

Before we begin the construction of the complex (X, P, @) we need still

another notion.
Let K be a cell of & = (E, €, *). Let d(K) = d, where d - 1 is the length of

the longest chain:
7z = K,CK,C-CKy, =K,

where K, is a cell, and K; = K., , for 0 <</ =Z d. If d(K) = d, then K will be
called a d-cell. The following lemma relates the function ¢ with the rank
function r of the underlying matroid. ,

path since they miss {s, s*}. Therefore G(¢) is connected.
4 i GL0). agal ume ] = F_
__Now suppose U and V' are vertices of G,(C). We may again assum Lemvia. Let K be a cell. Then d(K) — HE) - HE ~K) — 1.
UuV=E. Pick seU ~ ¥ and pick i in V7~ U. Choose S contained in
E ~ {5 1. 1f pe S. we may take S to that p £ S. Then there will be paths from T (Clearly d( =) — —1, as required. _ B
- _ . . ) o . P ~ \ [N " A
G to Sand from S to Vin G (). as required. If p ¢ 5, then let ¢ be an element It C and D are cells with C properly contained tn ), then e ~eis I3 ¢
I L N Pov=i0 a8 sel 0T o there 5o opoint T and T o~ D are elosed in the anderiving matr and the first property
with pe TC(U U S) ~ (). We may choose T so that pe 7. There is a path | contains the second. B , .
from { to [, since they both muss {7, 7}, and there 15 a path from 7 to }, Suppose AE ~ C) . #E~ D)y . 2 (10 cell of the oriented
Lk

since they both miss {r, ¢*!. Therefore G () is connected. matroid obtained by deleting the set Cw C*. Therefore. D ~ C contains
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a point P of this oriented matroid. Then if K=CuU P, CCKC D, and
HE ~K) = r(E ~ C) — 1, so that K is not the same as C or D.

We will show that K is a cell. Since P is a point of the oriented matroid
obtained by deleting C U C*, P may be written in the form P = S ~
(C v C*), where S is a point of 0. Pick S so that § N C* has a few elements
as possible. Suppose x is an element of S N C*. C, being a cell, is a union of
points. One of these, say 7, contains x*. Let y be an element of P. Then
xeSNT*and ye S~ T* There is a circuit U of the dual oriented matroid
with ye UC(SU T) ~{x, x*}. Then ye U~ (CU CHCP, so U~
(CUC*) = P. But UN C* is a subset of (SN C*) ~{x}, contrary to the
minimality of S N C*. Therefore, S N C* must be empty, and K =SuU C
is a cell of @.

From this it follows that if we have the maximal chain of cells:

%] “\Aoﬂ\ﬁﬁ.:ﬂxpi = K,

then HE ~K,) = r(E ~K,,;)+ 1, for 0<i<d Therefore, d(K) =
rE)—rHE~K)—1 [

In an oriented matroid arising from an arrangement of pseudo-hemispheres,
d(K) is the dimension of the cell of the complex corresponding to the cell X
of the oriented matroid.

Let € be the set of points of the oriented matroid ¢ = (£, €, *). Suppose
p € E, and that deletion of { p, p*} yields an oriented matroid ¢, whose rank
r is the same as that of €. Let @, be the oriented matroid obtained by contrac-
tion of {p, p*}.

Note that if €, and €, are the points of @, and ¢, , then %, is the collection
of minimal sets C contained in the set {D ~{p,p*) | De¥?}, and ¢, =
{Deb | DCE~{p, p*.

Let P be the partially ordered set whose elements are cells of €. Let P, and
P, be the corresponding partially ordered sets for ¢; and , . Then:

Py =1{K~{p, p* | Kepi,
and:

P, ~1KeP KCE~pp*l

Suppose that there are topological cell complexes (X. P, , ¢;)and (Y, P, . ),
-- 1, and ¥ is a sphere of dimension

2o~

where X is a sphere of dimension d - r
1. We will show that there is a cell complex (X, P, ¢},

7
o -

By the corollary to Theorem 19, cells of ¢ are of four types:

() Cells U of ¢ with pe D (or, p~ e D), but for which (U ~ P
105 (or, (D~ {p*}) U {p})is not a cell;
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(2) Cells D of € containing neither p nor p*, for which neither
D v {p} nor DU {p*} are cells;

(3) Cells D of € containing neither p nor p*, for which both D U {p}
and D U {p*} are cells;

and

(4) Cells D of @ for which there is a cell D’ of type (3) with D = D’ U
{p}or D=D"u {p*.

We define ¢ on each type of cell in turn.

If D is of type (1) then Dy = D ~ {p} (or, Dy = D ~ {p*}isacell of O .
We define (D) = ¢,(D,).

If D is of type (2), then D is itself a cell of @, . We let (D) = (D).

If Dis of type (2) and if Cis a cell of @ with C C D, then C'is also of type (2).
Therefore ¢(C) = ¢,(C) is contained in the boundary of @(D) = (D),
since (X, P, , ¢,) is a topological cell complex.

If D is of type (1) and the cell C is contained in D then C is of type (1) or
(2), and similar reasoning shows that ®(C) is contained in the boundary of
@(D).

We define ¢(D) for k-cells of type (3) by induction on k. The empty set is of
type (2), so we begin by defining @(D) for O-cells—points—of type (3) (if
there are any). If D is a O-cell of type (3) then D is a 1-cell of @, , by the lemma.
We define ¢(D) to be any element of the 1-ball ®:1(D). Note that ¢,(D) ~ ¢(D)
has two connected components, each a 1-ball.

Assuming we have completed the definition of @ on m-cells of type (3)
with m <k, we proceed as follows. Let D be a k-cell of type (3). Then Disa
(k + 1)-cell of O, . If D, is any cell of ¢ contained properly in D then @(D,)
has already been defined, and lies in the boundary of ¢,(D). Furthermore, D
is a k-cell of ¢, , and any cell D, of ¢ properly contained in it is a cell of €, .
If Q is the partially ordered set consisting of cells D, of @ properly contained
in D, then Q is a subset of P,, and there is a subcomplex (Z, Q, 7) of the
complex (Y, Py, @,), where Z is the boundary of ¢,(D), a (k — 1)-sphere.
Therefore, the union Z’ of the sets p(Dy), for Dye Q,is a (kK - D)-sphere. It
lies in the boundary of the (k < 1)-ball ¢,(D).

To show that Z"is the boundary of a ball contained in ¢, (D). we may use a
result of Newman [I18] on “star spheres.” See also Brown [l7]. Indeed.
(Z, ©, 7) is a star sphere; that is, if D, is in Q then the partially ordered set
Q' of cells in Q containing D, is the partially ordered set of a complex whose
ed set @
3

o, 01 the

underlying space is a sphere. To see this, note that ¥
is isomorphic to that of cells properly contained m the celi D ~ 7
oriented matroid determined from ¢ by deleting D, U DF. (The isomorphism
identities the cell C of ¢' with the cell C ~ D, .) It follows from Newman's
Theorem 3 that there is a k-ball in ¢ (D) whose boundary is Z' and which



224 FOLKMAN AND LAWRENCE

cuts @,(D) into two connected components, each a (k + 1)-ball. (Newman’s
result is stated for simplicial complexes. However, it holds for our complexes
as well, as can be seen by considering barycentric subdivision.) Let (D) be
this k-ball in ¢,(D).

Having defined ¢ on cells of types (1), (2), and (3), we note that the union
of sets of the form @(U), where U is of type (2) or (3), is a (d — 1)-sphere,
since the sets of this form comprise the partially ordered set P; .

This (d — 1)-sphere cuts X into two components. By Theorem 18, the cells
V of type (1) with p € V are in one of the components, and those with p*e V
are in the other. We refer to that component containing cells V with pe V
as the p-component, and to the other as the p*-component.

Let D be a cell of type (4). Let D, be the corresponding cell of type (3). The
cell D, is also a cell of @, , and, as we have seen, @1(Dy) ~ @(Dy) is the union
of two connected components. One of them is a ball B in the p-component.
The other is a ball B* in the p*-component. If p € D we define (D) to be B,
and, otherwise, (D) — B*. Thus, for any cell D with pe D, (D) is in the
p-component.

We must show that the boundary of @(D) is the union of the sets of the
form ¢(C), where C is a cell of @ and C is properly contained in D. We may
suppose that pe D. Any point x of the boundary of ¢(D) is contained in
@(Dy) or is in the boundary of ¢,(Dy). If it is in the boundary of g,(D,), then
it is in a set of the form ¢;(C,), where C, is a cell of 0y .

C, must be of one of the following types:

(2) C,u{p} (or Cy U {p*})is a cell of type (D;

(b) C,is a cell of @ of type (2);

(c) C,is a cell of @ of type (3), and C, U {p} and C, U {p*} are cells of
¢ of type (4).

If (a) holds, then it cannot be the case that C,, U { p*} is the cell of €, for then
x e @(Cy) = @(Cy U {p*}); but x is not in the p*-component. Therefore,
C,U{ptisacell of ¢; Cyu{p; CD, and x¢€ @1(Cy) == @(Cy Y {p}).

If (b) holds then x € @,(C,) = ¢(Cy), and C, C D.

If (¢) holds then:

@,_AA\J:V — Q\AQ..V o QVAﬁJ: o .,Nwﬂv U @Amc U M\u*vv

not in the p*-component. x is In one of ¢(C,) and
N o ;1 are hoth subcete of Do we have the desired

i .
P U diidd Loy /oy 7 dive vt

conclusion.

it is clear that o(C) N (D) f ¢+ D. and that the union of sets of
the form ¢(C), for Cin P.is the same as that of those sets ot the form ¢,(C),
for Cin P, :ie.1tis X,
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Therefore (X, P, ¢) is a topological cell complex.
With this construction in mind, the remainder of the proof of the following
theorem will be reasonably simple.

THEOREM 20. (1) Let O = (E, €, *) be an oriented matroid. Let P be
the set of cells of O, ordered by inclusion. Then there is a topological cell
complex (X, P, @); X is a sphere whose dimension is r — 1, where r is the rank
of the oriented matroid.

(2) Let * be an involution of X that takes the set p(D) to the set p(D*),
Sfor each cell D in P. If q is an element of E let P, be the set of cells of O not
containing q. Let o (q) be the union of the sets ¢(K), where K is in P,. Let:

¢ ={olg)lqe E and {q}¢ %}

Then £ is an arrangement of pseudo-hemispheres.

(3) Let D be the collection of minimal subsets C of § with C N C* = @
and e s = X. Then, if U contains more than one element, U is in € if
and only if either:

(@) {olq)| ge U} isin 2, and o(u) # o(v) if u and v are distinct elements
of U;

or:
(b) U = {u, v}, where u 5 v*, but o(u) = a(v)*.

[ (1) The first part of this theorem may be proven by induction on the
cardinality of E, for oriented matroids of fixed rank r. The smallest such
oriented matroid is the one for which | £| = 2r and ¥ = @. In this case
each subset K of E with K N K* = o is a cell. The required complex may be
derived in an obvious manner from the boundary of the dual of the r-cube.
For any larger oriented matroid of rank r, there is an element p of £ such that
the oriented matroid obtained by deletion of p and p* has the same rank, and
the construction above may be used to derive the required complex from
smaller ones.

(2) Clearly the required homeomorphism * may be found. It will be
fixed-point free. since if D is a cell. ¢(D) and ¢(D*) have cmpty intersection.

P, N P, consists precisely of the cells of ¢ that are also cells of the oriented
matroid obtained by contraction of {g, ¢*!. If {g! is not a circuit. then the
closed subcomplex determined by this subset of P 1s, by part (1), a sphere of
dimension ¢ 2 oamee i this _
This sphere cuts the bigger sphere X into two connected components. One of

esponding te

ve rank of this oriented matroid s 7 i

SIonN case !

these contains, by Theorem 19, the cells of the complex o
elements of P, ~ P,., and the other must contain those corresponding to the
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elements of P,. ~ P,. Therefore, those corresponding to elements of P,

form a closed ball. .
If Sis a subset of & with S = S*, then there is a set SoC E with S =

{0(q) | g € So}, and with Sy = S5 Nges, o(9) consists precisely of the :5.85
of sets of the form @(K), where X is a cell missing all of S ; i.e., where Kis a
cell of the oriented matroid obtained from ¢ by contracting S, . Therefore,
Mees. o(q) is a sphere of dimension ry — 1, where r, is the rank of this
contraction.

It follows that & is an arrangement of pseudo-hemispheres.

(3) Suppose C is a circuit of ¢. We must show that ,ec o{g) = X.
That is, if K is a cell of ¢, we must show that ¢(K) is a subset of o(g), for
some g in C. To do this we will show that Ke P, for some ¢ in C; i.e., that C
is not contained in K.

If 4 is the hull function for ¢, then since K is a cell, (E ~ K*) = E ~ K*.
If C C K, then CC E ~ K*. Then:

C*Ch(C)CE~ K*.

By symmetry, C C £ ~ K. Then C, being contained in K and in E ~ K, is
empty. This cannot be the case, so C is not contained in K. .
Now suppose V is a subset of E with VN V* = &, and that V contains

no circuit. Let F be a maximal set with:

(a) VCUFE;

by FNF*= ¢,
and

(¢) F contains no circuit.

We will show that Fis a cell. o ,
Suppose p € E and neither p nor p* is in F. Then, by the maximality of £,

there must be circuits .S and 7 with:
peSCFU{p;,

and:

pre TCFUIpTL

J= there is a circult contained in the set (5w 1)~
R i

qich cive San

fcd in 1

must be the same. Then S = {ploand T {p*l. F
of £ except those elements p for which {pj 1s a circuit. ,

If g = h(F) ~ F then there is a cireuit contained in F U {g™}; therefore ¢

F* contains all elements
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is not in F, and {¢q} is in %. Therefore, A(F) is the union of F and the elements
of E which form singleton circuits. That is, /{(F) = E ~F*. It follows that
F*is a cell, so Fis a cell.

V CF, so, since it fails to contain @(F), User o(t) 7 X.

Therefore, if ¥V N V* = ¢, then V contains a circuit if and only if
{Uwer o{t) = X. The required conclusion is immediate from this. []

COROLLARY. There is a natural one-to-one correspondence between the
arrangements of pseudo-hemispheres and the oriented matroids in which each
circuit has at least three elements.

] Forsuch an oriented matroid, (b) of part (3) of the theorem cannot hold,
and U is in € precisely when {o(g) | ¢ € U} is in &. Therefore, no two such

—

oriented matroids can yield the same arrangement. |

This correspondence can be useful in visualizing properties of oriented
matroids, particularly when the rank is small. If the rank is 3, the corre-
sponding arrangements are in the 2-sphere, and they determine “arrangements
of pseudolines™ in the projective plane. A good discussion of these has been
written by Griilnbaum [6].

There are ‘“‘non-stretchable” arrangements of pseudolines. These corre-
spond to oriented matroids of rank 3 which are not realizable. It is easy to
find pseudolines in the plane which fail to satisfy, say, the Pappus configura-
tion, whereas it is impossible to find genuine lines for which the Pappus
configuration fails. The oriented matroid to which such an arrangement of
pseudotlines corresponds is not realizable.

One might notice that, in this example, the underlying matroid is not
realizable. Then, one might conjecture that, given an oriented matroid for
which the underlying matroid is realizable, the oriented matroid itself will be
realizable. This is not true. A simple oriented matroid of rank r is one such
that any set of cardinality r in the underlying matroid is a basis. A simple
oriented matroid of rank 3 corresponds to an arrangement of pseudolines
of which any three have empty interesection. Ringel [11} has exhibited such
an arrangement which is not realizable. Of course, the underlying matroid of
the oriented matroid corresponding to this arrangement is realizable.

Folkman, without the aid of the correspondence we have developed here,
discovered another example of a simple oriented matroid which is not
realizable.

CLWCCTT arrangemeaiits i

2n pseado-hemispheres on the (¢ 1-sphere and ar
pseudo-hemispheres on the (n - r - 1)-sphere. This may be viewed as

neements of 27 other
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an extension of a similar correspondence described by McMullen in [9] for
arrangements of genuine hyperplanes. (See, also, Shannon [13])

This correspondence is also an extension of that intended for ‘‘simple
arrangements of pseudohyperplanes” by Halsey in [7]. One may obtain
such an arrangement from an arrangement of pseudo-hemispheres by taking
for the “pseudo-hyperplanes™ the sets of the form p N p*, where p is a
pseudo-hemisphere. Topologically, these pseudohyperplanes are, then,
spheres.

We are grateful to J. Edmonds and A. Mandel for a criticism which
resulted in an improvement of the presentation of the construction which

precedes Theorem 20.

V. SiMpLE ORIENTED MATROIDS

Recall that an oriented matroid (E, €, *) is simple of rank rif | E| =7
and the underlying matroid (E, €) has the property that any subset 4 of Eis
independent if an only if | A4 | < r. Obviously this will be the case if and
only if each circuit C e % has cardinality r -+ 1, and each set BC E with
B — B*and | B| = 2(r -+ 1) contains a circuit.

Our object here is to give an interesting alternative characterization of
these simple oriented matroids.

Let 4 be the hull function for the simple oriented matroid (E, €, . If

Ce®, h(C)= hC)*, so h(C) is a closed set in the underlying matroid.

Since | A(C)| > r, h(C) = E. 1t follows that A(C) = E:ie., if p ¢ C then there
is a circuit D with p*e D C C U {p*}.

We have seen that if a triple (E, €, *} is a simple oriented matroid of
rank r, it satisfies:

@EWM‘.:jm,\végqﬁ
(b) Ifde% then 4 b and AN A" = ]
(¢) If Aand Barein & .m:a AC BuU B* then 4 = Bor A = B*.
(d) 1fd=%then A — r—~ 1.
(e) I A4c% and p* « A then there is an clement Bof € with p= BC
40t

It will be proven that these conditions charactenze the simple oriented

Iy Proved wo will call o watl

matroids ot rank . Lnui
these conditions 4 positivity sysien of rank r.
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H.mmsz? Suppose (E, €, *) is a positivity system of rank r where r is
positive, and suppose p is in E. Let:

€, ={CCE~{p,p*|CuU{p}or CU{p* isin €}

Then (E ~ | p, p*}, €,, *) is a positivity system of rank r — 1.

O If | E'| = 2r the assertion is obviously correct. If E has more than 2r
n_wamam, then € # @. If Ce ¥ then, applying (), we find an element D of ¥
with DC CuU{p, p*} and DN {p, p*} # =. Then D ~{p, p*} is in ¥
so ¥, #= @. Therefore (a) is satisfied. v

m.:nwo% A and B are in 4, with 4 C B U B*. Then 4 U {p}, say, is in ¥,
as is one of BV {p} and By {p*}. From the fact that 4 U {p} C B U B* U
{p, p*} and application of (c) it follows immediately that 4 = B or 4 = B*
and (c) is satisfied. v
. Finally, suppose A € ¢, and ¢* ¢ A. We may suppose 4 U {p} € €. There
is an element B, of ¥ with ge B, and B,C AU {p, q}. If p is in B, then
By ~{p} is the element of %, required by (e). If not, then B, = 4 U {g}.
1:.63 is an element U of € with p*e UC B, U {p*} = A U {p*, q}. If
gisnotin U then U = 4 U {p*}. This cannot be the case, since 4 U {p} € ¥.
Therefore, g e U, and U ~ {p*} is the required element of %, . [

LEMMA. Suppose SCE, S* =S, and | S| = 2(r + 1). Then there is a set
ACSwithAe®.

Do<<o proceed by induction on the rank, the assertion being trivial for
r=20.

Suppose r is positive and that the assertion is valid for smaller values of r.
Suppose S C E, $* = S, and § has cardinality 2(+ - 1). Let p be an element
of S. hmﬁ. (E~{p, p*}, €, , *) be as in the preceding lemma. By the inductive
assumption there is a set CC S ~{p, p*} with C in ¥,. Then CU {p} or
C U {p*}is an element of € contained in S, as required. [

Note that, 30.5 the preceding lemma, it follows that if the positivity
system (F, €, *) is an oriented matroid, then its rank is r.

Lemma.  Suppose S and T are in €, {p}, — S ~ T* and SO T has exactly
r -+ 3 elements. Then (S U TYy ~{p.p*l isin¥. \

[7 We proceed by induction on r. The situation cannot arise for r = (.
ir—=1then § —{v p and
E~p. p*, owith v
1s a creutt ¢ such
Therefore 7 Iy v %0 as required.

N N . 1 . u (- N . N ( " o -
Supposc 7 2osothat S Aoy prand 7 - v, pfh Sinee s £ S,
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there is a circuit C with we CCS U {w}. Suppose C # {w, X, y}. Then
C = {w, x, p}, since {w, y, p} is contained in T U T*. Since x* ¢ T there is an
element D of € with x € D C T U {x}. If D +# {w, x, y} then D = {w, p*, x}.
We cannot have both C = {w, p, x} and D = {w, p*, x}. Therefore, either
C or D is {w, x, y}, which must then be in %.

Now suppose r is bigger than 2 and the result has been established for
positivity systems of rank » — 1. Then [ S N Ti=r— 122 Letxandybe
in SN T, with x 5% y. Let:

%H = Am ZM.XV .x.*w.u *H *v

and:

%w H AMZA.F .ﬁ*w? m%@u *v
S ~{x}and T ~{x} are in €, ; S ~{y} and 7 ~ {y} are in %, . Each of
these pairs satisfies our assumption, so, since the ranks of @, and @, are each
r — 1 < r, there is an element C of €, and an element D of €, with C =
(SUT)~{p,p* x} and D=(SVT) ~{p, p*, y}. Utilizing (c), we see
that it must be the case that C U {x} = DU {y} isin &, as required. [

Let ¢ = (E, €, *) be a positivity system of rank r. Let X be a subset of E.
Let H(C, X) be the graph whose vertices are the elements C of € with C C X,
with two vertices 4 and B adjacent provided 4 N B* = ¢ and | 4 U B =
¢ - 2.1f A and B are adjacent then | 4 ~B| = B~ 4| = 1.

LemMA. Suppose X C E and that X is the union of elements of €, but may
not be represented in the form S U S*, where S e ®. Then H(@, X) is connected.

3 Suppose this fails. Pick € and X with | £ as small as possible with
H(@, X) not connected. Let 4 and B be vertices in different components.

We may assume 4 # B*.

Letabein A ~ (Bu B*). Let C be such thatae C C Bu {a}. Then B and
C are adjacent, so A and C are in different components of H(C, X). .

Let U A~ (@} and V = C ~{a}. Then U and V' arc vertices of
H(C'. X ~ {a, a*}), where (7 is the positivity system (E ~{a, a*}, 6. . J.
Let U == W, Wy, W,, = FVbea path from Uto Vin H(C', X ~{a, a*}).

Let a, € {a, a*} be such that W, U la;j € %, for O <2i-“m If a~a ?.z,
i then W, U ialh, WU lal, ., W, Ua) s a path from A to Cin

0
110e . Y. Such a path does not exist, <o 4, == a* for some 7. Let / be the least

.. oulih 4 padd
! 1

ey the
,. noin

pOsItive i1 qowith w '’ [
sets W, U W, and W. U W, ., are in ¢ by

W, W W,isin the same component of H(C, X)as A, while W, U W ;i
that of C. Therefore they are in different components.
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If ¢ ={Ce¥|CCE~{a, a*}} then:
0" = (E~{a,a*}, €', *)

is obviously a positivity system, and H(0", X ~ {a, a*}) is a connected sub-
graph of H(0, X). But W,_, U W, and W, U W,_, are both in this subgraph.
This contradicts our assumption, so H(@, X) is connected. (7]

THEOREM 21. €@ = (E, ¥, *) is a simple oriented matroid of rank r.

(0 We have left to show that if S and T are in ¥ with peS N T* and
S # T*, then there is an element C of € with CC(SuU T) ~{p, p*}. Let
X =SuUT. Then H(O, X) is connected, so there is a path from S to T in
H(0, X). The first element on this path not containing p is what is required. [

VI. ORIENTED MATROIDS AND LINEAR PROGRAMMING

Here we are interested in establishing Rockafellar’'s Theorem 7 in [12],
which may be viewed as a thorem concerning realizable oriented matroids,
in the setting of oriented matroids. We wiil make use of some of his termi-
nology here.

Let E = {e;, e, ,..., ey}, and, let:

E ={e*, e, %, en~}.
E has an obvious involution *. The real-valued functions on E form a vector
space RY. Let K be a linear subspace of R", and let K* be its orthogonal
complement. If X' e R¥, then its support S is the set of e,’s in E on which X
is non-zero. Its signed support may be viewed in an obvious way as a subset T
of E,with TN T*= @ and T=S.

If X'e K then the signed support S of X is called a signed support of K.
If S contains no other non-empty signed support of X, and if S % =, then
S'is an elementary signed support. If  is the set of elementary signed supporis
of K then it follows easily, as in the proof of Theorem 1, that (E, €, *) is an
oriented matroid. :,,x% is the set of elementary signed supports of K+ then
(E, ¢, ") and (E.%. ) are dual. This is equivalent to Rockafellar’s
Theorem 4.

Theorems 2 4 S 6 and 7 of Rockafellar's paner may be viewed ag state-

P

R s i
Indeed, Bland has viewed them in this way in [1], and
fheorem 7 1n this setting.

Before we proceed to the proof, we need the following lemmas.

R O T U PR I
(O HCa fdubJdids

he has proven all but

Gioabout duedd
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LEMMA. Suppose (E, €, *) is an oriented matroid with hull function h.
Suppose qe E, A CE, and p e (A N {q}) ~ h(A). Then there is a set SCA
with pe h(S U {q}) and p ¢ h(4 U S*).

[0 We proceed by induction on | 4 |. For | 4 | = 0 the result holds, with
S = @. Suppose that 4 = @ and that the result holds for smaller sets.

If for each x in A4, p ¢ h((4 ~{x}) U {q}), then AU {g, p*} is itself an
element of €. Then p ¢ h(4A VW A*) since AU A* U {p*} can contain no
circuit. Therefore the lemma holds, with S = A.

We may suppose that there is an element x of 4 with p € A((4 ~ {x}) U {g}).
There is a set SC 4 ~ {x} with:

(@) péh((d~{x)usSH;
and
(b) peh(Suig).

If xeh((4 ~{x}) v S*) then we have the desired result, since then
p & h(4 U S*), so we may assume this is not the case.

Suppose peh((A ~{x}) U S*U{x*}). Then if also peh(duU S*,
peh((Ad ~{x}) U S*¥), contrary to (a). S is again the set required. We may
assume:

p ¢ h((4 ~{x}) U S* U {x*}).
Then pisin A{(A4 ~ {x}) U {x, x*, ¢}), but pis notin h((4 ~ {x}) U {x, x*}).
Contracting at {x, x*}, we see that there is a set TC 4 ~ {x} with:

(© pehTuUig, x, x*);
and
(d) peh(4v TV {x*}).
If x* € 4 then, since either pe A(T VU {q, x}) or p € h(T U {q, x*}), one of
Tw{x) and TuU {x*} is the set required. If x*¢ A, we will show that

peh(TuU{g, x}), so that T U {x} is the set we require.
Since (b) holds there is a circuit C with:

preCCSU{p* q;.

e {¢) holds, there is a circuit D with:

We need only show that x= ¢ D.
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Suppose x* € D. Since S C 4 ~ {x}, neither x nor x*isin C. xe D* ~ C,
and p € D* N C*, so there is a circuit U with:

xeUC(D*uU C)~{p, p*}.
If ge U, then:
gte U*C (A ~{xpuS*u{q g% x*},

$0 g€ A((A ~{x}) U S* U {x*}). Then, since SC 4 ~ {x} and pe A(S U {g}),
pEh(A~{x}) VU S* U {x*}) contrary to our assumption. If ¢* e U, then:

g e UC(A~{x) VT ulq g%, xj,
and g € h(4 U T*). Then, by (c), we have:
peh(TU{q, x, x*}) Ch(A v T* U {x*
contradicting (d). Therefore ¢* ¢ U. Then:
X*eUr (A ~{x}h)uS*u{x*,
50 x € A{(4 ~ {x}) U S*), contrary to our assumption. x* ¢ D. [

LEMMA. Suppose (E, €, *) and (E, ¥
h. Suppose:

, ) are dual, with hull functions h and

E=A4vA4*V{p, p* q,q*

where the three sets are pair-wise disjoint. Furthermore, suppose that p e
h(A Y {q, ¢*}), and q € h(4 U {p, p*}). Then there are disjoint subsets B and
Cof A withpe (B U {q, ¢%)) and g l(C U {p, p*}).

(3 Suppose pe k(4 U {g*}) and g€ h(4 U {p*). Pick minimal subsets B
and C of 4 with pe A(BU {g*}) and ge H(C U {p*)). If ae B then a*e
(B U {p* g*}). Then a¢ h(C* U {p, q)), since C* U {p, g} C E ~
(B {a. p*, ¢*));soa* ¢ (C U {p*, ¢g=)),and a ¢ C. Therefore, BN C =
as required.

Now we may suppose that, say, p ¢ A(4 U {g*}), so peh(4 U {g
By the preceding lemma, there is a set ST 4 with
\\&_. ur\/ I¥~A\;<.ﬂ1¢n/ N [ala] |
111%a I [P P S VS B | ] SO /:_rr S ~ l_:_ \\ - :_/

fheretore:

qrERE ~ (A VST Uig. g ) = k(AT ~S) U {p ph).



234 FOLKMAN AND LAWRENCE

Then g € h((4 ~ S) U {p, p*}). Letting B = S and C = A ~ S, we have the
required conclusion. [

Finally, we have Rockafellar’s theorem.
Write £ = PU P* where PU P* = g, If SCE and x € E, we say x 1s

contained positively (negatively) in S if there is an element p of P (P*) with

x=p.
Let @ = (E, %, *) and @ = (E, %, *) be dual, with huil functions / and A.

THEOREM 22. Let one of the elements of E be painted black and one grey.
Let each of the remaining elements be painted white, green, or red. Then one of
the following alternatives holds, but not both:

(@) There exists a circuit C of O containing the black element positively
and no red elements, and a circuit D of O containing the grey element positively
and no green elements, such that no white element belongs negatively to C or D;

(b) There exists a circuit of O containing the grey element and otherwise
only green or white elements, with the grey and white elements contained
positively; or there exists a circuit of O containing the black element and
otherwise only red and white elements, with the black and white elements

contained positively; or both.

Furthermore, if (a) holds then C and D may be chosen so that they have no
white elements in common.

Let W, G, and R be such that W = Ww* G = G*, and R = R*, with W, G,
and R being the white, green, and red sets. Then E is the disjoint union of

W, G, R, and the set {p, p*, 4, ¢*}.

] Let p be the black element and g be the grey element, where p, g € pP.

(b) is obviously equivalent to:

(b) g*eh(GuU (W Py, orp*e (R W (W N P)), or both.

(b") fails if and only if ¢* ¢ /(G Y (W P)yand p* ¢ MR O (W N P));
that is. if and only if:

(a) geh(RU (W NP )Uip, pEY
and
b G

i it

LW A PRy g gt

But this is equivalent to (a).
It remains to be shown that 1l {a) holds thcii thie sots
chosen so that C " DN W —

an he

Y

o
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Let ¢’ be nﬁ oriented matroid derived from ¢ by contracting G and deleting
R. Let g be its hull function. Let ¢ be the dual hull function. Then:

2(4) = WG U A) ~ (G U R),

and:
4A4) = RV A) ~ (G U R).

\H.Tmsu Uv\ Am.\vu »QmWAA:\D %*v U AQ» Q*w\vu and Qm%AAS\D NVXV v mﬁu \u*w .
By the lemma there are disjoint subsets & and ¥ of (W N P*) with pE
g(UV{g, ¢*}), and ge gV U {p, p*}). Then peh(G U UV {q, ¢*}), and
ge (R VU {p, p*¥}). There is a circuit C* of ¢ with:

p*eC*CGuU UV, q* p*,
and a circuit D* of @ with:

g* e D*CRU VU {p, p*, g*).

HTQD q ms& b are H:ﬂ circuits :QQQQQ mw:a H:W HCOM O* the H:00n0:— 1S
, > @ T
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The Rotor Effect Can Alter The Chromatic Polynomial
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Let G be a finite graph with vertex set ¥(G), let 8 be an automorphism of G,
'let JC V(G) be an orbit of 6, let v be vertex in J, and let P C P(J) be a
¥ partition of J into disjoint nonempty sets. Then (G, 8,J,t, P) is called a
rotor of order Card J.

Let G(P) denote the graph obtained from G by contracting each block B
of P, together with the edges joining vertices of B among themselves, to a
single vertex. To the rotor (G, 6, J, v, P) we associate a function ¢ :J —J
called reflection, given by ¢(6i(v)) = 0-i(v). Then &(P) is another partition
of J, denoted P’. The rotor effect is the transformation that associates G(P)
to G(P).

It is known that G(P) and G(P’) have the same number of spanning trees
[2, 4]. Moreover, for rotors of order at most 5, the dichromate is unaltered
by the rotor effect [3]. Tt was hoped that this result could be extended to
rotors of any order k, thereby implying a fortiori that not only the number
of spanning trees but also the chromatic polynomial is unchanged by the
rotor effect. We are going to give a counterexample for any k > 5.

Let us recall that if the chromatic polynomial P(G, A) of a graph having n
vertices is not 0, then the coefficient of A" 1 in P(G, A) is the number of
adjacent pairs of vertices of G, id est

Card {{x, } C ¥(G): 3 at least 1 edge joining x and ).

This number can be called the adjacency number of G. We denote it by a(G).

For k = 5 let us define the graph ¢, as follows. 1'((G,) has 2k elements,
partitioned into 2 disjoint sets 7 and J. each containing & elements indexed
integers modulo & : [ - e Zoo J e dee e /0 Fach v

4 ;
v 2 Nl

= {x, 15
with e 3 VUi Licun d

¢ 15 pictured in Fig. 1.
Xoo. ) e

adjacent. G, has no loops or multiple edges. ¢;

Let 8 be the automorplusm of G, defined by d(x,)
237
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