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Abstract. Motivated by Ajtai’s worst-case to average-case reduction for
lattice problems, we study the complexity of computing short linearly in-
dependent vectors (short basis) in a lattice. We show that approximating
the length of a shortest set of linearly independent vectors, (shortest ba- =~
sis) within any constant factor is NP-hard. Under the assumption that
problems in NP cannot be solved in DTIME(nP¥!°6(®)) we show that
no polynomial time algorithm can approximate the length of a short-
est set of linearly independent vectors (shortest basis) within a factor of
21°g1_€("), € > 0 arbitrary, but fixed. Finally, we obtain results on the
limits of non-approximability for computing short linearly independent
vectors (short basis). Our strongest result in this direction states that
under reasonable complexity-theoretic assumptions, approximating the
length of a shortest set of linearly independent vectors (shortest basis)
within a factor of n/4/log(n) is not NP-hard.
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1 Introduction

Recently, interest in the geometry of numbers has increased due to Ajtai’s dis-
covery of the connection between the average-case complexity and the worst-case
complexity of some lattice problems. More precisely, for every n € N, Ajtai de-
fined a natural class A, of lattices and proved the following theorem

Theorem (Ajtai [A1]). Assume there is a probabilistic polynomial time algo-
rithm A that, for a uniformly chosen lattice from the class A,, finds a non-zero
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vector v of length at most n. Then there is a probabilistic polynomial time algo-
rithm B that, for any giwen lattice L C R™ and for some constants Cp,C1,C2, with
high probability will solve either one of the following three problems.

Ivp (INDEPENDENT VECTORS PROBLEM)

Find n linearly independent vectors V1i,...,Vn in L, whose length is up to
some factor of n°, smallest possible. Here the length of a set of vectors is
defined as max;<;<p ||vi]|.

GVP (GENERATING VECTORS PROBLEM)

Find a basis [by,...,b,] for the lattice L, whose length is up to some factor
of n smallest possible. The length of a basis is defined as max;<;<y, ||b;l,

SvP (SHORTEST VECTOR PROBLEM)

Find the length of a shortest non-zero vector in L within a factor of n°2. .

Improving upon Ajtai’s original values, Cai/Nerurkar [CN] and Cai [Cal],
showed that we may take any co > 3,¢;1 > 3.5, and ¢, > 4.

These results clearly raise the question, how difficult the above mentioned
lattice problems are. At the time of Ajtai’s discovery none of these problems
was known to be NP-complete. For all three problems the best polynomial time
approximation algorithm is based on the L3-algorithm (see for example [L]). The
algorithms achieve approximation factors that are exponential in the dimension
of the lattice. After Ajtai’s discovery most effort to prove hardness results for
Ivp, GVP, or SVvP has been directed towards the problem Svp. This is due to
the importance of SVP in other areas of computer science, its connection to
cryptography as evidenced by the Ajtai /Dwork cryptosystem [AD], and due to
its long history. It is also important to note that computing short vectors in a
random lattice chosen from A,, cannot be difficult, unless computing a shortest
vector in a lattice is difficult in the worst-case. Currently, the best hardness result
for SvP is due to Micciancio [M]. Building on work of Ajtai [A2], Micciancio
proved that approximating the klength"of a shortest vector within a factor of
~ v/2.is NP-hard under randomized reductions. * :

If combined with Ajtai’s theorem, this hardness result for approximating
the length of a shortest vector is still far from providing a reduction from a
provably worst-case difficult problem to an average-case problem. Moreover, we
have reason to believe that such a reduction cannot be achieved if one works with
the problem SvP. Let us elaborate this a little bit further. In Ajtai’s proof as
well as in the subsequent improvements by Cai/Nerurkar and Cai, the problem
Ive is directly reduced to a random instance in An. The reductions for Gvp and
Svp are obtained from this result for Ivp by invoking general results from the
geometry of numbers. In particular, the only known reduction of SVp to IVP uses
so-called transference theorems. These theorems relate a lattice and its so-called .
dual lattice. Examples of Conway and Thompson (see [MH]) show that using
these theorems in a reduction of Svp to Ivp inevitably leads to a loss of n in the
approximation factor. On the other hand, Goldreich and Goldwasser show that
SVP is probably not hard for the approximation factor v/ n/log(n).

Having said all this, it seems to be natural to study the complexity of prob-
lems Ive and Gvp. This is the ufpose of this paper. Although the results we
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obtain are far from establishing hardness results for these problems that are
close to the hardness results required by Ajtai’s theorem, our results are much
stronger than the known non-approximability results for Svp. In particular, we
first show that for every constant C, solving IvP or GVP within a factor of C
is ‘NP-hard. Using the widely accepted assumption that problems in NP cannot
be solved in DTIME(nPo¥1o8(n))  we also rule out polynomial time algorithms
solving the problem IvP or GVP within a factor of 21°g1_€("), where € > 0 is ar-
bitrarily small, but fixed. A result of this form is often understood as providing
strong evidence that the corresponding problem is in fact hard to approximate
within some polynomial factor (see [AL]). We believe that IvP and GVP are
hard to approximate within a polynomial factor, but the methods we use do not
seem capable of proving such a result. We note that compared to the methods
in [A2,M] our constructions and proofs are relatively simple. Our methods are
variations of the methods used in [ABSS,AL] for the closest vector problem.

We also generalize methods in [LLS] and [GG] to obtain results on the limits
of non-approximability for the problems IvP and- Gvp. We show that under
Karp-reductions approximating IvP and GVP within a factor of n3/2 is not NP-
hard unless NP = co-NP. This result is obtained by a direct generalization of
the methods in [LLS]. Combining methods from [LLS] and [GG], we also show
that, under Karp-reductions, approximating IvP and GVP within a factor of
n/+/log(n) is not NP-hard unless the polynomial hierarchy collapses to its second
level. Therefore, it is unlikely that non-approximability results as required by the
current versions of Ajtai’s theorem are achievable (see also [GG]). This leads to
one of the main questions this paper raises. We believe that a hardness result
for approximating IVP within a factor of n!~¢ € > 0 arbitrary, may be possible.
Hence, in Ajtai’s theorem, can the approx1mat10n factor for Ivp be improved to
nt=¢e> 07

The paper is organized as follows. In Section 2 we state the main defini-
tions. Section 3 contains an NP-completeness proof for problems Ivp and GVP.
The construction presented there is fundamental for the non-approximability
results in Section 4. In Section 5, we present our results on the limits of non-
approximability for problems IvP and Gvp.

2 Definitions

R™ is the m-dimensional Euclidean real vector space endowed with the Euclidean
inner product (-,-) on R™ and the Euclidean norm |[|v||? = Y10, v? for v € R™.

A lattice L is a discrete additive subgroup of R™. Its rank, denoted by rank(L),
is the dimension of the R-subspace span(L) that it spans. Each lattice L of rank
n has a basis, i.e., a sequence [by,...,by] of n elements of L that generate L
as an abelian group. For a lattice L, v(L) is the smallest real number r such
that there are rank(L) linear independent vectors in L of length at most r that
generate L. The " successive minimum A\;(L) of a lattice L is the smallest real
number r such that there are ¢ linear independent vectors in L of length at most
r. Furthermore, pu(x,L) is the Euclidean distance from x € R™ to the closest



vector in L. It may be tempting to assume that Apany) = v(L). However, in
general v(L) is strictly larger than Arank() (see for example {LLS]). In {CN] it is

shown that _
V(L) < (V ra'nk(l-)/z))‘rank(L)-

Examples in [LLS] show that this is best possible.

An important and easily computable invariant of a lattice is the determinant
det(L) of a lattice L. It is defined by choosing any basis [by,...,b,] for L and
then setting

det(L)? = det[(b;, bj}1<i j<n-

Minkowski’s classical theorems on successive minima provide simple upper bounds
for the values of A; in term of the determinant of a lattice (see [C]).

In the following definitions we state some fundamental computational prob-
lems related to lattices. The purpose of this paper is to study the complexity of
these problems. We always assume that a lattice L is given by a basis [by, ..., by,]
generating L.

Definition 1. SHORTEST LINEARLY INDEPENDENT VECTORS PROBLEM (IvP)
GIVEN: A lattice L C Q™ of rank n and a positive number r € R
DECIDE: Whether there are n linear independent vectors vy,...,v, € L with

max ||vil| <r
1<i<n }
Definition 2. SHORTEST GENERATING VECTORS PROBLEM (GVP)
GIVEN: A lattice L C @™ of rank n and a positive number r € R
DECIDE: Whether there are n linear independent vectors by,...,b, € L that
generate L and
max ||b;|| <r
1<i<n
Definition 3. The promise problem GAPIVP,, where g is a gap function, is
defined as follows:

YES-instances are pairs (L,r), where L C Q™ is a lattice of rank n, r € Ry
and M\, (L) <r

NO-instances are pairs (L,7), where L C Q™ is a lattice of rank n, r € Ry
and A, (L) > g(n) -r

Definition 4. The promise problem GAPGVP,, where g is a gap function, is
defined as follows:

YES-instances are pairs (L,r) where L C Q™ is a lattice of rank n, r € Ry
and v(L) <r

NO-instances are pairs (L,7) where L C @™ is a lattice of rank n, r € Ry
and v(L) > g(n)-r ’

For later purposes we also need to define the following problems. Previous
research on the complexity of lattice problems has focused on these problems.



Definition 5. SHORTEST VECTOR PROBLEM (SVP)
GIVEN: A lattice L C R™ of rank n and a positive number r € R
DECIDE: Whether there exist a non-zero vector v € L with

vl <r

Definition 6. The promise problem GAPSVP, where g is a gap function, is
defined as follows:

YES-instances are pairs (L,7) where L C Q™ is a lattice of rank n, r € R,
and )\1( ) :

NO- 1nstances are pairs (L,r) where L C Q™ is a lattice of rank n, r € R,
and A (L) > g(n) -7

Definition 7. CLOSEST VECTOR PROBLEM (CvP)

GIVEN: A lattice L C Q™ of rank n, a vector x € Q@™ and a positive number
relR
DECIDE: Whether there exist a vector v € L with

x—vll<r

Definition 8. The promise problem GAPCVP, where g is a gap functlon is
defined as follows:

YES-instances are triples (L, x,7) where L C Q™ is a lattice of rank n, x € Q™
and r € Ry satisfying u(x,L) < r

NO-instances are triples (L, x,7) where L C Q™ is a lattice of rank n, x € Q™
and 7 € Ry satisfying p(x,L) > g(n) - r

Strictly speaking, to obtain well-defined decision problems the bounds r in the
definitions above always need to be rational numbers. In all our constructions
and proofs naturally these bounds are square roots of rational numbers. It is
always straightforward to resolve the problems caused by real numbers. To keep
the notation simple, for the rest of the paper, we will i ignore these problems.

3 Ivp and Gvp are NP-complete

In this section we show that the problems IvP and GVP are NP-complete. We
include these proofs to motivate the proofs for the non-approximability results
of the following section.

Theorem 1. The problems IVP and GVP are NP-complete.

Proof. Both problems are in NP, since in polynomial time we can decide whether

(i) n vectors vi,..., v, are linearly independent.
(ii) A vector v is an element of a given lattice L [BK].
(iii) n vectors vy, ..., v, are a basis for a given lattice [BK].



To show that Ivp is NP-hard we reduce Cvp to Ivp. Clearly, we can restrict
ourselves to lattices L C Z™. Let (L, v,r) be an instance of CvP. To reduce the
instance of CvP to an instance of IvP, let [by,...,by] be a basis of L. First we
choose a constant D such that D > max{r, A\,(L)}. By Minkowski’s theorem
on successive minima we may take D = max{r + 1, [n"/2det(L)]} (This is the
only place where we need integral lattices.). Since det(L) can be computed in
polynomial time, D can be computed in polynomial time. Let M be the lattice
generated by the columns of the matrix

b; by -+ b,
DT Ery—

The instance of IvP is defined by (M, vr? + D?).

Assume first that (L, v, ) is a YES-instance of CvP. Then there is a vector
w = Y. ¢;b; € L such that ||w — v|| < r. By construction of D, the lattice L
contains n linearly independent vectors v, ..., v, with ||v;]] < A,(L) < D for all
i. The vectors (v1,0)7,...,(vs,0)T,(w—~v,D)" are n+ 1 linearly independent
vectors in M, whose length is bounded by v/r? + D2,

Now assume that (L,v,r) is a NO-instance of CvP. Then any vector w &
L satisfies ||[w — v|] > r. In every set of n + 1 linearly independent vectors

{wW1,...,Wnt1} € M at least one vector must depend on dy,+1, say,
n+1
Wnt1 = Z c;di, ey # 0.
i=1

If |eny1| > 2, then

[Wn4tll > VAD2 > /12 + D2,

If ¢np1 = £1, 58y cpy1 = —1, then ||[Wpy|] > V72 + D2, Otherwise, || >, ¢;bi—
vi| < r, contradicting the fact that (L,v,r) is a NO-instance of CVP.
To show that GvP is NP-complete we use the same reduction. We only
need to increase D slightly. In [CN] it is shown that for any lattice L we have
(/rank(L)/2)A,(L). Hence by Minkowski’s theorem on successive min-
1ma n("+1 /2 det (L) is an upper bound on v(L). To reduce CvP to GVP we use
the construction from above with

D = max{r + 1, [n"*V/2 det(L)]}.

For any lattice A, (L) < v(L), therefore a NO-instance of Cvp will be mapped
onto a No-instance of Gvp. To see that a YES-instance of CvP will be mapped

onto a YES-instance of GVP let vy,...,v, be a basis of L with ||v;|] < »(L) <
D. Note that (v,D)T can be written as a linear combination of the vectors
v,0T,...,(vn,0)T,(w — v, D)7 with integer coefficients. Hence the vectors
(v1,0)7,...,(vp,0)T,(w—v,D)T are a basis for M. The length of these vectors
is bounded by /72 + D2. O

We note that the same reduction can be used to show the following result.



Corollary 1. Given an oracle that solves IVP or GVP exactly, in polynomial
time SVP and CVP can be solved ezactly.

Proof. The result for Cvp follows by the reduction used above. To obtain the
result for SVP we use a recent result by Goldreich and Seifert that shows that
SVP can be solved exactly in polynomial time, given an oracle that solves Cvp
exactly. O

We do not know how to obtain an approximation to CVP or to SvpP given an
oracle that approximately solves IvP or Gvp. In particular, because of the value
of D, the construction used above cannot be used to transform approximation
algorithms for IVP to approximation algorithms for CvPp. In general, D is a not
at all related to u(v, L) for v.€ R™. However, every approximation algorithm for
Ive, if applied to the construction above, will produce an estimate for u(v,L)
that depends on D. This will not be a useful approximation for u{v,L).

However, to obtain non-approximability results for Ivp, we do not work
with arbitrary lattices. In fact, non-approximability results for CvP shown in
[ABSS,AL] rely on very special lattices. For these lattices L we have more pre-
cise information about the successive minima and about the distance u(v,L) of
a specific vector v to the lattice L. Exploiting this information allows us to use
a variant of the construction from above to obtain non-approximability results
for Ivp and GvP. Keeping these remarks in mind will help understanding the
constructions and proofs of the following section.

4 Non-approximability results for Ivp and Gvp

In this section we prove the non-approximability results for Ive and Gvp. First
we need to review results from [AL].

4.1 The MIN LABEL COVER Problem

In the following G = (V;, Vk, E) denotes a bipartite graph, A a set of labels
for the vertices in V; U V3, and IT, a partial relation IT, : A — A describing
the admissible pairs of labels for every edge e € E. We adapt the notation of
[AL,ABSS]. A labeling of G = (V1, V4, E) is a pair (P1, P,) of functions P; : V; —
24 4=1,2, assigning each vertex in V; U V5 a possibly empty set of labels.

Let (P1,P2) a labeling of G = (V1,V2,E) and € = (v1,v2), v; € V3, v € Vs,
an edge of G. We call e = (v1,v3) covered iff Py(v1) # 0, Pa(v2) # 0 and for all
labels by € Pa(vs) there is a label b; € P, (v1) such that IT.(b;) = by. A labeling
(P1,P2) of G = (V1, V3, E) is called a cover of G iff every edge of G is covered
by the labeling (P;, P,).

The cost of a labeling (P1, P;) for a graph G = (V4, Vs, E) is defined as

cost(Py,P2) = Z [Py (v)].

vEV)



Definition 9. MIN LABEL COVER (MINLC)

INSTANCE: A (dy,ds)-regular bipartite graph G = (Vi, V3, E), a set of labels
A={1,...,N}, N € N, and for every edge e € E a partial relation nH.:A—> A
such that II;1(1) # @ for the distinguished label 1 € A

SOLUTION: A cover (P, Ps) of G. The minimal cost for an instance I will be
denoted by optavinnc(I).

In the above definition we can always ensure the existence of a cover with cost

at most [V1|N; simply let P2(vs) = A for all v, € V; and Pi(v1) = A for all
vy € V1. Therefore,

optymnrc(l) < N - |Vi, for all instances 1.
The following lemma is due to Arora and Lund [AL].

Lemma 1. There is a constant g > 1 and a polynomial-time transformation 7
from 3-SAT to MIN LABEL COVER such that for all instances v we have:

1 @ € 3-SAT = OptMINLC(T(<P)) =1- IVII
" p ¢ 3-Sar = optumLc(T(p)) > g- il
2. V1| is the number of clauses in .
3. The bipartite graph of the MIN LABEL COVER instance 7(¢) is (3,5)-regular.
4. The number N of labels of the instance T(y) is 8.

Building on work in [ABSS], Arora and Lund also show the following reduc-
tion from MIN LABEL COVER to CVP.

Lemma 2. Let g be the constant from the previous lemma. There is a polynomial-
time transformation from MIN LABEL COVER to CVP that for all instances
I = (Vi,Va,E, A) of MIN LABEL COVER generates a lattice L = L(by,...,b,)
and a vector b,y with the following properties:

1. LCZ™ m=9|E| +8[Vi| and n = 8|V1| + 8|V4).

2. Bvery basis vector b;,i = 1,... n, has at most 25 non-zero coordinates.

3. The first 9|E| coordinates inb;,i =1,... ,n+1, are either 0 or K := 9|Vi].
The remaining coordinates are either 0 or 1. '

4- optuimro(I) =1+ Vi| = p(bpya, L) = /W]
optmic(l) > g Vil = VB € Z\ {0} : u(B - bpys,L) > /g /IVi].

Moreover, in the first case, there is a vector v € L such that bp+1 — v has
among its last 8|V1| coordinates ezactly |Vi| coordinates being 1.

In the second case, for allv € L and all B € Z \ {0}, #f the first 9|E| coord;-
nates of B -bpy1 — v are zero, then more than g|V1| of the last coordinates
in B-bny1 — v are non-zero.

Using a construction from [ABSS] we will strengthen this lemma, such that
we only require 0, 1-vectors in the construction.



Corollary 2. There is a polynomial-time transformation from the problem MIN
LABEL COVER to CVP that for all instances I = (V1,V2, E, A) of MIN LABEL
COVER generates a lattice L' = L(bY,...,b.) and a target vector b}, with the
following properties:

1. " CZ™ m = 9K|E| + 8|V1| and n = 8|V;| + 8|Val.

2.b; € {0,1}™5 =1,....,n+ 1, and b} has < 25K non-zero coordinates,
1=1,...,n.

3. optyinLe(f) =1- |V1’ == P'(bln-{-le’) =1- V lvll
optmmrc(l) > g- Vil => VB € Z\ {0} : p(B- bl 1,L") > /g /WA

Moreover, in the first case, there is a vector v' € L' such that bj, .1 — V' has
exactly |Vi| non-zero coordinates.

In the second case, for all v' € L' and all 8 € Z\ {0}, the difference vector
B-briy — V' has more than g - |V;| non-zero coordinates.

Proof. Consider the vectors by, . .. ,bny1 constructed by the transformation of
Lemma 2. The first 9|E| coordinates are either K or 0. The other coordinates
are either 0 or 1. To obtain the vectors bi,i = 1,...,n + 1, and the lattice
L" = L(b},...,b)) in each b; we replace the first 9|E| coordinates by a set of
K coordinates each. If a vector had a K in one of these coordinates, it has a
1 in each of the new K coordinates corresponding to the original coordinate.
Otherwise the new coordinates are set to 0.

The first two properties in the lemma are easily verified. We still -have to
show the last property. In the case optumLc(l) = |Vi| by Lemma 2 we know that
for the original lattice L and the original vector b1 the distance u(b,1,L) is
attained by a vector v whose first 9| E| coordinates are 0. Applying to this vector
the construction used to obtain the vectors b}, proves the corollary for this case.

In the case optmnc(I) > g|V1|, observe that in the original lattice L any
lattice vector has a multiple of K > g-|V4| in its first 9|E| coordinates. Similarly,
the first 9| E| coordinates of b,11 are K > g-|V;|. By Lemma 2 for every v € L.
and every 8 € Z \ {0} the difference 8b,,; — v either has at least one non-
zero coordinate among its first 9|E| coordinates or more than g{V1| of the last
coordinates are 0 or 1. We conclude that for every vector v/ € L’ and all integers
B # 0 the difference vector 8-b, ,; — v’ has more than g|V1| non-zero coordinates

and in particular u(8 - b1, L) > /g /] o

4.2 Non-approximability to within some Constant Factor for VP
and Gvp

Based on the previous lemma we can show the following lemma, which is the
key to all our non-approximability results for IvP and GVP.

Lemma 3. There is a constant ¢ > 1, a polynomial-time computable function
s(-), and a polynomial-time transformation from MIN LABEL COVER to IVP that
for all instances I = (V1,V3, E, A) of MIN LABEL COVER generates a lattice
L =L(by,...,bpt1) with the following properties:



1. L.CZ™m = 9K|E| + 8|V;| + 26K, K := 9[Vi| and n = 8|Vi | + 8Vj|.

- bi €{0,1}™i=1,....n+1, and b; has < s(|V1])? non-zero entries, i =
1,...,n.

9. OPtmmic(l) =1-|Vi] = Aaneqry < 1-s([V3))
' OptMlNLC(I) >g- I‘/ll = /\rank(L) > CS(I‘/ll)

4. Let M be the sublattice generated by [b1,...,by]. Then _

S

optmmrc(f) =1-|Vi| = p(bpyy,M) < 1- s(|Va])
optumrc(l) > g- Vil = VB € Z\ {0} : u(8- bni1, M) > c-s([Vy).

Moreover, in the first case, there is a vector v € M such that b,y 1 — v has
at most s(|V1])? non-zero coordinates.

In the second case, for all v € M and all 8 € Z\ {0}, the difference vector
B bny1 — v has more than ¢ - s(|Vi|)? non-zero coordinates.

Proof. The function s(|V;|) will simply be V26K + V| = V2351

Let b; be the vectors from Corollary 2. For i = 1,...,n let b; be the vector
obtained from b} by adding 26K coordinates to b;, each coordinate being zero.
b1 is obtained from b/, +1 by adding 26 K coordinates to b, each coordinate
being 1. Let L be the lattice generated by the vectors by, ... ,bny1 and let M be
the sublattice generated by the vectors bi,...,b,. 1 and 2 are immediate from
the construction.

To prove & and 4 note that in any vector 8-b,,; — v with v € M and
B € Z\ {0}, the last 26K coordinates are 3. Since Ibil* < 25K,i=1,...,n,

l"‘z(bn+laM) = frrglflll llIan+l —V”2 226K> “b1”277/= 17"'7”'
BeZ\{0}

Since
rank(L) = rank(M) + 1,

any set of rank(L) linearly independent vectors of L contains at least one vector v
that depends on byy1. That is, in the representation of v as a linear combination
of the vectors b;, the coefficient in front of b,+1 is a non-zero integer. Hence we
are able to conclude

A2 = min p*8 b, , M),
rank(L) ﬁEZ\{O}u (B +1 )

Therefore

A2 = mi 2(8-bpy1,M) = mi 2(B-bl 1, L(bY,... b))+ 2.26K,
rank(l) = 10 (B-bny1, M) s Bin, H (B-briy v(l )+8

where by,... bl +1 are as in Corollary 2. Thus, by the same corollary
optmmic(l) = 1-|V4|

= ’\rank(L) < /“(bn+17 M) < V IVll + 26K
= (1)
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and
optmwrc(I) > g - |V1]

= /\rank(L) = min u(B- b1, M) >Vg- I‘/ll + 26K

BeZ\{0}
=cC- S(IVi I)a

forec=4/14+ % This proves the lemma, except for the last claims in 4. One
easily goes through the proof to check that even these stronger claims are true.
d

From Lemma 3 we can derive the first non-approximability results for Ivp
and GVP.

Theorem 2. There is a constant ¢ > 1 such that gaprlvp, and GAPGVP, are
NP-hard.

Proof. Let ¢ be the constant in Lemma 3. This lemma together with Lemma, 1

proves the theorem for GapPIvp,. '
For GAPG VP, we also want to apply Lemma, 1. First note that v(L) > Arank(L)-

Hence, in the case optmnrc(I) > g - [V1| the reduction in Lemma 3 shows

(L) >c-s(IVil).

For the case optynnc(I) = |V1|, Lemma 3 shows that B#(bpi1,M) < s(|V1]).
Let v € M = L(by,...,b,) be a vector with IIbrt1 — v|| < s(|Vi]). The vectors
bi,...,bp,byy1 — v are a basis for L. Since [Ibs]] < p(bpi1, M) (see the proof
of Lemma 3), we conclude that in this case

v(L) < s(vil).

The theorem follows. O

4.3 Hardness of Approximating Ivp and Gvp within Large Factors

To improve the hardness results of the previous section we will use again a
technique from [ABSS]. The technique is based on an iterative construction that
will gradually increase the constant ¢ in Lemma 3. We will now describe the first
step of the iteration.

Given an instance I of MIN LABEL COVER, let by, ... ybryi1 be the vectors
from Lemma 3. In these vectors replace each entry « by a block of m coordinates
equal to the vector o - by 1. Call these new vectors wi,t=1,...,n+1. Let B
be the (m x n)-matrix whose columns are the vectors by, ..., b, and let B be

11



the (m? x nm)-matrix

B, 0 0

0 B, 0
B=

0 0 - B,

where each B; is a copy of B. By Lemma 3 the length of the column vectors in
B is at most s(|V; ). Let L be the lattice generated by the columns of B and the
vectors wy, ¢ = 1,...,n + 1. Similarly, M is the sublattice generated by the same
vectors except for wy, 1.

Consider the case where the instance I of MIN LABEL COVER satisfies
optmmrc(l) = |Vi|. By Lemma 3 we can subtract a suitable integer linear com-
bination of the vectors w;,i # n + 1, from w,1; to obtain a new vector Wntl,
which has only s(]V1])? non-zero blocks consisting of copies of b,1i. By Lemma 3
the vectors w;,i = 1,...,n, also have at most 5(|V1])? non-zero blocks consisting
of copies of by, ;.

For all w; by subtracting suitable linear combinations of the columns of B
we can eliminate all but s({V;1|)? non-zero entries in the blocks consisting of a
copy of b, ;. Hence we can replace the vectors wi, i =1,...,n+ 1, by vectors
v; such that

lvill < s(jVa])2.
We also conclude
(W1, M) < s(V4])2.

The vectors v;,i = 1,...,n + 1, together with the columns of B are still a basis
for the lattice L. To prove this observe that replacing w,1 by wpp —v,v € M,
still gives a basis. Next observe that the columns of B have not been changed.
But then replacing w; by v; still gives a basis. We conclude that in the case a
cover with cost |V;| exists,

)\rank(L)v V(L) < S(IVI |)2

Next we consider the case where the instance I of MIN LABEL COVER satisfies
optymmrc(l) > g{Vh]. Note that the vector Wn+1 1S the only vector in the basis
for L whose last coordinate is non-zero. Hence any linearly independent set with
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rank(L) many elements, and in particular, any basis of L, must contain a vector
of the form fw,,; — v with 3 € Z \ {0} and v € M. Assume that a non-zero
integer 3 and a vector v € M exist such that .

18- Wnyr = vl < e - s(|WA])*.

This implies that the number of non-zero coordinates in 8- W41 — v is bounded
by ¢* - s(|Vi])*. Then either there is a non-zero block in B - Wp41 consisting of
a copy a by, in which, by subtracting a suitable combination of columns of
B, the number of non-zero coordinates can be reduced below c2 -s(JV1])2. Or by
subtracting a suitable combination of the vectors w;,i = 1,...,n, the number of
non-zero blocks in w41 can be reduced below c?-s(|V;])2. Both cases contradict
Lemma 3. So we may conclude, that in this case for every 8 € Z \ {0},

BB - Wni1, M) > - s(|Vi )2

and
/\rank(L); V(L) > - 5("/1|)2

Hence we have increased the gap c in Lemma 3 to ¢? at the expense of increasing
the dimension of the Euclidean space underlying the lattice from m to m2 and
at the expense of increasing the size of the generating set of vectors of the lattice
from n+1to n(m+1)+1. Applying the same construction once more, this time
using Wp.1 to replace coordinates in the vectors w;,s =1,...,n + 1, and in the
vectors corresponding to the columns of B the gap c increases to c?. Iterating
the construction further we obtain

Lemma 4. Letn,m,c and the function s be as in Lemma 3. Let £ be an arbitrary
integer. There is a transformation that for all instances I = Vi, Vs, E, A) of
MIN LABEL COVER generates a lattice L = L(by,... ybn11) with the following
properties:

LLCZM M =m* N =n]]L,(m* +1)
- ophanic(D) =1+ | = eani,v(L) < (Vi)
optmmrc(l) > g+ Vil = Arank), (L) > ¢ - s(|Vi])%".

The running time of the transformation is polynomial in [I|2£, where |I| is the
description size of I.

From this we obtain our final non-approximability results.
Theorem 3. 1. For every fized constant C > 1 the problems GAPlIVP¢o and
GAPGVP¢ are NP-hard.

2. For every e > 0, there is no approzimation algorithm approzimating Arank(L) |
or v(L) within a factor of 2108 ~“(rank(L)) ypless NP C DTIME(nPevies(n)y,
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Proof. To prove the first statement we use Lemma 1 and Lemma 4 with
£ =loglog (C).

Since ¢ and C' are constant, so is loglog,(C). Hence the overall reduction from
3-SAT to GAPIVP¢ and GAPGVP( is polynomial time.

To prove the second statement we can use the same reasoning as in [ABSS].
Let ¢ be an instance of 3-SAT. By |¢| denote the size of this instance. Applying
the transformation in Lemma 1 we obtain an instance I of MIN LABEL COVER
with size |I| = |¢|%(1). Applying the transformation in Lemma 4 with £ = £(lo))
such that 2¢0¢1) = logP(jp|) for some S, we obtain a lattice L with rank

rank(L) = R = 200es”* (lel)

The running time of the transformation is polynomial in 2000g” 1 (le])) | e
also have

o satisfiable = Arank(y, v(L) < s(|Vy])los” (el
% not satisfiable = Araniy, v(L) > dog? (Jo)) -s(|Vy|)reg” (el

The gap between satisfiable and non-satisfiable instances o of 3-SAT is

el
clos” el)

However, we have to measure this in terms of the rank R of the lattice L. With
respect to R the gap is

0" (le) — 9008/ 1) ().

since log(R) = O(log”+!(||)).
Now let € > 0. Choqse B such that

B/(B+1)>1-e

Then we can apply an approximation algorithm for Arank(r) or ¥(L) with approxi-
mation factor 216 “(rank(L)) t, distinguish between satisfiable and non-satisfiable
instances ¢ of 3-SAT. The theorem follows since we apply the algorithm to a lat-
tice L whose overall description size is bounded by 20(tog”* (o)) O

5 Limits of Non-Approximability for Ivp and Gvp

Extending results in [LLS] and [GG] we show that GAPIVP,,3/2 and GAPGVP, s/
are in NP N co-NP and that GAPIVPn/O(\/Iog—(n)) and GAPGVPn/O(m) are in
NPNco-AM. The first result implies that under Karp-reductions GAPIVP 3/; and
GAPGVP 3,2 are not NP-hard unless NP = co-NP. Again under Karp-reductions,
the second result implies that GApIvp //logtm) and GAPGVPn //log(m) 8T8 not
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NP-hard unless the polynomial hierarchy collapses to its second level. For a
thorough discussion of the complexity-theoretic implications of these results we
refer to [GG].

To prove the results on the limits of non-approximability we need a few
definitions from the geometry of numbers. Given a lattice L in R™ with basis
[b1,...,by], by L=+ we denote the orthogonal projection of L onto the or-
thogonal complement (Rby +...+Rb;_, )+ of Rby +. . -+Rb;_;. By b;-' we denote
the projection of b; onto L("~#+1) Thep [b,...,bl] is called the Gram-Schmids
orthogonalization of [by, ..., by]. Note that L(™+1) js 5 — 4 4 1-dimensional
lattice with basis [b], ..., b}].

By definition of the Gram-Schmidt orthogonalization

i—1
b; = b:r + Z/,L,‘jb}.
Jj=1
A basis [by,...,b,] is called weakly reduced iff |p;;| < 1/2 for 1 <j<i<n.By
replacing b; by b; — mi;bj, 1 < j < i < n for suitable integers m;; every basis
can be transformed into a weakly reduced basis [L].

Definition 10. A basis [by, ..., by] of alattice L is called a HKZ-basis (Hermite,
Korkin, Zolotarev) iff

(i) [b,..., b,] is weakly reduced.
(ii) b;’ is a shortest non-zero vector in Lin=ity) 5 1,...,n.

For a function g : N — R, a basis [by,..., b,] is called a g-approzimate HKZ-
basis of L iff

(i) [by,...,b,] is weakly reduced.
(i) b:-f is within a factor of g(n —i+ 1) a shortest non-zero vector in Ln=i+1) 5 —
1,...,n. )

Every lattice has a HKZ-basis of polynomial size.

We also need the dual of a lattice and of a basis. Let L be a lattice in R™ with
basis [by, ... »bn]. The dual lattice L* is the set of all vectors v* € Rb; +...+Rb,
that satisfy (v*,v) € Z for all v € L. The set L* is also a lattice. If bi,..., b}
are defined by

w_ Jlifi+ij=n+1
_ (b, bj) = {O otherwise
then [b},...,b}] is a basis of L*. It is called the basis dual to [by,...,b,]. A
basis [by,...,b,] of L is called a dual HKZ-basis iff the basis [b},...,b%] is a
HKZ-basis of L*.
Given a basis B = [b1,...,b,] of a lattice L then we set

A(B) = min{|[b]]l,..., L1}
It is well-known [L] that A (L) > A(B) for any basis B of a lattice L. On the other
hand, in [LLS] it is shown that for a dual HKZ-basis B of a lattice L we have
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A1(L) < nA(B). Since the Gram-Schmidt orthogonalization of a basis [b1,...,by]
can be computed in polynomial time, guessing a vector b € L and a dual HKZ-
basis of L, we can check in polynomial time whether ||b|] < nA;(L). Hence,
we have a non-deterministic algorithm for GAPSVP,,. Since GAPSVP, € NP, we
obtain that the problem GAPSVP,, is in NP N co-NP. This result and the proof
are from [LLS].

To obtain a similar result for Ive and GVP we need one crucial fact about
HKZ-bases. It is an easy extension of a result in [LLS] and, using different
notation, it was proved in [L].

Theorem 4. Let [by,...,b,] be a g-approzimate HKZ-basis of the lattice L.
Then

Iball < g — i + )VaN(L).
From this we obtain

Theorem 5. GAPI‘VPn3/2 and GAPGVP, 52 are in NP N co-NP.

Proof. Both problems are in NP. To show that GAPIVP 3/2 is in co-NP we need
to describe a non-deterministic polynomial time algorithm that computes linear
independent vectors vi,...,v, € L and a proof that ||v,]| < n3/2)\,(L). The
algorithm first guesses a HKZ-basis B = [by,...,b,] of L. Furthermore the
algorithm guesses dual HKZ-bases Bj,j = 1,...,n, for the lattices L), Then
the algorithm checks whether the sets B, B; are bases of the respective lattices.
Finally, the algorithm determines whether

bl < AA(LD),j =n,...,1.
If b; passes this test, by what has been said above, we know that
[BI]| < nAL(LD)).

Hence, if all b; pass the test, B is a n-approximate HKZ-basis of L. Using
Theorem 4 we conclude that |jb;|| < n32\,(L). This proves the theorem for
GAPIVP 3/2.

Since v(L) > A, (L) and the vectors b; we computed in the non-deterministic
algorithm for Ivp form a basis for L, the theorem follows for GAPGVP, 3,2 as
well. O

Next we want to prove

Theorem 6. GAPIVPH/O(M) and GAPGVPn/O(\/m) are in NPNco-AM.

Proof. We will use the protocol of Goldreich and Goldwasser which shows that
the problem GaPSvP N TTTED)] is in co-AM [GG]. More precisely, for every con-

stant ¢ > 0, [GG] describes a protocol with the following properties. The input
is an instance (L, d) of SvP. If a shortest vector in L has length > /n/clog(n)d,
then the verifier accepts with probability 1. On the other hand, if a shortest
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vector in L has length < d, then the verifier accepts with probability at most
1-n-2¢

Based on this protocol, for every ¢ > 0 we describe an AM-protocol for co-
GAPIVP /y/eTogt)" Hence the input for the protocol is an instance (L, d) of the
problem GAPIvP N srerent If (L,d) is a NO-instance, then the verifier accepts
with probability 1. If (L,d) is a YES-instance, then the verifier accepts with
probability at most 1 — n=2¢, This protocol will prove the theorem.

The protocol is as follows. First, the prover sends vectors bi,...,b, to the
verifier. The verifier checks that this is a weakly reduced basis of L and that
max{||bs||} > n/y/clog(n)d. Then the verifier computes the lattices L9, j =
n,...,1. For j = 1,...,n in parallel, the AM-protocol in [GG] for the problem

. sl s ; t
CO-GAPSVP 70(og(y) 18 used with input (LG, lIb}lly/clog(n) /n). lHe accepts
iff all these protocols lead to acceptance. Note that this is an MAM-protocol,
but any MAM-protocol can be transformed in an AM-protocol [B].
Suppose first that (L, d) is a No-instance of GAPIVPn //eTog ()" Then by send-

ing a HKZ-basis by, ..., b, of L the prover can ensure that b;r- is a shortest vec-
tor in L), Hence for J =1,...,n the verifier in the [GG]-protocol will accept
(LD, Hb;’” v clog(n)/n) with probability 1. Therefore, the verifier in the protocol
for co-GAPIVP oo will accept the instance (L,d) with probability 1.

Now assume that (L,d) is a YEs-instance of GAPIvP //Tog(m)- Assume that

the vectors by,...,b, are a weakly-reduced basis and satisfy max{||b;||} >
n/\/clog(n)d. Since (L,d) is a YES-instance, we see that A,(L) < d. Then by
Theorem 4 [by,...,b,] can not be a v/n/clog(n)-approximate HKZ-basis of
L. Hence there is at least one j € {1,...,n} such that the length of a short-
est vector in LU is at most ||b}|l\/clog(n)/n, By the analysis in [GG], run-

ning the co-AM-protocol for GaAPSVP e Tog(m) for this j the verifier will accept

(R Ib;'l |\/¢log(n) /n) with probability at most 1 —n=2¢. Hence the verifier will
accept the input (L, d) with probability at most 1 — n—2¢.
Since An(L) < v(L) and since in the AM-protocol for co-GAPIVP /+/eTogm)

described above the verifier checks that the vectors b1,..., by, sent by the prover
form a basis, we see that the same protocol is also an AM-protocol for co-
GAPGVPn/\/c_lo?n)' O

6 Conclusions and Open Problems

The main open problem this paper raises is: What is the complexity of computing
short linearly independent vectors and bases in a lattice? Is there some constant
¢ > 0 such that GAPIVP,. and GAPGVP,,- are NP-hard? It is widely believed that
any problem that is hard to approximate within a factor of 208"~ *(n) actually is
hard to approximate within some polynomial factor (see [AL]). Currently, a proof
for this general statement seems to be out of reach. However, some progress in
this direction has been achieved recently for the closest vector problem [DKS].

17



Since our results rely on methods origihally used for hardness results for the
closest vector problem, it is natural to ask whether the hardness results of [DKS]
for the closest vector problem hold for Ivp and GVP as well.

Our hardness results for Ivp and Gvp (almost) match the known hardness
results for Cvp. However, we were not able to generalize the known results on
the limits of non-approximability of CvP to Ivp and Gvp. Instead our bounds
are worse by a factor of \/n. That opens up the possibility that IvP and Gvp
are strictly harder than Cvp or Svp. The current picture is somewhat mixed.
On the one hand, we have reductions that reduce the exact versions of SVP and
CVP to exact versions of IVP and Gvp. No such reductions are known for the
opposite direction. However, for the corresponding approximate versions the sit-
uation is different. We have reductions of approximate versions of Ivp and Gvp
to approximate versions of Svp and CVP with a loss of v/n in the approxima-
tion factor [LLS]. These reductions actually compute a relatively short basis,
for example. For reductions of an approximate version of SVP to approximate
versions of IvP and GvP the corresponding loss in the approximation factor is
n. This is based on so-called transference theorems [Ba,Cal]. Moreover, in this
case, we only get a numerical estimate for the length of a shortest vector, we do
not get a relatively short vector. In general, no such reduction is known for an
approximate version of CvP. It would be nice to have a clearer picture of the
relationship between the various lattice problems. ‘
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