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For k} = 0 anod A<kl € 6 wa have k] € 5 . Then minimizing s

we have a3 ki+5 , SEL-(Sky+ky+di+2k +k,) € 20 ~ 2kj and hence mommo:czmmmmmmw—‘—mmm

(3611) s 68 - (2 - wwhv.+ “ - wwﬁv - 67 .

wﬂlww-wu|w>uwuo and hence we gat

a=67 can be realized by (1) k =ki=1,k =k3=20,k,

k=16 (described 10[ 3], [4]) or by (11) k =7,ky=6,kin1;
=0,k

=k lum.wulwanwuo. Eingang: 7.6.1988 nr.: N/88/17 Als Manuskript gedruckt

kymkjtki=5, k,=k§eI5-kj ky=5+k],k .Gmmuﬁa.omﬁmm.

4 5

SOl PROBLSLS OF TRIANGULLTING POLITOPSS IH SUCLIDSAN d-SPACE
To complete the proof we mention that the maximal simplex o N ! L FOLLLBES a SAN d-5PAC3

numbex is attained by decomposing 5 facets with one common vertex, Jobannes Boham .
Sektion Lathematik der Friedrich-Schiller~Univarsitit

say (11111), via standard triangulation., Then coning off to (00000)
Universititshochhaus 17. 0G, Jena, DDR 6900

we recelive 120 n»svppoom (called standard triangulation of the ouv.

Similarly for 4 = 6 with oounauwoun»um simplex numbers k we get

the important equation Suosary
- 1 - = - - For sinplicial approximatiouns of fixed points of contlnouous
(37) & = 374 = 3(3k!+2k!+k!) - 4WA~ﬁ+ﬁ.u - .d.wGﬂime mm appings more efficient algorithms are important for optimal
work. This requires to find geometrical deconpositions into

+ qmﬁmwu+uwﬂ+awa+uwm+mw +k_) . simplices with a minimal sumber omnuwam.ww»mconn»uoocl
° 2 3 4 5 cerned with discussing triangulations of polytopes; our -parti-
cular interest refers to minimal numbers of simplices triangu-
lating important types of polytopes. ‘therefore here we first
give some aeffective methods for triangulating a d-polytopae.

4. Literature
Secondly we show that the dacomposition number of svery vertex [
ﬁ;.u Cottl preserving triangulatiou of a d—octahedron is 24-1 and that .
e , R.,W., Mipimal triangulation of the 4-cubs. tois number is the least decomposition number in triangulating
a d-octanedron. Thirdly after presanting soma knovic results ’

Discrete Math, 40 (1982), 25-30.
a d-cube we analysse

about vertex preserving triangulatious of

_Hm”_ Mara, P.S., Triangulations £
ewnmnu A mo AAWQMV. Aqolwq<wn the cube. J. Comb. the triangulaiions of 3-cubes and 4-cubes in order to prepare
ﬁuuu Sallee MIW methods and to give suggestions for highar dimensions. These
y Jo.F.y A triangulation of the n-cubs. 1nvestigations are illustrated by many examples important for
Discrete Math, 40 (1982), 81-86, furtner research. For vertex preserviog triangulations of a
ﬁAmu S - ! 4—cubes we establish formula (23) for the decomposition numbexs
mi.t b, W.D., Polytops t - and give examples wailch realize triangulations withk special
Hawuo«»an mwamswwn.w HuMMWMWMwwM»MMM Mwnwsmwwoa. propertiss. Finally, for a 5-cube wa can prove the conjectured
Volumes of Regular Polytopes in Hyperbolic d~spaca. mmoMMHMwwMNDMQaMMMwHMMM“mx preserving triangulation cousists

Discrete & Comb. Geom., (to be publishad).
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In this note we consider total decompositions of convex poly-

topes into simplices in the Suclidean d-spacea 54 (d 2 2). Let

d -d

be the set of coanyex d-polytopes in B WDa.mvmma. First we

P
give some definitions. ' .
4
MWA‘MN.....Muw is called a triangulation of P ; &=
(1) n is a patural number and

i

every m...H (J=142,.444n) is a d-simplex,
i1 S, =P

(1i1) &aﬁmu: mwvA d for every j#k .

;

We call a triangulation mmé.....muw of P vertex preserving

(for shortness we introduce the notlon: vertex-truey: &> ,.o
For every vertex v of each S,,...,5 1s ) \\\.f
) 1? '“n A\ —
. jvevert P, \
/ £

d

- i
"or a trilangulation ng.um.....wsw of PEP" many authors require /iw

the following property to be satisfied:

iv) For each pair mu.mw (j,k=1,2,...,0; J#k ) it holds:
Qpaﬂmga mwvn d-1) ==

mu and a facet of me.

a don't require (iv).

Amua mw is a facet of

Sometimes trisngulations {S;,...,S,} of PeP® with the
ollowing property are nouwwachA“
v) Let V be a given finite point set with vert P & VC P. Thean
it holds: \<mnﬂpﬁm4.....muw - V.
f V = vert P, the concerning triangulations are vertex-true.
n is called the decompositiom number of the nnpmnwcwwnuou

md.mm.....mmw.w We are interested in the minimal decomposition

2
outside Awwv ). Further let

N —

k3 = 3ki42kiek!

.0
K = ky-k!-kl-k!
R S S S L
* = _
Kyt = ky-k) .
Then we have
u -
- _ o ettt
(30) (s =) %WWKH = 120-k ~2k}~-k}-k}' -k}
(31) kg + 2k, + Jky + 4k, + Skg = 160 + &, 0 £a €80 b
(32)  2kj+kj+k)'+2ky' = 80 - a ,
(33) a -2k - m¢ 30,
£ - R :
' et 1 '
(34) ekl + ki €6 ( 5 £2, k £5) .

Bquation (30) follows by considering the volume of the simplices
of T and by noticing that the 5-cube has volume 1. (31) is trua
since the 5-cube possesses 10 facets each one having at least 16
4-simplices, so that the sum of the aexterior facets of the tiles
of T is at least 160. wa gat (32) bacause of nmacv. The inaquali-
ty in (33) follows from (24c) and (25). Only ﬂuAv is a new fact
concerning tiles of a 5-cube with no exterior Hmomnm.“Hm is a

consequance of the mutual position of the oownmmconaunm tiles. .

The system (30),(31),(32) consists of three linear equations

for w*.yw.. Therafore we

2
have a unique solution, espacially

and wm with system determinant -1Q .

/

~ 1,0 A E o E - 8 =
kj'+ky' = 52 - MAWo+w°v qdﬁaw4+uwm+mwu+w»u ww - wW¢ Iw¢ .

/

. 1 Tt '
8 = 68 - ki - qp(Sky-(Skgsakfe3icheak, vk, ) + Ha-2k)) .

Then using this last result equation (30)/becomes
(35)
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must be at least m?mwo;.mmlﬁ 2 20. There really exists a
triangulation of such a type with 20 tiles. Figurs 14 shows
the graph of an example for it. The nodcs together with the
numbers denote the corresponding simplices, the vertex matrix
of which is quou in table 3. Table 2' 1s a continuation of

table 2 for this last fifth example inm question.

Kt [l
Wo Na WN Wu N# KO Ko ki s

axample 5 2 2 7 6
Table 2!

Using our knowledge about triangulations of 4-cubes we can

establish for d =« 5

Theorem 6, A vertex-true triangulation of a 5-cube consists of
V« least 67 and at most 120 simplices. There are such
triengulations with 67 and 120 simplices.

We give a sketch of the maoom. We consider a vertex—true trian-

gulation T of a 5-cube. Let Wu (3=0,1,2,3,4,5) be the numbexr of

simplices of T havirg J exterior facets and let k ba the number

of simplices of T with the proparties, described in table 4.

ki= k! E! k! k4 ﬂ ky'  ky

-t
-
N

numbexr of ex-— 1
teriox facets 0 0 0

volume, multi-
plied with 51

type of the ex-~ _ - -
terior facets

3 2 2 2
NORHORIMOINCE

>
(%}
n

BWUHQ #
HUo chdoH m. counts simplices on two different types, kg nw +w.

nawa centroid of the 5-cube belongs to the simplex nw ) or lies
54

number of all triangulations of a given polytope. Such a tri-
angulation with minimal decomposition number is called an opti-
mal ﬂnpwnmzvm«won. Following R.K. Guy, the minimal decomposition
number 1is also called the "simplexity"™ of fthat polytope. Chapter
2 calculates the simplexity of a d-ooctahedron. bwncunuoa pro-;
blem not yet solved in general is|whether the minimal decomposi-
tion pumber of a polytope P colncides with the minimal decompo-,
sition wumber of all vertex—trus triangulations of P, Hever-
theless in chapter 3 we simplify our problem, after refering

to known results, by consldering mostly vertex-—true triangula-

tions of a d-cubes and describing optimal vertex-true triangula-

tions of it for lower dimensions.

1, Some methods of decompositions

1.1. Cutting into polytopas

A first step for decOmposing a polytope mmmmn into simplices

without extra vertices is partitioning P into two polytopas.
This is possible if there exists a hyperplane h which contains
(1) an inner point of P and
(1i) no inner points of any edge k of P, if k does not total-

1y belong to this hyperplans.

Then the intersaction PN h is a (d-1)-polytope and h dissacts P
into two polytopes m‘_ .mmm wn with the common facet PNhEP

The vertices of ma and wm are also vartices of P. Figure 1

shows an octahedron in 57 with the vertices 0,1,2,3,4,5, which

1s cut by the plane h through the vertices 1,2,3,4 into two poly-

hedra P, and wm with the common facst ﬁa.w.u.#u



1.2. Cutting off a vertex

Specifying the first method we consider a vartex A of Mmmwn

and all the sdges k!, k2, ..., k¥ of P baving v, as an endpoint.

If all n endpoints of w“. rony w”. which are unequal to v

lie in a hyperplana wo. then wc dissects P into two polytopes

0—

wo and MA described in 1.1. wo is a pyramid with apex v, and 1its
. 4

Fig., 1.

bass lies in h . The other polytope P4 does not contain the

0
by the hyperplane wo.n This method works especially in ths cass
where the vertex v has the degree n = & Ado has the degree n if

vertex v_, Wa say in this case that the vertex LS of P is cut off

exactly n facets of P oontain the vertex v,). Then the d end-
points of the 4 edges containing v, trivially define a (d-1)-

4

[+ [}
1 2 3 4
0000 0000 0000 0000
0011 0011 1000 0100
1041 0114 1011 0111
1101 1101 1101 1401
1110 1110 1110 1110
k, = 7:
L Bt
5 6 7 8 9 10 11
0000 0000 0000 0011 0000 0000 0000
0011 0011 0014 0111 0011 0011 0011
1010 1001 0110 1011 0101 0110 |- 0101
1011 1011/ V1010 1101 1001 0111 0114
1140 1101 1140 1110 1101 1110 1101
ww = 62
12 13 14 15 16 47
0000 0000 0000 0000 0000 0000
1000 1000 1000 0100 0100 Q@100
1100 1010 1001 1100 0110 0101
1401 1011 1014 1101 0114 0111
1110 1140 1101 1110 1110 1401
xa = 3:
18 19 20
0000 0111 0000
0010 1011 0001
0011 1101 0011
0110 1110 0101
1010 1141 1001
Table 3
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Remark 3, By elemeutary methods for convex bodiss, which have

already been used in the second consideration given above, we

find that P, is an interior point of ﬁm#v by the equation

P," WWM ole .

wi= m;Omav. 1m = Wy, Wy o= Wy, l».l w,

with o, = m honhl4~m.u.&.
. . i -

Bemark 4, As noted above, 1if wqu. then there is k; = O and

.rﬁ £ 3, The last inequality is true since mM¢u contains 5 edges

of wnumnw.<mw belonging to five different facets of the 4-cube.

Therefore 3 facets remain. Only in these ones there can occur

3-simplices of nawn.Nu. — Now we consider the case Mm = 2,
! = 0, More exactly, in

Then, as shown above, there is again wo

this case there is wh € 2. This 1s true since in a.triangulation
mmav there

which have

of a 4-ciibs with two tiles, being congruent with ’

exist altogether 6 edges of these two simplices

langth Y3. They are body diagonals each being of six differeut

facets of the 4-cube. Thus at most 2 facets contaln a Nu.mum

this means NM £ 2. Therefore in this case the number of simplices

14 - 12
, S 13 H
6 1
5
9 20 8
o —t 18 7
, 2
i 10
19 . 16
—& —015
Fig. 14
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dimensional hyperplana. Figure 2 shows a cube in wu with the ver-
ticas 1,2,...,8. If we cut off vertex 1 then w; uaawwnn.‘aw»u

is possible because vertex 1 has degree 3. Than the thres edges
with the common point 1 define a plame by their other endpoints
2,4,5. This plane cuts off vertex 1.-The decomposition shown in
figure 1 may be interpreted as cutting off the vertaex O of the

octahadron so that the polyhedron ﬁ;.m.u.h.uu ‘remaina.

1.3. Coning off a polytope to a vertex
Let Pe P! and v, be a vertex of P. P is said to be coned off
to its vertex A\ if P 1s totally decomposed into d-pyramids

=»ﬁwmumn Voo ewacmuamomﬁwamocqumspnm.maoﬁuommaaauonw

which are not adjacent to Vo



If all facets of P are simplioces (in nwwu case P 1s called sentation of Py in the mannar

simplicial), then this decomposition of P 1s & dissection into - e mc o) -
‘ . Py s CyWy with ¢, €3=C4=T » o, 0.

simplioes. So tnis decomposition into simplices is a triangula-—

|
tion, Of course, if only those facets of P are simplices which Since for all ¢y ﬂ»l;.m.u.»v~onm has 0 £ ¢; 1 and

are not adjacent to the vertex LY then coning off P to A MW cy = WAAA_ P, lies 1n mm»v Because of omno and opv,o

i=1
already yislds a triangulation of P. Coning off a convex simpli=- for 1 = 1,3,4, p. lies in the interior of that facet of ﬂA»u.
0 ; o
oial polytope to a vertex does umot yield an optimal triangula- which 1s ovvomwaa to v and wvuu 18 mnuv.
tion in general, There even exist examples of simplicial poly- (4)
Since P, is an interior point of io it holds
topes for whioch an optimal triangulation is possible of course, (4) = 4) =(4)
] _ 3 io n W, " 4 # . This means eo cannot belong to T, 1f T
but not by coning off.-Flgure J shows a pyramid in R” with a 4)
. . contains So . Another tile W of n#. being congruent with

, has also a non-empty lntersection with £m>u. because p,

D

1ies also 1n the interior of a facet of W. This is right since,

0

analogous to the wmapping of ﬁm»u wvoqo.,ﬁwmun exists a mapping
of the 4-cube, which also maps ﬂm>v onto W, Therefore Py is an

interior point of a facet of W. Thus (3011) is true.

mhirdly we propose for evaery vertex—true triangulation T of a

4-cuba that

(30411) k! £ 2.
(4)
o

Lat T be a vertex—trua triangulation of n» which contains ﬂ

Its facet 527 contains p, in its interior. iny other tile W
Fig. 3 of T, being congruent with mM¢u. also contains p, as an inte-

hexagon mw.m.u.+.w~mu.mu the base and the vertax O as the apax. rior point of a facet of it. Thus ﬂm»v and all possible ¥ must

Coning off this pyremid to nwm vartex 1, we get a decomposition have the same facet mauu. This means, there exists besides

into four pyramids with apeX 1. The facets opposite 1 are tri-~ mM:v at most one further W so that wm "2,

wumwnm.vupnwmno&onnﬁuhu uooosbomuﬁpoupmwnwuwumcwwn»on. ewc ewcmcwwuoceﬁowom»npouu AuOH.HH.HHHu m»<oo m~w.+ M.
- ~ o
Hoﬁut@ﬁo:ﬁ. T.m.u.o“_ ’ T L.fou ’ Tl.w.ou. and Th.?&, and this 13 (24¢). Thus lemma 6 is Tcaﬁpn: proved. /

<2,

(o]

6
51



a body diagonal of the 4-cube called e and e, respectively.

Let £ be a map, which maps the 4-—cube in 1itself so that the
body diagonal ¢ is ripped onto e . Them by £ D 1s mapped

impv .

[
onta uc and also ¥ onto

4

The body diagonal e = (((0000), AA;&&VE ou"woauochpm

orthogonal to the 3-tacet s(3) of nm¢v ,

) 0111
3 1011
7= li101) -
1110
Because of a uugonuwo position of the configuration aoocﬁn

Gv mmmm ?v
5020 n 1ts oentzoid (§ § 7D+ The length of e 0¥ H1s w.
This can also be sesn by considering the equation of the hyper-
plans through mnuv. which is represented in Hesse's normal form
by -

W.Coululnlnvu 0

Thexeforse P, = nwm Wm.u 1ies in the interior of im#v .

Secondly ‘we propose for every vertex-true triangulation of a
4—cube that ;
(3014) - K= 1—> mW = 0.

amely, the centroid P, of o» is a boundary point of am.C. and
nore exactly, Py liea in the interior of the facet of mm»v
represented by

0000
« | 0011 .

1101
1110

le ses this in the following way. Let w, (4=0,1,2,3,4) be the
rextices of -I'MC. L (0000) , w, = (0011), w, = (o0111),

&)

1y = (1101), w, = (1110). Then thers exists exactly one repre—

0

This is an optimal triangulation. - Figure 4 shows a simplicial
polyhedron in B> where an optimal vertex-truetriangulation can
not be attainaed by coning off. This convex polyhedron P is con-
structed from a regular tetrahedron. To every facet of that
tetrahedron a suitable pyramid is glued. The Schlegel diagram

of P is drawn in figure 4 with 8 vertices, 12 facets, and 18
edges. There the numbers at the vertices denote the degree of
the vertices. There are four vartices of degrea ) and four
vertices of degree 6. To get a triangulation with as faew simpli-
cas as possible, we choose a vertex with degree as high as

possible, for example vertex v, (cf. figure 4) with the highaest




degree. Then coning off to v, we maw 412 — 6 = 6 simplices.
Coning off P to any other vertex, we get at least 6 mpswwpommﬁ
since 6 1s the highest degree of the v.rtices of P. But ’
after first cutting off the vertex v,, which ylelds the two
polyhedra P, and P, Amg is a simplex, P, is a polyhedron with

7 vertices and 10 facets), snd then conming off P, to v,, wa gat
1 + (10~-6) = 5 simplices. This is a smaller number than in the
case of the previous decomposition and therefore for every
possible ooning off of P. By the way 5 1s the wsmHHmmn possiblae
decomposition numbexr for a polyhedron in wu with 8 vertices.

1.4. Mixing the two last methods

As can be seen in ths simple example of figure 4, we obtain
a smaller decomposition number in cartain cases than by only
using coning off. For example, let v be a vertex of degree x
(2d) in a simplicial polytope perd. Cutting off v by a hyper—
plane wo may be possible. Let p be the minimal decomposition npum-
ber (vertex—true) of the (d-1)-polytope P' = Pnh, and lat
\£ £ A~ be a vertex of P but not 1in ro. Ve consider the simpli-
clal polytope P, = nou<A<o.<4.m.u. Coning off P to v, we get r
simplices. As the minimal decomposition number of P' 1s p we
get not more than 2p simpllces by cutting off Yo and then oconlng
off to v and v, respectively. Sinoe p £ r - (d-1) we can com—
pare these iwc methods: In P first cutting off v gives less
simplices than coning off P to v if 2p £2 +2r -2d<zr. This
yields x <2d~2 for d> 2. ~ Especially, in a simple case we can

-

establish.

8

Fhe five vartices (0000), (0011), (0111), (1101), and (1110)
of mm+u cannot be gut off by simplices. m%xo has five edges of
Hnumnw.<m. being body awwwouwwu of five diffaerent facets of
the 4-cube. Therefore at least 5 facets of the »lotvo are unot
decomposed in the manner of (13). Since the 4-cube has 8 fa-
cets we have Lk} £ 8-5«3. This gives 2k + k! + K} €5 and
therefore all the more (24b) must de true. We note that for
ﬂw = 1 or Mm = 2 and ky = 0 in both cases f@ even have

2k! + k! + kj £ 4, sinoce ?E tiles of T being congruent with
mmav must have a spacial position. We shall show this below.
If ki = mw = 0, thon all 8 facets of the 4-cube can be tiled

in the manner of (13) so that kj £ 8. Thus (24b) 1s absolutely’
true.
Finally we prove (24c). First we assert that for every ver-

tex-true triangulation of a 4-cube}it holds

(301) nmm?

It suffices to show that the midpoint P, of the 4-oube is an
interior point of :M+v. For another tile W of n». being con-
gruant with tm&u , then contains P, @8 an interior point too,
because there exists a mapping of the 4-gube in itself whioh
maps W onto imau. We can sea this, if we compose .m
- w8, ¥

b% £o V] m° with

0111

1011

mmcn 1101 | .
: 1110

1414

W 1is to compose with a corresponding Anu»swwaw S, so that

D: =WuUS and uo are congrudnt.Both Uo and D contaln

49



opposite facet (with x; = 1) has at most 2972 putually non-

neighbouring vertices. Vertices of the d-cube being mutually
non-neighbouring and lying in a facet of the d-cube are also
mutually non-neighbouring in this facet and vice versa. This is
true in view of the definition of neighbouring vertices. There-

fore the vertex sst V of the d—ocube has less than 2.29-2, d-1
vertices. Only <o and vV, are sats with mmlJ putually non-neigh-

bouring vertices. This proves lemma 11.

By the way, for a d—cube the maximal number of vertices be-
longing to the set V of mutually nsighbouring vertices whioh
contains a vertex w €V, and a vertex w, eV, is ananlv. We got
a corresponding vertex set by adding a vertex w, to <o and can-

celling the d vertices of <o being neighbouring to Wye

To prove (24b) we considsr a vertex—true triangulation T of
the 4~cube containing at least !m#v or mﬁavmoh. (19)). First let

sm#u be a simplex of T and k} = 1A ww s 0. Then the five vertices

(0000), (0141), (1011), (1101) and (1110) of sﬁtamgoﬂ be cut
off by simplices mu. The simplex sm>u has four edges of Honmﬂu.<MM
Bach of these sdges i1s a body diagonal of a facet of the 4-cubs,
which is a 3—cubs, having (0000) as a vertex. These facets are
mutually different. Therefore at most 4 facsts of the 4-cube
(having ngméév as a veartex) are decomposed by T in the manner

of (413).Thése facets oocdeJ a tile of volume W. Thus for this
triangulation we get w; £y, Together with the above

values we have 2k' + K+ W* £ 6.
o 0

£

Now 1lat m.mt be a simplex of T and k! = 0A1 ¥ k! £ o,

48

Lemma 1. Let pep? be simplicial (a>2), v be a vertex of P

of degree d and \# be a vertex of P not coonected with
v_ by an edge and in P of maximal degree .2 d. %nen

o
coning off P to any vertex of P does not give an op-

timal decomposition of P.

Proof. Let P have f facets ((d-1)-simplices). Dy coning oIl
.w to vy we get a decomposition into mnué mchwpmmm. By coning
off P to any other vertex the decomposition number can not be
smaller because r, 1s the maximal degree of the vertices of t.

By first cutting off A and then coning off the rest polytope
to v, we get 1 + (£-(d-1)) ~ry = £ -1, - (d-2) < f-r,, for
d>2. This proves lemme 1,

2. Optimal triangulation of a d-octahedron

(regular) d-octahedron (4 * 2) has 2d vertices and 24
facets. Bach facet is a (regular) (d-1)-simplex. Two of the
vertices are called opposite if their midpoint 1s also the
centre of the octahedron. Bach vertex 1is touched by exactly
23~1 facets. Therefore the degree of every vertex is 201, By
coning off a d-octahedron to an arbitrary vertex we obtain

20.58-1_54-1 (4nn11ces. ALL these simplices are congruent.

Gach of them contains one adge which is the link of two op-

posite vertices of the octahsdroun. Bach other edge of this
simplex coincides with an edge of the octahedrou. As the d-

octahedron is regular, these edges are of equal length, say a.

The only edge that contains the midpoint of the d-octahedron

then has length pJéM.meH a vertex-true triangulation we have



emma 2, Bach vertex—true triangulation of a (regular) d-octa-

hedron consists of exactly Nm|a congruent simplices.

fey

rroof. Let O be.a d-octahedron., For & = 2, lemma 2 is trivial.
Therefore let d> 2. For each vertex—true trizngulation T of O

we now can show that every simplex of T has exactly wSO facets
in conmon with the” surface of O:

A sioplex of T contalns exactly d+1 vertices omo.non<mnmm~w.

arbitrary d+1 vertices of O which are not in a hyperplane form
a d~simplex as their convex hull. Bxactly two of these vertices,
say v, and Vor must be opposite vertices of O. Otherwise these
d+1 vertices would lie in a hyperplane. Bach of these opposite
vertices vy wmm <w form together suﬁw the other d-1 vertices
(unequal to vy and <NV a facet of 0 and of course a facet of
this simplex. Zach other facet of that simplex contalns both

v, and v, and therefore the centre of O. It is not a facet of O,

1 2

because the centre of O does not belong to a facet of 0. There-
fore the interseciion of the simplex and num surface of 0 con-
tains mxwoﬁww.dio facets of 0. dence, every simplex of T has
exactly two exterior facets.

In accordance with the above description these two axterior
facets are neighbouring ones in O. All the simplices of T having
two exterior facets, which are neighbouring ones in O, are

a:ﬁﬁmpwmooumncmun. because O is raegular. If the distance of two

opposite vertices of O is 2 the volume of each such simplex is m_.

~ d
For O we have the volume Mﬂ . Let k be the decomposition number

of the vertex—-true triangulation T. Then comparing the volume

10

This 1s trivial for d = 2. There do not exist two non-neighbou-
ring vertices v, € <o and w, mf' because in this case two verti-
ces, the one of V_ and the other oume of V,, are always neigo-
bouring. Wmu dimension d = 3 the two vertices Y and iy must be
opposite vertices (being the ends of a body diagonal of the

J-cube). Namely, the vertex LA has three cmumwuocupsm vartices

belonging to <A. There are exactly 4 vertices fornming <A so that
only that fourth vertex of <4.:¢mw=m opposite to W can be Vg

ecmu L mca v, wm<m w.u nmumumwco:nwcm<mnﬁwommmua»wmmmmHm

together with LR and w, all the 8 vertices of the 3-cube, so
that such a vertex set contains exactly two vertices and does

2

not have 2° = 4,

llow we can prove lemma 11 by Hum:on»ocmWﬁHOmm d> 3. Since
the d-cube has Na vertices and Wy Wy and their naeighbouring
vertices are altogether 2d+2 vertices there are
2% _ 2(d+1) (> 0 for d>3)

vertices left. Therefore there exists a further vertex sm being

non-nelghbouring to LIS and to Wy and w.l.o.g. szm<o. assume v

and w, are non-opposite vertices (that means, there exists at

least opme coordinate which is the same in v, and 1o aav. If they

are opposite ones, choose instead of W the vertex 2w. Thus

w.l.0.g. w_and w, are non-opposite vertices, ewmﬂmmoummwmmﬁsm

o
w.l.o.g. w_ = (0...) anad W, o= (0...). Then there exists a (d-1)
facet of the d-cube contalping LR and Wy this 1s in our case
for instance the facet with Xy = 0. issume inductively for this
facet, that the set of mutually noun-neighbouriung vertices, con-—

taining also LIS and Wi has less than malm vartices. The
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oo the vertex v belongs to S, ) consists of
{ryrmayreeema b 3, "eLone I
n view of lemma 7

vertices being mutually non-neighbouring. I

every such simplex mu has exactly 4 edges being also edges

k
of nm.

Hence, by lemma 7 and ljemma ¢ these p simplices have alto-

gether p-d differsot edges with the d-cube in common. Since
the d-cube contains .21 edges, it holds
ped £ d.2%1 or p £ 241,

and this proves lemma 10.
P

Specifying lemma 10 to d = 4, we sese the truth of (24a).”

A more exactly mmmmu«uon on tha position of these simplices

with d exterior facets being tiles of a possible triangulation

of a d-cubs will be given in

Lemma 14, In a vertex—true triangulation of a d—cube the maximal

number p = 29-1 of simplices with d exterior facets
i
is only reached, 1f the set of the corresponding ver-—

tices each bslonging to these simplices is exactly one

of tha two sets 1
1) v, u.AMu v = ANA....,xav> mw X

d
A1)V, = A: v = Qt....uav\,m x,

L]

0 (mod myw

(29)

L]

1 (wod NNV.

0f course, the vertices of <o are mutually non-neighbouring.

The same is true for the set V,. Further, we have V n v, = g .

Proof. We show that a set of mald vertices of the d-cube can-

not mHB:w»Wnaocme contain a vertex 1omm<o and a vertex sAmm<4 .

46

of O and the congruent tiles of T we havae

d .
L2 2 - od=1
k T~ 3T or k =2 »

so our proof is complaete,

Now consider an arbitrary (n>t necessary vertex~true) tri-
angulation of O. Then from the ma facats of 0 at most two ones
(or parts with interior wo»nan.om them) belong t~ each simplex
of this triangulation. To show this we considsr an arbitrary
simplex wo of this triangulatiou with at least two exterior
facets. Then there exist two facets m; and Hm of 0O each con-
taining d vertices of mo. bmn.ﬁ<4.<m.L...<n+av Z vert mo and
w.l.0.g. ¥, ¢ f, (j=1,2) so that *<m.<u....~4a+4v c f, and
Aqf,\u...:.«miwnmm . Then we have ﬁ<u.<#....<m+ﬁwn f,n 1, .
This shows, mg and mm ire neighbouring facats of 0, and the
open segment “w<a.4m=“ 1ies in the interior of O. Then any
facet of S _ which does not lie in f,Uf, contains the edge

%<4~<NE with inner points of O. Hance all facats of mo.mxl
capt those two lying in HA ox Hm ara interior facets. Thils 1is

ths assertion given above.

Let k be the decomposition number of that triangulation.

Then the property that each tile can only havé at most two

exterior facets implias 2k ® 2%, This gives k 2 297, Equality

only holds if each simplex of the triangulation possesses
exactly two (neighbouring) facets of the octahedron 0. Then
this triangulation is vertex-true. In the other case wé have

K> 281,

Thus we can aestablish

11



rheorem 1. The simplexity of a d-octahedron is 277,

In addition to a vertex—true triangulation of a d-octahedron
in the last considewations we found the

Corollary, Let S be one of the 241 congruent simplices which

arises with the help of triangulating a d-octahe-
dron O by coning off to a vertex. Hach arbitrary
vertex—true triangulation "of the d-octahedron O

can be attained by composing O with 291

Remark 1. Theorem 1 remains true for a not necessarily regular

nl&bwunowa which 1s combinatorially . equivalent to a-d-octa-

hedron.

Remark 2. The possible triangulations of a (regular) d-

octahedron without extra vertices are not all isomorphic for
@d>2., For 4 = 2, the 2-octahedron is a square. Ouly two tri-
angulations are possible, namaly, in either case, by ons of
the two diagonals of the mn:wno.4mrﬁ both triangulations are
essentially the same triangulations. Triangulating a d-octa-
bedron in dimension d ¥ 3, we get at least two kinds of mocu
isomorphic triangulations. The first kind 1s attainsd by
coning off the d-ootahedronm to an arbitrary vertex. The second
kind can be constructed in the following way: Let v, and v, be
two opposite vexrtices of the octahedron O. The hyperplane h
through the other 2d-2 vertices cuts O into two pyramids Py,P,
with v, or v, as wmmw. respectively. Leat qu.<»m-m<u # <#v

be no opposite vertices of 04 Coning off w; to £ and coning

4 .

novy)

12

simplices S.

mn<uu = v, = (00...0) and

£(vy) = v; = (31...1100...0) .

r times

‘'The simplices belonging to v _ and ﬂH. respectivaly, are wo

_ [0
and muu
0114 ..4100 .00
. . 101, . .4100., . .CO
10....0 B 111...1000. ..00
5, = . . 5, =| 111...1100...00 .
TR AAA.Q.AA\_Ooo-OO
O-.-OA esvescssncsove

1144..1100...10
114...1100...01

mmnca.ocww for r = 2 these two simplices bave vertices in com-

mon, more exactly
- gﬁéo...ov.mvoL..ova , ifr =2
(28) 5,0 S4= _

g , 1t r>2.

o}
N
But the edge HAAO...OV,AOAO...OVB is not an edge of the d-cube;

it 1s a diagonal of a mo:NWm. Therefore in any case T W.N. these

-two simplices do not contain a coumnon gedge which is also an

edge of the d-cube. Since also =1 45 a mapping of the d-cube
in itself, also w“.wun mH have the same property, and this 1s
lemma 9.

These lemmata lead us to the important

Lemma 10. In a vertex-trus triangulation of on there are at mosi

29-1 simplices, each with d exterior facets.

Proof. By virtue of lemma 8 and 9, a vertex—true triangulati

of oa contains only simplices mu y S ...._mu for which the se

13 P
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O0vecesl 00.4es..0
10....0 100....0

mo = 010.4.0 |y m; = Aaoo..“o ’
Ouvse01 10....01,

belong to these vertices Vv and vy, respactively. How we show
P, = «14; lM-....le is an interior point of S and S,: The two
wqwmuwwwumm o:&npum off the vertioces v, Awuo.év have the equa-

tions (represented by Hesse's normal form)

d
-‘
H, = &Mn;l MMM Huv = O with respact to v,
Hy = lIAHA Nuv = 0 with respect to v, .
Va 3=

The interior of the d—cube 1s desribed by 0<X,< 1 (J=1,000,4)
and the interlor of S, 1is desribed by oA“NuA 1 (J=1yeee,yd)n > 0.
The point p lies in the- interior of the d-cube, and from each
of tha two hyperplanes it has the orilented a»memuomeﬂmwvnv 0.

This proves lemma 8.

Further, for vertices being non-neighbouring we have

Lemma 9, If A\ and v, are different vertices of C, (a 2 2)
being non-neighbouring, then the intersection muD mH

does not contain an adge of nm.

>roof. A consequence of the definition of vertices being
yeighbouring is that the link e of the vertlces <u and vy is
10t an edge of the d-cube, Furthermore, e = Hqu.<ﬂd is a body
liagonal of a suitable r—-cube. For thase non-neighbouring ver-—
yces the length of @ is\VT, r&Naxr>1. Then there axists a

bijective) mapping £ of the d-cube in 1tself with

~

off P, to v, gives 292 gimplices in both cases., Taken toge-
ther these are anA.mﬁsuwpomu and they represant a nnpmnmzwwl
tion of O, .

Similarly, ws can interprete tha triangulation in the pre-
vious case (first kind) by coning off mg and wm to the samse
vertex, for example <u. In dimension 3 other essentially

bwp

different cases than nrmmm \&WMm are not possible. We can
see this in the following way. HUm method used here 1s trans-—
ferable into arbitrarily higher dimensions. Interpreting the
3—octahedron by its dual, the facets corraspond to the verti-
ces of a cube. In an arbitrary. triangulation of the octahedron
two exterior facets belonging to ona simplex have exactly one
common edge which is also an adge of the octahedron. In the
cubs the two vertices corresponding to meua two facets ars
1inked by an edge of the cubs. Therefore we have to ssek all
wowmpcpwpﬁwmm to divide the 8 vertioces of a cubs (cf. figu-

res Sa and 5b) into 4 palrs where every pair is linked by

Fig. 5a Fig. 5b

13



an (fat) edge of the ocuta. Let __U.m_ be the first pair.

Then for vertex 3, only hu.xu or ﬁu.&u are possible. In the
first case, there can be ﬁu‘mu mun.ﬁq.mu or ﬁm.mu and ﬁm.&u.
In the second ocase, only hu.mu is possible and then ﬁa.mu .
But this is combinatorically the same as the last case. In
this second case ﬁu.mg is not possible because the remalning
vertices 4 and 6 are not linked by an edge of the cube. There-
fore there are only the two essentially awmmmumnn possibili-
ties drawn in figures 5a and 5b. The first one leads to the
decomposition of the 3-octahedron by coning off to a vartex.
awm onumn one corresponds to tha triangulation of ﬁwm.moooua
kind. In dimension d@ >3 there are more than two esssntially
n»&mmnnnm possibilities of vertex-true triangulations. In
figure 6 we sea all the six essentially different possibili-
ties for the dimension 4, 1llustrated by the dual 4-cubes.
Phexe, every 4-cube desoribes a special triangulation of the
alooﬂmwopuou. In such a cube 8 fat edges link 8 pairs of
rertices. Every pair ocorresponds to two facets of the octa-
edron in that triangulation. These two facets have tha
ropexty thdt” their intersection is a triangle. This means
hat these two facats generate a simplex of that decompo-

.o
e -

iition,

). Remarks on optimal triangulations of a d-cube

}.1. Known results
In this chapter we anslyse known results and hope to giva

juggestions Hou.mcuﬂuau investigations. Bssential results to

4

Conversaly, 1f S is a simplex of a vertex-—true triangulation
of a d-cube with 4 exterior facets, then there exists a wu (and

a <uv with S = S, . Namely, w.mwsbwmx with d exterior facets of

a vertex-—-true ﬁnwmnmswwﬂpos possasses a vertex v ow.ammuom d,
boing the intarsectioun of thase uxterior facets and beiung the
endpoint of 4 (exterior) edges., Since all facets through v are
exterior ones and since the triangulation is vertex—true, thecs
d edges have length 1. Thus there exists a vertex <g of the
d-cube coilnciding with v, Then the d exterior edges of the siw-
plex having <u in common must colhcide with the edges correspon-—
ding with d of the d-cube. Hence S coincides with mu. since the
other AWV mnmmm of S havse Hmnmav.<mw they caonot be edges of the

d-cube. Hence we havs

Lemma 7., Let vy be a vertex of C,. Then C, aud Mu (balonging to

<uv have exactly d edges in common.

Continuing the proof of (24) we need further lemmata. For two

simplices balonging to two vertices being neighbouring we have

Lemma 8, Let <u and vy be vertices of on being neighbouring.

Then mu and mH..cmHocchm ﬂo <u. Vi Hmuvm0ﬁ9<qu.wm<m

interior points in common. .

rroof., It suffices to consider the two vertices v = (0...0)

and v, = (10...0), since there exists a mapping { of the d-cubs
in itself with mA<uv.u v, and mm<~u = vy Vv, and v, are neigh-
bouring vertices of the d-cube, because gﬂ<o.<w— is an edge of

oa. The simplices mo mua mA zweuamxﬂmnwoummomnm~
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four exterior facets and 8 have one axterior
face’ (containing a Nuv. Concerning the mutual

position of thess simplices there exist 6 essan—. °
tially different optimal vertex-true triangulations . //

of a 4-cube.

A nor—optimal vertex—true triangulation of a

Theorem 3.

4-cube consists of at least 17 and at most 24

simplices. There are such triangulations with 17

’ and 24 simplices.

Now it only remains to show the validity of lemma 6:

(24a) is a oonsaequence of a more general result for the . : “V 1HN/// .V

d—cube Aou.ﬁumu.v. We will show nw»u.uwhmo¢ww.

Jnm:ndmoav is called being neighbouring to v,€ <mnomoav/m«wuu
&> There exists an edge of C; which links v and v, . ‘ \

Otherwise v, and v, are called non-neighbouring.
nléu be a vertex of the d-cube. Then the

Let vy (J=20,1,.0042
convex hull of \f and the d vertices, being neighbouring to Vg //

is a possible simplex of a vertex—true triapngulation of the

d-cube. This convex hull i1s a simplex, wa oall Hwhmu . mu also

arises by outting off the vertex <u in ths d-cube by the hyper-

plane through the d <cnﬁ»omm baing neighbouring to qu. mu has d

,auaouuon facets sinos evary vertex of the d-oube has degree d.

This can also be mmo#eq considering the ocoordinate matrix of
contains d edgaes of the d-cube having langth 1.

S,. Tharefore S,
have length 2. So in a S, the vertex :
Fig., 6

J -~
All thes other adges of mu
vy 1s uniquely determined. Thud we say Sy and vy balong
nowoﬁrau rputually.
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/ this topic are from P.S. Mara ﬁmu J.F. Sallee _Huu
and W,D. Smith ﬁuau . Already for d = 5 the question for optimal

vertex-true triangulations of a d-cube uwm been open up to now,

Let T(d) be the decomposition number of an optimal trian—
gulation of a d-cube. Then we have the following
Lemma 3. For d 2 1 it bolds, _
2971 £ n(a) £ p(8)
with »
P(d) = 2q _ ma_ + n_m 14 + mé_ + 557 + wae

m
euet m|A

There exists & better lowexr bound attained by studyicg
Hadamard's ?aogga Hbopcﬁ..,_.«&ﬁom. ﬁuu_ ’ _M+H_ ). But for
our purpose that bound in lemma 3 will do.

Proot. For the lower bound we first see that

€)! o(a) ¥ 2-7(a-1) (@2 2) (ef. [4] ):

A d-cubs Cg4 (d 2 2) tas 29 vertices and 2d facets, each facet
is a (d-1)-cube Ciq " It is

(2> T(1) =1, 1(2) =2, and T(3)> 4.

The first valus of T(d) for d = 1 can be trivially obtained
because & ;rocum and a 1-simplex are both segments. The
second valus for 4 = 2 Howwosm from triangulating a square ON
by nnﬂtpmm a diagonal. The last inequality for d = 3 1is right
because a J-oube has 8 vertices. Namely, a decomposition of a-
d-polytope with n vertices without extra vertioces into simpli-

cas as few as possible needs dx1 vertices for a first simplex.

16 -

3-simplices, described in (13). Thus the sur‘ace of the
4~cube contains 8+5 = 40 3-simplices. Because of ki = 8,
already 8 simplices (with axaotly one exterior facet each)
are known. Then there zemain 40 - 8 = 32 J-simplices in the
surface of the 4—oube; they balong to 4-simplices of tha
triangulation ww<wnmww¢ least ona exterior facet. Therafors,

1t'holds with e Xy - K
(26) kg o+ 2, ¢ Bky 4 4k, = 32 .

" 5ince (22), with s = 16, k = O, ww = 8 we have

. 3
n Ktk +ky+ k- 8 .
Hence, multiplying equation (27) by 4 and subtracting equation
(26) from this result we deduce

| 3G + 2ky + kg = O or Q- ky = kg = ow.
Thus we have the only value w» = 8, raealized by example 1.
That means, the minimal decomposition number of a vertex-true
triangulation of a 4—cubs is 16 with the only possible set of
simplex numbers (unequal to Z8T0) wé a w* = w» = 8, To dater-
mine the essentially different reallzatiouns of this solution
we first cut off 8 E:w:ﬂwwu :onlucpmwuocnpum.<mﬂnwomm AW> = 8)
of the 4-—cuba, This procedure generates a truncated 4-cubse N».
which is a 4~octahedron. Since, a3 shown ahove, this octahedron
can be optimally triangulated in 6 assantially differant ways,

we can establish (cf. also ﬁg uv

Theorem 4. An optimal vertex-true triangulation of a 4-cube

consists of 16 simplices; always 8 of these ounds ..wu
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As a consequence of lemma 5 we see that the maximal decom-
position number of a vertex-true triangulation of a 4-cube is

24. Our example 4 ig a realization of such a triangulation.
How we ask for the minimal decomposition number. Table 2
mrosu that the minimal decomposition number cannot be greater
than 16. Bxample 1 is a realization for this decomposition
number, To find the Bpu&&Mﬂ decomposition number we first

gstablish assertions on the simplex numbers of (23) in

Lemma 6. For an arbitrary vertex—true triangulation of a 4-

cube it holds *
(a) kj £s8

1}
(@]

8 for mwm + Mm
(24) (B mwm+Wm+w4 £ 6 for 1% 2k! + Mm

Y
1

l(m
(c) 0 £ kS 2

Before we prove Hmasm 6 we show that its results lead to an
assartion on the minimal decomposition number of the 4-cuba

under vertex—true triangulations. Hence, from (23) and (24) we

cbtain -
24-8=16 for wwm+wN = 0

(25) 24¥s=24-(2kf+ieq k) 3,54 6 4p gor 12kt 4k 1 42,

In the case of equality, s = 16 and s = 18 1s realized by
examples 1 and 2, respectively. Since (24c) and (25), the
minimal decomposition number cannot be {less than 16. If
8 = 16 is true, according to (25) and (24b) we see that
k! = k! = 0 and kj = 8. Therefore, in the surface of the
4-cube there exist 8 u|w»sbwﬁmmm of type Nu.

Hence, _mwow of the 8 facets of the 4-ocubae is decomposed into 5

+

40

Bach of the ramaining n - (d+1) vertices gives at laast one
new polytope., Tharefore the dacomposition number for an opti-

mal triangulation of this anonnowo 1s not less than

) 1+n-(@+H)=n-4.
Using (3) for C we get T(3) ¥ 8 - 3 = 5. 4‘w.w~w
Triangulating the cube on gavery simplex mm this Vaoosvomul
tion has at least one side in .the inner of the cube, Bach
of the 2d facets C, 4 of the cube is decomposed into at least
T(d-1) (d-1)-simplices, Than the surface of the cube 1s de-
oomposed into at least 2dT(d-1) (d-1)-simplices. At most d
of such (d-1)-simplices are exterior facets oméw aLwMvaoH
maU»cu triangulates orn d-cube on. Therefore every d-cuba is
decomposed into at least +-2d- T(d~1) = 20(d~1) a-simpli-
ces; this astablishas (1).
The general solution of (1) 1s 7(d) ® oomn. c,€ B. If

for the initial values we require

12 2(1) = o - 2" ani
2= M(2) = o+ 2°
wa get in aeithexr case 0, = m « This yialds
(4) o(a) 2 247 (a2 1),

.

Comparing (4) and (2) equality in (4) 1s true only for d = 1

and d = 2,
For the upper bound P(d) J.F. Sallee gave a recursion

formula
(5)  P(d) = dP(a~1) - a-2972 4 2% g4 (a>1)
(6) P(1) = 1, B(2) = 2. |
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mowqpnu nwu woaownnoocn part of the linear equation (5) we get

A muoo»ww solution of »wn glven pnwosomuunocu on:hn»ou@nwV is
- | s} -
2 - 2°-1 2 -
P, (a) = 2% + a1- A ' i L T eee nlé

Using the lnitial values Amv. from the general solution
whnu + P Amv we unoouan i
1« P(1) = ° +2+ ||d4l and

Nu,m@V..No + 22 +~n4| _v.

ewanohon. in both oases holds %, m . This leads to

a -1 . 2°-1 ¢ 22yd-2

+ dl- Amo_ + 57 . L+Q|d|

given in lemma 3. From (8) wa also obtain the asymptotic for-—

,ﬁmu mnnv-|mn_+~

mula

(9) P(a)~al - (1eP~e-]) Cot. [4]-

The proof for P(d) 2 7(d) runs as follows, very clearly de-—
.-ouuwo.a ubﬁ.»..._ (cf. also _Huu ): Let Cq (d 2 3) be a d-cube
with edge length ona, For every vertex v of on it holds that
.okwnnwu d edges end in v and exactly d facets touch v. The
triangulation of on , which is now described, may give P(d)
.d-simplices. Of course, then P(d) 2 7(d) 1is true, Trunca-
ting n&o,o;da on in a uvMopww kind we gat the d-polytops Nm.

d da-1

by ocutting off m. 27 = 2

we obtain 2 vartices of oa in

d
the following way. We lay on into an Buclidean coordinats
system so that one <mnwnu v of on falls into the origin and
each of the d vertices, connected with v by an adge mnr»mwl
bouring vertex to <ou coincides® with the unit point of a

18 .

that there arse ouwo«wunonwuvnuuno types of uwswwpeou uw#ow do’
not have volume |N

(1)  simplices of nuua tﬁav Ano sxterior facet; volume Wv.
(1i) simplices of typs QA#V (no extarior facet; volume *Wu.

(111) simplices oH &«wo cﬁau or caav (ona exterior facet :wHor
V\.

is a Num volume 4» ™~ & ﬁﬁcﬂvﬁuv acc.ﬁ w el oses

In an arbitrary triangulatioun T of n» let kg, w*\do the -
pumbers of simplices belonging to the types (1), (11), (411),
respectively. Further, for T lst Jv 0(§=0,+.+,4) be the numbex
of nwwom with j exteriox facets. &s the volume oﬁ the 4~cube 1s
1, then we can write A

) .
(21) Nlmﬁcnoimm + 2k + (kgtif) + ke + kg + i, ]= 1

Let s be the decomposition number of T with

(22) Wm w ’

J=0
then from (21) and (22) we obtain
Leuma 5. For an arbitrary vertex—true triangulation of a 4-cube

it holds
(23) 8 = 24 — 2k} - k} -k} .
For our four examples considered above wa find the oorresponding

simplex numbers in the following table 2.

Wo w; Km Wu w» Ww mw w¥ 8

‘example 1 - 8§ - - 8 - - 8 16

axampla 2 1 4 6 - 7 1 - 4 18

example 3 - 7 3 - 1 - - 117

axample 4 - - 24 - - - - - 24
Table 2
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second cass together with the vertex AAAQOV there lie 36 sim— coordinate axis. Then the coordinates of every vartex of Cq

: : are . .
n facets of the 4-cube; 2, 4, and 2 are congruent with v
plices 1 3 2, 4, an . (10)  (xq9XpsXqrevesXy) o X; € Mo.aw (5 = 1,2,000,d).
W¢, W''', and W'''', respeotively. From the 12 remaining sim- N .
plices there are 4 always of type GM¢V; ﬂm&v. ﬁM#v.|.Hu the There are 2° possibilitles and C, has alsec 2" vertices so that

third case with vertex AAQOOM there arise no new types of sim- (10) describes all tha vertices of n@ and avery vertex corre-—

sponds to such a binary code of length 4. Now we consider all

the vertices of C, with

d
. . d .
: - . (i1) N x, ®= 4 (mod 2) .
/v Baoh vertex of C, with the condition (11) is cut off by the
. . , : erplane through nwo_umw bour dou&»ocL of v. The remain-
case (1110) case (1100) case (1000) hyperp -4 mw ing .
) . . ing body is called the truncated d-cube Nn. Nn has
! B . . . |
Fig. 13! ’ - -
. & ' W. mn - ma 1 vertices, 2d facets of type Nala and ma 1 simpli-
inat 1 nsiderations . 44 simplices have at ) ’ :
plices as onsc natorial oons rarto show simptie alal facets (for 4 2 3). In partiocular, Nu is & regular simplex.
artices lying in a faocet of the 4 cube, 6 simplioes .
least four vertloss lying : ’ » Constructing Nm analogously wa gaet an edge. Now Nn can be tri-
e uent with W'', From the remaining ones 2 and 4 are of - .
Dw o“MMW MAAV & angulated into P(d)- 2d 1 simplioes. Each vertex of Nn does
. 1 da £1 e 13). -
type W3*) ana W3/, respeotively (of. table 1 and figure 13) not touch d facats (of type Z_,) of 2, and (2%7"-a) simplical
in facets . facets of 2,. Coning off Z., to an arbitrary vertex of Z,, for
4—oube LA ARN I AL I LR A ﬂo, bR LD exampls the vertax with the coordinates (0,0,...,0), we ob-
LIRS ﬁpuvn
case (1110)| = 24 6 |6 2 |12 |6 p(a) - 2% u ap(a-1) - 2872 + 2% - Q) .
case (1100) 36 2 4 2 4 4 |4 This gives (5) for 4 ¥ 3. But|since (6) holds, *
oase (1000) 44 S| 2 |4 (5) is also valid for d = 2. Thus lemma 3 is proved.
Tabls 1 . .
o - As shown wuo<a'lo have
Thus only simplices of types givem in (19) have no axterior . 4
Ly simp ypes & . . (12a) (1) = 1 = 2° = P(1) and
facets. This proves lemma 4.
P (12b) T7(2) = 2 = NA a P(2).

nouu»mnwpum all vertex—~trude triangulations of a 4-cube we sesé
i : Because of (2) wa get from lemma 3



22 = 4 <102) £ P(3) = 5.
This yields ;
(12¢) T(3) =5 .

Therafore mm optimal vertex-true triangulation is obtained

by dissecting O, into the 5 tetrahedra

<

‘000

014

: %3 7 101

ﬁguv 110
o 000 000 - 000 ) 011
(3) _ | 001 (3) 010 3) _ | 100 3)_| 101

sy =\otr)» S =|oar) 5577 =01 2 34T 110 )

101 140 110 111

vvh:\c%
where in these special matrices the lines denote the coordi-

nates of a vertex -of the nmﬁumwmnnon. The underlined coordi~
nates describe that vertex of the 3-cube, which is cut off by

the corresponding tetrahedron.

3.2. Special casgs

_ "First let us study all vertex-true triangulations of a
3-cube C, (with edge length one)., The optimal triangulation
given in (13) is attained by cutting off the four vertices
(o01), (010), (100), and (111). The corresponding four tetra-
hedra mmuv ’ wmuv s mmuv .\Mmuv are mutually congruent, exact-
1y 3 facets of each mMuv (J=1,2,3,4) ars exterior facets
(e.g. they belong to the surface of the 3-cube), and the

volume bm mmuv is m . Nu is the remaindexr polyhedron lying in
the interior of the 3-cube. Therefors no facet of Nu 1s an
exterior ons. Nu 1s a regular tetrabedron with edge

length V2'; its volume is w .

20

discuss these three cases we meuntiou that the following four

matrices W', W'', W''*, and W'''' have rank 3:

0000\ 0000 0000 0000

0001 0001 0001 0011
(20) w'= {0111 |, w''= | 1004 |, W'*r=| 0011 |, W*''a | 1001
1001 1110 1100 1100

1110 AREEE 1111 : 1111

(cf. figure 12b). That means the five points decribed by V',
Wrry WYttty or W'''tY respactively, lie in a rewmnwﬁwnm and their
convex hull has the volume zero. eumw ropressent degensrated
4~simplices. An innergeometric reason of these degenerations

(20) is that the three point sets

’

K

AAQOOOV,AOOOAV.moééoymoéé+v~méoooV.n;ooév,mAfAOV.AAAAAMV
{¢0000), (0001, €0010),(0011),,(1100)), (1101, (1110, (111)}
AAOOOOV.mooAAVV.AoAAoV.AéooAV.AgéooV.mééééMv

A

Em

iy

each 1is in hyperplanes. In these hyperplanes there lie 4,4,

L]

I

and 3 body diagonals of the 4-cube, respesctively. For lanstance
Eu is the set of vertices of a 3-octahedron and the hyperplane

through M., divides the corresponding 4--octahedron NA of ‘exampla 1

3
into two polyhedra, having Zu in common.

Now wa can consider tha three casas,

1o the first case with the vertex (1110) we consider the 56
possible simplices. 24 of these arising simpllices have an ex-—
terior facet., 6 simplices are congruent with W' and 6 simpllces
are congruent with VW'', Therefore only the remaining 20 simpli-
cas are of interest for us. From these ones-there are 2, 12,

and 6 simplices of type zmgv- aMAv.ﬂM#v raspactively, -~ In the
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301 802 %03 %04
841 %42 %13 %44
(ayy) = | 8y1 8y 823 8y ’

S\ 841 %42 P43
| . .
is the 4nonoahﬁb¢.>~.>ug>¢v with >u = mmw a4 (3 = 1,2,3,4).
S has no exterioxr favet, iff AA.PHA 4 for all 3§ = 1,2,3,4.
Wel.0.g. wa& oaD assume >¢ = 3, Namely, if »» = 2, wa map the

4~cubs by Tavwwpuuw Hm=<onnpoouvunrapnovvom»naouQumnwmd

means we change the values of the coordinates 0 —> 1 and 1 —> 0

(reflection on the middlepoint of the 4—cube). Then the image
of S i1s congruent to S. — Further, we can assume that a specilal
vartex belongs to S. Here we choose the vertex (0000). Because
of b» = 3, 1in the .facet with X, = 0 thers can only lie one
further vertex, For this vertex there are J essentially dif-
ferent cases, namely (1110), (1400) or (1000). Then in each
case there are A v possibilities to distribute the other "WHoo.

vertices in the facat of the 4-oubs with n» = 1.- Bafore we

’

-. L .:- ‘-.:

Fig. 12 b
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Another triangulation of ou can bs attained by cutting off 7

the two opposite vartiocas (011) and (100) and then coning off
the remaining polyhedron to (000). This yields the six tetra-
. hedra mmuv.mmuv.amuu.cmuv.<muv.qmuV with 5§?) fzom (13) ana

_ . 000 000

(3 001 3 001
'€)) 001 U577 = 1 ot0 ' <m.un 101 ’
(14) s3>0 = fot0) 111 114
EEEY
. 000 000
o) = [101] , P [o10). .
110 110
111 114

mhuv and mmuumum congrusnt (e.g. puoao»u»ov eéach having three
extsrior facets. aan and aﬁukun congruant (indirectly). Each
of them oounwwnm exactly ona exterior facaet, the volume of
unv is N . <Auv and <Auv ars congruent (indirectly). Bach of
nwas contains exaotly two exterior facets, the voluma of <muv
is N . Bash tetrahedron cmuv.cmuv.dmuu.<muv oou«mwuu a body

diagonal of.C., as an edge. In the case of this anwumzwwnpou all

3
these edges coincide., The decomposition number of this nnpwumsl.

' lation is six.

For a vertex—-true triangulation of nu thare exist exactly A
tiles of different shape, namely tetrahedra with j (3 = 041,2,3)
exterior facets, which are congruent with 2, (3=0), cmuVAuuAv.
<muVAuumv. and mmuvmuuuv. Now let us determind all vertex—true
triangulations of nu which are essentially differsnt na.m..nwmno

is no isomorphism, mapping one triangulation into another one).
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For this purpose we claasify the triangulations with respact
to the numbers wu of tiles having J exterior facets (Jj=0,1,2,3).

The 3-cube has 6 facets; each of them has to be dissacted

into 2 triangles. So the suxrface of the cube contains exactly
12 triangles. Then we have

o.wo + a.wg + m.wn + u.Wu = 12
) o 1 1, 1, 1., = 1
(15) - U-.KO.—WN.WA.*N.WN...NKU

wommo»;. Jm?.....&. ky k€N .
The w&nma squation follows from the number of the exterior
Hwom»m. the seoond one follows from calculating the volume of

7

the tiles and of the vhole cube. Because O & k = 1 (got by

" éombinatorical ooumwaznmapObmvﬂso have to distinguish two cases.

] -
1.) k, = 1. In this case we have
wa + N.WN + u.Wu = Am.

Ka + ww + Wu a 4,

(16a)

From (16a) we get

Wuu#.._.w..g
Because ky £ 4 we bave k, & 0. Hare there exists exactly ons

solution

(17a) ky = 1) ky = 0y ky % 0y ky = 4

2.) k, = 0. In this case we have

k, + M.Wm + u.wu = 12

1
x; + wm + wu = 6 .

That means, a non-optimal vertex—truae triangulation of a J-cube

(16b)

consists of exactly 6 tetrahedra,

22

Lamma 4., If an arbitrary vertex-truse mnuwumzwwnpou of a

4-—cube contains a sipplex S which has no exterlor

facet, then S is congrusnt with emav. ﬁmaV. mm»V.ou

ﬂmuv. having the vertex matrices
. /0000 0000
MR o111 OR 0011
o 1011 ’ o 0111 '
1101 1101 /.
1110 - 1140
(19) 1y
0000\ 2 0000 /
0011 _ 0011 \ '/
QM¢Vu 1001 | , smavu 1014 |
1110 1400 |V=
N1 /), 1101

: 11 14 1
me volumes of aVoWo four simplices arae B T3 350 3§
nmmvaoﬁ#<m~«.
In figure 12a the simplices (19) are represented: Their ver-
tices are embedded in a 4-cube and marked by a dot. Only in the
first picture the ﬂOﬁmHHw edge skeleton of tha 4—cube is drawn.

Proof. We say, in a vertex—true triangulation a simplex S is
of type iMAv (of type ﬂm#uv. if S is congruent with :m»vﬁooun
gruent with mm>uv. The volume of these simplices can be calcu-
lated by considering the determinants of the corresponding
matrices, divided by »$ . These determinants have the values

3, 2, 1, 1, respectively (apart from the siga). .We get the four

types by elementary combinatorics:

The column characteristic of the simplex S described by the
matrix mbﬁuu consisting of the coordinates of the vertices of S,

35



the 4-cubs has-apart from one edge which is a body diagonal
of the 4-cube (length 2),-two adges which are body diagonals
of a 3-cube(length Y3), and three edges which are diagonals
of a square(length v2). The remaining four edges are of
length 1 and generate the orthogonal edge chain of the
4-orthoscheme with the four essential dihedral angles, having
meassure 1, w. wf T . tence the reflections on four suitable
hyperplanes through one and the same body n»wmouww of the
4-cube generate the 24 4lonﬁwomouQsau being the simplices of

a standard triangulation of a 4-cube.

Generally, calrulating the volume of the tiles of a trian-
gulation of a d-cube, we see that thelr volumes cafn be lmme-—
diately »nmroﬂp<m~w determined _HH such a simplex has at least
one exterior facet and if we xums the volume w of such an
ox"muwou.mwom&. Then Hﬁm.<owcao is m. % . Thus we see, that
only new problems will ariss by the simplices with no aexterior

facets. Now in our case d = 4 we consider all possible simplli-

ces with no exteriox facets. Then we have

(8 O) i

34

From (16b) we gat

Ngnwu.
WN = 6 - mwu .
Because wn 20 by means of the seoound squation we have
£
Kuuuo

oouu»nmupnm.wu = 3,2,1,0 we see that there exist exactly the

following 4 solutlons

(17v) k, = 0, ky = 3, k= 0, ky=3

(17¢) . wo = 0, wA = 2, wm = 2, wu -2 . C o 7 Dl
A.,_.NQ.V —ho = On WA - A- WN - &.n WU = 1 D

A._.va . —no = 0, Wa = 0, KN = 6, WU = 0 o‘m.t..,”.f.‘

For every solution thexe ouwwwm at least ona type of realization
Foxr (17a) and A¢quu the realigation is unique up to isomorphio
mappings. For (17c) there are two essentially different ocasas,
namsly Aéqoua o:ne»nw off two opposite varticas shown by (14), o
Aaqouw o:aapum omﬂ two not opposite vartices (for example (011)
and (110) and then coming off to (000). in aither case. In each?
casa A;NQV;. (17¢),, (174), and (17e) there exist two subcases
analogous to the triangulation of a 3-octahedron (of. chapter 2,
remark 2). In one subcase all na»nwwanum. contalning a body
diagonal of the cube as an edge, rbqn all the same won« diagona:
in tha other subcase thesa edges are diZferent for at least
two tiles. For example the second case corrasponding to (14),
v$>ana v$?

completed by mwuv. 1s attained by substituting

through amuv and <muv wlth

o [ &8 oy [0
3) . [ 010 3), | 101
(18) U3 =ldo1] » V3% {410

110 111
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A triangulation of C, belonging to (17e) where all tiles for example

contain the same body diagonal of the cube as an edge is cal- 0000 0000
. ' . 4 0001 (4) 0001
led & standard triangulation of the 3-cube. vi®/= | 1001 and V3= | otot .
1101 1101
’ 1111 1411
A triangulation of the 3-cube causes a triangulation of .
& <m»v and <m¢v are (indirectly) congruent. By the way they are

he surface of the 3-cube. This triangulation of the cube sur-—
t sur 8 orthogonal-simplices (orthoschemes).

Bvary simplex of a standard triangulation is (directly or

indirectly) congruent with <m»v and has exactly two exterior

facats: ALl the J-simplices in the triangulated four facets

N
A o N 4 Y Zang ) of the 4-cube via standard triangulation are congruent. They

L o N L NN are orthogonal~tetrahedra (orthoschemas) with mn.oamm chain of
(17a) \ (17b)

o'l
L0\

length 1,1,1 (for example between the vertilces (1111), (1101),

(4001),(0001) ). The f£ifth vertex (0000) complates the 4-

orthoscheme with an edge being urthogonal to the concerning

|

: orthogonal—tetrahedron and having length 1. (In our example

3 p @

7 : this is the edge ;aOCQOv. AoooAMﬁ ). Therefore every such
Aaﬂovm 4~simplex is an orthoscheme with an edge chaln of length 1,1,1,1.

(17¢),

Thus this implies the congruence of the tiles of a standard

triangulation. - The two exterior facets of the tiles are thaesa

ones opposite (0000) and (1111). The first one lies in & facet

of the 4-cube containing (1111); it was used for coning off.

The second exterior facet lies inm a facet of the 4-cube con-

(179) - | (17e)
, taining (0000). We see this inductively because every simplex

of a standard triangulation of a 3-cube has two exterjor
Fig. 1 2-facets, 15»0&& in this case, are posed in a special manner.The
proof 1s a straightforward verification and is omitted,

Ve note that every simplex of a standard triangulation of
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face 1s assentially unique for the six oases (inclusive its

suboases) (17a), (17b), (170),, Aaqoun. (17d4), (17e¢). The .
corresponding nets of the cube surface are also essentially

As a third example we nots the m-u:ww aftexr cutting off the
same 7 vertices v, (J=9,y.00515) of C, 85 in the previous
axample, but then oonuum off to the vertex (1110) instead to
(0000) (of. the graph in figure 11b). We get a more symmetric
nnhhuhcwbn»on of the 4~oube into 17 simplices. From these ones

7 simplices have ope exterior facet and axe congruent with cm;v. circumscribed by a uawww cixole) and theu oone off to ona

unique. They are all drawn in figure 7. To get the correspon-

ding triangulation first out off the vertioes (in figure 7

vartex (marked by a uawww blaok squars). For the types n;qov;.

having qowsli.mum 3 simplices have two exterior facets. They are
. néuouw. (474) and (17e) the other one of the two possible
o 0000 0000 0000 ? ] :
) 0001 4) 0001 (4) 0001 subcases can be oonstructed, if one suitable half of the
0010 |, d.q = | 0010 | 4, Vig'= 0100 ’
0100 1000 1000 remained truncated polyhedron is coned off to that vertex, in
1110 1110 1110/ - ° -
_ @) figure 7 marked by the small black squarse, and the othex half
and are mutually congruent, but they are not congruent with <w ]
» of it 18 coned off to that vertex, in figure 7 marked by the
(meither they are congruent with & later one which will be de-
AAV 1 small black cirole. For example such two oorresponding sub-
noted by V3 ); their volume 13 37.3 7 simplices have 4 exterior . - )
@ cases of AéqovA are the two triangulations
faocsts and are congruent 1»nw.w¢ o

Now a fourth example of a triangulation of a f-cube lwww _ Ammuv.mmuv.amuv.cmuv.<muv.<mu~Hwun mmuV.wmuv.amuv.cmuv.dmuu.%mu

be given. It is called a standard triangulation of the 4-—cube. From this we obtaln non.:umuu

Triangulate the 4 faocets of the C,, whioh does not contain (0000), . .
] * : . Lemma 3. An optimal vertex-true triangulation of a J-cube is
in the mannér corresponding to (17e¢), first suboase (standard .
essentially unique. Its decomposition number is 5,
triangulation of the 3—oube). In eaoch of these facets the common : )
body diagonal of the tiles Q»PL always ocontain vertex (1111). mMuV mmuv An optimal vertex—true

Therefors the second ounvo»mnmoa these body diagonals are (ooo01), triangulation of a J-ocube

(0010), (0100), (1000),respeoctively. Then cone off the 4—cube to
(0000) with respact to the triangulated four facets. We get a

18 given by the five te-
trahedra (13) (see also

na»nbmmwwnuou of the 4-cubs into 4¢6 = 24 gimplices each having figure 9a). The graph in

- » ’

volume WW , bacause the tiles of the triangulated facets have mMuv By figure 8 1llustrates the
Fig. 8 mutual position of the 5

volume W . Two possible 4-simplfces of this triangulation are
32 23



tetrahedrs tiling nuu The nodes of this graph correspond to mutually congrusent and sach having two extexior facets, the

ths n.nubwrnnbu The sdges of this graph always join two of the volume of <m+u is m$ .

nodes 1£f the corresponding tetrahedra have one facet in common.
X . 3.) 0000
For a triangulation of C, which is not vartex—true the car- "OR ww““ ,
‘ ° 1101
1440/

of the point set being the set of the vertices of th

.dinality
triangulation is greater than 8. Then because of (3) the con- with no extaerior facet, its volume is
cerning n.ooavou»nuou number must be greater than 8-3 = 5. A non- 0111\
vertex—true triangulation of a 3-oube into 6 tetrahedra is 1 et 10111 1
. N.n 1101 8 *
possible, For example, decompose oné of the tatrahedra of the 1110
triangulation nauv into two tetrahedra: Nu = S'U S'Y with So, of course, the u:j of that 18 simplices 1s nessesarily
. . ’ . .N..“_I +hcd +0-|,¢I.+.._oul a 4 ;
21 1z 2% 8 ‘

Qo0oO 000
3 = m,w b , 8' = m “ “ . Figure 11a shows the graph of this triangulsation.
101 272 . o
110 110
g5  J
f (4)
<¢u4

Fig. 11a Fig. 11b

"Fig. Y9a . Fig. 9b
31
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connect two nodes iff the facets, corresponding to these
nodes, have interior points in comnon, but their intersection

does not agree with the union of these facats.

A second triangulation of na can be attained by cutting

off the seven rertices vy (§ = 9.10,...,15) with
)
v = (0011), vy4 = (0101), vy, = (0110), vy, = (1001),

Vi = (1010), vy, = (1100), vy = (1111).

This leads to the simplices mmav (j=9,10,44.,15) being ocon-
gruent with MM»V and each having four exterlor facets. Then
the remainder polytope is coned off to (0000). That gives 11

simplices of three different types:

1.) 0000 0000 0000 0000
1000 0100 0

o4 ={ 1011 |, quu ={ o111 |, qM»V «| 0411 |, cmmvu 0111 |,

? 1101 1101 1014 1011
1110 1110 \ 1110 1104

mutually congruent and each having one exterior facet. This
facet 1s & 2. The volume of qm¢v 1s 75 , but cm¢v 1s not con-
gruent with cm>v. A congruent simplex is obtained iff in cm»u

we would exchange the vertex (0000) with the vertex (1000)

for example.

2.) 0000 ooom 0000

0001 000 0010

<mgvn 0010 |, <mmvu 0100 | <mnvn 0100 | ,
0111 0111 0111
1014 1101 1110
0000 0000 0000
0001 10010 0100

qmmv ={ 1000 |, <mwvu 1000 1000 | ,
1011 1011 1101
1104 1110 1110

30, -

w = mw W 1)1s a vertex of the triangulation which 1s not a
vertex of the J-oube (sea figura 9b). Therefore 5 is the mi-
nimal decomposition number and it can only be attaiped by a

vartex—true triangulation. Thus we have shown .

Theorem 2, There exist exactly 10 essentially different ver-
. - - /

tex~true triangulations of a ulomco..mxwonww one

of it 18 optimal. Hvery nou|owa»?mw vertex-—true
triangulation of a 3-cube oonsists of 6 tetrahedra.
BEvary non-vertex~true triangulation of a J-cuba

oonsists of at least 6 tatrahedra.

Hence we gat

Theoxrem 3, The simplexity of a uln:co is 5.

"For d = 4 we only consider vertex-irua ouumumswwn#ouu. The
decomposition of a 4-cube, generally described above, gives

P(4) = 16 simplices. To construct this first triangulation we

.note that 8 vertices of the 4-cube have to be cut off. The

remaining polytope NA 1s a 4-octahedren. >w~ the edges of NA
have length J‘M.. all its 8 vertices have degree 8, and all
its 16 facets are (regular) tetrahedrs. As seen in chapter 2
the 4-octahedron can be optimally tiled into 8 simplices. But
there are 6 topologically different types of such & triangula-
tion of the 4-ootahedron (of. chapter 2, remark 2). Together
with ﬁWr 8 simplices, whioh originate from the vertices belng
cut off, we have the 16 simplices indicated by P(4). Here wa

27



have two sorts of tiles. The 8 simplices mm:v (j=1,--4+8),
each having four exterior facets, belong to the first
sort. They arise by cutting off the -2rtices <u with

v, = (0001), v, = (1101), vy = (0100), v, = (0111),
vy = (1011), v¢ = (1000), v, = (1110), vg = (0010).
For example we have 0000
ﬂ#v 0001
857 = 0011 .
0101
1001
The volume of every mm>v is
0001
1 0014] _ 4
09t jot01| = 27 ¢
1001 )

The 8 simplices derived from the 4-octahedron belong to the
second sort. They have one exterior facet. This facet is a Nu
of m‘aH:oowamn facet of the 4-cube. Furthermore they are
mutually congruent. Therefore we see that the volume of eath

one 1s %W . In particular, these simplices are for example

0000 0000 0000
0011 0101 0101
w{¥= | oto1 |, 3§ [ 1001 |, u§*). | o110 |,
1001 1100 1100
1111 111 1111
0000 0000 0000
(4) 0011\ (4)_ [ 0011 y€4)_ | 1004
o= [oto1 p Us7= | 1001 e | d0t0 )2
0110 1010 1100
1111 1111 1114
0000 0000
0110 0011
u§4)= | 1010 | u§#)= | o110
1100 1010
1114 1141

28

(cf. also _Hmu D).

Triangulating the 4-octahedron N» in another manner hamunnp.coa
in chapter 2; there are six different possibilities) for

example we have to exchange cw»v by ﬂmav (4=1,2,3,4) with

0000 0101 0011 A 0000
0101 (4) |[om0 (4) [ o101 1
QMAV = o110}, T, "= | 1001 |, U, = | om0, g$4) . wwo“
.\ 1001 1100 1001 4 0110
1100 1141/ 1111 1001

A1l the mmau are congruent with cmav (one edge has length 2,
all the other ones have length Y2); of course, also each GM¢V
has volume mm . From the 6 essentially different positions of

16 simplices, triangulating n» , figure 10 shows t.e graphs of
the two vW£W‘iw»ow are described above. 1he dashad linas

RO




