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Abstract. We provide a multiple purpose algorithm for generating oriented matroids. An
application disproves a conjecture of Gr¨unbaum that every closed triangulated orientable
2-manifold can be embedded geometrically inR3, i.e., with flat triangles and without self-
intersections. We can show in particular that there exists an infinite class of orientable
triangulated closed 2-manifolds for each genusg ≥ 6 that cannot be embedded geometri-
cally in Euclidean 3-space. Our algorithm is interesting in its own right as a tool for many
investigations in which oriented matroids play a key role.

1. Introduction

The inductive generation of oriented matroids or chirotopes is possible in many ways,
reflecting the variety of possible characterizations of these topological invariants. In par-
ticular, this has been used in connection with geometrical embeddability problems, see,
e.g., [9], [7], [8], and [1]–[3]. Compared with the generation methods used in those arti-
cles, we present a much more efficient algorithm. Its application proved for the first time
that there exists a nonembeddable orientable triangulated closed 2-manifold of genus 6.
Moreover, we obtain the result that there exists an infinite class of orientable triangu-
lated closed 2-manifolds for each genusg ≥ 6 that cannot be embedded geometrically
in Euclidean 3-space.

When is a given finite poset isomorphic to the face poset of some polyhedral complex
in a given spaceRn? In the two-dimensional case we have, on the one hand, Steinitz’s
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solution for face posets of spherical maps [24] as a complete answer in the genusg = 0
case, but, on the other hand, “very little is known about polyhedral embeddings of
orientable polyhedral maps of positive genus g. For example, for each g≥ 1 it is an
open question whether or not each simplicial polyhedral map on the orientable closed
surface of genus g can be polyhedrally embedded in3-spaceR3,” see [11].

It was conjectured by Gr¨unbaum thatevery closed orientable triangulated2-manifold
without boundary can be embedded geometrically in three-dimensional Euclidean space
R3, see [15] and Chapter 13.2, Exercise 3, of [13]. In the meantime many mathematicians
expected the answer to this problem to be negative for sufficiently large genusg of the
2-manifold, but they could not prove it. For an interesting attempt using cohomology
groups see [19].

In Section 2 we describe an example from Altshuler’s list of neighborly 2-manifolds
of genus 6 which cannot be embedded geometrically inR3. The nonembeddability result
depends on our algorithm for generating oriented matroids which is of interest in its own
right. We present our algorithm in Section 3.

Our key example for the embeddability problem can be seen in connection with the
Heawood conjecture about the map coloring of surfaces of genusg. The lower bound
for the number of colors which are sufficient for map coloring on a surface of genus
g is the greatest natural numberχ(g) smaller than or equal to12(7+

√
48g+ 1). The

fact that this bound is the best possible (Heawood conjecture) was proven with two
exceptions by Ringel, Youngs (see [22]), and others, and is summarized by Ringel in
[21]. The exceptions are the Klein bottle and the sphere (or plane). For the latter four
color problem, see [23] and the papers cited there.

The first equality case in the Heawood inequality corresponds to the tetrahedron.
The second one leads to M¨obius’ torus [18], with its polyhedral Cs´aszár realization, see
[12]. In the genusg = 6 case, the third equality case,χ(g) = 1

2(7+
√

48g+ 1), we
can embed the complete graph with 12 vertices without self-intersections on a closed
orientable 2-manifold with genus 6 in many nonisomorphic ways. The dual map on this
surface is the relevant one for map coloring.

Among the candidates of closed orientable triangulated 2-manifolds of genus 6 with
12 points, we have the oldest example of Hefter from 1891, see [16] or [20]. We find
another example by Ringel in [20]. The examples of Hefter and Ringel formed the
starting point for Altshuler’s investigation to determine 59 neighborly 2-manifolds with
12 vertices. The first author showed that Altshuler’s list is complete. For this Altshuler
list see [3].

The geometrical embeddability could not be decided in any of these 59 cases in [3],
except under symmetry assumptions. Here we present the embeddability decision in
Case 54 from [3].

2. Altshuler’s K12-Map No. 54

The neighborly 2-manifold with 12 vertices from Altshuler’s list, map No. 54 in [3], is
of genus 6 and it has a symmetry groupG of order 6. The symmetry group acts on the set
of vertices in such a way that we have two orbits with six elements each. The symmetry
suggests a relabeling of the vertices compared with [3]. We have chosen the following
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permutation of the vertices:

old labels 1, 2, 3, 4, 5, 0, 7, 8, 9, 6, a, b

final labels 12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1

The two orbits under the symmetry groupG in the set of vertices areE1 = {1,2,3,4,
5,6} andE2 = {7,8,9,10,11,12}. The abstract 2-manifold is given by the following
44 triangles:

|1,2, 5|1,2,12|1,3, 4|1,3, 5|1, 4,11|1,6, 7|1,6, 9|1,7, 8|1, 8,10|1, 9,12|1,10,11|
|2,3,10|2,3,11|2,4, 6|2,4, 7|2, 5, 6|3,4, 6|3,5, 9|3,6, 8|2, 7,10|2, 8, 9|2, 8,12|

|2,9,11|3,7, 9|3,7,12|3,8,11|3,10,12|4,5, 8|4,5,12|4,7, 9|4, 8,11|4, 9,10|4,10,12|

|5,6,10|5,7, 8|5,7,11|5,9,12|5,10,11|6,7,10|6,8,12|6,9,11|6,11,12|7,11,12|8, 9,10|

The generators of the symmetry groupG are

(7,12,11)(10,9,8)(3,6,5)(4,2,1) and (7,10)(12,8)(11,9)(3,1)(6,2)(5,4).

With the algorithm of Section 3 we proved that no oriented matroid on 12 points
(not even a nonrealizable one) is admissible with Altshuler’s 54 map. In particular, no
polyhedral realization of the map is possible. We first constructed all the six-element
oriented matroids admissible with the restriction of the map to the vertices 1, . . . ,6
and then iteratively computed all the admissible extensions to the other six points. The
symmetry groupG of the map helped us in that the 724 oriented matroids which are
admissible with the first six vertices fall into 143 orbits under the action ofG and we
only needed to start the process with one representative of each orbit. This was the reason
for choosing this particular map No. 54. Although a relatively big number of oriented
matroids with 11 elements occur, no one with 12 points exists. We have therefore the
following theorem:

Theorem 2.1. Not every closed triangulated orientable2-manifold can be embedded
in R3 with flat triangles and without self-intersections. More precisely, the54th map in
Altshuler’s list cannot be embedded geometrically inR3. In fact, there is no matroid
manifold for this map, an oriented matroid with12 points both acyclic and compatible
with it.

However, such an abstract 2-manifold can always be realized topologically. In our
case we can even find a topological embedding of the 2-manifold in which the symmetry
groupG is induced by a subgroup of the group of proper rigid motions, see Fig. 1.

3. The Algorithm

3.1. Hyperline Configurations

Among the many concepts to work with oriented matroids, we have the list of hyperline
configurations which was used by the first author for the first time in 1978. We refer the
reader to Chapter VII of [10], or to [6]. Here we need in particular the uniform case in
rank 4 in which the hyperlines are lines. The concept is closely related to the clusters of
stars of Goodman and Pollack, see [14].
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Fig. 1. Model of the complete graph with 12 vertices in 3-space which also shows the circular order of all
topological triangles around each point. These triangles form the above neighborly 2-manifold of Altshuler.
This corresponding topological triangulated 2-manifold of genus 6 has a Euclidean symmetry of order 6.
Photograph of N. H¨ahn of a model made by the first author, colored version: www.juergen.bokowski.de.

The realizable case can serve to introduce the hyperline configurations. We consider an
ordered setE = {x1, x2, . . . , xn}, n ≥ 4, of affine points in general position in Euclidean
3-spaceR3. We fix an orientation inR3 by defining one of the two equivalence classes of
affine bases inR3 to be the positive one, e.g., we require(x1, x2, x3, x4) to be a positive
basis. The normal vector atx3 of the plane spanned byx1, x2, x3 which points into the
half-space containingx4 defines apositive rotationaround the oriented line defined by
(x1, x2). For any ordered pair(xi , xj ), i < j , of points inE we have a corresponding
oriented lineLi, j , and we define similarly a positive rotation around the oriented line.

Each 3-tuple(xi , xj , xk), xk ∈ E\{xi , xj } of points forms an affine basis of a corre-
sponding oriented planeEk

i, j spanned by these points. For each oriented lineLi, j , the
corresponding unoriented planes|E|ki, j define a periodical infinite sequence

Li, j : . . . , |E|k1
i, j , |E|k2

i, j , . . . , |E|kn−2
i, j , . . .

with period lengthn− 2.
We associate to the lineLi, j a list(k1, s2 ·k2, . . . , sn−2 ·kn−2) of signed indices, where

(k1, . . . , kn−2) is the list of indices of points inE\{xi , xk} starting with the smallest
index k1 and sorting the others according to the positive rotation around the oriented
line Li, j , and wheresl ∈ {−1,+1} indicates whether the pointxl is passed over in the
same half-plane asxk1 when rotating the plane(xi , xj , xk1) a half turn in the positive
direction aroundLi, j . In other words,sl equals the sign of the determinant of the 4-tuple
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(xi , xk, xk1, xl ). In the same way, the sign of the determinant of(xi , xj , xkl , xkm) equals
skl · skm if l < m and the opposite ifl > m. We denote these determinants by a bracket
[i, j, kl , km].

Moreover, such a complete list of sequences of signed indices forms a general uniform
oriented matroid of rank 4 if and only if each index occurs precisely once in each line
and when different lines defining the same bracket sign via the alternating rule for bases
do not violate that rule, see, e.g., Proposition 7.2 of [10] or see [5]. We use this as
a definition of a (general, uniform) oriented matroid of rank 4 and as a basis for the
algorithm we present next. The chirotope is the function (corresponding in the realizable
case to the sign of determinant) that assigns to every ordered set of four indices either
1 or−1, accordingly. As in matroid theory, the termshyperlineor line andhyperplane
or planeare used in this general setting, meaning a set of two or three different indices,
respectively, and bycocircuit we mean the complement of a hyperplane, i.e., the set of
indices of points not in a given hyperplane.

It is an immediate consequence of this definition that we may extend a uniform
oriented matroid by one point in general position in all possible ways just by choosing
the “gaps” on the line sequences where the new point lies. In fact, all bracket signs
are fixed when we consider only the lines prior to the extension. All gaps are possible,
provided the former rules are obeyed. Moreover, by doing this, it is possible to prove the
signs are already those of a chirotope, meaning that it is also possible to determine the
sequences for the lines containing the new point in such a way that the alternating rule
is never violated [17]. We make this more precise in the following example.

3.2. The Algorithm in the Smallest Example

We start with a hyperline configuration for the four vertices of a 3-simplex. Up to
reordering the indices, there is only one bracket to consider, of lowest index, 0.

line 0 1 column bracket index sign bracket

0 ( 1, 2 | 3, +4 ) 0 + [1,2,3,4]

1 ( 1, 3 | 2, -4 )

2 ( 1, 4 | 2, +3 )

3 ( 2, 3 | 1, +4 )

4 ( 2, 4 | 1, -3 )

5 ( 3, 4 | 1, +2 )

We find any one element extension as follows, depending on the choices we make.
For example, we pick a sign for the new element 5 for inserting it in line 0 (first choice
+). Now we pick a gap position for+5 in line 0 (second choice, gap between column
0 and column 1). The second possibility would have been the gap after column 1.
These two choices imply the following two signs in the chirotope:sign[1,2,3,+5] =
sign[1,2,+5,+4] = 1. The alternating rule for determinants implies thatsign[1,3,2,
−5] = sign[1,4,2,+5] = sign[2,3,1,+5] = sign[2,4,1,−5] = 1, which tells us
that the sign of element 5 when inserted in lines 1, 2, 3, and 4 is, respectively,−,
+, +, and−. In general, for each plane index with known bracket sign there will be
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two (line,column) other positions pertaining to the same plane which either define
the sign of the new element in that line or restrict the possible gap positions in that
line.

line 0 1 column bracket index sign bracket plane index

0 ( 1, 2 | 3, +5, +4 ) +5 0 + [1,2,3,4]

1 ( 1, 3 | 2, -4 ) -5 1 + [1,2,3, 5 ] 0

2 ( 1, 4 | 2, +3 ) +5 2 - [1,2,4, 5 ] 1

3 ( 2, 3 | 1, +4 ) +5 3 0 [1,3,4, 5 ] 2

4 ( 2, 4 | 1, -3 ) -5 4 0 [2,3,4, 5 ] 3

5 ( 3, 4 | 1, +2 )

Now (third choice) we pick the first gap for the element−5 in line 1 (between 2
and−4) which determines the sign for the bracket with bracket index 3 (or plane index
2); sign[1,3,−5,−4] has to be positive. We go to the other two(line,column)
positions for plane 1,3,4 : (5,0) and(2,1). (5,0) implies the sign for element 5 when
inserted in line 5 has to be negative (sign[3,4,1,−5] = 1 must hold).(2,1) restricts
the possible gap positions in line 2 for element+5: sign[1,4,+3,+5] = 1 must hold,
i.e., only the second gap position is allowed. We have a last choice for the gap position
of element+5 in line 3. We pick (last choice) the first gap in line 3 which forces
sign[2,3,+5,+4] = 1. We obtain the following list of hyperline configurations when
we fill the remaining lines as defined by the brackets. This implies a sorting argument for
the new line 3, the new line and column values have changed, the new planes (cocircuits)
relevant for the next one element extensions with its(line,column) -values can be
evaluated. The table contains also the indices of the planes in the(line,column)
positions.

new planes

line 0 1 2 0 1 2 br.i. sign bracket p.-i. new p. i.

0 ( 1, 2 | 3, +5, +4 ) | 0, +2, +1 ) 0 +[1,2,3,4] 123 0

1 ( 1, 3 | 2, -5, -4 ) | 0, -4, -3 ) 1 +[1,2,3, 5 ] 0 124 1

2 ( 1, 4 | 2, +3, +5 ) | 1, +3, +5 ) 2 -[1,2,4, 5 ] 1 125 2

3 ( 1, 5 | 2, +3, -4 ) | 2, +5, -4 ) 3 -[1,3,4, 5 ] 2 134 3

4 ( 2, 3 | 1, +5, +4 ) | 0, +7, +6 ) 4 -[2,3,4, 5 ] 3 135 4

5 ( 2, 4 | 1, -3, -5 ) | 1, -6, -8 ) 145 5

6 ( 2, 5 | 1, -3, +4 ) | 2, -7, +8 ) 234 6

7 ( 3, 4 | 1, +2, -5 ) | 3, +6, -9 ) 235 7

8 ( 3, 5 | 1, +2, +4 ) | 4, +7, +9 ) 245 8

9 ( 4, 5 | 1, -3, -2 ) | 8, -9, -2 ) 345 9

We insist that it should be possible to obtain in this way all one point extensions of
the former chirotope (the simplex), i.e., all uniform, five elements, rank 4 chirotopes, up
to reversing all signs.
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3.3. A Rank3 Example

With the following example we explain the decisive improvement of the algorithm which
allowed the calculations in the case of map 54 of Altshuler’s list.

We now use only a partial chirotope (just the part corresponding to lines containing
point 1). In oriented matroid language, this is thecontraction at element1, and it is a
rank 3 oriented matroid:

((1,) 2 | 3 7 8 6 5 4 )

((1,) 3 | 2 -7 -6 -5 -8 -4 )

((1,) 4 | 2 3 7 8 6 5 )

((1,) 5 | 2 8 3 7 6 -4 )

((1,) 6 | 2 8 3 7 -5 -4 )

((1,) 7 | 2 3 -6 -5 -8 -4 )

We delete point 8 in the rank 3 contraction of point 1 and we look at the method
for finding this one element extension. We pick the interval between the hyperplanes
((1, )2,7) and((1, )2,6) and we pick an orientation of the pseudoplane 8. This defines
the hyperline

((1,) 2 | 3 7 8 6 5 4 )

It also defines the sign of 8 in all other hyperlines as follows since the corresponding
signs of brackets have been determined:

((1,) 3 | 2 ... -8 )

((1,) 4 | 2 ... 8 )

((1,) 5 | 2 ... 8 )

((1,) 6 | 2 ... 8 )

((1,) 7 | 2 ... -8 )

Now we pick an open interval (gap) between two cocircuits on hyperline 3 (as in the
example):

((1,) 3 | 2 -7 -6 -5 -8 -4 )

The corresponding brackets [(1, )3, x,8] for all elementsx are now determined. This
reduces the possible gap positions in the remaining lines. The former gap bounds are
changed as indicated by the arrows. Now it is decisive not to insert the new element
immediately in one of the remaining gaps. We can see from hyperline((1, )5) and
((1, )6) (the gap bound has jumped over several hyperplanes) that additional signs of
brackets are already determined, even before reaching these lines. This is the key ob-
servation for the new algorithm. For example, we do know already, as a consequence
of our choice in line(1, )3, that the sign of [(1, )5,8,−4] is +1. We may set this
sign at this early stage, and even evaluate the consequences, thence shortcutting a num-
ber of trials ahead. This leads to restricted intervals for the gaps and this again can
lead to additional signs of brackets, etc. Note that, had we not used the gap move-
ment, this sign would only be fixed while trying to set the signs for line((1, )5), i.e.,
while runningprocessline for line 4. This is the crucial improvement from earlier
algorithms.
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Again, this can be summarized as follows:

((1,) 2 | 3 7 8 6 5 4 )

((1,) 3 | 2 -7 -6 -5 -8 -4 )

((1,) 4 | 2 3 7 8 6 5 )

-> -> <-

((1,) 5 | 2 8 3 7 6 -4 )

-> <- <-

((1,) 6 | 2 8 3 7 -5 -4 )

-> <- <-

((1,) 7 | 2 3 -6 -5 -8 -4 )

-> -> <-

3.4. The Algorithm

1. We pick a sign for the new element in line 0.
2. Each bracket corresponding to a plane index is set to zero.
3. For each line we define that the left gap has to lie after column 0.
4. For each line we define that the right gap has to lie before the last column +1.
5. We run the following procedure for a line equal to 0:
6. Procedureprocessline for line:

6.1. If left gap is greater than right gap or line is greater than lastline then
return.

6.2. Pick the next gap in line according to the gap conditions, and increase by one
the left gap.

6.3. For column from 0 ton− 2 run the following procedure:
6.4. Procedureset sign for (line,column) :

6.4.1. Pick the new sign in line relative to plane in(line,column) and
evaluate the reduced gap intervals in the lines ahead pertaining to the
same plane. If in some line the gap jumps over any hyperplane, run
set signfor the(line,column) where it occurs. If there is no empty
gap, set these new gap intervals and run procedureprocessline for
line = next line; otherwise return.

3.5. Matroid Manifold

When studying embeddability of a simplicial 2-map, we do not want all possible ori-
ented matroids, but only those which are admissible with the map in the following two
ways:

First, any oriented matroid realized by affine points is acyclic, meaning that every
element belongs to a positive cocircuit or, equivalently, that there is no positive cir-
cuit.

Second, any polyhedral embedding of the map inR3 satisfies that any disjoint triangle
[i, j, k] and edge [l ,m] of the map do not intersect each other in the embedding. This
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is equivalent to saying that we do not havesign[i, j, k,−l ] = − sign[i, j, k,−m] =
sign[i, j,−l ,−m] = − sign[i, k,−l ,−m] = sign[ j, k,−l ,−m] or, in oriented matroid
terms, that(i, j, k,−l ,−m) is not a positive circuit.

We say that an oriented matroid is admissible with the map if it is acyclic and it satisfies
the above requirement for every pair of triangle and edge in the map. A polyhedral map
together with an oriented matroid admissible with it in this sense was called amatroid
manifoldin [5] and [10].

The verification of acyclicity and compatibility can be done automatically, and the
corresponding checking procedures can be implemented together with the algorithm, as
a (multiple) test inprocessline. We do this so that they determine new signs whenever
possible, instead of discarding their opposites afterward.

We now consider the final algorithm that extends successively the points and checks
for acyclicity and compatibility with a given map. In order to output the chirotopes before
evaluating the subsequent ones, to store at any stage as less information as possible, after
outputting a chirotope we proceed by changing the last choice, and when we run out
of possibilities we go back to the previous choice and so on. This can be done by
replacingprocessline in the the algorithm already presented (starting withn = 4 and
the corresponding cocircuit sequences already built) by the following:

6. (New) procedureprocessline for line:
6.1. If left gap is not greater than right gap or line is not greater than lastline go

to 6.2. If n is equal to the lastelement return. Otherwise, build the cocircuit
sequences for the new chirotope and go to 1.

6.2. · · ·
6.3. · · ·
6.4. (New) procedureset sign for (line,column) :

6.4.1. Pick the new sign in line relative to plane in(line,column) and
evaluate the reduced gap intervals in the lines ahead pertaining to the
same plane. Check whether for any positive or forbidden circuit four
signs are fixed as predicted. If so, evaluate all (column,line) pairs where
it occurs and runset sign for them. If in some line the gap jumps over
any hyperplane, run alsoset sign for the (line,column) where it
occurs. If there is no empty gap, set these new gap intervals and run
procedureprocessline for line = next line; otherwise return.

3.6. Remarks about the Algorithm

(a) The algorithm also works in the nonuniform case and in arbitrary rank. Of course,
the implementation needs much more time.

(b) The generation of reorientation classes only can easily be done by always picking
the positive sign in line 0 for the new element.

(c) In the rank 3 case one can show that filling the possible gaps (after the restricted
intervals have been determined) always leads to an oriented matroid. In this respect, the
algorithm is as efficient as possible in the rank 3 case.
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4. Implementation of the Algorithm and Further Results

This algorithm was implemented by the first author, using “C++,” and, independently,
by the second author using “C,” in rather different programs leading to the same re-
sults wherever used. These programs can be obtained via e-mail from either of the
authors.

This problem has long been a challenging one among what has been called compu-
tational synthetic geometry, and many articles can now be seen as attempts to reach this
final goal.

The basis for our algorithm (without using “second-order consequences,” the in-
formation in 6.4.1 about the reducing of the gaps) was implemented before on vari-
ous occasions: A first implementation,Auffüll (Anheuser and Bokowski), was done in
Fortran 77, more than 12 years ago. More recently, a second implementation in
Pascal,radonchi (Schuchert), was written using the circuits axioms of oriented ma-
troids. The performance was similar to the foregoing version. Comparing both imple-
mentations was possible and both versions always lead to equal results. Moreover, the
realizations of polyhedral structures always supported the correctness of these early
implementations.

Another implementation in the language C,fill in, was written by Guedes de Oliveira
in 1992. Again the main motivation was to obtain a faster implementation. Unfortu-
nately, this version had about the same performance. However, again, testing one pro-
gram against the other was possible and this was a very good aspect for confirming all
computations.

The next implementation of the first author together with Biermann was written in
a functional language,gofer (good for equational reasoning). Gofer is a part of Haskell
and freely available. This implementation finally used also the second-order conse-
quences idea of the first author. The performance is rather bad but the language is
considered to be a reliable one. Again all tests with former programs confirmed the
results.

It could have happened that there existed an oriented matroid with these properties, but
yet not realizable. This was not the case. There is no corresponding matroid manifold.
Moreover, we deleted triangle(7,11,12) from Altshuler’s K12-map No. 54 and we
started all computations once more for the corresponding 2-manifold with boundary.
This time the symmetry was only a threefold one and the computations took longer
than before. (We cannot tell precisely the amount of CPU-time we used altogether but
it far exceeded the 10 years limit.) The result was again that there does not exist a
corresponding matroid manifold. This did not only confirm our former result but it lead
to the following theorem.

Theorem 4.1. There are infinite classes of closed triangulated orientable2-manifolds
for each genus g≥ 6 which cannot be embedded inR3 with flat triangles and without
self intersections.

The reason for that is simple since we can glue to our 2-manifold instead of the
triangle (7,11,12) any triangulated closed 2-manifold in which one triangle was
removed.
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