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[U, J(P)] = 1. Now the F2-property implies that J(P)C K and hence J(P)C .\
But Q is abelian so that J(P)= Q and in particular Q < G. It follows 9_
(G/0Q, K/Q) has F2 and since Q € Syl, (K), Corollary 3.3 implies that G/Q i is}
Frobenius group with a complement isomorphic to G/K. Thus G/K is Qo__.

ON COMBINATORIAL AND AFFINE
AUTOMORPHISMS OF POLYTOPES

contradicting lemma 7 of [1].
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ABSTRACT
We disprove the longstanding conjecture that every combinatorial automor-
phism of the boundary complex of a convex polytope in euclidean space E® can
be realised by an affine transformation of E“.

1. Introduction
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Ecombinatorial automorphism ¢ of P, does there always exist an orthogonal
Htransformation ¢ of E¢ and a polytope P’ combinatorially equivalent to P such
fthat Y (P')= P’ and such that ¢ induces the combinatorial automorphism ¢ in
EB(P'). In other words, is every combinatorial automorphism of a polytope
“affinely realisable””? Mani [7] has given a positive answer to this question for
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th d = 3. Perles positively deci . i
Homouiy. HI 96822 USA pthe case erles positively decides the problem for d-polytopes having at

most d + 3 vertices (compare [3], p. 120). So far, these seem to be the only results
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kbe answered in the negative.

THEOREM. There is a 4-polytope P with 10 vertices and a combinatorial
& automorphism ¢ of P, which cannot be realised by an affine transformation y of E*
Land its effect on the boundary complex of a polytope P' combinatorially equivalent to
, where (P')=P'.

~ The combinatorial scheme € of the boundary of P and the automorphism ¢
' have been found by the third author who also proved that ¢ cannot be realised
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nvariant, whose intersection with the boundary of P’ would be 2-dimensional.
consequently, there would exist an invariant 2-face of P’.

- The affine transformation ¢ maps the line determined by the vertices 7 and 8
n itself and the line therefore contains a fixed point p € A.

F From this and from the planarity of aff (2, 3, 5, 6) = A we may conclude that
fthe affine hull of the vertices 2, 3, 5, 6, 7 and 8 is 3-dimensional and that their
tonvex hull is an octahedron O, the latter following from the fact that the faces
formed by these vertices form a complex isomorphic to the boundary-complex of
4n octahedron.

¥ Let H denote the affine hull of O and H™ and H" the open halfspaces of E*
vwanonam:oa by H. Without loss of generality we may assume that the edge 14 of
P’ lies in H* and 9 10 in H™, for H cannot separate the vertices 1 and 4 or 9 and
10, as otherwise the edge 14 (or 9 10) would have inner points in common with a

affinely in case % is isomorphic to the boundary complex of a convex polytopd
(first part of the proof).

Whether the latter is true remained an open question, being part of 3
unsolved “Steinitz-problem” of characterising the boundary complexes of
convex polytopes intrinsically. Meanwhile the first two authors have indepe
dently developed methods of solving special cases of the Steinitz-problem, co:.
suitable to be applied to the example under consideration. The first method
proceeds by the calculation of coordinates for the vertices of P after having}
simplified the problem by means of Pliicker-GraBmann-relations. The second
method generalizes the concept of stellar subdivisions and presents an existen el
proof for P which visualizes the Schlegel-diagram of the polytope. We oE::‘,.
both methods.

. S %(e ﬁ._éo' _,?8 of O.
2. A non-realizable symmetry ,.\ & Pa.\z..( From our construction it follows that H is a supporting hyperplane of the
vo_v;ovn P*:=conv(l,2,---,8) and O is the face of P* which is the intersec-

We describe B(P) in Table 1 by listing the vertices of its facets, ei:o: are all’
tetrahedra. We describe the automorphism ¢ of B(P) by the images of the}
vertices under ¢. The vertices 2, 3, 5 and 6 are left invariant under ¢. On the set
of the remaining vertices ¢ is involutoric, where ¢(1)=9, ¢(7)=8 and;
h(4) = 10.

tion of H and P*. mxnm? for O the facets of P* are exactly those facets of P’
which contain neither 9 nor 10. From Table 1 we deduce that P* is combinatori-
ally isomorphic to a polytope Q constructed in [6] (in [6] the same numbering is
used for the description of the facets). In [6] it is shown that there does not exist a
..,wvo_wﬂovo Q' combinatorially equivalent to Q such that the vertices 2, 3, 5 and 6
'lie in a plane. In P*, however, we have seen that dimafi(2, 3, 5, 6)=2.

Table 1

: Consequently, we have a contradiction to our assumption of the existence of P’
by 1248 9 2 3 8 9 2 10 73 and ¢, which completes the proof of the theorem.
T 2 3 4 8 9 3 10 8 2 3 10 18 . .
46 7 1 56 8 9 10 6 8 9 5 6 138 We remark that there is even a ‘“‘central symmetry” of our complex which
s ey 14538 0 5 6 8 9 10 5 73 cannot be realized by an affine mapping. It is involutoric and it can be described
R (S 1 2 6 8 9 2 6 8 9 2 6 171 ,.d the i f fi ti .

[ 34 5 8 310 5 8 30 5 1SR e image of five vertices:
Ids o6 1 2 3 4 9 10 5 6 9 2 3 10

e(D)=10, @(2)=5 ¢(3)=6, ¢(#)=9, ¢(1)=8

We assume that there is a polytope P’ combinatorially equivalent to P and an
athne transtormation ¢ of E with (P')= P’ such that ¢ induces the
combinatorial NE:::EcEmE ¢ on B(P'). We use the same symbols for

‘orresponding vertices of P and P'. The only faces of P’ which are fixed under ¢
are the edges 2303556, 26 and their vertices. This can easily be read off from the §

ctfect of o on ::J. These faces, which form a circuit in B(P’), are even
poinl-wise invariant because their vertices are fixed. Hence, the affine flat

3. Finding the coordinates by using Pliicker—-Grafmann-relations

The existence of a convex polytope combinatorially equivalent to P can be
checked by the coordinates of its vertices presented in Table 2, where ¢ is a
sufficiently small positive number which, e.g., may be chosen to be 107°.

' We briefly describe how we found these coordinates. Identify each vertex
F v €{1,2,- -, 10} with a vector (1, x}, x3, x5, x5). Let i, j, k, { €{1,2,- - -, 10} be the
vertices of an arbitrary facet and v another vertex of P.

For this fixed facet and for all choices of v the determinants

S 6h) is point-wise fixed under . Furthermore, A has to be

for otherwise b would leave a 3-dimensional subspace of E°



o(p; KY€ :=(€\H)U ({p}- %)

1 Xi, v, Xa

. p}- 9% the join of the complexes {p} and %) is called a hyperstellar
. . . ibdivision of €, its inverse an inverse hyperstellar subdivision. It can be shown
. see [2]) that: If € is a Schlegel-diagram, then o (P K)% is isomorphic to a
1 xh, e xt hlegel-diagram
1 X8 e, xS Let a 3-simplex D, be the outer facet of a 3-diagram, and let its vertices be

must have equal signs. On the other hand these conditions for the determinants 3
imply the convexity of P. :
We first listed all inequalities of this type. Then we used the Emowﬂl\
GraBmann-relations satisfied by our determinants (compare e.g. [5]) to obtain a §
reduction of the original number of inequalities.
The reduced system finally was clear enough to enable us to find the mco& b

getters for vertices in R and their projections into aff D,. There are 6 steps to be
achieved.

g Step 1. Consider a 4-simplex conv (Do U {e}) such that e is projected into
ant Do, and stack a simplex abdef onto abde obtaining a double simplex P,.

b Step 2. Let, in the Schlegel-diagram €, of P, T:=abef, T':= adef,
.H,: abce, K : = T U T'UT". By a hyperstellar subdivision o (g, K)%, we obtain
Schlegel-diagram of a polytope P, (Fig. 1). Here g must be chosen close
enough to ae. In P, the vertex g is found by choosing €, u appropriately in

solution.
In conclusion, we remark that the contradiction obtained in section 2 from the §

Em:ml@ of aff Aw,m,m,@ can also be obtained Uu\ use of Pliicker-GraBBmann- 3
relations. 0 : * ) Lk; ~ = b+ f)—ia+ a

f % v " v " m.\ ﬁ.»:.?r/ﬂ \/ + + +u 0,0,0
4. Geometrical construction of P m_mA D WA mz WA mv Avv, C.

Let € be a simplicial complex of dimension d which is realized by a d-
diagram (see [2], p. 44) and let T',---,T?, 1=j=d, be d-cells of € cach
having a (d —1)-cell in common with a d-cell T. It can be shown that
K:=TUT'---UTY is star-shaped and that the center C of K has points in
int T (see [1]). Let p € C, and let & be the complex such that K =set .

Table 2

Coordinates

Vertex v Xy X5 X3 X
1 0 1 1 €
2 23 + 13 &/1000 13
3 0 - 7/18 1/18 4/3
4 1/3 1/3 I 7/18
3 1 0 0 0
f 0 i 0 0
7 0 0 0 1
N 1] 0 ! 0
o 0 0 0 0

i Se/3 —€ e/100 —¢&/100

Fig. 1.
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Step 3.  We choose a point k' close to eg such that
(1) F:=bcegh’is a convex double-simplex where ceg is the inner triangle {

Cc

F.
(2) The simplices fdeh', fdgh', daeh’, dagh', aceh', acgh’ are new mm..
replacing fdeg, daeg, and aceg.
() a, b, ¢, d, e f g h'are vertices of a polytope Ps. h' can be moEa ,
choosing ¢,, €5 appropriately in

h':=i(e +g)+ ealdle +8) = b]+£:(0,0,0,1) ~ (e + g)]

Step 4. Now we move h' slightly towards aff D, and leave all other <o§..
unchanged: h:=h'—£,0,0,0,1). The double simplex F breaks down 58
simplices. We obtain a simplicial polytope P, (Fig. 2).

Fig. 3.

t Step 6. In the diagram of Ps consider F = bcegi dissected at the triangle bci,
.!B:Em a complex €’'. Let

T:=cghi, T':=bcgi, T':=fghi K:=TUT UT"

fliciently high so that a polytope P is obtained whose boundary complex is
omorphic to €. We can find j by choosing &, &, appropriately in
J =g+ )+ eGlg +i)—3(b + /)] + £:0,0,0,1).
Fig. 2.
J. Bokowski and B. Neidt have carried out the search for appropriate

Step > We choose a new vertex i close to eg such that €, +, €8, 1 ; they obtained a polytope with coordinate vectors:

(1) F:= gdebi is a convex double simplex where bci is the inner triangle of ..
(2) The simplices fghi, efhi, cehi, cghi, bfgi, befi are new faces, replacing fheg
heeg. bfeg (sce Fig. 2 where a, d and the 1-cells emanating from a, d are _9,
out).

a=(1,0,0,0), 5=(0,1,0,0), ¢=(0,0,1,0, d=(~1,~1,-2,0),
€=(0,0,0,0.5), f=(0,0,-05,3.25), g =(0.45,0.05, —0.025.0.3)

The vertex § can be found by choosing &5 sufficiently small >0 in h =(0.227025,0.015225, —0.023225 0.4)

ii=13(e +g)+esfile + g)— b + )]
Wesbn apolvtope Pe (Fig. 3).

1 =(0.225225,0.024525, - 0.0130125, 0.4004),

J =(0.33795011,0.36799763, — 0.018775256,0.35175).



We obtain an isomorphism of this polytope and that presented in Table 2 if we§
map the vertices as follows:

a—1, b—>7, ¢c—6, d—4, e—5,

SEPARATING ULTRAFILTERS

f—3, g—2 h—8 i—10, j—9. ON UNCOUNTABLE CARDINALS

Note added in proof. In the meantime, A. Altshuler has found yet anothes

proof for the polytopality of our complex € (oral communication). oy
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§1. Introduction

We begin by establishing our notation and terminology. Throughout this
Address of first author
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w%on K, A, u etc. will denote infinite (but not necessarily regular) cardinals, and
A will denote the set of all functions mapping « to A. Suppose now that U is an
jultrafilter on «. U is said to be uniform if every set in U has cardinality «.
‘The usual equivalence relation ~, on “A is given by f~y,g iff {a <«:
}QV g(a)} € U, and we let the equivalence class of f be denoted by [f].. The
set of such equivalence classes can be linearly ordered by setting [f]u = [g]o, iff
Ha <k :f(a) = g(a)} € U, the resulting structure is referred to as the ultrapower
.,‘.,&; with respect to U. If f €A then f projects U to an ultrafilter f,(U) on A
where X € f,(U) iff f7'(X) € U. The ordering given by declaring f,(U) =g U
is called the Rudin-Keisler ordering. The property of ultrafilters that we will
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wnoamaoa here is given by the following.

. DeriNiTION 1.1, Suppose that U is a uniform ultrafilter on « and A =k
,.:5: U will be called A -separating iff whenever f, (U) is a uniform ultrafilter on
A, the following implication holds:

Ve EMflu# gl > f (U)# g, (L))

U is said to be separating if U is A-separating for every A =
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