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ON THE DISTRIBUTION OF ORDER TYPES

Jurgen Bokowski, Jirgen Richter, * and Werner Schindler **

Abstract. Goodman and Pollack have asked lo estimate the probabilities of order types by using an
equally distributed random generator on the unit interval. We provide solutions to this question, and
we apply these methods for estimating the probabilily for various combinatorial types of polytopes
with up to 8 points in dimension 3. Our investigation also confirms a classification result in
oriented matrord theory [3].

1. Introduction

The problem of calculating the probabilities for order types [9], i.e. realizable oriented matroids
[1], or chirotopes [3], has been posed by Goodman and Pollack [8}. A formulation of their question
in the literature can be found in [3, Problem 5.19] together with a conjecture concerning the
maximum of all probabilities.

Problem 1.1. Compute or estimate the probability of some rank d oriented matroids with n
points where 1 <d < n~1.

Problem 1.2. Find an algorithm to generate random points (with respect to the Haar measure)
on the Grassmann manifold Q’n]f‘{d over the reals using a random number generator for the unit
interval. ‘

Conjecture 1.3. The maximum among the probabilities of all rank d oriented matroids with n
points is attain~d by the probability p(x™9) of the alternating oriented matroid corresponding to
the cyclic polytope.

This paper discusses Problem 1.1, provides answers to Problem 1.2., and deals with applica-
tions of these methods concerning also Conjecture 1.3.

In our context our probability spaces under consideration appear to be very natural. The
survey article of Buchta [6] refers to another classical approach which might be considered to
be closely related to our investigations. It is well known in these cases that exact calculations of
probabilities as required in Problem 1.1 are very hard or impossible. One reason for such difficulties
can be viewed with respect to Mnev’s result in [14]. Mnev has shown that the topological realization
spaces of oriented matroids attain all possible topological types. There might be some hope when
solvability sequences exist, see [2], in which the realization space is contractible.

Nevertheless, this situation emphasizes the question of Goodman and Pollack of finding an
efficient random generator for realizable oriented matroids corresponding to the equal distribution
on the grassmannian. Our answer will be given in so far as random generators for the equal
distribution on the unit interval yield a corresponding equal distribution on the grassmannian.

Having a small number of such random generators is very essential for practical applications. In
order to reach this goal as well, some parts of [16] were adjusted to our purposes. The corresponding
sclution to this problem presented in Section 3 and 4 was solved by the third author.

This method was applied with respect to investigations in [4] and [5] dealing with a complete
overview and classification of all reorientation classes of oriented matroids in rank 4 with 8 points.
This case is of particular interest since it is the smallest non-planar case in which non-realizable
oriented matroids occur. The classification result in [4] was confirmed in so far as all the realizable
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oriented matroids occured during our simulation. Our results provide estimates for the proba-
bility of forming extreme points of the convex hull, or various combinatorial types of polytopes,
respectively. Corresponding results can be found in Section 5.

Our methods can be applied in general. In the rank 4 case with 8 points pre-calculations were
available and results were obtained in reasonable CPU-time limits.

2. Equal Distribution on the Grassmannian

Our main concern in this paper is a natural probability distribution on the set of all realizable
oriented matroids or chirotopes. Stewart provided an algorithm for simulating the Haar measure
on the orthogonal group O(n) of all (n x n)-matrices, see [16]. For our purposes, we use sorne of his
results in a slightly modified manner. In this section we recall these results and provide definitions
as well as easy properties, thus introducing our notation and our probability distribution.

To each d-dimensional vector subspace W of IR", we assign in a canonical way a pair {x, —x}
of chirotopes of rank d with n points, see e.g. [3] for details about chirotopes. A d-dimensional
vector subspace W can be represented by a (n x d)-matrix. With Mat(n, d) we denote the set of
all (n x d)-matrices while Mat(n, d). denotes the set of all (n x d)-matrices with rank d.

We identify each chirotope x with its negative —x. In choosing the above vector subspace
W of IR" at random due to the invariant distribution induced by the action of the orthogonal
group Q(n) on the Grassmann manifold g,,“}d of all d-dimensional subspaces of IR"”, we induce a
probability distribution on the set of all realizable chirotopes. We consider this induced probability
distribution on the set of all realizable oriented matroids or chirotopes as a suitable model. In this
section our probability distribution can be generated by normal distributed matrices defined as
follows. '

Definition 2.1.

A random element T = (T}, )i=1, ky=1, 1 With values in the set of all (k x {)-matrices is called

(k. l)-normal distributed if all T;,; are independent and identically N(0,1) distributed.

Lemma 2.2.

{1) Let n > d and X:Q — Mat(k,!) be a (k,{)-normal distributed random element on Mat(k,{).
Then P(X € Mat(n,d).) =1 and

lel le
P(w[det (w)#O):l

Xj,l Xj,[

for all choices of indices satisfying 1 < jy < jo< -~ < j1 < k.

(ir) Let T be a (k,l)~normal distributed random element and O € O(k). Then OT is (k,{)—normal
distributed, and O’ € O(l) implies TO' to be (k,!)-normal distributed.

iut) Let V be (k,!)-normal distributed and let H be a random element with values in Q(l). H
and V' being independent imply W = V H is (k,{)-normal distributed and independent of H.

Proof of Lemma 2.2.

(1) We identify Mat(k,{) with the space IR*'. The distribution of X is absolutely continuous
with respect to the Lebesgue measure A. For each non-constant polynomial p:IRF — IR, the
equation A({z € R* | p(z) = 0}) = 0 holds.

(1) All components (OT);; = (Eﬁz1 0iuT,j)i; are normally distributed with mean 0 and variance
1 since the components of 7" are independent. Moreover, all components of OT are pairwise
uncorrelated. This implies their independence because they are normally distributed. The
second assertion follows in the same way.



(1) (n) tells us that for all O’ € O(!) and for each B € B(Mk,), a conditional probability for
V H with respect to H is given by P(VH € B | H = O') = P(V € B). We conclude
P(VH € By= P(V € B) forall B¢ B(HU), le. VH is (k,)-normal distributed. For each
C € B(O(1)), we have

P(VHEBHEC)= / P(VH € B|H = 0')Py(d0') = P(VH € B)P(H € C)
g

This proves the independence of VH and H.

For M € GL(n) there exists a unique (normalized) L@-decomposition M = LQ with @ € O(n)
and L is lower triangular matrix with positive diagonal elements. The following theorem is decisive
for our investigations. For a proof we refer the reader to [16].

Theorem 2.3. (Stewart). Let V be a (d x d)-normal distributed matrix valued random element.
For a regular V{(w), we denote with L(w)Q(w) its normalized LQ-decomposition, and we define
Liw) = Q(w) = id if V(w) is singular.

(1) Q 15 an equi-distributed random element on O(d) with respect to the Haar measure.

(1) The random element @ and the entries of L are independent.
(iii) The diagonal entries l;; of L are x? distributed with d + 1 — ¢ degrees of freedom.
(1v) The subdiagonal elements of L are N(0,1) distributed.

3. On the Generation of Random Chirotopes
The orthogonal group O(n) acts transitively on Qf‘d. This induces an invariant probability

measure g on g,{*}d, We have to simulate an equi-distribution on gf}d with respect to p. Let
GM,a={{MA|AeGL(d)} | M € Mat(n,d).}. The orthogonal group Q(n) acts on GM, 4 via
O{MA | AeGL(d)} = {OMA | A € GL(d)}. In the following we will identify the Grassmann
manifold with GM,, 4 since the columns of two (n x d) matrices M; and M; span the same
d-dimensional subspace of IR"™ if and only if each column of My can be expressed as a linear
combination of the columns of M, (and vice versa). This gives us a natural projection.

pr:Mat(n,d). — GF, M~ {MA]| A e GL(d)}.

Lemma 3.1. Let X be (n, d)-normal distributed and

pr: Mat(n,d) — Gnn'{d

M pr(M) if M € Mat(n,d).
{(e1,e2,...,e4)A| A€ GL(d)} otherwise

where ¢, denotes the i-th unit vector in IR®. Then the random element Y = pr o X is equi-
distributed on g,{*‘d with respect to u.

Proof. Let O € O(n). For each Borel set B C gnf‘d the equation P(OY € B) = P(O{XA | A€
GL(d)} € B) = P({OXA | A € GL(d)} € B) = P({XA| A € GL(d)} € B) = P(Y € B) holds
since QX 1s (n, d)-normal distributed (Lemma 2.2).

[J.»J2.. ., jalm denotes the determinant of the submatrix M;
by the j;-th, jo-th, ... and the js-th row of M. Let

je of M which is formed

1.J2,

¥:Mat(n,d) — GF3(")
M ngl’l[l,?, "7d]AM) "1Sgn[jlyj27 --7jd]M1 -':Sgn[n -d+ 1:” - d+2))n’]M)



For A € GL(d) the equation det(MA);, j,. j, = (det Mj, j, ;,)det A holds. Hence all corre-
sponding subdeterminants of M and M A differ by the same scalar det A. Therefore the mapping

068, — PGEY = GE J{+1,-1)
(MA]A€GLd)} — ¥(M){+1,-1} = ¥(M)-GF;

is well defined We are interested in the distribution of the random element S = W o Y. In the
following we search for random elements with same distribution as S which can be simulated more
easily.

The random elements S and S’ = (¥ o X)-GF; have the same distribution since P(X ¢
Mat(n,d).) = 0. Lemma 2.2 shows P(w | one component of S'(w) is zero) = 0, i.e. nonsimplicial
chirotopes occur with probability 0.

In the following we will construct a measure n on Mat(n,d) whose distribution under the
mapping ¥ o i is equal to the distribution of the Haar measure under ¥. This measure 7 can
be simulated more easily by pseudo-random elements than the Haar measure or the (n, d)-normal
distribution. Let X; and X, be independent random elements which are (d, d)-normal and (n —
d.d)-normal distributed. Let X be a random element on Mat(n, d) whose entries in the rows 1 up
to d are given by X;, and the entries in the rows (n-d+1) up to n are given by X5. Then X is
(n,d)-normal distributed. For all w €  with invertible X,(w) the equation

T{XA|AeGLd) \p{ ...... X1A|A€GL(d)}(w)

1
:*{ ( ......... A|A€GL(d)}(w)

holds. By Theorem 2.3, Q and L are independent and therefore @Q~! and L~} as well. By Lemma
22. X2Q ' is (n — d, d)-normal distributed. This proves the following theorem.

Theorem 3.2.
(i) T and L are independent random elements with values in Mat(n — d, d) and Mat(d, d), res-
pectively,
(11) the random element T is (n — d, d)-normal distributed,
{u1) the entries of L are independent,
(iv) the upper diagonal entries of L are zero,
(v) the lower diagonal entries are N{0, 1) distributed,
‘vi) the i-th diagonal element of L is x? distributed with n + 1 — i degrees of freedom.
I
(1),.. ., (vi)imply S" =¥ ( ...... ) -G Fy has the same distribution as S.
TL!

In the (8,4) case we may perform an additional step. The matrix elements of L are denoted
I,JA Let | = 129133144 and

/ ] 0 0o 0

L' =} —l21l33l44 l 0 0
l4a(l32121 — l22l31) —l3al32144 l 0

\las(l21la2 — Io2la1) — laz(la1lae — la2la1) loa(lsalas — laalaa) —laolaslas !



We denote the diagonal matrix with the diagonal entries (1/1111~, 1/1221~, 1/1331~, 1/1441~) with D. Then
L=' = L'D holds which leads to

I
F{XA|A€GLMA)}(w) = E{ Caiin Alde GL(4)}(w)
2D_l
= Tp‘{ ...... DAlAE€ GL(4)}(w)
XQ7'L
I
= ry‘{ ...... AlAe GL(4)}(w)
XQQ—ILI

for all regular X';(w) since the multiplication of a row with a positive scalar does not change the
sign of any subdeterminant. (Theorem 2.3 implies: the l;; are x? distributed.) The same arguments
show the following theorem.

Theorem 3.3.
(i) T is (4,4)-normal distributed,
(ll) Lgl , L31, Lq], L32, L42, L43 are N(O,l) distributed,
(iti) Li; are x? distributed with 5 — i degrees of freedom (i = 2, 3, 4),

(iv) the random elements T, L1, ..., L44 are independent.
(v) Z =2(Lay ..., Laq) has the same shape as L’ above the random element.
I
(&)...., (vyimply S"=¥]...... -GF3 has the same distribution as S.
TZ

4. Generating Random Chirotopes and Avoiding Local Defects.

Since the orthogonal greup O(n) acts transitively on gnf*}d, there exists a completely different
approach to generate equi-distributed pseudo-random elements on g,{Rd, Let Vi, Va,... be a se-
quence of independent random elements on Q(n) whose distribution is éiven by the Haar measure.
For each element ¢ of the Grassmann manifold, Viq, Vaq,... is a sequence of independent and
equi-distributed random elements on g,{Rd. One can simulate the random elements V; in several
manners (see e g. [11] and [16]). Since pseudo-random elements are generated from standard
random numbers, one may obtain “transformation defects” which aggravate the defects of the
standard random numbers. If one generates equi-distributed random elements on a group or on
a homogeneous space, the pseudo-random elements sometimes distinguish certain regions. These
effects were discussed in [15, pp. 58-62]. If one needs many standard random numbers for one
pseudo-random element, this phenomenon is quite likely. Since the group O(n) is compact, one
can attempt to reduce these effects. At first we proof the following lemma.

Lemma 4.1. Let G be a compact group with Haar measure ug and Vi, Vo, ... denote a sequence
of independent equi-distributed random elements. Then the sequence W;, W, ... defined by

W, =W, Wi=ViW;_i=V;Vio - W forj>2
1s also independent and equi-distributed on G.
Proof. For all 4 C G and all j > 2 a conditional probability is given by

P(W; € A|(Wi,...,W;1) = (g1,...,95-1)) = P(Vigj_1 € A) = pa(Ag;})) = pc(4).



This suffices to prove

k
P(Wh, We) € (A1 x - x Av) = [[me(4)) = [TPW; € 4))
i=1

i=1

from which the assertion follows. See the proof of Lemma 2.2 for further details.

The preceding lemma suggests the following method. Generate e Agui distributed pseudo-
random elements Vi, V,, ... and compute W, W,, ... where the W = V W,_

One should intuitively expect that this method spreads local defects over the group and makes
them smooth This intuitive idea is supported by the structure of the convolution semigroup P of
the probability measures on a compact group G.

Let v denote a probablllty measure on G and suppv its support. If lim lnfn_.oo[suppu} =@,
the sequence v,v*?, ... of convolution powers converges to the Haar measure ug in the topology
of weak convergence. (By definition an element ¢ € G is in lim inf, o [suppr]® if and only if
each neighborhood of g intersects all but finitely many of the [suppy]®.) This fact and further
information about P are given in (12, pp. 88-95].

If suppr = G, then v*™ converges to pg as n — oo. The Haar measure ug is the unique
minimal ideal in P. In this sense we can view pg as a stable fixed point. We may regard the
pseudo-random elements 17J as realizations of independent random elements V, whose distribution
v is “close” to ug. If we assume that suppw fulfills the condition required above, the distributions of
the random elements V{, VJV{, ... converge to the Haar measure. Since this mechanism seems to be
very robust, we have good reasons to hope that this mechanism will also work with pseudo-random

elements instead of random elements. Of course, in general the random elements Vi, Vavy, ...
are not independent but if v is _close to pg, the dependence should be “weak” and therefore
neglectable. If the sequence V7, V’V’ . of pseudo-random elements is not too bad (in the sense
of equi-distrnibution), this loss of mdependence is not a grave disadvantage of this method, since
pseudo-random elements are never independent in the stochastic sense. Moreover, for our problem
the property of equi-distribution should be much more important than the independence. Further
details can be found in 15, pp. 91-95).

5. On the Efficiency of our Algorithms

In this section we restrict our attention to the (8,4) case. If we use Theorem 3.3 to simulate S
by pseudo-random elements S;, Sy, . .., we have to generate 22 N(0,1) distributed random numbers
and 3 x? distributed random numbers with 1,2, and 3 degrees of freedom for each Si.

If we want to unify the random number generation, we can simulate a x? distributed random
variable with i degrees of freedom by summing up the squares of i random numbers which are
N(0.1) distributed. In this case we have to generate 28 N(0,1) distributed random numbers for
each pseudo-random element §k. We may generate normally distributed random numbers with
a method proposed by Marsaglia (see (7, 235-236]). For using Marsaglia’s method, the average
number of standard random numbers for each S is about 28-4/m =~ 36. Furthermore, we have to
compute one logarithm for each pair of normally distributed random numbers. Besides sparing the
generation of some random numbers, there is another advantage in using Theorem 3.3 compared
with the “brute force” simulation $’ = ¥(X)-GF3. The special structure of the random elements
(/.- TZ) 1s time saving when computing the subdeterminants. For each pseudo-random chirotope
we have in fact just to compute one determinant of rank 4.

In using the method described in Section 4, we do not need to compute the matrix multipli-
cations on the Q(n), explicitely. To compute Wﬂ.Hq it suffices to compute V,,+1(W q). If we use
Stewarts algorithm (see [16]) for generating the V we get V as a product of dyadic matrices which



simplifies the computation of §;+1(qu). In the 8 x 4 case we need about 35 normally distributed

pseudo-random numbers for each V; on average.

There exists a third possibility to generate random chirotopes. Let || X;|| denote the norm of
the i-th row of X which is (n,d)-normal distributed. Let us define another random element X’
on Mat(n,d). For all w € Q for which none of the rows of X(w) is equal to the zero vector, we
set X! {w) = X,;/||Xi[[(w). For these w we have ¥(X)(w) = ¥(X")(w). Since the rows of X' are
equi-distributed on S¢~ 1| this proves the following fact:
Let X" be a random element on Mat(n, d) whose rows are equi-distributed on S9-1 and indepen-
dent. Then S$ = W(X'") - GF;. has the same distribution as S.
We may generate the rows with the well known rejection algorithm where we enclose the unit ball
in a d-dimensional hypercube. In the 8 x 4 case on average we need about 104 standard random
numbers for each pseudo-random element. In comparison with the method recommended at the
beginning of this section, we spare to compute logarithms but we need a threefold of standard
random variables. This could be troublesome because for this method one needs standard random
numbers whose k-dimensional distributions are all right for at least all £ < 104. Furthermore, the
pseudo-random matrices )?J’-” usually do not contain any zero entries. So we have to compute 70
subdeterminants of rank 4. For these reasons this method is only of theoretical interest.

6. On the Random Classification of Chirotopes

We have simulated the 8 x 4 case on a VAX 8530. The standard random numbers were
generated with a linear congruential generator given by um4; = 134775813 x u, +1  (mod 23,
The normally distributed random numbers were generated with Marsaglia’s method. Since one
needs a large number of standard random numbers for each pseudo-random chirotope, it seems
possible that defects of the linear congruential generator may affect the results of the simulation.
Therefore, we generated about 800.000 pseudo-random chirotopes with an algorithm based on
Theorem 2.3 and 300.000 with the algorithm suggested in Section 4. An attentive comparison
showed that the results were quite similar. Especially, the order induced by the frequencies of
the reorientation classes was essentially the same for both methods. Hence we view our results as
reliable.

Starting point for our investigations was a classification result on 3-chirotopes with 8 points.
We proved that in this case there are exactly 2628 reorientation classes [4]. Exactly 2604 of those
classes turned out to be realizable. We wanted to confirm this result by generating all these
reorientation classes by a random generator.

What is the connection between reorientation classes and chirotopes? In the (8,4)-case there
are exacly 12,851,973,120 different chirotopes (any pair {x, —x} counted once). If all these chiro-
topes had a different probability, it would be hopeless to estimate these probabilities by a Monte-
Carlo method. Fortunately, there are equivalence classes of chirotopes, namely the reorientation
classes with the property that every member of the class has the same probability. This is a very
natural fact, since the definition of chirotopes is completely symmetric with respect to any point,
and it does not change if an arbitrary point is replaced by its negative. In the preceding paragraph
we have seen that S has equal distribution as S. This also implies the equidistribution within a
reorientation class. In the realizable case the symmetry with respect to any point corresponds to
a permutation of the row vectors of the 8 x 4 realisation matrix. Multiplying an arbitrary row by
—1 corresponds to replacing a point by its negative.

For a given d-chirotope x with n points and a permutation 7 € S;,, we define the permutation
7y of x by

x(A1, - An) = x(TAq, .., TAR),

and for a subser 4 € {1,...,n}, we define the reorientation x=* of x by

XA = (DM,

-1



If p(x) denotes the probability of ¥, we conclude:
forany x; A €{l,...,n}; 7€ S,, we have p(x) = p(r(x~*).
We define the reorientation class without renumbering the points of x by

reor(x) = {x 1A €{l,...,n}}.
We define the reorientation class with renumbering the points of x by
reor(x) := {m(x"*)|A€{l,... n};me S, }.

All elements in a reorientation class have the same probability.
Given a chirotope x the number of chirotopes in its reorientation class reor(x) is reor(x)| =
!
- Autir:T(xi :
In our investigation we estimated probabilities for the 2604 realizable reorientation classes. It
turned out that all these classes had a frequency greater than zero.

Remark 6.1 The classification result in [4] was confirmed in the sense that all realizable oriented
matroids occured during our simulation.

Given the probability p(R) of a reorientation class R, one can compute the probability of a

representative y € R by
1 |Aut(Feor(x))|
p(x) = 5 - LT
n!
Our estimates in the (8,4)-case can be seen as supporting Conjecture 1.3: The maximum
among the probabilities of all rank d oriented matroids with n points is attained by the probability

p(x™%) of the alternating oriented matroid.

7. On the Convex Hull of 8 Random Points in R3.

In this section we apply our estimations for the probabilty of the reorientation classes to give
estimations for the probability of the combinatorial types of the convex hull of 8 random points
in R®. This (8,4) case is of particular interest since it is the smallest non-planar case in which
non-realizable oriented matroids occur.

The question of determining the probability of the combinatorial structure of the convex hull
of a random set of points has a long tradition. In the middle of the last century, Sylvester posed the
question of determining the probability px, that the convex hull of four points chosen at random
in a plane convex body K is a quadrangle. Some values of pg for several convex bodies K are
mentioned in {6]. We follow here the main ideas outlined in [3,Chapter 5.].

For the rest of this section we restrict our considerations to configurations in general position,
since all other configurations have a probability of zero. So in the sequel it is sufficient for us to
consider only uniform oriented matroids. Definitions will then become a bit easier as in the general
case.

A uniform oriented matroid containing no positive circuit is called cyclic and acyclic, otherwise.
A configuration in general position is called cyclic, or acyclic, if the underlying (uniform) oriented
matroid is cyclic, or acyclic, respectively. An acyclic configuration in R? in the realizable case can
be identified with an affine configuration in R4~1, see [1].

Given any generic point ¢ on the Grassmann manifold G’,’}_d, its asociated configuration C(g) is
etther cyclic or acyclic. If it is acyclic, one can determine the combinatorial type of the convex hull
of the corresponding affine configuration P(C(g)). The probability that a certain combinatorial
polytope P is the convex hull of n random points in dimension d — 1 will be defined as

_ p(P(C(g)) = P;g € G} ))
P= p(C(g) is acyclic ;g € GR )’




For given n and d we first want to calculate the probability p(C(g) is acyclic ;g € Gf'd). The
number of subsets A with the property that for a given oriented matroid M the reorientation M~
is acyclic was shown by Las Vergnas in [13,Theorem 3.1.] to be exactly t(M;2,0), where t(M)
denotes the tutte polynomial of M. So the number of acyclic reorientations of an oriented matroid
only depends on the underlying matroid. In case of uniform rank-d oriented matroids with n
points (having all the same underlying matroid), we can compute the number R(d,n) of acyclic
reorientations by the recursion

R(n,d)=R(n-1,d)+ R(n-1,d=1); ford#nandd=1,
R(d,d) = 2¢, R(n,1) = 2.

It is easy to prove that
d-1
n—1
R(n,d)_z-;)( . )

We have R(2d,d) = 2(9=Y. R(n,d) corresponds to the number of full dimensional cells of the
arrangement of (pseudo-)hyperspheres that belong to M. Since for any subset A and for any
oriented matroid M we have p(M) = p(M~#) (all reorientations of M have equal probability) the
probability of a configuration being acyclic does only depend on n and d. We have:
) . R(n,d
p((C(g) 1s acyclic ;g € Gf,d) = %2.
And especially:
p({C{g) is acyclic ;9 € Gz‘?,‘%) =05

This equation was in principle known to Wendel since 1962 [17] who proved that the probability
p,, 4 that n points choosen at random on the boundary of the d-sphere is

ot
nd= 9-n+l .

1=0

The concept of convex hulls has been generalized to oriented matroids in [13]. We will give
a short outline of the main ideas. Let O(M) denote the set of cocircuits of an oriented matroid
M. Two cocircuits X,Y € O(M) will be called compatible if (X* NY~")U (X~ NY*) =0 The
union X UY of two compatible cocircuits X,Y € O(M) is defined by (X UY)* = Xt UY* and
(XUY)~ = X~ UY~. The cocircuit span is the closure of O(M) under the following hull operator:

hO') = O'U U {XuY}
X, YeO', XY compatible

So we have:

span(O(M)) = O(M) U h(O(M)) U A(R(O(MM)) U ...

The dimension dim(X) of a signed support X € span(O(M)) is defined by dim(X) =d-1-
|X°|. The signed supports of dimension d — 1 are called full dimensional. For X,Y € span(O(M))
we say that X conforms Y {written X < Y)if X and Y are compatible and Y? C XO. The lattice
(span(O(M)), < is isomorphic to the incidence structure of the cellcomplex of the arrangement of
pseudo-hemispheres that is asociated to M. The full dimensional elements of the cocircuit span cor-
respond to the full dimensional cells of the celicomplex of the arrangement of pseudo-hemispheres.
The cocircuits (0-demensional elements) correspond to the vertices of the arrangement. An acyclic
uniform oriented matroid M contains the element Z = (4, +,...,+) in its cocircuit span. The
lattice of all elements X € span(O(M) compatible with Z ordered by the inclusion ” <” is the dual



face lattice of the convex hull of the oriented matroid M. The cocircuits correspond to the faces
of the convex hull and the d — 2-dimensional cells correspond to the vertices of the convex hull. In
the realizable case this definition gives the usual convex hull of the affine configuration.

Using these relations one can compute the combinatorial type of the convex hull of an oriented
matroid. Furthermore one can attain the set acycl(M) of all acyclic reorientations of a given
oriented matroid M by

acyel(M) = {M~*|A = X~ X is a full dimensional element of span(O(M)}.

For a given acyclic oriented matroid M we denote by conv(M) the combinatorial structure of
the convex hull of M. If M is not acyclic we define conv(M) = 8. Let rep(n,d) denote a set that
contains exactly one representative of any reorientation class with n points in rank d. One can
determine the probability p?,'" that the convex hull of 8 random points in R® (generated by using
an equal distribution on G?’q‘ and taking the corresponding affine configurations) is of a certain

type P by .
1 1
3,4 _
PP = 5% > > = P(M).
Merep(8,4) ACE
conv(M~A)=P

Altogether there are 23 types of simplicial convex 3-polytopes of at most 8 points, see [10].
A complete list of the Schlegel diagrams of these types together with their estimated probability
is given in the Appendix. Especially, one can derive the probability pf"’ that the convex hull of 8
random points in R® contains exactly k points. We get:

Pi? = 0.19323, pi* ~ 0.32687, p* & 0.20802, pi* & 0.15043, p>* ~ 0.03145.
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APPENDIX 1

ESTIMATED PROBABILITIES FOR THE 23 SIMPLICIAL
CONVEX 3-POLYTOPES WITH UP TO 8 VERTICES

A A AL

0.19323 0.32687 0.22693 0.07109

AANA A A A

0.04972 0.03087 0.03001 0.02022 0.01961

L. V.V V. V.

0.00857 0.00518 0.00315 0.00314 0.00297

AL A

0.00222 0.00134 0.00131 0.00111 0.00056

CAAAA

0.00052 0.00052 0.C0051 0.00035







