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Introduction

In extremal graph &noc\ one explores in the relations between various graph
invariants like order, size, connectivity, chromatic number, diameter, radius,
clique number, minimal and maximal degrees, the circumference, the genus.
More generally, one is interested in the values of these invariants ensuring that a
graph having a certain property has another given property as well. Let us give
two examples. Given a graph F, determine ex(n; F), the maximal number of
edges in a graph of order n that does not contain F, the forbidden graph, as a
subgraph. Given two properties of graphs, # and 2, say, a number of graph
invariants f,,..., f,, and a natural number n, determine the set A(n)=
{(a,,...,a,): if a graph G of order n with f,(G)=a,, i =1, ..., k, has property &
then it also has property 2}.

The first of these is the classical extremal problem which, though important, is
rather narrow; the second problem, on the other hand, is perhaps too broad a
problem to be rightly claimed as a genuine extremal problem, sincc most
problems in graph theory could be formulated in this way. In practice. one stays
away from both extremes by considering a problem in graph theory to be an
extremal problem if its “natural” formulation asks for some best possible
inequalities among various graph invariants. However, in this chapter we shall
take a rather narrow view of extremal problems, mostly for lack of spacc and also
because several problems belonging to extremal graph theory are considered in
other chapters of this volume, in chapters on Ramsey theory, Hamilton cycles,
colouring, connectivity, matching, etc.

In a typical extremal problem, given a property ? and an invariant ¢ for a class
4 of graphs, we wish to determine the least value f for which every graph G in 4
with ¢(G) > f has property #. The graphs in ¢ without property # and satisfying
&(G) =f are the extremal graphs for the problem. More often than not, ¥
consists of graphs of the same order n, namely ¥ = {G € ¥: |G| = n}, where ¥ is
a class of graphs, and so f is considered to be a function of n, determined by &
and #. This function f(n) is the extremal function for the problem.

A short review like this is easily overcrowded with a host of results. In order to
avoid this, in section 1 we shall study the classical extremal problem, the problem
of forbidden subgraphs, at a leisurely pace, giving some of the simpler proofs.
The other sections are considerably shorter and are intended to provide the
reader with only glimpses of the topics. Our aim is to give the flavour of the
subject rather than overwhelm the reader with results. This review is based mostly
on Bollobas (1978a) and an update of that book. Bollobas (1986).

1. Forbidden subgraphs

Let F={F,,...,F,} be a family of graphs of order at most n: the family of
forbidden graphs. Write ex(n: F)=ex(n: F,..... F,) for the maximal size of a
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graph of order n containing no forbidden graph F;, i.e., containing no subgraph
jsomorphic to a forbidden graph F,. In this section we shall take ¥ to be a fixed
family, independent of n, and we are mostly interested in the asymptotic value of
ex(n; ¥) as n—=.

1.1. Turdn's theorem and its extensions

One of the earliest substantial theorems in graph theory is due to Turan (1941)
and it concerns the function ex(n; K,), where K, is the complete graph of order r.
Turdn’s theorem was not only the starting point of extremal graph theory but it
also signalled the birth of graph theory as an active subject. Although Mantel
(1907) proved that ex(n: K;)= |n*/4], Turdn was the first to study ex(n; K,) for
all r.

Given 1<s=n. denote by T,(n) the complete s-partite graph with \n/s],
ln+ D)is], ..o L +s— 1)/s] vertices in the various classes. Thus T,(n) is the
unique complete s-partite graph of order n whose classes are as equal as possible.
Equivalently, it is also the unique s-partite graph of order n whose size is as large
as possible. The graph T(n) is the s-partite Turdn graph of order n. Denote the
size, i.e., the number of edges, of T.(n) by t,(n):

=3 (1) 3 [

i=1 1=si<jss

where n, = |(n +i—1)/s] is the number of vertices in the ith smallest class. In
particular, 7,(n) = [n°/4].

An (r — 1)-partite graph does not contain a K, ; in particular, T,_,(n) does not
contain a K,. Consequently, ex(n; K,)=t,_,(n). Turdn (1941) (see also Turan
1954) proved that, in fact, we have equality, and T._,(n) is the only extremal

graph.

Theorem 1.1.1. Let r=2. Then ex(n;K,)= t,_,(n) and T, ,(n) is the only
extremal graph: it is the only graph of order n and size t,_(n) that contains no
complete graph of order r.

Proof. The graph T, () is a maximal K,-free graph: it contains no K, and if we
join two vertices belonging to the same class of T,_,(n) then these two vertices,
together with r — 2 vertices, one from each of the other classes, form a K,. Hence
it suffices to prove the second assertion: if G has order n, size t,_,(n), and
contains no K,, then G is (isomorphic to) T,_,(n).

The structure of T, ,(n) is ideal for proving this by induction on 7. Indeed,
given that we have ¢,_,(n) edges, the vertices in T, ,(n) have as equal degrees as
possible:  the  minimal ~ degree is 8, (n)=2, \()/nl=n— ln+r—2)/
(r—1)) =n—{n/(r—1)] and the maximal degree is 4,_,(n) = 2e, ()2 =n-—
|n/(r — 1)]. Furthermore, if we delete a vertex x of minimal degree from T, (n)
then we obtain 7, (n -~ 1). In particular, t,_(n)—8, _,(n)= t,_,(n—1). Finally,
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as 8,_,(n)=n—1-(n— 1)/(r—1)], the vertex x is joined to all vertices of
T,_,(n— 1) except to the vertices in a smallest class.

Let us see then the proof by induction on 7. For n<r —1 there is nothing to
prove so let us assume that n = r and the assertion holds for smaller values of n.
Let G be a graph of order n and size t,_,(n) that does not containa K,. Letx€G
be a vertex of minimal degree: d(x) = 8(G) < [2e(G)/n] = \2t,_,(n)/n} =8,_,(n).
Set H=G —x. Then e(H) = ¢(G) —d(x) = t,_(n) =8, (m)=t,_,(n— 1). Since H
contains no K,, by the induction hypothesis H is T,_,(n — 1) and d(x) =8,_,(n).
The vertex x cannot be joined to r —1 vertices in distinct classes of H =T, _,(n —
1) because then these r vertices would form a K,. Consequently T, (n—1)yhasa
class, no vertex of which is joined to x. But then this has to be a smallest class and
x has to be joined to all the vertices in all the other classes. Therefore G is

precisely 7,_,(n). O

The proof above is not so much about graphs not containing a complete graph
of order r but about the unusual ease with which T,_,(n) can be produced from
T, ,(n—1). Letus give a slightly different slant to the proof of the induction step
above. Since the degrees of the vertices of T,_,(n) are as equal as possible, given
the number of edges, and since e(G)=t,_,(n), therc is a vertex x in G with
dx)<$8,_(n)= 8(T,_,(n)). Then, by the induction hypothesis, H = G —x mus!
be T, ,(n—1)and d(x) = 5,_,(n). If the vertices not joined to x form a (smallest’
class of T,_,(n — 1) then we are done. Otherwise pick a vertex y in T,_,(n — 1
which is not joined to x. Then y has degree 8, ,(n) in G s0, by the inductior
hypothesis, G —y is also T, ,(n—1). But thatis clearly not the case because, fo

example, G —y contains a K.
This version of the proof of the induction step implies the following extensior

of Theorem 1.1.1.

Theorem 1.1.2. Let F,,. .., F, be graphs of order at most t, and let s be such tha
no T,(n) contains any of the F,. Suppose n,=11s such that ex(ny; Fy, ... F) =
t(ng) and Ty(no) is the only extremal graph. Then the same assertion holds fo
every n=ny: ex(n; Fy, ... ,F) =t(n) and T (n) is the only extremal graph.

If we do not care about the uniqueness of the extremal graph T, ,(n) i
Theorem 1.1.1, then all we need for the proof is that every graph of orde
n=r+1andsize t,_,(n) + 1 has minimal degree at most 8, ,(n). This observatio
shows that if G is a graph of order n and size t,_,(n)+ 1 then for every n
r+1<n'<n, the graph G contains subgraph of order n' and size at lea:
t,_(n)y+1. In particular, as shown by Dirac (1963), every graph of orde
nz=r+1 and size t,_,(n) + 1 contains not only a K, but also a K, a complet
graph of order r + 1 from which an edge has been deleted.

This observation can be carried over to greater excess size over t,(n). A grag
G of order n = (2g — 1)s + 2 and size 1,(n) + ¢ has minimal degree at most 8,(n
so G has a subgraph of order n—1 and size t(n —1)+¢. This imphes th
following result.
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Theorem 1.1.3. Let s=2, g=1, ny=(2q—1)s+2 and let F,,. .., F, be graphs
such that ex(ny; F... .. F,)<t/(n,) +q. Then ex(n; F,, ..., F)<t/(n) +q for all

n=ng.

Let us return to Turdn’s Theorem 1.1.1. This result claims that the size of a
graph G of order #» not containing a K, is dominated by the size of an
(r —1)-partite graph H of order n. Erdés (1970) proved that we can guarantee
that this domination holds at every vertex: the edges of G can be rearranged and,
perhaps, some more edges can be added to the graph in such a way that the
resulting graph H is (r — 1)-partite and every vertex is incident with at least as
many edges in H as in G. As so often in mathematics (especially in com-
binatorics), the achicvement is the discovery of this beautiful fact: the proof is
straightforward.

Theorem 1.1.4. Let G be a graph not containing a K., r=2. Then there is an
(r = 1)-pariite graph H with vertex set V(H) = V(G) = V such that d ;(x) < d,,(x) for
every x €V. Furthermore. H can be chosen to satisfy e(G)<e(H), i.e., d.(x) <
dy(x) for at least one vertex x. unless G is a complete (r — 1)-partite graph with
r — 1 non-empty classes.

Proof. We apply induction on r. The assertion is obvious for » =2, so we pass to
the induction step. Suppose r > 2 and the assertion holds for smaller values of r.
Let v €V be a vertex of maximal degree in G: dg;(z) = A(G), and let W= I'(v) be
the set of neighbours of v. Then G = G[W], the graph induced by W, does not
contain_a K, _,. Hence. by the induction hypothesis, there is an (r — 2)-partite
graph H with vertex set W such that ds(w) < dg(w) for every w € W.

Let us construct an (r — 1)-partite graph H with vertex set V from H by joining
all vertices in VAW to all vertices in W. It is easily seen that d (x)<d,(x) for
every x € V. Furthermore. it is casily seen that if G is a complete (r — 2)-partite
graph and d;(x) = A(G) for every x EV\W then G is a complete (» — 1)-partite
graph. O

Since T,_(n) is the wnigue (r — 1)-partite graph of order n and maximal size,
Theorem 1.1.4 impiics Theorem 1.1.1.

Let us say a few words nhout a natural extension of the function ex(n; F). For
a graph G and a family .7 of graphs, let ex(G; ¥) be the maximal number of
edges in a subgraph of G that contains no element of & as a subgraph. Thus,
ex(n; F) =ex(K,; ). 1t would be unreasonable to expect precise results about
the function ex(G:.#) or cven ex(G;K’) but, somewhat surprisingly, sharp
results can be obtained in the case when G is a random graph G, , (see Bollobds
1985, and chapter 6). Among other results, Babai et al. (1990) proved that, for a
fixed value of p, with probability tending to 1, ex(G, ,;K") is the maximal number
of edges in an (r — I)-partite subgraph of G, ,- They also conjectured the
following result which was proved. a little later, by Frankl and Pach (1988).
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Let us say that a graph has property P(k,[) if any k vertices have at most /
common ncighbours.

Theorem 1.1.5. Let ¢, riz2 be fixed integers, and let 0<c<1—-1/(r—1). Let G
be a K, -free graph with n vertices, having property P(t,cn). Then

H 1-1/¢
mAQVMm_:AHIxIHv 12+ o(n?).

As an easy consequence of this result, one finds that ex(G, ,; K,) =
p(1—1/(r — 1))n*/2 + o(n”) with probability tending to 1.

1.2. The number of complete subgraphs

We know from Turdn’s theorem that a graph of order greater than ¢ _ (n)
contains at least one K, and we know also that it has to contain at least two K.
Let us go further: given m >¢,_,(n), at least how many K, are in a graph of order
n and size m? Even more, if we know that a graph of order n has many K,
subgraphs, what can we say about the minimal number of K, subgraphs it has to
contain?

To formulate this problem precisely, let us introduce some notation. Denote by
k,(G) the number of K, in a graph G. Thus k,(G) is just the size of G, the
number of edges of G, and Turdn’s theorem tells us that if G has order n and
k(G)>t,_(n) then k,(G)=1. For natural numbers 2<p <r=<n and a real
number x = (} define

k,(k,=x)=min{k (G"): G" is a graph of order n and k,(G")=x} .

What can we say about the function k,(k, = x)? As shown by Bollobds (1976a).
this function is also closely connected with the Turdn graphs T,(n), T,(n), ... .
For simplicity, let us suppress the variable n and put T,=T,(n). The graph
G=T, | contains no K, but it has k,(T, ;) completc graphs of order p. so
k(k,=x)=0 for 0=x=k,(T,_,).

Let ¢i(x) be the maximal convex function defined on the interval k (T, |)<x=
() such that
Wk, (T,) <k (T,) (h
forg=r—1.r,..., n ltis easily seen that, in fact, equality holds in (1) for every
4. Also, the Turdn graph T, shows that for x = & ,(T,) wc have
k(K = x) < dx) . (2)

It turns out that Y(x) is actually a lower bound for k, (k) = x) for all values of v

Theorem 1.2.1. Let 2<p <r=n. For k (T, |)<sx= () we have

Kk (k= x) = ¢(x) .
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N: particular, if a graph of order n has at least as many K, subgraphs as T,(n) then
it also \Na at least as many K, subgraphs as T,(n). Also, if a graph of order n has
more K, subgraphs than T,_(n) then it contains a K,.

The last assertion above was first proved by Erdés (1962) and it was
rediscovered by Sauer (1971).

Let us state a weaker but more transparent version of Theorem 1.2.1. The
bound on the number of triangles given below was conjectured by Nordhaus and
Stewart (1963).

Theorem 1.2.2. (i) Let n’/4<m<n?/3. Then every graph of order n and size m
contains at least n(4m — n*)/9 triangles.

(ii) @&Q\m:ﬁx of order n and size m contains at least n R — m -
(r—=2)n")/r"" " copies of K,.

H:.@ bound above on the minimal number of triangles is fairly good: it is
certainly best possible for n=3n, and m =n’/3 = 3n.. However, when m is not
much greater than t,(n) = |n?/4] then the estimate is rather crude. How can we
construct a graph of order n and size m = |n*/4] + [ which contains few triangles?
For [ <n/2 we can join a vertex in a larger class of T,(n) to [ vertices of the same
o_mm.m to obtain a graph containing precisely /|n/2] triangles. Erd6és (1962)
noEonERa that we can never do better and proved that this is indeed the case if
[ <en for some ¢>0. This conjecture was proved by Lovdsz and Simonovits
2.3.@, 1983), who also proved a number of results concerning k,(k; =x), the
minimal number of complete r-graphs in a graph of order n, with at mnmmﬁ x ommmm.

H—.mcqw:. 1.2.3. For 0<I<n/2, a graph with n vertices and t,(n) +[ edges
contains at least 1{n/2] triangles.

There are a good many results concerning the covering of graphs by complete
subgraphs. The first result in this area was proved by Erdds et al. (1966b); this
was sharpened by Bollobds (1976a), Chung (1981) and Gydri and Womﬁo“oES
mwwmw The following result was conjectured by Erdés and proved by Pyber

Theorem 1.2.4. lLet G be a %E.u\_ with n vertices. Then G and its complement can
be covered with ui most \n>i4] + 2 complete subgraphs. The graph T,(n) shows
that this bound is best possible.

A considerable extension of the original theorem of Erdds et al. was conjec-
tured by Winkler, and proved by McGuinness (1994).

Hrawnmi 1.2.5. If maximal cliques are removed one by one from a graph with n
vertices. then the graph will be empty after at most n’/4 steps.

In fact. Winkler made a stronger conjecture as well, which is still open: i
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maximal cliques are removed one by one from a graph with n vertices, then the
graph will be empty after the sum of the number of vertices in the cliques ha

reached n’/2.

1.3. Complete, bipartite graphs

Let us turn to the analogue of the Turdn problem for bipartite graphs. Give
d ¢, what is the maximal size of an m by n bipartit
), a complete s by ¢ bipartite graph? Denote thi
tz(n;t) =z(n,n; t, ). Zarankiewicz (1951) aske
this question for s=t=3 and m=n= 4, 5, 6 and the general problem has als
become known as the problem of Zarankiewicz. The similarity with Turdn’
problem is, unfortunately, only superficial: for the general function z(m, n;s, 1
there is no beautiful extremal graph and we are far from being able to dctermin
even the order of z(n;t) for a fixed (but large) value of 1.

It is worth reformulating the Zarankiewicz problem in terms of 0—1 matrice:
At most how many 1s can a 0—1 matrix of m rows and n columns contain if it he
no s by ¢ submatrix all whose entries are 1s?

The following rather trivial lemma is just about the most one can say about tt
general function z(m, n;s,t). As, trivially, z(m, n; 1,1) = m(t—1) for Isr=n,
is sufficient to consider the case 2<s=<m, 2<st=n.

natural numbers m, n, s an
graph not containing a K(s,t
maximum by z(m, n; s, t) and pu

Lemma 1.3.1. Let m, n, s, t, r and k be integers, rT=ssm,2=t<sn, 0srsr

and let G be an m by n bipartite graph of size z =my = km + r without a K(s,!

Then
()= =n() o5 == 0ll) (

Proof. Let (V,,V,) be the bipartition of G and let V, = {x;, ..., X} d(x;) =1«
Let us call a set {xy,, Xy, . ..,xy,} of t edges of G incident with the same vertex

a claw; furthermore, x is the centre of the claw and the t-set {y, ..... ¥} ist

base.
The graph G has MMM (%) claws since there are () claws with centre Xx;. (

the other hand, each f-subset of V, is the base of at most s — 1 claws since
contains no K(s,t). Therefore G has at most (s — 1)() claws and so

5 (4)-c-oll) ,

. m . . - . /
Since Y., d,=z=km+r 0=sr<m, and (¥) is a convex function of uforuz

i=1 "

inequality (2) implies (1). [
Theorem 1.3.2. Let m, n, s, 1 be natural nwmbers, 2<s<sm, 2=1=n. Then

z(m,n;s,0)<<(s - DY -+ :§T_ "+ (- 1m.
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—u.noom. Let G be an extremal graph for z(m, n; s, t). Set y = z(m, n; s, t)/m. Then
since y <, by Lemma 1 we have u “

m(y—(t—1)'<@—-Dnr—-¢-1). O
For a fixed value of t =2, Theorem 1.3.2 implies that
;0= (=17 + 0n) (3)

and it is conjectured that (3) is essentially- best possible. To b i it i
conjectured that ’ P O e preme B
lim i/ =¢,>0 (4)
for every mw‘wu So far, the only value of ¢ for which (4) is known to hold is ¢ = 2.
In fact. Wo,‘_z:AQ al. (1954) and Reiman (1958) determined z(n;2) for infinitely
many values of n. but there is no =3 for which z(n; r) is known for infinitel
many values of n. ’

.—,rm......mz_ 1.3.3. (i) z{(n;2)=<(n/2){1+Vdn -3} forall n=2.
(il) Let ¢ be a prime power and let n=q" +q + 1. Then

%:5um:+<§|3n8‘:sw+m+:.

(iii) lim,_., z(n; 2)/ntt=1.

Proof. e Let G be an extremal graph for z(n; 2) and let the notation be as in the
proof of Lemma 1.3.1. By inequality (2),

ny o< (d,
() =2 S

n

B , n n 2 n
:[\:WM &N.\MﬁWAM &Nv \:IM&.HNNQIN
(=1 i=1 i=1 i=1 ' ’

This implies the required inequality.

(if) From the proof of part (i) we see that equality in (i) 1 i

‘ ¢ quality holds in (i) if and only if (1)

every vertex in G :mm. the same degree d. (2) for every two vertices in V. there is
Emem.m? one vertex in V, joined to both, and (3) for every two vertices in V.
M..Qo is .Eoo_mw_./\ one vertex E V, joined to both. This means that the graph G Q:m
_.m oo:m_QWana as a m::m projective plane: V, is the set of points, V, is the set of
Q_:Wm and X eV s _05@:& to y €V, iff the point x is incident with the line y. Now if

is a prime power then there is a projective plane of order that is wi

2 . ’ tis

n=q -y + 1 points and lines. P o that s with

(iii) Since @m ‘o(dQ sufficiently large natural number n, there is a prime
between n —n” /10 and n, the assertion follows from (i) and (ii). O
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A somewhat weaker form of conjecture (4) is that lim;== z(n; H/n " >0.In
addition to ¢=2, this is known for (=3. Brown (1966) proved that
lim; =5 N?me\me;WH by making use of the 3-dimensional affine space

AG(3, p) over the finite field of order p. However, for a general = 4 all we know

is that

3
lim z(n;)/n> 70 =1— (. (5)

n—w

dom graphs (see Bollobas 1979, p. 127). The
2-2/(0+1) -

This is proved by making use of ran
gap between the upper bound, »*"'", and the lower bound, »n , It
alarmingly large; as stated above, it is very likely that the upper bound gives the
correct value.

The functions ex(
particular, for fixed value
that

n; K(s,t)) and z(n,n;s, t} are intimately connected; ir
s of s and ¢ they have the same order. It is casily scer

2 ex(n; NAM,NVVMNA:,:E,:M@xmwxlm@,DV . (6

Indeed, given a graph G of order n and size m = ex(n; K(s, 1)), construct an n b
n bipartite graph H as follows. Take two disjoint copies of V(G). say v, and V,
and join x' €V, to y" €V, iff xy € E(G), where x and y are the vertices in V(G
corresponding to x and y”. Then H has 2m edges and contains no K(s, ) (and v
K(1, ), for that matter) so the first inequality in (6) holds. The second inequalit

is trivial.
Combining inequality (6) with Theorem 1.3.2, and noting the analogue of (5

we have the following assertion.

Theorem 1.3.4. If 2<s<n then
11— @_V\J:TN:?: =ex(n; K(s, 5))
=i - D -s+ Dn' '+ s — Dn

_ s—1
<n® V4 5 n

As (6) holds and we do not know the order of z(n, n;t, 1) for t =4, neither ¢
we know the order of ex(n; K(s,s)) for s=4. However, w¢ do know th
ex(n; K(2,2)) has order 1> and ex(n; K(3,3)) has order n?. In the case
K(2,2) we can do considerably better. As in the problem of determinii
ex(n; K(2,2)) we do not care where the classes of K(2.2) are, it s more natu
to write C, instead of K(2,2), indicating that K(2.2) is just a d-cycle

quadrilateral.
Inequality (5) and Theorem 1.3.3 (ii) imply that
ex(n; C, mmlﬁ+<§\ﬁ. (

Erdés et al. (1966a) noticed that certain graphs constructed by Erdds and R&
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(1962) show that (6) is asymptotically best possible. The same assertion was
proved independently by Brown (1966).

Theorem 1.3.5. Let q be a prime power. Then

: +1
Lg(a+ 1) Sex(q’ +q + 1;C)=talg+ 1P +I5 ®)
Furthermore,
lim ex(n; C,)/n'"? =1 . ©

n—x

Proof. The second incquality is precisely inequality (6) for » = g*+q+1. Letus
prove the first incquality by describing the graph G, constructed by Erdés and
Rényi (1962).

The vertex set V(G,) is the set of g° + g + 1 points of the finite projective plane
PG(2, q) over the finite field of order q. A point is joined to all the points on its
polar with respect to the conic x>+ y>+ z>=0. Thus two points (a, b, ¢) and
(a, B, v) are joined iff aa +bB + ¢y =0. Then a point not on the conic is joined
to g + 1 points, i.c., to all the lines on its polar, while each of the g + 1 points on
the conic is Q.om:mamc g points, namely to the points on its polar except itself.
Hence G, has ${g (¢ +1)+ (g +1)q} =39(q + 1)* edges.

The graph G, does not contain a quadrilateral since any two lines meet in
exactly one point so every vertex is determined by any two of its neighbours.

Relation (9) follows as Theorem 1.3.3 (iii). [

The bounds in (7) are tantalizingly close. The only reason why the graph G, is
not ideal for the problem is that it has absolute points, i.c., points lying on their
polars. These ¢ + 1 points are joined to only g points, instead of g + 1, as all the
others. If we could avoid these absolute points by choosing a more suitable
polarity then we would achieve the upper bound in (7). However, this is not to
be: Baer (1946) proved that every polarity of a finite projective plane of order g
has at least ¢ + 1 absolute points. Thus the Erdés—-Rényi graph G, cannot be
made to have more edges by choosing a different polarity.

In view of this fact it is not too surprising that the way to improve (8) is to
reduce the upper bound. This was achieved by Firedi (1983) (see also the
remarks at the end ot that paper) who thereby determined ex(n; C,) for infinitely
many values of ».

Theorem 1.3.6. For cvery natural number q we have
ex(q +q + 1. C)=Lg(qg+1).
In particular, if ¢ is a prime power then

ex{g™ g LG =1glg t 1)°.
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What happens if we forbid not only C, but C as well? The projective plane
graph in Theorem 1.3.3 (ii) contains no C,, and as it is bipartite, it contains no Cj
cither. Hence if n=2(g" + g + 1) for some prime power g then ex(n; C,,C5)=
(g-1)(g*+q+1), 50 ex(n; Cy, Cs5) = (n/2)** + o(n*"?) for all n. ErdSs and
Simonovits (1982) proved that this inequality is, in fact, an equality.

32
).

Theorem 1.3.7. ex(n; C,, Cs) = (n/2)’* +o(n

It would be of interest to decide whether ex(n; C,, C5) = (¢ — D(g>+qg+1)if
g is a prime power and n =2(g” +q +1).

1.4. The fundamental theorem of extremal graph theory

For r=3, the Turdn graph T,_,(n) has ¢, ,(n)=(r —2/2(r - 1)n® + O(n) edges
and contains no K,. On the other hand, every graph of order n and sizc
t,_,(n) + 1 has a K,, in fact, several K,. Furthermore, Theorem 1.2.2 implies that
if 0<e& < 1/2r(r — 1) then every graph of order n and size ((r - 2)/12(r - 1)+ e)n’
contains at least (2(r —1)e/r"~")n” copies of K,. Thus there is a sudden jump
when the size reaches ¢, | (n).

Although this sudden jump is quite startling, Erd6s and Stone (1946) proved
that a considerably more important change takes place when the size becomes
significantly greater than t,_,(n). This result, which deserves to be called the
fundamental theorem of extremal graph theory, states that for every r =3 and
£ >0, there is a function s = s(n) such that s(n)—> as n— =, and every graph of
order n and size (((r—2)/2(r—1))+ g)n’ contains a K,(s) =K(s,s,...,8)=
T.(rs), a complete r-partite graph with s vertices in each of the classes. Thus we
not only get a complete r-partite graph with one vertex in each class, as claimed
by Turdn’s theorem, but we can guarantee even a complete r-partite graph with
s(n) vertices in each class, where s(n)—® as n—=.

The assertion above does make sense for r =2 as well although in that case
Turén’s theorem is completely trivial: every graph of order n and size at least en’,
0<e <41, contains a complete bipartite graph with at least s(n) vertices in each
class, where s(n)— = as n— . This assertion is immediate from Theorem 1.3.4:

if 0<e<! and 0<c¢c<log1/2e are fixed then the asscrtion is truc with stn) —

fclognl, ?osamg n is sufficiently large.
Let us state then the fundamental theorem of extremal graph theory. proved by

Erdds and Stone (1946).
Theorem 1.4.1. Let r=2 and & >0 be fixed. Then there is a function s = s(n).
with lim,_ s(n) =, such that every graph of order n and size at leust

((r —2)/2(r = 1) + &)n’ contains a K,(s).

As we are interested in the growth of s(n). let us introduce the following
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notation. For =2 and 0<g <1/2(r — 1) define

s, ()= BET every graph of order n and size at least

(3= + <) comtains & K0
i.f ¢ )n® contains a K,(t){ .

Erdés and Stone (1946) proved that s, (1) = (I, (n))'"? if n is sufficiently large,
where [,_,(n) is the r — 1 times iterated logarithm of ~. Furthermore, Erdds and
Stone conjectured that the order of s, (n) is I,_,(n). Later Erd6s (1967)
announced that s, .(n) > c(log n)"’¢~Y for some constant ¢>0 and sufficiently
large n.

Rather unexpectedly, s, (n) turns out to be much larger than these lower
bounds. The true order of s, .(n) was determined by Bollobas and Erdé6s (1973).

Theorem 1.4.2. Let r=2 and 0 <& <1/2(r — 1). Then there are positive constants
c, =c,(r, &) and ¢ = c,(r, &) such that

c, logn <s, (n)<c,logn. (D

In particular, every graph of order n and size at least ((r — 2)/2(r — 1) + e)n’
contains a complete r-patite graph with at least c, log n vertices in each class.

How do ¢, and ¢, depend on r and £? As pointed out by Bollobds and Erdés
(1973), the constant ¢, can be chosen to be 5/log(1/€), provided n is sufficiently
large. This can be seen by a simple application of random graphs. What about ¢,?
Improving inequality (1), Bollobds et al. (1976) proved that one can take
¢, =clrlog(1/¢) for some absolute constant ¢ >0, provided » is sufficiently large.
Finally, Chvital and Szemerédi (1981) showed that this is true without the factor
r.

Theorem 1.4.3. There is an absolute constant ¢ >0 such that
¢
log(]/#)

logn=<s, (n)< log n

I
log(1/¢)

Fr=2,00 02 ) and nois sufficiently large

First we <hall sketch a proof of Theorem 1.4.2 and then we shall return to
Theorem 1.4.3. As we remarked above, the upper bound in (1) is very easy: it
follows from a straightforward application of random graphs. To prove the lower
bound, we shall nced the following lemma.

Lemma 1.4.4. Ler G be a graph of order n that contains no K, . (s) but contains a
K (q), say K. Then & has at most

s

((r 1yg @ sin = 2gn'

.y ‘

Extremal graph theory 1245

edges joining K to G — K.

Proof. As in the proof of Lemma 1.3.1, we define a claw with centre X m G—Kas
the set of r edges incident with x such that precisely s of these edges join x to each
of the r classes of K. It is easily checked that ifxEG - K is joined to (r — 1)g +d
vertices in K then there are at least (4)7'(¢) claws with centre x. Hence if there
are (r—1)qn+D>(r—1)gn+sn edges joining G — K to K then there are at

least n(4)""'(P{") claws in G. .
Since G contains no K, . (s), there are at most s — 1 claws with the same base,

the same set of vertices joined to the centre. As there are (9) possible bases, G
contains at most (s —1)(7)" claws. Consequently,

(7)< e-al3).

D=n'""(s-1)"qg=s2n q,

Hence

proving the lemma. U

Armed with this lemma, we shall prove the main part of Theorem 1.4.2, the

lower bound on s, ,(n). To be precise, we shall prove the following assertion.

Theorem 1.4.2". Let r=2, 0<e<1/2(r—1) and 0<y, <({(r— 1)le” ™ log(8/e).

Then if n is sufficiently large, every graph of order n and size al least

ANMxIINC * mv:N

contains a K (s) where s = |y, log nj.

Proof. Let us add to Theorem 1.4.2 a trivial assertion concerning the case r = L:
for & > 0, every graph of sufficiently large order contains a K, (s) for s = v, log n|
where vy, = 2/e. .

Suppose then that the result is true for r=1 but fails for r+ 1: there 1s a
constant y . 0<y, . < rle"/log(8/¢), such that for every n, there is a graph G,
of order n, .Wzo and size at least ((r = 1)/2r + e)n; without a KN, 00 ;:Sx.r,
s, = ly.. logn,]. Such a graph G, has average degree ((r— 1)/r + 2e)n, so 1t
contains a subgraph G with n=jen, vertices and minimal dcgree at. least
(r— 1)/2r +3e)n. Lety, o <% <ery, = rle"/log(8/e). Then, if n is mc?n.,_a::%
large (and that is the case if n, is sufficiently large). the graph G contains no
K, (s), where s = |y, log n|. However. it does contain a K. (g). say K. where
¢ = v, logn]. By Lemma 1.4.4 there are at most ((r—Dg+sn+2qn° edges
joining K1to G- ~m, so some vertex of K has degree at most

Lisy

rg + {((r— g +s)n+2qn" """} irg.
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Hence

r—1 +ra+ sn +|N| I-11s
ntrg g7 ns :

This _.:oﬁ_w:Q cannot hold if n is large enough since then rqg <iten, s/rg<e
and (2/r)n”" " <le. This contradiction completes the proof. [

{\Hw
ﬂ p +Mm n=8(G)=<

The proof Theorem 1.4.3, given by Chvital and Szemerédi (1981), is based on
a deep and important lemma due to Szemerédi (1978). This result, to be stated
below as Theorem 1.4.5 and usually called the uniform density lemma or
regularity lemma, was one of the main tools in the proof of Szemerédi’s (1975)
theorem, one of the most difficult results in combinatorics, stating that every
sequence of integers with positive upper density contains arbitrarily long arith-
metic progressions.

For a graph G. and disjoint sets U, W C V(G), denote by e(U, W) the number
of U — W cdges. The density of the edges between U and W is

e(U, W)

N\E,ST|_Q__§ .

The pair (U, W) is e-uniform or ¢-regular if
ld(U' W) —d(U, W)|<e
whenever U’ C U, W CW, |U’| > ¢|U| and |W'| > g|W]|.
,E_ncnoi _h.m. Given € >0 and an integer m, there is an M = M(e, m) such that
the vertices of cvery graph of order at least m can be partitioned into classes V,,,

Vis.o Vi where m < k<M, such that [Vol<tV,| = V,|=---=|V,| and all but at
most ek™ of the pairs (V,,V)), | <i<j<k, are e-uniform.

The following two immediate consequences of Theorem 1.4.1 show why the
result is called the fundamental theorem of extremal graph theory. In the spirit of
the notation used above, for a graph G and a set U CV(G) define the density
d(U) of the subgraph G[U] spanned by U as

aws e/ (3),

&&mnm 1 =|U]. Thus if U spans a complete graph then d(U) =1, if U consists of
independent vertices then d(U) = 0.
Let G be an infinite graph. Define the upper density of G to be

d(G) = sup{a: for every m >0 there is a finite set U satisfying |U| >m

and d(U)>a} .

Putting it another way. if 8 > d(G) then there is an m > 0 such that whenever (/
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has at least m vertices then d(U)<pg, and d(G) is the smallest such number.
Clearly, if G is the empty graph then d(G) =0, also, if G contains arbitrarily
large complete graphs then d(G) = 1. What are the possible valucs of the upper
densities? It is rather natural to expect the closed interval to be the set of possible

upper densitiesi Surprisingly, this is not the case.

FN[NY
o

Theorem 1.4.6. The set of upper densities of infinite graphs is {1, 0, 1.3,

Proof. Suppose d(G)>1-1/r + & for some r&N and £ >0. Then G contains a
sequence of subgraphs, say G,, G,, ... such that G, has order n; and size at least
((r=1)/r+2e)(5)>((r—D)/2r+ Le)n?, and n,— . By Theorem L.4.1, each G,
contains a K, ,(s;), where 5,— . Now d(K,.(s,))>r/(r +1) and the order of
K, . (s;) tends to =, so dG)=ri(r+1). O

The other immediate consequence of Theorem 1.4.1 concerns the approximate
value of ex(n; F,, F,, ..., F,). As observed by Erdés and Simonovits (1966),
Theorem 1.4.1 implies that lim,_,_ ex(n; Fy, . .., F)/(%) is a very simplc function
of the family {F,,..., F;}.

Theorem 1.4.7. Let F,, ..., F, be fixed non-empty graphs. Set r=min, y(F;) — 1.
ie., let r+1 be the smallest chromatic number of an F,. Then

. n 1
:EQQWN...JQV\ANVHHIH.

n—o©

Proof. We may assume that (F;)=r+ 1. The graph T (n) contains no F; sc
ex(n; F,, ..., F)=t(n)=(1~1/r)(3) + (n). Hence limy s ex(n; Fi.oo B8
=1-1/r.

On the other hand, if £ >0 and n is sufficiently large, then by Theorem 1.4
every graph G of order n and size at least (1 —1/r+ €)(%) contains a K, (s)
where s >|F,|. But then K, (s) contains F, and, therefore, so does (. As thi

holds for every £ >0, we have

@amxgwmi...“M»V\vamwlw. D

Although Theorem 1.4.7 is just an immediate corollary of Theorem 1.4.1, a
the first sight it is, nevertheless, very surprising: the crude order o
ex(n; F,,..., F,) depends only on the minimal chromatic number of the F.. I
particular, the asymptotic value of ex(n; Fy...., £,)1s easily dectermined if no !
is bipartite. Of course, this leaves several questions unanswered. What is the erro
term ¢(n) in ex(ni Fi,...,F)=((r— 1)/21n° + $(n)? What is the asymptot
value of ex(n; F,, ..., F,) when some F, is bipartite? We know from section 1.
that we are far from being able to answer the third question for an arbitrar
family, since we do not even know the asymptotic value of ex(n: K, ). say. bu
we shall discuss the first two questions in section 1.5.
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Let us note an easy application of Theorem 1.4.7, giving the rough solution of a
seemingly intractable problem.

Theorem 1.4.8. Let F be the family of graphs of order p and size q. Let r = min{s:
tl,(p)=q}. Then

o, r—1
lim ex(n: F)/n" = 5

s

Proof. Note that min{x(F): FEF}=r+1. [

To conclude this scction, we state a weak form of Theorem 1.4.6, as it leads to
some deep questions concerning r-graphs, i.e., r-uniform hypergraphs. Given
r=2and 0= a <1, we say that « is a jump value for r-graphs if there is a B>«
such that if ¢ > 0. m =r and n = n{a, €, m) then every r-graph with n = n(a, &, m)
vertices and at least «(7) hyperedges contains a subgraph with m vertices and at
least B() hyperedges. Note that a is a jump value for graphs if for some 6 >0
the interval («, « + 8) contains no upper density of an infinite graph. Hence the
following result is immediate from either Theorem 1.4.1 or Theorem 1.4.6.

Theorem 1.4.9. Every O0<a <1 is a jump value for graphs.

Erdés posed the problem of deciding whether the same is true for r-graphs. :?
problem was open for several years and was eventually solved by Frankl and Rédl

(1984).

Theorem 1.4.10. Let r =3 and s >2r be natural numbers. Then 1 —s'"" is not a

jump value for r-graphs.

This beautiful and difficult problem leaves open a number of :dno.ZmE
questions. In particular, it would be interesting to determine the set of jump
values for r-graphs and the set of upper densities for r-graphs.

> of extremal graphs

; Fi...., F.} of forbidden graphs, denote by EX(n; F) =
EX(n: F,.....F,) the ser of extremal graphs of order n. Thus a graph G belongs
to EX(n:.#) iff (& has order n, size ex(n; %) and contains no forbidden graph.
i.e., no member of . Turdn’s theorem, Theorem 1.1.1, tells us that EX(n; K,) =
{T,_,(m)} for all r and n, 2<r=<n. For a general family %, Theorem 1.4.6, an
immediate conscquence of the Erd6s-Stone theorem, the fundamental theorem
of extremai graph theory, gives us the rough order of ex(n; #). But what is the
more precise order of ex(n; &) for a general family % and what do extremal
graphs look like”

These  questions  were  answered, surprisingly  precisely, by Erdos and
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Simonovits (1966) and by Simonovits (1968); simpler proofs of the results can
found in Bollobds (1978a, pp. 339-345). Here we shall state only of the resul

Theorem u.mmu. Let F be a graph with x(F)=r+ 123, and forn=1,2,... let (
be a graph of order n and size (1—1/r +o(1))(1) not containing F. Then 1
following assertions hold.
(i) There is a K(p,, pss-..,P,), Mnu_ pi=n, p,={1+o(1)n/r, that can
obtained from G" by adding and subtracting o(n”) edges.
(ii) G" contains an r-partite graph of size (1 —1/r + o(1))(%).
(iti) G" contains an r-partite graph of minimal degree (1 —1/r + o(1)n.

The result above claims that if a graph G" not containing F has about as ma
edges as the Turan graph 7,(n), which trivially fails to contain F, then G” is ve
close to the graph T,(n). For an extremal graph, considerably more is true.

Theorem 1.5.2. Let & ={F,... F.} be a fixed family of graphs, let r+ |
min, x(F,) =2 and suppose that F, has an (r + 1)-colouring in which one of t
colour classes contains t vertices. Let G" € EX(n; FY. Then, as n— =,

3Gy = A_ - W + CACV: ,

the vertices of G can be partitioned into r clusses such that each vertex is joined to
most as many vertices in its own class as in any other class, and for every € >
there are at most c(e, F) vertices joined to at least en vertices of the same clas
Furthermore, there are O(n”~""") edges joining vertices belonging to the same clas
and each class has n/r + O(n*~""") vertices.

This result gives us a very good hold on extremal graphs. In fact. the functic
O(m°™""") can be replaced by Of(ex(n; K(s, 1)) where s and ¢ arc fixed.
particular, we have the following better bound on ex(#; F) in terms of ex(m; F
for some bipartite graph F,.

Theorem 1.5.3. Let F=F,+ K (1) where F_is a bipartite graph Then

ex(n; F)= T iwxw +(r+ o::axﬁm% krv .

\

As an illustration of the power of Theorem 1.5.2, let us present a beautif:
theorem of Simonovits (1968) giving a complete solution to the forbidde
subgraph problem for sK, ., i.c., for s disjoint copies of K provided n
sufficiently large.

What is a likely candidate for an cxtremal graph for sK, |7 If we add 1 —
vertices to the Turdn graph 7= 7 (n - ¢ + 1) and join these vertices to cach othe

relo
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and to the vertices of 7' then the obtained graph, K,_, + T (n—t+1), has quite a
few more (about (f — 1)n/r more) edges than T.(n), the extremal graph for one
copy of K,,, and still fails to contain s disjoint copies of K, .. Indeed, every
K, .,inK_, +T(n—1+1) must contain at least one of the ¢ — 1 vertices of K,_,.

r

The following theorem of Simonovits (1968) shows that our hunch is essentially
correct.

Theorem 1.5.4. Let r and s be fixed natural numbers, r =2. If n is sufficiently large
then K, + T,(n~1+1) is the unique extremal graph for tK ;.

Proof. Let us apply induction on ¢. The case t = 1 is precisely Turan’s theorem, so
let us pass to the induction step.

Let G=G" be an extremal graph of order n for tK,,,, and consider the
partition V=V, UV, U---UV, guaranteed by Theorem 1.5.2. Set & = 1/4tr. Let
us distinguish two cases.

Case (i) Some vertex x is joined to at least en vertices in its own class. Let W, be
a set of m = [en] neighbours of x in V,. By Theorem 1.5.2 the r-partite subgraph
of G spanned by W, UW, U---UW, has a-1/r+ o(1))r’*m?/2 edges so, rather
trivially (or by Theorem 1.4.1, if we wish to conclude it instantly), it contains a
K, (s) for s=1(r + 1), provided n is sufficiently large. But then G —x cannot
contain a (1 — 1)K, ., since any (t — 1)K, 4 could be extended to a tK,, so we are
done by the induction hypothesis.

Case (ii) Every vertex is joined to at most en vertices in its own class. In this
case, our aim is to arrive at a contradiction. As 8(G)= (1~ 1/r + o(1))n, we may
assume that every vertex is joined to all but at most 2en vertices in the other
classes. As in casc (i), this implies that for every pair {x, y} of vertices in the
same class, in particular, for every edge xy joining vertices in the same class, the
graph G contains a K,_;(s) for s = 1(r + 1) such that both x and y are joined to all
vertices of this K, ,(s). But then this implies that the graph H obtained from G
by deleting all edges joining different classes contains at most ¢ — 1 independent
edges.

Recall that the maximal degree of H is at most en. Let {X Y15 X Vi)
k=t—1, be a maximal set of independent edges in H. Since every edge of H
meets the set {x,. V.. X,. Vo, ..., X, Vi), We have e(H) = 2ken < 2ten. But then

t(n)~+ WN —1<ex(n;tK,, ) =e(G)<t(n)+2en,

contradicting the choice of &, provided n is sufficiently large. O

A good many substantial general results concerning the structure of graphs in
EX(n; F) were proved by Simonovits (1968, 1974).

Another result based on Theorem 1.5.2, a theorem of Bollobas et al. (1978),
shows the surprisingly great difference one edge can make.

Let g be a prime power and let n= QN +g+1. Let G be the graph obtained
from K(n,n) by placing an ErdGs—Rényi graph G, described in the proof of
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Theorem 1.3.5, in each of the classes. Thus
NAQVH=N+QS+HVNHQ>+wa+mQN+wQ+H.

As G, has maximal degree g + 1 and contains no C, = K(2,2), the maximal ¢ for
which G contains a K(2,2,1) is precisely g + 1~ Vn. One more edge guarantees
the existence of a K(2,2, |yn}) where y >0 is an absolute constant.

Theorem 1.5.5. There is a constant g, such that if ¢ =q, is a prime power and
n=q*+q+1 then

ex(2n;K(2,2,q+2)) =n’+q(q + 1)°.

Furthermore, every graph of order 2n and size nt+q(q+ 1)+ 1 contains a
K(2,2,1) with t=10"n.

To conclude this section, we present a theorem of Erdés and Simonovits
(1983). This result is related to Theorem 1.2.3: it concerns the number of
F-subgraphs of a graph with n vertices and substantially more than ex(n; F)
edges. Similarly to the notation k,(G) used earlier, given a family % of graphs,
denote by k4(G) the number of subgraphs of a graph G isomorphic to clements
of &. Thus ex(n; ¥) = max{e(G): G has n vertices and k,(G)=0}. The following
result is a special case of a theorem of Erdss and Simonovits (1983), proved for
hypergraphs.

Theorem 1.5.6. Let & be a finite family of graphs, with each F € F having at least
{ vertices. Then for every constant ¢ > 0 there is a constant ¢' >0 such thatif Gisa
graph with n vertices and at least ex(n; )+ cn® edges then ky(G) = c'n'.

1.6. The asymptotic number of graphs without forbidden subgraphs

Given a forbidden graph F, denote by f(n; F) the number of graphs on [n}=
{1,2,...,n} not containing F. What can we say about f(n; F) as n—=? As
always, we are particularly interested in the case F = K,. Extending earlicr results
of Erdés et al. (1976), Kolaitis et al. (1987) proved the following beautiful and
sharp theorem.

Theorem 1.6.1. For r=3, f(n; K,) is asymptotic to the number of (r — 1)-partite
graphs on [n). In pariicular,

\Azw NAL _ N:T:\N?t:i;
_ N:+o:inx«,:ﬂ K,)

As we shall see, Theorem 1.6.1 and a simple application of Szemeredi's
uniformity lemma (Theorem 1.4.5) enable one to determine the asymptotic value
of tog f(n; F) for every F of chromatic number at least 3.
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Let us start with a trivial lower bound for f(n; F). If a graph G on [n] does not
contain our forbidden graph F, then no subgraph of G contains F and so

f(n; F) =29
Since G can be chosen to have ex(n; F) edges, we find that
.\,A:u m‘v WNnﬁ:. F) .

Erdés et al. (1986) showed that this trivial bound is not far from being best
possible. The key to this result is the following property of e-uniform and fairly
dense pairs (sec Theorem 1.4.5 and the paragraph preceding it).

Lemma 1.6.2. Let f=1, r=2 and 0<e<(r—1)"""?, and let V,....V, be
disjoint subsets of the vertex set V(G) of a graph G with (1- )¢’ '|Vi|=1,
i=1,...,r. Suppose that each pair (V,,V)) is ¢’ -uniform with density at least
e + 2. Then G conuins every r-partite graph on f vertices.

Proof. We apply induction on f. As for f=1 there is nothing to prove we turn to
the induction step: we assume that =2 and that the lemma holds for smaller
values of f.

For every i, 2=/ =r. the sct V, has at most ¢/|V,| vertices joined to fewer than
d(v,,V,)— V| = elV,| vertices of V. Hence there are at least (1—(r—
1)e”)|V,] >0 vertices in V,, each of which is joined to at least &|V;| vertices in V,
i=2,...,r. Let x, be such a vertex and set W, = V\{x,} and W,=TI(x,) NV,
i=2.....r. Then |W,|=[V,|—1=¢lV| and |W|= eV} for i=2,....1. Hence,
the sets W,,.... W, satisfy the conditions of the lemma with f replaced by f—1.
As x, is joined to all vertices in U, W, we are done by the induction
hypothesis. [

We know from scction 1.3 that the structure of an extremal graph for F is
rather close to the structure of an extremal graph for K,, where r=x(F). The
following theorem of Erdés et al. (1986) claims that any graph not containing F
can be turned into & graph not containing K, by the deletion of a few edges.

Theorem 1.6.3. For everv ¢ >0 and graph F there is a constant ny = ny(e, F) with
the following ; Iet G be a graph of order n=n, not containing Fasa
subgraph. Then G contains a set E' of at most en® edges such that G\NE’ contains
no K,, where r = y(F).

Proof. We mayv assume that 7=3 and e <2/(r — 1). Set f=|F|, m=[3/e] and
g,=¢€/4. Let M= V(e m) be the constant guaranteed by Szemerédi’s uni-
formity lemma ( Theorem 1.4.5).

We claim that n, = n,{e. F) = [(M + 1)/e}] will do. Indeed, let G be a graph of
order n = n, not containing F. By Theorem 1.4.5 there is a partition Uk, v of
V(G) into disjoint sets such that m <k <M. IV, <Vl =WVl="-=V] and all
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but at most ehk” of the pairs (V;,V)), 1= i<j<k,are ¢}-uniform. Let £’ be the

union of the following sets of edges:
(1) the edges meeting Vy,
(2) the edges joining two vertices of V,, i=1,...,71,
(3) the edges joining V; to V, for every pair (V;,V;) which is not mm-csxo::w
(4) the edges joining V; to V; for every pair (V,,V,) of density less than g, + &;-
By Lemma 1.6.2, the graph G\E’ contains no K, since otherwise it would
contain F as well. Hence all we have to check is that E' is small enough. This is

indeed the case:

2
n nlk 5 N
_m‘_m\alﬂ+»A ) v+mmkw§\3r+ﬁmc+movﬂwv
1 1
A:%M.Twu\*.mﬁx_.mow
. 3 £ 2
=n” \NM+M <en . O

From here it is a short step to the theorem of Erdés et al. (1976) concerning
fln; F).
Theorem 1.6.4. Let F be a graph with r = x(F)=3. Then

- NAI:::S.:: F) _ N:?SET:+:::=u

fn;, F)

Proof. Theorem 1.6.3 implies that if & >0 and n is sufficiently large then
s, £y =gt K)(2)) =t k)20
en

Hence, by Theorem 1.6.1,
\A:‘ Nﬂv thgtsicﬁ K)+o(n?) _ N:+c::2¢: F) ) 0
It is easily seen that Theorems 1.6.3 and 1.6.4 hold for families of forbidden
graphs. Thus if F={F...., F,}, with
min x(F)=3,

1=i=k
then, with the obvious definition,
TN e o _ All+olnex(ni#)
\Azw%leﬁzam_,..;ﬁ»vlw .

It is interesting to formulate the last assertion in terms of monotone propertics.
A property & of graphs is an infinite class of (finite) graphs which is closed under
isomorphism. A property & is said to be monotone if every subgraph of every
member of 2 is also in &, and it is hereditary if every induced subgraph of every
member of 2 is also in 2. Thus every monotonc property is also hereditary:
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furthermore, the intersection of a family of monotone hereditary properties is
monotone, and the intersection of hereditary properties is hereditary.

Monotone properties are characterized by forbidden subgraphs. Indeed, given a
family & of finite graphs, let Py be the class of graphs having no subgraph
isomorphic to a member of &. If P, is infinite then it is a monotone property;
conversely, every monotone property is obtained in this way.

A monotone property is principal if it is obtained by forbidding a simple graph.
Clearly, every property is the intersection of a (possibly infinite) family of
principal properties.

Let us write ?" for the set of graphs in % with vertex set [n]. Thus
f(n; F)=|?%|. The remarks above concerning f(n; &) have the following
reformulation.

Theorem 1.6.5. Let ?,. P,.... be monotone properties and set P = P,. Then

F ~_ _ Ni:u.i%n_

for some k. In particular,

.u\vi — ‘wp;:u,

MN:_

for some principal monotone property 9 containing P.

Returning to f(n; F), let us note that it is not known whether Theorem 1.6.4
holds for every bipartite F as well. In fact, it is not even known whether Theorem
3/2

1.6.4 holds for a 4-cycle C,. Since, by Theorem 1.3.5, ex(n; C,)~4in"'", one
would like to show that

N . Ve 372
fnCyy=2"" ot

While the right-hand side is a (trivial) lower bound for f(n; C,), the best upper
32
bound, due to Kleitman and Winston (1980}, is only 2", with ¢ about 1.08.

1.7. The usvmptotic number of graphs without forbidden induced subgraphs

Recently Promel and Steger studied the structure and number of graphs without
induced forbidden subgraphs. Given a graph F, let f*(n; F) be the number of
graphs on [»] containing no induced subgraph isomorphic to F (briefly, containing
no induced F).

At least how lurge is f*(n; F)? Suppose that there are integers k and [ such that
no k-partite graph. in which / of the classes have been replaced by complete
graphs, contains an induced F. Then, clearly,

LBy =T 2k vo(l)n?

3

since the classes can be chosen to be almost equal and the edges between the
classes can be freelv chosen.
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Promel and Steger (1992, 1993a,b) proved that this simple lower bound is
essentially best possible. Let 7(F) be the maximal integer r such that for k =r—1
there is an [ as above. This somewhat convoluted definition is explained by the
fact that 7(F) is something like the chromatic number y(F), which is the maximal
integer r such that for k=r—1no k-partite graph contains F. So the following
result, whose proof is based on a generalization of Szemerédi’s uniformity lemma
to hypergraphs, is the exact analogue of Theorem 1.6.4.

Theorem 1.7.1. Let F be a graph with r=1(F)=3. Then
\*As. m,v — N:TS\N¢|3+£§=~ )

For the case F=C,, Promel and Steger (1991) proved much more precise
results. It is easily seen that 7(C,) = 3. Indeed, if V(G) is the disjoint union of the
sets V, and V,, with G[V,] complete and V, an independent set (such graphs are
known as split graphs), then G does not contain an induced C,. Hence, by
Theorem 1.7.1, we have \*Azwﬁ»vum:zéc?ﬁ. In fact, considerably more is

true.

Theorem 1.7.2. (i) Almost every graph containing no C, is a split graph:
f*(n; C,) is asymptotic to the number of split graphs on [n].
(ii) There are positive constants ¢, and c, such that

1/2

\.*AEWQAVZQ\.AN‘NNEJr:V\S ,
where j=n (mod 2).

What happens if we forbid a family & = {F|, F,, ...} of finite graphs as induced
subgraphs? Rather surprisingly, unlike the case of forbidden subgraphs. forbid-
ding a family & induced subgraphs is very different from forbidding just one of
them. Let @ =@.. be the class of graphs containing an element of # as an
induced subgraph. If 2. is infinite then it is a hereditary property: conversely.
every hereditary property is obtained in this way.

The growth of {#"| for a hereditary property % depends on the colouring
number r(®?) of P, defined somewhat similarly to 7(F). An (r.s)-colouring of a
graph H is a map : V(H)— [r] such that H[y ()] is complete for I=1<3s and
is empty for s + 1 =:=r. Thuss of the colour classes induce ¢ -t oraphs and
r —s of them induce empty graphs. The colouring number HP) of a property J
of graphs is the maximal r for which there is an s, 0=s=r such that cvery
(r, s)-colourable graph has property . Equivalently. r(#,.) = max{7: for some s
N=s=r, no FEF is (r,s)-colourable}. Note that

HPy )= inf {r(F) — 1},

Fe¥

with equality if # = {F} but, in general. the inequality may be strict.
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Alekseev (1993) and Bollobds and Thomason (1994b) determined the asymp-
totic size of #" for a hereditary property, thereby extending Theorems 1.6.4 and
1.7.1, concerning principal properties.

Theorem 1.7.3. Let P be a hereditary property of graphs and let P" be the set of
graphs in P with vertex set [n]. Then

A%:m — \w:\_ r+4of
where r=r(#) is the colouring number of P.

This result implics that the analogue of Theorem 1.6.5 does not hold for
hereditary propertics: the intersection of two hereditary properties may be
substantially smaller than either of the properties. For example, if & ={K,},
F,={C,}, ?=7+_.i=1.2 and P =P NP, then

.

b ot

for i=1,2, but
_.ﬁi _Atliothnid

In conclusion, et us note that the analogous problem for uniform hypergraphs
is unsolved. 1f # is a property of k-graphs (k-uniform hypergraphs) then, as
implied by some results of Alckseev (1982) and Bollobés and Thomason (1994a),

_M%:_ o MT .:::Qv

for some constant ¢. However, for r = 3 the possible values for ¢ are not known.

2. Cycles

In section 1 we discussed the forbidden subgraph problem for a fixed family of
forbidden graphs - and found this problem to be fairly well understood, provided
F contains no bipartite graph. What can we say about graphs of order n not
containing any i ber of a family &, of forbidden graphs, where %, depends on
n? The most frequently studied and best understood case of this problem is when
F, consists of cycles. In this section we shall discuss some of the results
concerning this problem.

2.1. Hamilion cveles

What values of various graph parameters ensure that a graph has a Hamilton
cycle? Let us start with the number of edges ensuring a Hamilton cycle: what is
ex(n; C,)? Since a Hamiltonian graph has minimal degree at least 2, every graph
of order n and size ex(n;C,)+ 1 must have minimal degree at least 2. It is
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immediate that the minimal number of edges ensuring that a graph of order n has
minimal degree at least 2 is ("3 ') + 2: adding a vertex x to K,_, and joining x to
one vertex of K, , we obtain the unique graph of order 7, size (", ')+ 1, and
minimal degree at most 1 (and so precisely 1). A moment’s thought shows that
the Hamilton cycle problem has the same solution: ex(n; C,) = ("51)+2, with
the same extremal graph.

Although this seems somewhat disappointing, all it shows that the size in itself
is not very effective in forcing a Hamilton cycle. The minimal degree is
considerably better. (Contrast this with the remarks following Theorem 1.1.1 in
the previous section.) Dirac (1952) proved that a graph of order n and minimal
degree at least n/2 is Hamiltonian; the graph K( [(n—1)72], l(n+1)/2}) shows
that the result is best possible. This thecorem of Dirac started the scarch for
various degree conditions that, coupled with some other conditions, like a bound
on the connectedness, imply that the graph is Hamiltonian.

As shown by Ore (1960), Dirac’s theorem is implied by the following simple
lemma. cssentially due to Dirac.

Lemma 2.1.1. Let x, and x,, be non-adjacent vertices in a graph G of order n such
that d(x,) + d(x,) =n. Then G is Hamiltonian iff G +x,x,, is Hamiltonian.

Proof. Suppose there is a Hamilton cycle in G +x,x,. If this cycle does not
contain x,x, then G is Hamiltonian so we are done. Otherwise G contains a
Hamilton path x,x, - - - x,. Since d(x,) + d(x,) = n, there is an index i, 2<i<n,
such that x, is joined to x, and x,, is joined to x; ;. But then xx,xy - X, XX,
-+-x, is a Hamilton cycle. 0

i

Thus if a graph G is not Hamiltonian and x, y are non-adjacent vertices such
that d(x) + d(y) =n then G' = G + xy is not Hamiltonian either. Of course, if in
G’ we can find non-adjacent vertices x’, y’ such that d'(x") + d'(yv")=n, where d’
denotes the degree in G’, then G" =G’ +x'y’ is not Hamiltonian either, and so
on. This led Bondy and Chvétal (1976) to introduce the k-closure of a graph. The
k-closure C,(G) of a graph G is the minimal graph H containing G such that for
any two non-adjacent vertices x, y of H we have d,(x)+d,(y)sk—- 1 Io other
words, C,(G) is the unique graph obtained from G by successively joining ai
vertices the sum of whose degrees is at least k. Call a property P of graphs
k-stable if whenever x, y are non-adjacent vertices of G such that d(x)y+ d(y) =k,
and G + xy has property P then so does G. By definition. if P is k-stable and
C,(G) has P then G has P.

Lemma 2.1.1 states precisely that the property of being Hamiltonian (for
graphs of order n) is n-stable. {In fact, the proof of Lemma 2.1.1 shows that the
property of containing a cycle of iength at least k is also n-stable; and it is casily
seen that the property of containing a path of length at least [ is (n — 1)-stable.)
Thus if C,(G) is Hamiltonian so is G. In particular. Lemma 1.1.1 implies Dirac’s
theorem, from whose proof the lemma was distilled.
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Theorem 2.1.2. Let G be a graph of order n=3 and minimal degree at least n/2.
Then G is Hamiltonian.

Proof. Note that C,(G) is the complete graph K. Since K, is Hamiltonian, so is
G. O

The closure operation enables one to prove the theorem of Las Vergnas (1971)
for the existence of a Hamilton cycle.

Theorem 2.1.3. Let G be a graph with vertex set {Xy, X5, .. ,Xx,}. Suppose there
are no indices i and j such that xx; is not an edge, d(x;) +d(x;)sn—1, d(x,) =i,
dx)<j—1land j= max{i + 1,n —i}. Then G is Hamiltonian.

As an immediate consequence of this result, one obtains Chvétal’s (1972)
theorem answering a very natural extremal question concerning Hamilton cycles:
what sequences d,. d,.....d, guarantee that if the ith vertex of a graph G of
order n has degree at least d, then G is Hamiltonian? By Dirac’s theorem, [n/2],
[n/2],..., [n/2] is such a sequence.

Theorem 2.1.4. (i) Let d, <d,<=---=<d, be the degree sequence of a graph of
order n=3. Suppose

n-

d,=k<% implies d,_,=n—k. 1)

Then if G has veriex set {X;,X,, ... ,x,} and d(x;)=d, for every i, then G is
Hamiltonian.

(ii) If (d,)] is the degree sequence of a graph and (1) fails then there is a
non-Hamiltonian graph with vertex set {xy, Xs,...,X%,} such that d(x;,)=d, for
every i.

Analogous results hold for Hamilton paths: if C,_,(G) has a Hamilton path
then so does (5. and condition (1) gets replaced by the condition thatd, =k — 1<
1(n—1) implies that d,,., =n —k.

There are numerous other sufficient conditions for a graph to be Hamiltonian
that do not dennd that the vertices have very large degrees. The first notable
result of this kind was proved by Nash-Williams (1971). Let us write a(G) for the
independence (or siehility) number of a graph G, i.e., for the maximal cardinality
of an independent set of vertices.

Theorem 2.1.5. Lei G be a 2-connected graph of order n and minimal degree
8(GY=(n+2)3. 1If 8(G)=a(G) then G is Hamiltonian.

in proving I'heorem 2.1.5, Nash-Williams made use of the following important
lemma.
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Lemma 2.1.6. Let C be a longest cycle in a non-Hamiltonian graph G with n
vertices. If G — C has a component with at least 2 vertices then 8(G) =< (n+1)/3.

This lemma has several extensions, including those by Jackson (1980) and Jung
(1984). ¢

Haggkvist (1980, 1989) proved the following deep and useful characterization
of Hamiltonian graphs of fairly large minimal degree.

Theorem 2.1.7. Every 2-connected non-Hamiltonian graph with n vertices and
EN.E.S&&mmRmmVWl:ICS:B:EQMQM of m=38 —n +2>{nvertices such

that in the graph G — S the vertex set cannot be covered by m paths.

Note that in Theorem 2.1.4 one allows d(x;) to bc strictly greater than d,. As
the following beautiful theorem of Jackson (1980) shows, if we demand that the
graph is 2-connected and every vertex has degree precisely d, then a rather small
value of d guarantees that the graph is Hamiltonian. The proof of this theorem is
based on Jackson’s extension of Lemma 2.1.6.

Theorem 2.1.8. Let G be a 2-connected d-regular graph of order n. If d = Ln then
G is Hamiltonian.

The Petersen graph shows that, as stated, Theorem 2.1.8 is best possible, at
least for d =3. It is easily seen that it is close to being best possible for every
d=3.

What happens if our graph is not only 2-connected but also k-connected for
some k =37 At first sight it seems likely that a considerably smaller degree of
regularity will suffice to imply that the graph is Hamiltonian. In particular, as
conjectured by Bollobds (1978a, p. 167, Conjecture 36), it seems likely that if G
is a d-regular k-connected graph with n vertices and d =n/(k+1) then G is
Hamiltonian. Jackson and Jung showed that this is false for k=4.

The cxamples indicate that for a fixed value of k, k-connectedness is hardly any
more use in finding Hamilton cycles in regular graphs than 3-connectedness.
However, the conjecture may well be true for k=3: if G is a 3-connected
d-regular graph with n vertices and d =n/4 then G is Hamiltonian. This was
conjectured by Haggkvist as well.

Recently Li Hao (1989a) took the first step towards proving this conjecture by
showing that if we demand 3_connectedness then the degree of regularity can be
allowed to drop substantially below the n/3 bound in Theorem 2.1.8.

Theorem 2.1.9. Let G be a 3-connecied d-regular graph of order n. If d = [\ n then
G is Hamiltonian.

Note that Theorem 2.1.5 is another extension of Theorem 2.1 .1. The following
rather simple result in the vein of Theorem 2.1.5 is due to Chvatal and Erdos
(1972).
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Theorem 2.1.10. Suppose G has at least three vertices and it is a(G)-connected.
Then it is Hamiltonian.

Proof. Let k = «(G). Then k=2 so G has a longest cycle C. Then |Cl=8(G) +
1=k+1. Assume that C is not a Hamilton cycle, i.e., there is a vertex
YEG — C. Since G is k-connected, there are k independent paths from x to C,
i.e., there are x — x, paths (i =1,..., k) such that any two of them have only the
vertex x in common, and any one of them has only the vertex x; on C.

Giving C some orientation, let xw be the successor of x, on C fori=1,..., k.
Then, since C is a longest cycle, the set S = {x, X, X;, ... ,X,} is an independent
set, contradicting our assumption that «(G)<k. Hence C is a Hamilton

cycle. U

Given a set § of vertices of a graph G, denote by N(S) the set of neighbours of
S: N(S) = {x EG: xy € E(G) for some y €S}. Fraisse (1986) proved the follow-
ing essentially best possible condition for a k-connected graph to be Hamiltonian.

Theorem 2.1.11. Let G be a k-connected graph of order n. Suppose that
IN(S)| > k(n — 1)/(k + 1) whenever S is an independent set of k vertices. Then G is

Hamiltonian.

The following graph constructed by Skupien (1979) shows that Theorem 2.1.11
is close to being best possible: let n= (k + 1)q + k and let G be obtained from the
vertex-disjoint union of K, and k + 1 copies of K, by joining each vertex of K, to
every other vertex. Then G is a k-connected non-Hamiltonian graph of order n,
in which any & independent vertices have n—k —gq= kq =k(n —k)/(k+1)
neighbours.

Recently Higgkvist (1989) proved the following substantial extension of

Theorem 2.1.5.

Theorem 2.1.12. Let G be a non-Hamiltonian 2-connected graph of order n,
independence number a < (n + 1)/2 and minimal degree 5 = (n +2)/3. Then, for
every k. 1<k =<8 + 1, there exists an independent set S of k vertices such that

INS) =max{e—1,n =20 +k—2}.

A conscquence of Theorem 2.1.12 is that if G is a 2-connected non-Hamilto-
nian graph of order n with minimal degree & 2 (n +2)/3 then it contains an
independent sct of at least (n + 14)/6 vertices with at most (n — 1)/2 neighbours

in total.

2.2, Edgc-disjoint Hamilton cycles

Suppose the conditions on some set of graph parameters imply that our graph
must contan o Hamilton cycle. Does our graph have to have many Hamilton
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cycles? Does it have to have many edge-disjoint Hamilton cycles? The followiny
striking theorem of Nash-Williams (1971), whose proof is based on Theoren
2.1.6, shows that this is the case if the parameter is the minimal degree. To b
precise, Nash-Williams proved the following substantial extension of Dirac’
theorem, Thebrem 2.1.2.

Theorem 2.2.1. Let G be a graph of order n and minimal degree at least n/2. The
G contains a set of |S(n +10)/224] edge-disjoint Hamilton cycles.

Once again, if we demand that our graph be regular then we can guarante:
considerably more edge-disjoint Hamilton cycles. Jackson (1979) made use of hi
Theorem 2.1.8 to deduce the following result.

Theorem 2.2.2. Let G be a d-regular graph of order n=14. If d = (n — 1)/2 thei
G contains a set of |(n—1)/2] edge-disjoint Hamilton cycles.

Theorem 2.2.1 is rather far from being best possible. In the case when th
minimal degree is a little larger than n/2, Haggkvist (1990) proved the followin
deep results that are essentially best possible.

Theorem 2.2.3. Let A> 1. If n is sufficiently large and G is a graph of order n an
minimal degree at least An, then G has a set of |n/8] edge-disjoint Hamilto
cycles.

Theorem 2.2.4. Let A>1. If n is sufficiently large and G is a d-regular graph ¢
order n, where d is an even integer not less than An, then G has a Hamilto
decomposition, i.e., the edge set of G can be partitioned into d/2 Hamilton cycle:

To see that, in some sense, Higgkvist’s theorem 2.2.3 is cssentially be:
possible, consider the following graph G given by Nash-Williams (1970). Take th
complete bipartite graph with vertex sets U= {u,,... uy.;} and W:
{W,,...,wa_}, and add to it the edges wu,, wyu,, Uslty, .., Uy My an
u, iy, .- The obtained graph G has n = 8k vertices and minimal degree 2k. Not
that every Hamilton cycle in G has to contain two of the 2k + 1 edges in U, s0 ¢
has at most [(2k +1)/2} = k = n/8 edge-disjoint Hamilton cycles.

Li Hao (1989b) proved a conjecture of Faudree and Schelp that if Ore
condition in Lemma 2.1.1 is satisfied and the graph has small minimal degree the
there are many edge disjoint cycles.

Theorem 2.2.5. Let G be a graph with n vertices and minimal degree 5 such th
n=28° and the degree sum of any two non-adjacent vertices is at least n. Then i}
graph contains k = (8 — 1)/2} edge disjoint cycles of lengths 1. 1... ... I, foru

3=l =l == <n )
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2.3. Long cycles

For a graph G, let C(G) be the set of lengths of cycles in G. The circumference of
G is the length of a longest cycle: ¢(G) = max C(G), the girth of G is the length of
a shortest cycle: g(G) =min C(G). What do various natural graph parameters
(size, minimal degree, connectivity, etc.) tell us about ¢(G), g(G) and C(G)?
Let x,x, - - x, be a longest path in a graph G, and let k = max{i: x, is joined to
x;}. Then k=d(x,)+1=8(G)+1 so, in particular, if §(G)=2 then o(G)=
8(G) + 1. This trivial observation was strengthened considerably by Alon (1986)
to a result including Dirac’s theorem (Theorem 2.1.2): if 8(G)=n/k then
¢(G)= |n/(k —1)]. The theorem was extended slightly by Egawa and Miyamoto
(1989) and Bollobds and Haggkvist (1990) to the following best possible result.

Theorem 2.3.1. Suppose 2<k <n are integers and G is a graph of order n and
minimal degree at least n/k. Then ¢(G)=n/(k —1). Furthermore, for 2<k <n
there is a graph G of order n such that 8(G) = [n/(k — 1)] — 1 and c(G) = [n/(k —

Nk

In QQ, recently Bollobas and Brightwell (1993) extended Theorem 2.3.1 to the
following result, whose proof turned out to be considerably easier than the proofs
of Theorem 2.3.1.

Theorem 2.3.1. Let G be a graph of order n with a set W of w =3 distinguished
vertices. Suppose that every vertex of W has degree at least d =2 and let s = [w/
([n/d] — 11 = 3. Then there is a cycle in G containing at least s vertices of W.

If we demand that our graph is 2-connected then we can guaranteec a
considerably longer cycle: as proved by Dirac (1952), if G is 2-connected then
¢(G)=min{|G|, 26(G)}. The following extension of a theorem of Pdsa (1963)
was proved by Bondy (1971a).

Theorem 2.3.2. Let 3<c=<n and let G be a 2-connected graph of order n with
veriex sct X, X ... x,} such that 2<d(x,) < d(x,)=<---<d(x,). Suppose also
that if d, =k -2¢/2, k<{, d,<land x,x; € E(G) then k +[=c+ 1. Then «(G) =
c.

Bondy proved also that if in a graph of order n the degree sum of any three
independent vertices is at least m=n +2 then ¢(G)=min{n, 2m/3}, and
conjectured the following much stronger result, proved by Fournier and Fraisse
(1985) (ct. Theorem 2.1.8.).

Theorem 2.3.3. Ler G be a k-connected graph of order n, where k = 2, such tha
the degrec sum of any k+ 1 independent vertices is ar least m. Then (G)=
min{n, 2m/(k + 1)},
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Erdés and Gallai (1959) determined the minimal size of a graph of order n
guaranteeing that the circumference is at least c.

Theorem 2.3.4. Let 3<c<n. Then the circumference of a graph of order n ana
size [(c—1)(n—1)/2] + 1 at least c.
k
A graph G of order n is pancyclic if C(G)=3,n}= GLJ. ,n},ie, if G
contains a cycle of every possible length. We do know that |n°/4] edges do no!

guarantee a triangle C;, and many more edges are needed to guarantec ¢
Hamilton cycle. However, as the following theorem of Bondy (1971b) shows, if ¢
graph has more than |n*/4] edges then a cycle of length [ >3 guarantees a cycle
of length / —1.

Theorem 2.3.5. Let G be a graph of order n with more than [n/4] edges. Ther
c(G)= [ L(n+3)] and C(G)= [3,¢(G)). In particular, if G is also Hamiltoniar
then it is pancyclic.

How large a minimal degree ensures that a graph G of order n is pancyclic? I
view of Theorem 2.3.5 the answer is |n/2] + 1, the degree ensuring the existenc
of a triangle. If G is not bipartite then, as proved by Héggkvist (1982), alread
8(G)=(2n + 1)/5 ensures the existence of a triangle. Amar et al. (1983) prove: ,
that if G is also Hamiltonian, then the same condition guarantees that the graph i
pancyclic, and Shi (1986) showed the following slight extension of this result.

Theorem 2.3.6. Let G be a non-bipartite Hamiltonian graph of order n such the

PR

for any two non-adjacent vertices x and y we have d(x) + d(y) = (4n + 1)/5. The
G is pancyclic.

It is easily seen that Theorem 2.3.6 is best possible. Indeed, let G be th
2k-regular graph of order n =5k with vertex set v=U>,V, where [V}|="-"""
V.| = k and with edges joining V; to V., for 1=1,....5, where V, = V,. Then «
is not pancyclic because it contains no 4-cycles.

Woodall (1972) determined the minimal number of edges ensuring that a grap
G; of order n and minimal degree 8 satisfies C(G) D [3,1]. Here we state only
consequence of this result.

Theorem 2.3.7. Let 3=(n+3)2={=nundlci G bcu graplht ol ordes
grapit o,

A\MM,V+A:\M+NV+H.

L /

Then C(G)D[3.1]. The bound is best possible.

Although a graph with fewer than {n?/4] edges cannot be guaranteed to ha
anv odd cycles, it can be guaranteed to have even cycles. both short and long. T!
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following decp and almost best possible result was conjectured by Erdds (1965)
and proved by Bondy and Simonovits (1974).

Hrmowm-_d_»m.u.m. Let k be a natural number. Every graph of order n and size at least
Mowm, contains a cycle of length 2l for every integer | in the interval k <I=<
n't.

2.4. Girth and diameter

<§.E forces a graph to have small girth, i.e., short cycles? Many edges, or almost
equivalently. large minimal degree. To study the connection between the minimal
degree and the girth, for natural numbers § <2 and g =3 define

n(g.8)=min{|{G|: g(G)=g and 8(G) =6} .

A graph of minimal degree §, girth at least g and order n(g, 8) is said to be a
(8, g)-cage.

ﬁ is not cntircly immediate that n(g, 8) <o, i.e., there are finite graphs of
arbitrarily large girth and arbitrarily large minimal degree. However, this does
follow from a simple argument using random graphs.

wp o%.o_m of length g shows that n(g,2) =g so we shall assume that 6 =3. By
estimating the number of vertices at distance d from a vertex or from an edge,
one gets the following trivial lower bound on n(g, §).

Theorem 2.4.1. If § =3 then

(" AmIH (g-172 _q

~+m|.l.lwmlw if gisodd,

2066 -1)%¥% -2
6—2

ng. )=
if giseven.

It is easily scen that in Theorem 2.3.1 equality holds for 6 =3, g =3, 4,5, 6
and 8. and for g =4 and all 6 =3. For example, n(5,3)=10 is shown by the.
Petersen graph; the extremal graph for z(7;4) =21 (see Theorem 1.3.3) shows
that n(6.3) = 14 (thus the vertices are the 7 points and 7 lines of the projective
plane PG(2.2). with a point joined to a line if they are incident); the graph
K(8, 6) shows that n(4,6) = 26.

Suppose that ¢ =3, 8 =3 and G, is a graph showing that equality holds in
Theorem 2.4.1. If g is odd, say g = 2D + 1, then G, is §-regular and has diameter
D; also n(g.8) is the maximal order of a graph with maximal degree at most §
m:ﬁ .%.E»E:;. at most D. If g=2D + 2 then G, is 8-regular and every vertex is
within distance D of every edge (in fact, of every pair of vertices); also n(g, 8) is
the mavimal order of a graph with maximal degree at most & in which every
vertex is within distance D of every edge. Such a graph G, is called a Moore
graph of girth g and degree 6. (If g =2D + 1 then G, is also called a Moore graph
of diameter 1) and degree 8.) :
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There are very few Moore graphs. Results of Hoffman and Singleton (1960},
Kérteszi (1960), Feit and Higman (1964), Singleton (1966), Bannai and Ito
(1973) and Damerell (1973) show that if there is a Moore graph of girth g =5 and
degree & =3 then either g = Sand =3, 7or57,orelse g=6,8o0r12. For g = 6
and 8 there is a Moore graph for each finite projective geometry of order 8 and
dimension 2 and 3.

As there are so few graphs attaining the trivial lower bound in Theorem 2.4.1,
what about graphs showing that n(g, 8) is not much larger than the trivial lower
bound. Such graphs are not easy to come by either. The following theorem was
proved by Erdds and Sachs (1963) without explicitly constructing a graph showing

the inequality.

Theorem 2.4.2. If g=3 and 6 =3 then

B
H:?:ﬁf: if gis odd,
Eﬂ%q%vm m#

5—2 (=12 =1} if gis even.

Note that for large values of g the upper bound given in Theorem 2.4.2 is about
the square of the trivial lower bound in Theorem 2.4.1. This huge gap was
narrowed by Margulis (1982) by an explicit construction: a most welcome success

of constructive algebraic methods.

Let p=5 be a prime and consider SL,(Z,), the multiplicative group of
unimodular 2 by 2 matrices with entries from the field Z,. Let A=(} 1) and
B=(1 9) be elements of SI.,(7,). The Margulis graph M(4, p) is the Cayley
graph over SL,(Z,) with respect to the set {A, B, A, B '}, i.e., M(4, p) has
vertex set SL,(Z,) with a matrix C joined to a matrix D iff C'Def{A, B, A"
B~ '}. Margulis proved that the graph M(4, p) has rather large girth.

Theorem 2.4.3. Leta =1+ V2, k ENand let p =2 * be a prime. Then the grapl
M(4, p) is a 4-regular graph of order p(p° — 1) and girth at least 2k + 1.

Note that for large n=p(p° — 1) the Margulis graph M(4, p) has girth abouw
(2/3log a)logn =log,n, where b= @*’?=3.751.... while Theorem 2.4
guarantees only a graph of girth about logn.

Margulis (1982) used the same method to construct regular graphs of large girtt
and arbitrary even degrees. Following Margulis, Imrich (1984) constructed Cayle
graphs of factor groups of some subgroups of the modular group to improve the
bound in Theorem 2.4.3.

Theorem 2.4.4. For every r > 2 one can effectively construct infinitely many Cavle
graphs with n vertices and girth ar least

0.4801 ... (logn)/log(d ~1) - 2.
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Furthermore, for r =3 one can have girth at least
0.9601 ... (logn)/log2—35.

It would be of interest to find other explicit constructions for graphs of large
girth and large minimal degree.

2.5. The set of cvcles in graphs of given minimal degree

A graph G of minimal degree 8 =2 contains at least & — 1 cycles of different
lengths, i.e., |C(G)| =8 — 1. Indeed, let x,x, "~ X, be a longest path in G and let
Xyy Xiy Xijooooo Xy, be the neighbours of x,; then k=8 —1 and for every J,
1 =<j <k, the graph has a cycle of length i, namely x,x, - - x; . The graphs K; .,
and K(8,8) show that this trivial bound on |C(G)| in terms of & cannot be
improved in general.

However, if 5(G) =& =3 and G has large girth then it is easily seen that 1C(G))
has to be (much) larger than & — 1. This suggests that if short cycle lengths are
taken with large weights and long cycle lengths are taken with small weights, then
the total weight of cycle lengths has to be large if the minimal degree is large.
Erd6s and Hajnal (see Erdés 1975) proposed taking a cycle of length r with
weight 1/r. For a graph G, let

S(G) = S(C(G) =2 {1ir: rEC(G)} -
How large is then
f(k) = inf{S(G): 8(G)=k}?

The graph K, ,. & =2 has minimal degree k and its set of cycle lengths is {4,
6,...,2k} so. as k— =,

k
1
fly=S(K, )= 2 —=(4+o(1)logk.

Erdés and Hajnal conjectured that f(k) is of order log k. To appreciate the
difficulty in proving this conjecture, note that it seems to be difficult to prove that
flk)—> o as k— .

This conjecture was proved by Gyarfas et al. (1984).

Theorem 2.5.1. There are positive constants ¢ and € such that if 8(G)=c then
S(G)= ¢ log6(G).

The ingenious and beautiful proof makes good use of the so-called (k, a)-trees.
Let T be a rooted tree of height 4 and levels L, L,, ..., L,, where the ith level
L. of T is the sct of vertices at distance / from the root. This tree 7T is said to be a
(k, a)-tree if for i < h every vertex x at level i has at most k neighbours at level
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i+ 1 and
Q::._ = _h_.i_ M»_N:._ .

An important stage on the way to proving Theorem 2.4.1 is the following
assertion. i

Theorem 2.5.2. There are constants 8, and &, 0<g <1, such that if G is a
bipartite graph and 8(G) = &, then for some integer m the set C(G) contains at least
4m!7 even integers between 4 and 4m.

As an immediate consequence of Theorem 2.5.2, Gydrfas et al. (1984) proved
another conjecture of Erdds and Hajnal.

Theorem 2.5.3. If G is an infinite graph of infinite chromatic number then C(G)
has positive upper density in N.

Proof. By a simple compactness argument, for every k the graph G contains a
finite subgraph H, of minimal degree 2k; every bipartite subgraph G, of H, with
maximal size has minimal degree at least k. [J

Theorem 2.5.1 can easily be turned into a result connecting S(G) with the average
degree of G. For a >0 define

h(a) = inf{S(G): e(G) = |G} .
Since every graph G satisfying e(G) = a|G], i.e., having average degree at least

2@, has a subgraph of minimal degree at least a, Theorem 2.5.1 implics the
following result.

Theorem 2.5.1. There are positive constants ¢ and & such that if «=c then
h(a) = ¢ log a.

This result gives no information about h(e) for small values of a. Trivially.
h(a) =0 for e =<1 but a priori it is not clear that there is no e, > 1 such that
h(a) =0 for a < a,. Gydrfés et al. (1985) proved that, in fact, f(a) >0 for every
a > 1.

|

Theorem 2.5.4. If k is sufficiently large then h(1+ 1/k)= (3004 log k)

3. Saturated graphs

A property P of graphs is monotone increasing it whenever a graph G has P. so
does every graph obtained from G by the addition of some edges. Clearly, if 7, 1s
the sct of minimal graphs of order n having property P then P is determined by
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the sequence (Z,),_,, and conversely, if %, is a family of graphs for order n then
(%,):_, determines a monotone increasing property P: a graph G of order n has
P if and only if it contains at least one element of &,. Using the terminology of
the previous section, a graph of order n fails to have property P if it contains no
forbidden subgraph. i.e., no element of %,.

A graph G is P-saturated or saturated for P if G does not have P but any graph
obtained from P by the addition of an edge has P. In the first two sections we
studied P-saturated graphs with maximal number of edges. Here we shall turn to
the lower bound: at least how many edges does a P-saturated graph of order n
have? Usually one writes sat(n; P) for this minimum, i.e., sat(n; P) = min{e(G):
|G|=n and G is P-saturated}. Also, the set of extremal graphs is SAT(n; P) =
{G: |G| =n, e(G) =sat(n; P) and G is P-saturated}. If P is given by the sequence
(%,)7., then we may write sat(n,%,) and SAT(n; %)) for sat(n; P) and
SAT(n; P). Also. it #, = {F,,..., F.} then we may write sat(n; F,,..., F,) and
SAT(n; F,... .. F.).

3.1. Complete graphs
Erdés et al. (1964) proved the following analogue of Turdn’s theorem for
saturated graphs.

Theorem 3.1.1. If 2<r<n then sat(n;K))=(r—2)(n—1)— ("3))=(@r—-2)n-
'3V and SAT( K,))={K,_,+ K,_,.,}, i.e., the edge set of the unique extremal
graph for sat(n: K,) is the set of all edges incident with a fixed set of r — 2 vertices.

Proof. Call a graph K, -saturated if it is saturated for the property of containing a
K_ subgraph. Furthermore, writing k,(G) for the number of K, subgraphs of G,
we call G srongly K -saturated if k(G) <k, (G*) whenever G~ is obtained from
G by the addition of an edge. Clearly ever K -saturated graph is strongly
K -saturated but a strongly K, -saturated graph need not be K,-saturated because
it may contain a A,-subgraph. Note that if G is strongly K, -saturated then so is
every graph obtained from G by the addition of some edges.

The graph G, =K, .+ K,_ ., has (r—2)n—("3%) edges and it is K, -satu-
rated. Instcad of the claim of the theorem, we shall prove the stronger assertion
that every strongly K -saturated graph of order n has at least r—2n—(51
edges, and {5, is the only strongly K, -saturated graph with n vertices and
(r—2)n—('.") cdges. In fact, as the property of being strongly K, -saturated is a
monotone increasing property, it suffices to prove the latter assertion. We shall do
this by induction on n +r.

The asscrtion is trivial if =2 or n=r. Assume then that 3<r<n and the
result is true for smaller values of # + r. Let G be a strongly K, -saturated graph
with 7 vertices and (r — 2)n — (' 5 ') edges. Let x, and x, be non-adjacent vertices
of G. As G is strongly K, -saturated, there are vertices x,, ..., X, such that in the
set {x,, x.. any two vertices are joined to each other. with the exception

of v, and 1. L (;/{x,.x,} be the graph obtained from G by identifying x,
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and x,. Thus V(H)={X,,X3,...,%,}, for 3si<j<n two vertices x;, X; are
joined in H if and only if they are joined in G, and ¥, is joined to x; in H if and
only if at least one of x; and x, joined to x; in G. Clearly,

o(G)=e(H)+r—2.

Also, as G is strongly K, -saturated, so is H. Hence, by the induction hypothesis,

win=¢-u-1-("5").

with equality if and only if H=G,, ;. Therefore

e(G)=(r—2n IAwM Hv

and if equality holds then H=G,_, and fori=1 and 2 the vertices x5, ..., X, are
the only neighbours of x; in G. It is easily checked that this implies that G =G,

as claimed. [

Let us give another proof of the fact that cvery strongly K,-saturated graph of
order n has at least (r —2)n — ("3 ') edges and so, in particular,

iy (13)-) (717

Let G be a strongly K,-saturated graph with n vertices. Let A,.A,,..., A be
the (unordered) pairs of vertices not joined to each other. We have to prove that
[<("~5%?). For each set A, there is an r-set C; C V(G) such that A, C C, and the
only two vertices of C, not joined to each other are the vertices of A, Set
B, =V(G)—C;.

Note that |4,]=2, |B|=n—r and A,N B, =§. Furthermore, if 17/ then
A N B, #9. Indeed, if we had A, N B, =0 then the set C,=V(G) ~ B; would
contain at least two pairs of non-adjacent vertices, namely A, and A, Hence
A,NB;=0 if and only if i=j. Thus the required inequality is an immediate
consequence of the following theorem of Bollobas (1965).

Theorem 3.1.2. For two non-negative integers a and b write w(a, b) = (* | Pyt Ler
(A, B): i €1) be a finite collection of finite sets such that A OB =0 if and onlv
ifi=j. Fori€lseta,=|A]| and b,=|B,|. Then

2 wia, b)<1
i€l
with equality if and only if there is a set Y and non-negative integers a and b. such
that |Y| =a + b and {(A,, B,): i €1} is the collection of all ordered pairs of disjoin
subsets of Y with |A,|=a and |B|=b (and so B;=Y ~ A,).
in particular, if a,=a and b,=b for all i€ then = (0 fy If a =2 and
b oon—rforall i€l then Il = (" 177)

'
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Proof. We shall prove the inequality; the case of equality requires a little more
work.

We may assume that the sets A4,, B; are subsets of [n]. Call a permutation
=X, Xy, ..., X, compatible with a set-pair (A,, B;) if in 7 every element of 4,
precedes every clement of B,. Let N be the number of compatible pairs
(m,(A,, B)). Clearly each set-pair (4,, B;) is compatible with

:
Aa. + wvv a!b(n—a,—b)t=nlwla, b))

permutations , $0

N+nl> wa,b,).
el
On the other hand, no permutation 7 is compatible with two set-pairs, say
(A, B;) and (A, B)). Indeed, otherwise we may assume that max{k: x, EA;} =<
max{k: x, € A;}. Then max{k: x, € A;} s max{k: x;, EA;} < min{k: x, € B} so
A;N B; =0, contradicting our assumption. Hence N=n!, so

N=2 w(a,.b)n'<n!,

el

implying the rcquired inequality. O

In fact, Theorem 3.1.2 is an extension of the LYM inequality of Lubell (1966)
Yamamoto (1954) and Meshalkin (1963), which, in turn, is an extension of
Sperner’s (1928) lemma, and the proof given above is just a variant of Lubell’s
proof of the LYM incquality. To be precise, the LYM inequality is simply the case
B,=X — A, of Theorem 3.1.2 where X is the ground set.

The original reason for proving Theorem 3.1.2 was to extend Theorem 3.1.1 to
hypergraphs: with the appropriate definitions, every k-uniform hypergraph of
order n which is saturated for a complete graph with r vertices has at least
(#) = ("7¢ %) hyperedges.

The proof of Theorem 3.1.2 can be adapted to give us the bipartite version of
Theorem 3.1.1. first proved by Bollobés (1967a,b) and Wessel (1966, 1967). An m
by n bipartite graph with classes V, and V, is strongly saturated for K(s, ) if the
addition of anv edge ioining V, to V, creates at least one new complete bipartite
subgraph with s vertices in V, and ¢ vertices in V.

Theorem 3.1.3. Let 2<s<m and 2<<t<n. An m by n bipartite graph which is
strongly saturated for K(s,t) has at least mn ~ (m —s + 1)(n — t + 1) edges. There
is only one exiremal graph. the m by n bipartite graph containing all edges joining
the two classes except those that join a fixed set of n —t + 1 vertices in the first class
to a fixed sct of n -t + 1 vertices in the second class.

Duftus . son { 1986) studied refinements of the problem of determining
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sat(n; K,). Let sat(n; K,,8) be the minimal number of edges in a K,-saturated
graph with n vertices and minimal degree at least 6.

Theorem 3.1.4. If n=5 then sat(n;K,;,2)=2n->35 and if n=10 then
sat(n; K;,3) =3k — 15.

It is easily seen that for 8 =2, 3 the value of sat(n; K;, 8) is at most as large as
claimed. Given a graph H and a vertex x of H, construct a graph G from H by
adding to H a vertex and joining it to the neighbours of x. This graph G is said to
have been obtained from H by duplicating the vertex x. Note that if H is
K,-saturated then so is G. As the 5-cycle C, and the Petersen graph P are
K,-saturated, so are the graphs with n vertices obtained from Cs and P by
repeated duplications of their vertices; these graphs have minimal degrees 2 and
3, and 2n — 5 and 3n — 15 edges.

Perhaps for every fixed 6 = 1 one has sat(n; K, 8)=26n—-0(1).

3.2. General families

Let us turn to the problem of determining or estimating sat(n; F) for a general
family F of graphs. We know that if no member of & is bipartite then ex(n; &) =
[#?/4], i.c., there are (maximal) graphs of order n not containing any forbidden
graphs which have at least |n®/4] edges. On the other hand, as the following easy
estimate shows, sat(n; %) = O(n) for every fixed finite family F.

Theorem 3.2.1. Let & be a (non-empty) finite family of non-empty graphs and let
r=max{|F|: FE€ F}. Then for n=r we have

sat(n; F)s(r—2)n — Axm ﬂv .

Proof. Let us apply induction on r. For r=2 the assertion is trivial because
K, € F so the empty graph K, is F-saturated. Suppose that r =3 and the result
holds for smaller values of r. If & contains a star K, .. s=<r = 1. then a graph
containing no member of % must have maximal degree at most s — 1 so

s—=1 r=2 (r— 1
L =TR :MQ\sziA ) v

sat(n; F) =

Suppose then that no member of F is a star. Set F={F~-{x}: Fe#
x€V(F)}. Then F' is a finitc family of non-cmpty graphs, each with at most r 1
vertices, so by the induction hypothesis,

fr—2

sat(n — L; F)y=(r -3 -1 -1 , v

Let H be an extremal graph for sat(n - 1.7 ") and let G be obtained from H b
ing to it a vertex v and joining x to all n — 1 vertices in H. It is trivial that G ¢




1270 B. Bollobds

Proof. We shall prove the inequality; the case of equality requires a little more
work.

We may assume that the sets A4,, B, are subsets of [n]. Call a permutation
T =X,X,,....X, compatible with a set-pair (4,, B;) if in 7 every element of A,
precedes every clement of B, Let N be the number of compatible pairs
(, (A, B,)). Clearly each set-pair (A4, B;) is compatible with

n
Am\ N F,v a'bl(n—a,— b)) =ntwa,b,)
permutations 7, SO

N+n' 2 wia,. b,).
=2
On the other hand, no permutation = is compatible with two set-pairs, say
(A;, B)) and (A,. B)). Indeed, otherwise we may assume that max{k: x, € A,} =
max{k: x, €A }. Then max{k: x, EA;} < max{k: x, € A;} <min{k: x, € B;} so
A, N B; =0, contradicting our assumption. Hence N <n!, so

N=> wla, bnt=n!,

el

implying the required incquality. [

In fact, Theorem 3.1.2 is an extension of the LYM inequality of Lubell (1966)
Yamamoto (1954) and Meshalkin (1963), which, in turn, is an extension of
Sperner’s (1928) lemma, and the proof given above is just a variant of Lubell’s
proof of the LYM inequality. To be precise, the LYM inequality is simply the case
B,=X— A, of Theorem 3.1.2 where X is the ground set.

The original reason for proving Theorem 3.1.2 was to extend Theorem 3.1.1 to
hypergraphs: with the appropriate definitions, every k-uniform hypergraph of
order n which is saturated for a complete graph with r vertices has at least
() —(*7{**) hyperedges.

The proof of Theorem 3.1.2 can be adapted to give us the bipartite version of
Theorem 3.1.1. first proved by Bollobés (1967a,b) and Wessel (1966, 1967). An m
by n bipartite graph with classes V, and V, is strongly saturated for K(s, t) if the
addition of any ¢dge joining V, to V, creates at least one new complete bipartite
subgraph with s vertices in V, and ¢ vertices in V.

Theorem 3.1.3. Let 2=s<m and 2<t<=n. An m by n bipartite graph which is
strongly saturated for K(s. ) has at least mn — (m —s + 1)(n —t + 1) edges. There
is only one extremal graph. the m by n bipartite graph containing all edges joining
the two classes except those that join a fixed set of n — 1 + 1 vertices in the first class
to a fixed set of n - t + | vertices in the second class.

Duffus and Hanson (1986} studied refinements of the problem of determining
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sat(n; K). Let sat(n; K,,8) be the minimal number of edges in a K, -saturated
graph with n vertices and minimal degree at least 8.

Theorem 3.1.4. S n=5 then sat(n;K;,2)=2n-5 and if n=10 then
sat(n; K;,3)=3n—15.

It is easily seen that for 8 =2, 3 the value of sat(n; K, §) is at most as large as
claimed. Given a graph H and a vertex x of H, construct a graph G from H by
adding to H a vertex and joining it to the neighbours of x. This graph G is said to
have been obtained from H by duplicating the vertex x. Note that if H is
K,-saturated then so is G. As the 5-cycle Cy and the Petersen graph P are
K,-saturated, so are the graphs with » vertices obtained from C; and P by
repeated duplications of their vertices; these graphs have minimal degrees 2 and
3, and 2n — 5 and 3n — 15 edges.

Perhaps for every fixed 8 2 1 onc has sat(n; K4, 8) = 8n — O(1).

3.2. General families

Let us turn to the problem of determining or estimating sat(n; #) for a general
family # of graphs. We know that if no member of & is bipartite then ex(n; F) =
[n%/4], i.e., there are (maximal) graphs of order n not containing any forbidden
graphs which have at least [n?/4] edges. On the other hand. as the following easy

—

estimate shows, sat(n; ) = O(n) for every fixed finite family F.

Theorem 3.2.1. Let F be a (non-empty) finite family of non-empt
r=max{|F|: FE%)}. Then for n=r we have

sat(n; F)=(r—2)n— Ax M gv .

Proof. Let us apply induction on r. For r=2 the asscrtion is trivial because
K, € % so the empty graph K, is F-saturated. Suppose that r =3 and the result
holds for smaller values of r. If & contains a star K, . s=<r=1. then u graph
containing no member of % must have maximal degree at most s — 1 s0

. _s—1 _r=2 (r—1
sat(n; F) = " = :Mﬁxlwv:\A ) v

Suppose then that no member of F is a star. Set F={F—{x}: FEZ,
x€V(F)}. Then F' is a finite family of non-empty graphs, cach with at most r !

vertices, so by the induction hypothesis,
. r—2
magwr%qm¢|3§\:|Av )

et

Let H be an extremal graph for sat(n — 1; F') and let G be obtained from H by
adding to it a vertex x and joining x to all n — 1 vertices in H. Itis tnivial that (s
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F-saturated. so
mw;:““vMQAQvaNR=|HW%J+31H“A\|Nv:| A\.NIHV . 0

Note that for # = {K,} the simple inequality above is, in fact, an equality.
Kaszonyi and Tuza (1986) proved the following sharper upper bound for
sat(n; F).

Theorem 3.2.2. Let F be a family of non-empty graphs. Set
v=min{{U]: FEZF, UCV(F), F-U is a star}
and
s=minfe(F-U): FE%, UCV(F), F—- U is a siar and |U|=u} .

Furthermore. let p be the minimal number of vertices in a graph F € F for which
the minimum s is attained. If n=p then

_ s—1 +
%;;:T%VMA:+ 3 vzlzﬁw 5.

Proof. We proceed as in proof of Theorem 3.2.1 but this time we apply induction
on . [t is again trivial to start the induction: if u =0 then K, ;U Nmzil e F ic..
F contains the union of a star with s edges and p —s5 — 1 isolated vertices. Hence,
if an F-saturated graph G has an 1 = p vertices than its maximal degree is at most
s—1 and so e(G) < (s — 1)n/2. The induction step is as before: the family F’ has
parameters « - 1. s and p — 1 instead of u, s and p, so

é::?%vm:|H+A:IH+MMHVA=1HVI A:15GN+SIC

\,A +MIHV l:@.:&
=1lu 5 )n 5 . ]

In the proof above, the star K, , played a major role; In fact, as pointed out by
WmMNo:.: and Tuza (1986), it is very easy to find the exact value of sat(n:; K ,).
Indecd. if (7 is K, -saturated, i.e., if G is a maximal graph with maximal mmm?o
at most ¢ any two vertices of degree less than s are joined. This remark
and simple caleulations imply the exact value of sat(n; K, ).

Theorem 3.2.3. [fs + 1 =n<s+s/2 then

.,vu@v+AiN\uv

and if nes b 52 then

sat(e

K.ove=[(s — :m\wl.ﬂu\ﬁ .
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Note that in Theorem 3.2.2 one also has equality for F = {K,} since tl
u=r—s and s =1. Furthermore, if ¥ = {C,}, i.e., if the only forbidden grap
the 4-cycle, then u=1 and s =2 so, by Theorem 3.2.2, sat(n; CH)s3n-1
This bound is also close to being best possible. To obtain a slightly better up
bound, given n=5, take 1= |(n —3)/2] triangles sharing a vertex, and
p=n—2t—1 new vertices to p vertices of onc of these triangles, using
dependent edges. The obtained graph is C,-saturated and has n-vertices
3t+p=|(3n—5)/2] edges. As proved by Ollman (1972), this is the best one

do.
Theorem 3.2.4. If n =5 then sat(n; C,) = |(3n — 5)/2].

In conclusion, it is worth remarking that, as noted by Kaszonyi and 1
(1986), the function sat(n; F) lacks the expected regularity properties. Namel
% C % and F'CF then we need not have any of the relations sat(n;
sat(n; F), sat(n; F') < sat(n; FY and sat(n; F)=sat(n + 13 ). Indeed. let I
K, and a K, sharing a vertex and let F’ = K,. The graph consisting a K and r
edges incident with one of the vertices of the K, is F-saturated so sat(n; F)=
5. On the other hand, sat(n, F')=2n—3 so if n>8 then sat(n: F) <sat(n;
Also, with &' = {F',F} and F ={F} we have sat(n; F)<n + 5<sat(n; ¥
2n — 3 for n>38.

3.3. Weakly saturated graphs

Given a family % of graphs and a graph G, write k,(G) for the numbt
subgraphs of G that are isomorphic to members of Z If F={K,} ther
before, we write k,(G) instead of ky (G). Call a graph G weakly F-saturat
there is a sequence of graphs G, = G CG,C---CG,, such that V(G) =V
e(G)=e(G, )+ 1 and ki(G,)>ky(G,_ ) for every i, I=i=m, and G, i
complete graph on V(G). Thus G is weakly F-saturated if we can add to it e
one by one in such a way that with each edge we strictly increasce the numb
F-subgraphs and we stop the process only when our graph is complete. De
by w-sat(n; %) the minimal number of edges in a weakly F-saturated graph
n vertices.

Since an ZF-saturated graph is also weakly Fsaturated, we have w-sat(y
<sat(n: F). As one would expect, w-sat(n; ¥) can be much smaller
sat(n; %). For example, let F=kK,, re.. let £ be a set of & independent ¢
Tutte’s (1947) 1-factor theorem implies easily that every ma: mal graph w
vertices without k independent edges is of the form Ko+ UL K, o
sz=0, n,=20,qg=nts —2k +2 and Mwu_ (2n +1)=n—s5 (see Bollobas 1
Corollary 1.9, p. 38). This implies that if n = (5k — 2372 then the maximal nu
of edges in an F-saturated graph with r vertices Is

'k —1 o
ex(n: kK,) HA " v + (k- 1)n—k+1).

L
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as proved by Erdés and Gallai (1961), and if n = 3k — 3 then the minimal number
of edges in an F-saturated graph with n vertices is

sat{n. kK,)=3k—1),

the minimum being given by k — 1 independent triangles. On the other hand, a
graph with n =2k +1 vertices and k—1 independent edges is weakly KK,-
saturated so

w-sat(n; kK,)=k—1.

Also. it is easily seen that for n =4 we have w-sat(n; C,) = n while Theorem
3.2.4 tells us that sat(n; C,) = |(3n —5)/2] for n=5.

It is fuscinating that for F = K, a weakly F-saturated graph must have at least as
many edges as an F-saturated graph: w-sat(n; K, ) = sat(n; K,) = (r — 2 —("3").
For very small values of r this is easily seen. For example, a weakly K;-saturated
graph must be connected so w-sat(n; K;)=n —1 and hence w-sat(n; K;) =
sat(n; K,) = n — 1. However, while for sat(n; K;) there is just one extremal graph,
the extremal graphs for w-sat(n; k;) are precisely the trees. The large size of the
family of extremal graphs even in this trivial case indicates that it is considerably
harder to determine w-sat(n; K,) than sat(n; K,). This task was accomplished
almost twenty years after the original results of Erdds et al. (1964) and Bollobas
(1965), by Frankl (1982), Kalai (1984) and Alon (1985).

Theorem 3.3.1. {f 2=<r<n then w-sat(n; K,)={—2jn —{"3"').

To see what is needed to obtain this result, let us return to the proof of
Theorem 3.1.1 that led us to Theorem 3.1.2. Let G be a weakly K -saturated
graph with 7 vertices and let G,=G C G, C - CG, be the sequence showing
this. Let A, be the pair of vertices joined in G, but not in G,_,. Let C, be the
vertex sct of a K, contained in G, but not in G,_;, and let B, =V(G) — C,. Then
|A|=2and |B]=n—r. As A,CC, we have A, N B,. Furthermore, none of the
pairs A,,,. A,_,,..., A, can be contained in C, since the vertices in A, were the
last two vertices to be joined in C,. Hence for j >i we have A, N B, # 0. It turns
out that these two conditions imply that /= (* 5*?) which is the content of
Theorem 3 3 1 In fact, Frank! (1982), Kalai (1984) and Alon (1985) proved the
appropriate result for all values of |A,|=a and [B;|=b, which implies the
extension of Theorem 3.3.1 for uniform hypergraphs.

Theorem 3.3.2. Let (A, By), (Ay, By), ..., (A, B,) be pairs of finite sets such
that |A\=a. B =band A NB, =@ forall i. Suppose furthermore that A, N B, =
Bif iy Thenl=(4;"

The proofs of Theorem 3.3.2, given by Frankl, Kalai and Alon arc all rather
similar. very beautiful and very unexpected: they make use of exterior powers of
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algebras. With hindsight this is perhaps not too unexpected since (%) and (47
arc clearly dimensions of exterior powers. Furthermore, some ycars carlic
Lovdsz (1977) had used exterior algebras for a similar purposc. As it happer
Theorem 3.3.2 is tailor-made for a proof by exterior powers. For the details, s
chapter 24 by Frankl.

The following extension of Theorem 3.3.2 was conjectured by Frankl ai
Steckin (1982) and proved by Fiiredi (1984).

Theorem 3.3.3. Let (A, B,), ..., (A, B)) be pairs of finite sets such that A=
[B,|<b and |A, N B,|<c for all i. Suppose furthermore that |A, N B|>cifi>
Then <= (**b72%).

3.4. Hamilton cycles

So far we have considered only the function sat(n; ), i.c., we have consider
only the case when our forbidden family % does not depend on n. This section
devoted to the problem of determining sat(n; %,) for the prime example of
family %, depending on n, namely %,={C,}. A graph with n vertices
C,-saturated if it is a maximal non-Hamiltonian graph, i.e., if it is non-Hamil
nian but the addition of any edge creates a Hamilton cycle. The following resu
were proved by Bondy (1972).

Theorem 3.4.1. Let G be a maximal non-Hamiltonian graph of order n =7 with
vertices of degree 2. Then G has at least (3n + m)/2 edges.

Corollary 3.4.2. If n=7 then sat(n; C,) = [3n/2].

When studying sat(n; &) for a fixed family Z, it is usually easy to give an upj
bound for sat(n; F) and the difficulty lies in proving that the function is at least
large as claimed. Rather curiously, the situation is quite different for sat(n; C
the results above are fairly simple, and, as it happens, the lower bound is -
actual value of the function, but it is difficult to construct cxamples showing t
sat(n; C,) is indeed [3n/2] if n is not too small.

If n is even then sat(n: C,) = [3n/2] = 3n/2 if there is a cubic graph satura
for Hamilton cycles. Since a Hamiltonian cubic graph is 3-edge-colourable,
need a C,-saturated 4-edge-chromatic cubic graph of order n. In fact, 4-ed
chromatic cubic graphs are not easy to come by: Isaacs (1975) was the first
construct an infinite family of such graphs. By making use of this family, Cl
and Entringer (1983) and Clark et al. (1988) proved that sat(n; C,)=1[3n/2]
most values of #n.

In view of the difficultics with sat(n; C,), it is unlikely that one could determ
even sat(n; C,) for every pair (k,n). However, getting good bounds on !
function may not be hopeless.
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4. Packing graphs

Given graphs G. G,, G,, ..., G,, we say that G,, G,,..., G, can be packed into
G if there are inclusions V(G,) CV(G), i=1,...,1, such that E(G,;) CE(G) -
U, E(G)). The inclusions above are said to form a packing of G, G,,..., G,
into G. We may and shall assumne that each G, has exactly as many vertices as G
since if G, has k fewer vertices than G then we may add k isolated vertices to G;
without altering the existence of a packing. If G is the complete graph then we
say simply that there is a packing of G,, G,,..., G,. Thus there is a packing of
G,, G,.....G, into G if and only if there is a packing of G, Gy,...,G,

Note that Turdn’s theorem states that the complete graph K, can be packed
into every graph with n = r =2 vertices and ¢,_,(n) + 1 edges. Equivalently, if G
is a graph with n vertices and (4)—t,_,(n) = 1= X, ({**95"D) —1 edges
then there is a packing of K, (or, equivalently, K, U K,_.) and G. Of course, in
this instance the terminology we have just introduced is rather cumbersome: it is
more natural to use the subgraph terminology, as it was done in section 1.
However, many results are natural to formulate in terms of packing, even when
they concern only two graphs: these are the results that we shall be concerned
with in this scction.

Ideally. one would like to find large classes %, %,, ..., ¢, consisting of graphs
with 1 vertices cach such that if G, € &, then there is a packing of G,, G, ..., G,
Needless to say, one cannot expect a sensible characterization of such classes.
Therefore our aim is to describe large classes 9, %, ..., % in terms of standard
graph parameters such that if G, € ¢ then there is a packing of G, G,,....G,.

Throughout the section, our graphs to be packed are assumed to have n
vertices cach.

4.1. Packing graphs with few edges

Let us start with the following simple result of Sauer and Spencer (1978).

Theorem 4.1.1. Let G, and G, be graphs with n vertices each such that
e(G,)elG,) <. 15). Then there is a packing of G, and G,.

Proof. Lct @ be the set of all n! bijections ¢ : V(G,)— V(G,). For a bijection
¢ € @. call the number of edges of G, mapped by ¢ (to be precise, by the map
induced by ¢) into edges of G, the deficiency of ¢, and denote it by d(¢). Note
that ¢ is a packing if and only if d(¢)=0.

. Clearly cach edge e of G, contributes e(G,)2(n ~ 2)! to the sum Meme d{d)
since having specified the edge of G, into which we map e by ¢, we have 2(n — 2)!
choices for . Hence

N dld) = e(G)e(Gy)2An = 2)!
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As, by assumption, the right-hand side is less than n!, at least one of the n! ter

on the left-hand side is 0. Hence there is a ¢ € @ with d(é)=0. 0O

The simple proof above can be reformulated as follows. The expec
deficiency af a random bijection is less than 1 so there is a bijection w
deficiency 0, i.e., there is a bijection giving a packing of G, and G.,.

If one of the graphs has substantially fewer than ni2 edges then a packing ex
even if the other graph has fairly many edges, as shown by the following resul:

Bollobas and Eldridge (1978).

Theorem 4.1.2. Let 0<a <1. If n is sufficienily large and G, G, are graphs v
n vertices each such that

i

e(G))<an and (G,)<3(1- 2a)n’
then there is a packing of G, and G,.

The result is not too far from being best possible in the sense that the expor
in n*"* is correct. Indeed, let a>0 be fixed and sct s= ZNQ:V_
G,=K,UK,_, and G,=T, ((n). Then, e(G,)<an and, rather crud
e(G,) < #2120 "% if n is sufficiently large. Since G, is the union of s — 1 comp
graphs, there is no packing of G, and G,.

Theorem 4.1.1 implics that if e(G,) + e(G,) < (2n(n — 1))’ >~V2n then t
is a packing of G, and G,. On the other hand, if A(G,)=n—1 and 8(G,)
then there is no packing of G, and G,: a vertex of G, having degree n — 1 cat
be placed on any vertex of G,. In particular, if G, is the star K, _, and
consists of [n/2] edges, covering all vertices, then e(G,)+e(G,)=n~—
[n/2] = | (3n — 1)/2| and there is no packing of G, and G,. Sauer and Spe
(1978) proved that this example is worst possible: if e(G,) +e(G
{(3n —1)/2] — 1= |3(n — 1)/2] then there is a packing of G, and G,.

If neither G, nor G, has maximal degree n— 1 then we need more edge
prevent the existence of a packing. Let G, be the union of a star with 17 — 2¢
and an isolated vertex, and let G, be 2-regular, i.c., a disjoint union of ¢y
Then for n > 3 neither G, nor G, has a vertex of degree n — 1. e(G,) +elG
2n —2 and there is no packing of G, and G.,. Bollobds and Eldridge (1
proved that this example is essentially worst possible.

Theorem 4.1.3. Let G, and G, be graphs with n vertices und maximal degre
most n — 2. If e(G,) + e(G,) <2n — 3 and {G,. G} is not one of seven excepl
pairs of graphs, each with at most nine vertices, then there is a packing of G,
G,. In particular, if n=10 and e(G,) + e(G,)<2n =2 then there is a packir

G, and G,.

The original proof of the result above was slightly simplificd by Teo (1985
also Yap 1986 and Tco and Yap 1987).
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Corollary 4.1.4. Let G, and G, be graphs with n vertices such that if one has
maximal degree n — 1 then the other has an isolated vertex. Ife(G,) +e(G,)<2n—
3 then there is a packing of G, and G,.

Proof. If the maximal degrees are at most n —2 then the result follows from
Theorem 4.1.3. Otherwise we may assume that G, has a vertex x of degree n — 1
and G, has an isolated vertex y. Placing x on y, there remains to pack G; =G, —
x, with e(G,) —n + 1 edges, and G} =G, —y, with e(G,) edges. Since e(G) +
e(G4)=<n—2. it is trivial that there is such a packing, for example, by Theorem
41.1. O

This corollary implies immediately the result of Sauer and Spencer mentioned
above: if e(G,) + e(G,) <3(n —1)/2 then there is a packing of G, and G,. Teo
(see Yap 1988) extended Theorem 4.1.3 to graphs having a total of 2n — 2 edges.
As expected. the number of exceptional pairs increases substantially. For
simplicity. we state the result only for n= 13.

Theorem 4.1.5. Let G, and G, be graphs with n =13 vertices each such that
AG)Y<=n -2 and «(G)+e(G,)<2n—2. For i= 1, 2, 3, let H, be the disjoint
union of a star with n—i—1 edges and a K;: H,;=K, ,_,_, UK, let H, be a
disjoint union of cvcles, i.e., a 2-regular graph of order n, and for n =3k let H be
the disjoint union of k triangles: Hs = kKy =T (n). If {G,, G,)} is not one of the
pairs {I1,.11,}. {H., H,} and {H,, Hy} then there is a packing of G| and G,.

If one of the graphs to be packed is a tree then one can do considerably better.
Extending various earlier results, Slater et al. (1985), proved that if T is a tree of
order n. G is a graph of order n and size n — 1, and neither T nor G is a star then
there is a packing of T and G. Furthermore, by making use of Theorem 4.1.3 and
this result. Tco and Yap (1987) characterized the graphs of order n and size n
which can be packed into the complement of any tree of order .

It is very likely that, in turn, Theorem 4.1.5 can be extended to graphs with a
total of 2 — | cdges at the expense of a further increase in the set of exceptional
pairs but the proof is likely to be forbiddingly cumbersome. However, for the case
when the maximal degree is restricted even more, Eldridge (1976) proved the
following result. The bound cannot be improved in general.

a

Theorem 4.1.6. Ler r =4 and let G, and G, be graphs with 1= 9 T vertices wnid
maximal degrees at most n —r. If e(G,) + e(G,) <2n +r(NF —2) = VT then there
is a packing of G, and G,.

Rather little i« known about packing many graphs with few edges. In particular,
if truc. the following conjecture of Bollobas and Eldridge (1978) is unlikely to be

easy to prove.

Conjecture 4.1.7. For every k=1 there is an n{k) such that if n=n(k) and G,.
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with n vertices such that e(G,)<n — i and AG)=sn~—

G,,...,G, are graphs
: ; ., k, then there is a packing of G, Gs,. ... G-

for every i, i=1,2,..

4.2. Graphs of small maximal degree
a trivial obstruction to packing is the existence
vertices of very large degrees. If the maximal degrees are known to be small the
the existence of a packing follows from much weaker bounds on the 88_. :c::.u
of edges. Now we shall look for restrictions on the maximal degree only implyl
the existence of a matching.

The following simple result was announce
independently by Sauer and Spencer (1978).

The results mwco<n show that

d by Catlin (1974) and prov

Theorem 4.2.1. Let G, and G, be graphs with n vertices such that A(G)A(G,)
n/2. Then there is a packing of G and G,.

Proof. As for A(G)A(G,)=<1 there is nothing to prove, we may assume th
A(GA(G,) =2 and so n =5. Choose an identification of the vertex sets V((
and V(G,) in which G, and G, have a minimal number ow. o.&mnm in comm
Suppose V(G,) = {x, . x, ), V(G)={yi---> y,} and x, is identificd é::

Assume that, contrary to the assertion, G, and G, sharc an namo. in
identification, say x,x, € E(G,) and y,y, € E(G,). Let L be the set of indice
such that either x,x; € E(G,) and vi:mmﬁﬁwv or clse y,y, € E(G) and xx
E(G)). Since x,x, € E(G)) and y,y, € E(G,), we have

IL| < (A(G,) — DA(G,) + (A(G)) = NAG,) <n =2

< k<n, such that k & L. If we flip x,

Hence there is a natural number k, 3
then the number of ed

x,, i.e., if we identify x, with y, and x, with y,, .
common to G, and G, decreases, contradicting our assumption. 0
How far is this result from being best possible? Let d; < d,<n be nat
numbers such that n<(d, + 1)(d, +1) = 2. Let G, be a graph such that d, 0
components are complete graphs of order d;+ 1; similarly, let G, have
components that are complete graphs of order d, +1 ﬂwa, example, let C
d, Ky 1 Y K and G,=d, K, , UKs 1 Note ,SE AG, v\H d, and MG
d,. Suppose that there is a packing of G, and G,. Then every K, _, componer
(i has at least one vertex outside the K, ., components of G,. As there ar
oo,B@o:mEm of the form K, ., in G, but only d, — | <Q:onm, cm Uy ;_r ‘
components, this is impossible. Hence there is no packing of G, m:a,Cu.
Bollobas, Eldridge and Catlin conjectured (sec Bollobis 1978b) that
example above is worst possible, i.e., n/2 in Theorem 4.2.1 can almost

replaced by .

Conjecture 4.2.2. Let G and G, be graphs with n vertices such that (MO
INA(G,) + 1)=n + L. Then there is a packing of G, and G .
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At the moment we arc very far from a proof of the above noE.mmEnn. The
following difficult theorem of Hajnal and Szemerédi (1970) provides some
evidence for the truth of the conjecture.

Theorem 4.2.3. Every graph with maximal degree A has a (A + 1)-colouring in
which the cardinalities of any two colour classes differ by at most 1.

Note that the Hajnal-Szemerédi theorem implies Conjecture 4.2.2. in the case
when G, is of the form T.(n); in fact, the theorem is more or less equivalent to
the conjecture in this case. Indeed, if G,=T,(n) then AG,) = [n/r] =1 so if
(A(G,) + DG+ y=n+ | then A(G)+1=[n/rls(+ D/IAG,) +1).
Therefore r = A(G,) + 1 so Theorem 4.2.3 implies that there is a packing of G,
and G,.

One should emphasize that Theorem 4.2.3 itself is a substantial result; various
special cases of the theorem had been proved earlier by Dirac (1952), Corradi
and Hajnal (1903). Zchinka (1966), Grinbaum (1968) and Sumncr (1969).

Catlin (1977. 1980) proved some special cases of Conjecture 4.2.2, including

the following result.

Theorem 4.2.4. There is a function \Q_VHOA:EJ such that if G, and G, are
graphs with n veriices such that MG,) <2 and A(G,) = ni3— f(n), then there is a

packing of G, and G ..

4.3. Packing trees

Very little is known about the possibility of packing more than two graphs. The
only exception is the case when all the graphs to be packed are trees. In fact A.
Gyarfas made the following beautiful conjecture (see Gyarfas and Lehel 1978).

Conjecture 4.3.1. Any sequence of trees T, T3, .. -5 T, with 7, having i vertices,
can be packed into K.

Note that the total number of edges of T, Ty T8 MW m i=(4)soina
packing claimed by the conjecture every edge of K, must belong to precisely one
of the trees.

This conjecture, which has come to be known as the tree packing conjecture, 18
unlikely to be solved in the affirmative in the near future. At the moment the
truth of the conjecture is known only in some very special cases. Here we shall
give three examples: the first two are due to Gyarfas and Lehel (1978) and the
third to Hobbs (1981). Recall that a star is a tree of the form K| ,,, i.e., a tre¢ of

diameter 2.

i

Theorem 4.3.2. Let T, T, ..., T, be trees with T, having i vertices, such that

each T, is a puth or u star. Then there is a packing of Ty, Ty .-+ T, into K,,.
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Theorem 4.3.3. Let T,, T, ..., T, be trees with T, having i vertices, such that all
but at most two of them are stars. Then there is a packing of T,, T,.... T, into
K

n

Theorem 4.3.4. Let T,,Ts,..., T, be trees of diameter at most 3 such that T, has i
vertices. Then there is a packing of T,, Ts, ..., T, into K,.

The first two results were extended by Straight (1979). In particular, extending
Theorem 4.3.3, he proved the existence of a packing if A(T,) =i — 2 with at most
two exceptions. (Note that T, is a star if A(T,) =i~ 1.) Furthermore, Straight
(1979) verified the tree packing conjecture for n<7, and Fishburn (1983) proved
it for n<9. Theorem 4.3.4 was also considerably extended by Fishburn (1983).
These results indicate that even a disproof of Conjecture 4.3.1 is likely to be
difficult.

Packing a family (T,)s of trees of arbitrary shapes is fairly easy if k is not too
large. The following easy result of Bollobds (1983) shows that here we can take
k = |cen| for some ¢ >0.

Theorem 4.3.5. Let (T,)% be a sequence of trees where k = [V2n/2] and T, has i
vertices. Then T,, T, ..., T, can be packed into K,.

In fact this result has very little to do with packing, because under the
conditions the trees can be packed into K, one after the other: first we pack T,,
then T, ,, then T, _,, etc.; when we choose a packing of T, we do not take into
account the trees T, ,, T,_,,..., T,. A packing of T, exists because the graph
into which 7, is packed has fairly many edges. In fact, the bound |V2r/2] could
be replaced by T\wm\w_ if one could prove the following fascinating conjecture
proposed by Erdés and S6s in 1963. As it happens, this conjecture was onc of the
motivations for the conjecture of Gydrfés.

Conjecture 4.3.6. Every graph with n vertices and more than (k —1)n/2 cdges
contains every tree with k edges.

Note that the number of edges is just sufficient to guarantec that the graph
contains a path with k& cdges and a star with k edges.

Rather than strengthen Theorem 4.3.5, perhaps one could prove the foliowing
conjecture which is considerably weaker than the tree packing conjccture.

Conjecture 4.3.7. For every k =1 there is an n(k) such that if n = n(k) and T, -
T, yeir-. > 1, are trees, with T, having i vertices, then they can be packed into
K,

4.4, Packing bipartite graphs

In this section, we shall prove an attractive result of Hajnal and Szegedy aboul a
special type of packing of bipartite graphs.
Let G, and G, be n by m bipartite graphs. with bipartitions (U, W) and (/..
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W,). We say that there is a bipartite packing or simply packing of G, and G, if the
n by m complete bipartite graph K(n, m), with bipartition (U, W) contains
edge-disjoint subgraphs H, and H, such that, for i=1, 2, the graph H, is
isomorphic to G;, with U; corresponding to U. (Note that, unless n=m and G,
and G, are rather sparse, a bipartite packing is just a packing of G, and G, as
bipartite graphs, i.e., into K(n,m). This justifies the abbreviated terminology.)
Equivalently, G, and G, have a packing if there are one-to-one maps f:U,—>U,
and g: W,— W, such that if xy is an edge of G,, with y € W,, then flx)g(y) is not
an edge of G,. We shall call the pair (f, g a packing of G, and G,.

In the proof of the theorem below, we shall need the following simple
consequence of Hall's theorem (see chapter 3) about matchings in n by n bipartite

graphs.
Lemma 4.4.1. If the minimal degree of G is at least n/2 then G has a matching.

To keep the notation we need self-explanatory and manageable, fori=1, 2, we
denote by d(U,) the average of the degrees of the vertices of G, belonging to U,
and by A(U,) the maximum of these degrees. Define d(W,) and A(W,) analo-
gously. We are ready to state and prove the promised result of Hajnal and
Szegedy (1992).

Theorem 4.4.2. Suppose that the n by m bipartite graphs G,, G, with bipartition
U,, W,). (U,. W), are such that

60 < A(W,) <m/20d(U,) ,

60 = A(W,) <m/20d(U,) ,
and, for i=1.2.

A(U,) = mi2log(4m) ,
then there is a bipartite packing of G, and G,.
Proof. Let f: U/, — U, be a one-to-one map. As we shall sec in a moment, there
is a one-to-one tap g . W, - W, such that (f, g) is a packing of G, and G, if and
only if a certain m by n bipartite graph B, has a matching.

Indeed, define a bipartite graph B, with bipartition (W, W,) by making y,y,
(y, EW,. v.€W,) an edge of B, if g(y,) =y, does not violate the condition that
if xy € E(G) then f(x)g(v) & E(G,). In other words, let y,y, € E(B,) if and only
if fC(y Ny, =0, ic. if y, & I(f(I'(y,))), where I'(x) denotes the set of
neighbours of a vertex x in the appropriate graph.

In view of Lemma 4.4.1, the theorem follows if we show that for some map f

the minimal degree 8(B,) of B, is at least m/2. Hence it suffices to show that the
probability that 6(8,) = m/2 for a random map f is strictly positive. Tn turn. it
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suffices to show that the probability, that the degree of a particular vertex of B, is
less than m/2, is less than 1/2m. Our aim is then to prove this.

By symmetry it suffices to consider a fixed vertex y, € W,. For simplicity, let
U,=[n]={1, Pm. ..,n} and let d, be the degree of vertex i in G,. Then

dy () =m=|[(ATGINIZm= > d.

ief(r(y )

Hence, if d(y,)= Il (y,)|=r, ie., y hasr neighbours in G, then

S d>5) (1)

i€T

o1, <2) <P

where P, denotes the probability taken in FMS, the space of all r-subsets of {1,
2,...,n}, and 7 is a random element of [n].
With the monotone increasing set system A ={AEP(n): Viiead, >n/2},

inequality (1) becomes

m
o(d, (5 <) <P.D). @
Setting p = SA(W,)/4n, we sce that with g=1-—p we have pgn= 3 and
r<spn-— @%a:%;. A martingale-type inequality implies that, under these con-
ditions,
1
p(s0)= (15 )Pt = 1P, (ct) )
where P, () is the binomial probability with probability p:
p,t)= 2 pg"
A€Edd
Furthermore, by a standard estimate of the probability in the tail of the binomial
distribution,
o) < dm -

Combining this with (1), (2) and (3), we find that

(a0 <5 ) <3

—

as desired. [l

The conditions in Theorem 4.4.2 are fairly tight: there are many ways ©
showing this with the aid of random graphs, but we do not go into the details
Note also that in the theorem we proved more than we claimed: for cver
U, —U, there is a g: W, — W, such that (f.g) is a bipartite packing.



1284 B. Bollobds

4.5. The complexity of graph properties

The complexity ¢(#) of a graph property % is the minimal number of entries in
the adjacency matrix of a graph that must be examined in the worst case in order
to decide whether the graph has the property or not. It is convenient to spell out
this definition in terms of a game % between two players, called the Constructor
and Algy (or Hider and Seeker). Denote by 4" the set of all graphs with a fixed
set V of n vertices, say V= {1, 2,...,n}. Then a property & of graphson V is a
subset of %" such that G €  whenever a graph isomorphic to G belongs to . In
the game 2 Algy asks questions from the Constructor about a graph G on V.
Each question is of the form: “Is ab an edge of G?”, and each question is
answered by the Constructor. When posing a question, Algy takes into account all
the information he has received up to that point. The Constructor need not have
any particular graph in mind: he may change his choice of graph he is constructing
edge by edge according to the questions asked by Algy. The game is over when
Algy can decide whether or not the graph the Constructor has been defining will
have property # or not. The aim of the Constructor is to keep Algy guessing for
as long as possible. On the other hand, Algy tries to pose as pertinent questions
as possible: he would like to decide as soon as possible whether the graph has #
or not. The number of moves of Algy (i.e., the number of questions) in this
game, assuming that both players play optimally, is the complexity ¢(?) of the
game .

Needless to say, the complexity of a digraph property is defined analogously.
Moreover, the definition easily carries over to properties of subsets. Given a finite
set X, a set system % on X, i.e., a subset % of the power set P(X), is said to be a
property of the subsets of X. Thus a subset of X has property & if it belongs to .
Algy’s questions are of the form: “Is x an clement of our subset 7.

Note that a property of graphs on V is precisely a property of the subsets of
V@, the set of all unordered pairs of elements of V, which is invariant under the
permutations (of V'*' induced by the permutations) of V.

A property F C2(X) is trivial if either =0 or ¥ = P(X); needless to say,
one is not interested in trivial properties. As shown by Bollobds and Eldridge
(1978). Theorem 4.1.3 concerning the packings of graphs implies a lower bound
on the complexity of a non-trivial property of graphs.

Theorem 4.3.1. The complexity of a non-trivial property of graphs of order n is at
least 2n — 4

The bound given in this theorem is unlikely to be best possible although, as the
following example due to Best et al. (1974) shows, it does give the correct order
of magnitude. A scorpion graph with n vertices is a graph containing a path bmt
such that b (the hody vertex) has degree n —2, m has degree 2 and ¢ (the tail
vertex) has degree 1. Note that the graph spanned by the n — 3 neighbours of b
different from s is entirely arbitrary.

Theorem 4.5.2. The graph property of containing a scorpion graph has complexity
at mosi 6.
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For lack of space, in the rest of the section we shall concentrate on elusi
properties. A property F of the subsets of X is elusive if ¢(F) = |X|. i.c., if ever
element of X must be examined in order to decide whether a subset of X belon;
to % or not. Thus a property % of graphs of order # is elusive if ¢(?) = (%) and
property 2 of digraphs of order n (containing at most one loop at each vertex)
elusive if ¢(2)=n". Best et al. (1974), Kirkpatrick (1974), Milner and Wel.
(1976), Bollobas (1976b) and Yap (1986) have shown that a good many properti
of graphs with n vertices are elusive. These properties include the property
being planar (for n=35), the property of containing a complete graph with
vertices (for 2 <r<n), the property of having chromatic number & (for 2=k
n), the property of being 2-connected, the property of being connected ar
Eulerian, and the property of being connected and containing a vertex of degr
1.

A property ¥ of the subsets of a set X is monotone increasing if A€ % ar
A C B C X imply that B € %; a monotone decreasing property is defined similarl
A property is monotone if it is either monotonc increasing or monotor
decreasing. After some initial difficulties, Aanderaa, Rosenberg, Lipton ar
Snyder (see Rosenberg 1973 and Lipton and Snyder 1974) advanced tt
conjecture that every non-trivial monotone property of graphs is close to beis
clusive in the sense that ¢(2) = en” for some constant £ > 0. A little later, Best
al. (1974) advanced a sharper form of this conjecture: every non-trivial monotor
graph property is elusive. The weaker form of the conjecture was proved t
Rivest and Vuillemin (1976).

Theorem 4.5.3. If P is a non-trivial property of graphs of order n then ¢(P)
6.

In fact, Rivest and Vuillemin deduced this result from a theorem claiming th
certain set properties are elusive. Given a property & of subsets of X (i.c.. as
system F C P(X), let Aut(%) be the group of automorphisms of 7, i.c., tl
group of permutations of X leaving % invariant: Aut(¥)= {7: 7 is a permut
tion of X such that if A€ % then #(A) € F}.

Theorem 4.5.4. Let X be a set with p" elements, where p is a prime. and let F be

property of subsets of X. If Au(F) is transitive on X, 0 € F and X € F then F
elusive.

Encouraged by this beautiful result, Rivest and Vuillemin conjectured th
Theorem 4.5.4 was true without any restriction on the number of clements of .
This conjecture has turned out to be false: a counterexample was given by Illi
(1978). However, Kahn et al. (1984) proved the exact form of the Best et
conjecture for prime power values of n.

Theorem 4.5.5. Let n =p" where p is a prime  Then everv non-irivial monoto

property of graphs with n vertices is elusive.
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Kahn et al. used techniques from algebraic topology to prove their beautiful
theorem. The crucial step in the proof is that if & is a non-elusive monotone
decreasing property of subsets of X then the abstract simplicial complex of X
formed by the elements of F is collapsible.

The bound n’ */16 in Theorem 4.5.3 was improved by Kleitman and Kwiatkow-
ski Comov ton \o Kahn et al. used their theorem to give the even better lower
bound n°/4 + o(n’).

Let us close with a fascinating conjecture of Kahn et al. (1984) claiming that
the analogue of the Best et al. conjecture holds for properties of subsets.

Conjecture 4.5.6. Let F be a non-trivial monotone property of subsets of X. If
Aut(F) is transitive on X then F is elusive.
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1. Introduction

Let X be an n-clement set and % C 2% a family of distinct subsets of X. Suppose
that the members of ¥ satisfy some given conditions. What is the maximum
(minimum) value of |#|? This is the generic problem in extremal set theory and
we shall try to givé an overview of the existing results and methods. Here is the
simplest result:

n—1"

Theorem 1.1. IfFFNF #0 holds for all F, FreFc2¥, then |F|=2" .

Proof. For each A CX either A or X\A (or both) are absent from F. Thus
|Fl<12"=2""". 0O

2. Basic definitions and conventions

For s,! positive integers, §= 2, a family ¥ is called s-wise t-intersecting if
|F, N --- NF|=>1holds forall F,,... . FLEF Ht=1, then ¢ is omitted. Also if
s =2, then s-wise is omitted. Thus, “intersecting’” means 2-wise 1-intersecting.
A family & is called k-uniform or a k-graph if |F| =k for all FE F.
The size of a family ¥ is |F| and it is often denoted simply by m. The members
of F are also called edges. Let (¥) denote the family of all k-element subsets of

X.
For FC2%, set FV=(FEF: |F| =i}, and £=|F"]. In this case f=

(for- -2 fu)is called the f-vector of F.

Let [n] denote {1,.-- ond, G 1= i=l<j}. Usually we supposc X =[n].
For i € X, define F(i)={F\i}: jeFe ), the link of &s F)={FEF:

iZF}.

The degree ds(i) is simply |Z@i)]; 8(F) and A(F) denote the minimum and
maximum degree, respectively.

G¢={X\F: FEF} is the complementary family of F.

% 2% is called hereditary if ECFEF implies EE€ F. (Note that 0 € F.)

F 2% s called a filter it F° is hereditary.

The [th shadow o (¥) of a family F is defined by:

Sﬂm\lﬁvnﬁQmA\v” mmmm\ﬂmﬁm‘f

W(F)={GCX: GEF,AFEF, |GAF| =1} 1 called the bowriddi? 7

v(#), the matching number of F. is the maximum number of pairwise disjoint
edges in F; (F) =7 ifoe 7.

7(#), the covering number of F, is the minimum cardinality of a set T with
rTAF#6forall FEF, 7(F) = if g 7.

F is called v-critical if v(4)™ »(F ) holds for cvery family obtained tfrom F by
replacing one of its edges by a proper subset of it.

¥ i called r-critical if 7(49) < (F) for all 4 C F.

N

VoL
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& is called an antichain if FZ F' holds for all F, F'€ %

Define the reverse lexicographic order <, on 2* by A<, B if ACB or
max{x € A\B} <max{x € B\A}.

Let L(m. k) (R(m, k)) be the largest (smallest) m members of (#!) in the
reverse lexicographic order.

Note that Z((}), k) = ().

We call . G cross-intersecting if FE ¥ and G € 9 implies FN G # 0.

F is called a sunflower of size m and with center C if F N F' = C for all distinct
F,F'e# and |F|=m

F is said to be intersection-closed if F, F’ € % implies FNF' €%

We close this section with a conjecture of Frankl (1979).

Conjecture 2.1. If F is intersection-closed, || =2, then 8(F) =< |%|/2 holds.

3. Basic theorems

The oldest result in extremal set theory is Sperner’s Theorem.

Theorem 3.1 (Sperner 1928). If F C2% is an antichain, then |F| < (1, with
equality if and only if = (%) or F=(.,,) holds.

Recent rescarch on antichains belongs to the theory of partially ordered scts.
We refer the reader to chapter 8 or the book by Engel and Gronau (1985).

The maximum size of intersecting k-graphs was determined in 1938 by Frdés,
Ko and Rado although they did not publish their result until much later.

W

Theorem 3.2 (Erd6és ct al. 1961). If & C(f) is tintersecting, k>t=1, n
nolk 1), then L7 = (470,

From the work of Frankl (1978) and Wilson (1984) we know that the
conclusion holds if and only if n=(k —r+ 1)(¢ + 1).
Another classical result is due to Erdés and Rado (1960).

. FC(NY g
Theorem 3.3. /f 7 C(}), |F|>kl(r— 1), then F contains a sunflower of size r.

Erdés (1981) offers $1000 for a proof that the same holds for |F} > ¢(r)*, where
c(r) is an appropriate constant.

Probubly the single most important result in finite set theory is the Kruskal-
Katona Theorem. which was proved by Kruskal (1963) and Katona (1966) [see
also Lindstrom (1967), where a somewhat weaker statement is proved].

Theorem 3.4. /f 7 C () is a family of size m, then for all 1<k, |o(F)| =
o (R (. kY
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Evaluating |o,(®(m, k))| one can get explicit bounds, which, however, are often
unsuitable for computations. The irregular behaviour of the Kruskal-Katona
function is explained in Frankl et al. (1995c). Lovész (1979) gives the following
weaker but more convenient version.

Theorem 3.5. Eet F C (%), |%| = m, and define the real number x = kbym=(3).
Then |o(F)| =

A simple common proof of Theorems 3.4 and 3.5 was given by Frankl (1984).
The values of m and k for which &(m, k) is the unique optimal family in Theorem
3.4 were determined independently by Firedi and Griggs (1986) and Mors

(1985).
Hilton (1976) noticed that the Kruskal-Katona Theorem can be restated in the

following form.

Theorem 3.6. If F C(¥) and 4 C (¥) are cross-intersecting, then so are £(|F|, k)

).

Theorem 3.7 (Matsumoto and Tokushige 1989). If % C({) and 4 C(Y) are
cross-intersecting and n =2k =21, then |F||4|< (212 1).

Another important theorem on shadows is due to Katona (1964).

Theorem 3.8. If F C(Y) is t-intersecting, then for all k —t=<l=k one has

(2k 1y {2k -0
_S@Jt_ﬁ_wﬂ \ »\ﬁ » VWH.

Katona used this theorem to determine the maximum size of f-intersecting
families & C 2%, which we will discuss in section 5. Katona showed also that the
case t=1 of the Erd6s-Ko-Rado Theorem 3.2 is an casy consequence o
Theorem 3.8.

The discrete _.Snm:.SS:.n problem can be stated as follows: given m, determine

min{|8F|: & C2*¥
A ball with nmimx A and E&:: ris the family B(A.7) = {BCX: A AB{=r}

.

If BA, NCFCB(A, r+1), then F is called a generalized bull. Harpe
1966) shows that generalized balls have minimum boundary.

Theorem 3.9. For every % C 2% there exists a generalized ball 4 C 2 Yot the san
size with [0(F)| = |9(9)].

A short proof of this result was given by Frankl and Firedi (1981}
For # C ({) one defines its k-boundary «{7) by:
X

x@uvu?m?v” GEF.3IFe 7, y

Jr/EHw,ﬂ




1298 P. Frankl

One of the outstanding open problems is the isoperimetric problem for ().
Open Problem 3.10. Given m, determine min{[«(%)|: F C (), |F|=m]}.
The next result is due to Kleitman (1966a).

Theorem 3.11. Let €, @ C2% be hereditary. Then
€ng|=6||@|2" .

Proof. Apply induction on n, the case n=0 being trivial. Set c,=|%(n)|,
¢, =|€m)|. d,=|%(n), and d, = |2(n)|. Then

Il

'€ Nu| =€) N D) + |€(R) N D(n)|
(c,d, +cody)/2"""  (by induction)

=(cote)dy+d)I2" + (cy — c)dy—d)i2".

WV

Using ¢tn) C€(n) and D(n) C D(n), (¢, —c )d, —d,) =0, which completes
the proof. 0

By now there are many generalizations of Theorem 3.11, some of which are
discusscd in chapter 8.

4. Basic tools

The most useful tool for investigating s-wise r-intersecting families is an operation
called shifting. which was introduced by Erdés et al. (1961).

Definition 4.1. For 7 C2" and 1<i<j<n, define the (i, j)-shift S, by S,(F) =
{S,(F): '€ .7}, where ’
NU{iy=:F if jEF,i&F and FEF ,

som - |
L otherwise .

Somc it the usetul properties of the (i, j)-shift arc summarized by the next
lemma.

Lemma 4.2.
(1) =S b and |F =[S (F);
(il) S ) S, (o(F)):
(i) if 7 oo s-wise -intersecting, then so is S (F);

(iv)

G TR )

dm:_::m the 0 r)-shift for all 157 <\j=n will eventually produce a family %
which - t with respect to the (7, j)-shift.
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Definition 4.3. We call ¢ stable if S, (9) = for all 1<i<j=n. The following
result is straightforward to show.

Proposition 4.4. % is stable if and only if for all GE Y, |si<jsn withj€G
iZG, (GNjYw(i}) is also in 4.

A variation of the (i, j)-shift, called down-shift was defined by Kleitmar
(1966).

Definition 4.5. For ¥ C2* and i€ X, define the down-shift D, by D/(¥9)=
{D,(G): GE ¥}, where

DAQVHAQIAL _TmQ.m@ and (G- {{})E Y.
_ Q o%m?ﬁmo.

Define the trace |, = {FNY: FEF}.

Some important properties of the down-shift are summarized in the nex
lemma; property (ii) is due to Kleitman (1966), and (iii} to Franki (1983},

Lemma 4.6.
(i) [D(%)]=4; ‘
(it) if |F AF'|<d holds for all F, F' € F, then the same holds for D {7 )
(iii) |D,(D)|y|=14l,| for all i€ X and Y CX.

Iterating the down-shift again produces an invariant family.
Proposition 4.7. D,(%) =% holds for all i € X if and only if % is hereditary.

Let us use this proposition to give a simple proof of the following result whic:
was discovered independently by three sets of authors: Sauer: Shelah and Perles
and Vapnik and Chervonenkis.

_ AR

>3 (1), then there is some RE (V) with

Ld ()r g

e -
R

M\Mﬂ

Theorem 4.8. If

Proof. Suppose that |%|,| <2’ for all R&€ (¥). In view of Lemma 4.6 (iii) we ma
apply the down-shift to %, and by Proposition 4.7 obtamn a complex 4. st
satisfying |4| | <2’ for all R € (+). However, since 4 is hereditary. this implie

|G| < rfor all G € %. whence |G| = ), ., (%) follows. 3

Y

We point out that the largest r such that there exists a set RE (; ) with /., =2
15 called the Vapnik—Chervonenkis dimension of #. This concept has foun
interesting applications in combinatorial and computational geometry. an
Icarnability theory (e.g., sec Blumer ct al. 1989, Clarkson et al. 1988, and Lini
ct al. 1991).
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Another important tool for investigating families of finite sets is the inclusion
matrices.

Definition 4.9. For # C2%, the |o(%F)| by |%| matrix M(j, #) has its rows
m:aoxoag\Qm\i.ﬁv::a:mno_::_:mgwmmm m:a:mmo:nam_oic\mm

(1 iGCF,
mG. F)=10 it GZF.

Simple computation gives the next result.
Proposition 4.10. (i) M(j. F) M(j, F) is an |F| by |F| matrix with general entry
£ A_mjzv .
n(F. = j ;
(i) M(j. 7)) M(j, F%) is an |F| by |F| matrix with general entry

Aavait
n(F. Fy={" . v
Definition 4.11. F C () is called k-partite if there exists a partition X =X, U - -~
UX, with [FNX,=1forall FEF, 1<isk.

A simple but useful result of Erd6s and Kleitman (1968) 1s the following
lemma.

=k!/

Lemma 4.12. Every k-graph F contains a k-partite k-graph % with |§|/|F
K~

Definition 4.13. For a k-partite & C(¥) and F €%, define [I(F, &) = {II(F N
F'): F=F e 7). where II(A) = {i: ANX,#0}. (Thus II(F. #)c2").)

F C2% r-complete if for all distinct F, F' € % there is a

Definition .14, Wo cal
sunflower of size r and with center FN F’ formed by members of &.

Fiiredi (1¢83) discovered the following lemma which has since proved very
useful.

Lemma 4.15. Tiere exisis a positive constant ¢ = c(k.[) such that every F C ()
has a k-paruie subfamily F7 satisfying
(i) | :
(1)
(iit) .

F o
o
P

artite with [1(F*)=TI(F, F*) being the same for all F € 7™
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Proposition 4.16 (Deza). If >k in Lemma 4.15, then II(F*) is intersection-
closed.

Proof. Take D', D"€II(%*), and choose F, F’, F"€ F* with D’ = [H(FNF"),
D'=I(FNF"). Let G,,...,G,,, and H,,...,H,,, be members of F~
forming sunflowers with centers C' = FN F’' and C"= F N F', respectively. The
sets G\C', G,\C',..., G, \C' are pairwise disjoint; thus one of them, say
G,\C’, is disjoint from C". Similarly, H\C", ..., H,,\C" are pairwise disjoint,
implying that one of them, say H\C", is disjoint from G,. Now G, MH, =C"N
C”, implying II(C' N C"y= D' N D" € H(F*) (in the last step we used that F* is
k-partite). O

Having some information about II(%*), one can often usc it to get upper
bounds on |F*| (and thus for |%|).

Proposition 4.17.

- n )
1= (agop)

Proof. Let T C[1, k] be a minimal set with 7 N ([1, k\P)# 0 for all P € JI(F™).
That is, |T| = r(IT(F*)°) and T £ P for all P € [I(F*). For cach F € F ™, let T(F)
be the unique subset of F with II(T(F)) = T. Since TZ II(F N F’) for distinct F,
F’' € F*, all the T(F) are distinct subsets of X, which concludes the proof. 0

5. Intersecting families

Let us define the family J(n, ¢) as follows:

if n+11is cven,

(KCX: |K|=(n+1)/2}

H(n, t)= (KCX: |KN[2n)|=(n—1)+1)/2)

it n+11s odd.

It is casy to check that %(n, ¢} is t-intersecting. Let us state and prove K
Theorem.

Theorem 5.1 (Katona 1964). If 3 C2% is t-intersecting. then |i(| .
moreover, for t =2, equality holds only if X is (isomorphic t0) J (n.1).

Proof. Let us start with a definition. % C 2" has the r-union properiy i IF U =

n—1tforall F,F'e#.
Now F = J#° has the r-union property.
We shall deal only with the case n —t odd: the even case is slightly casicr.

s (n+1-1r)/2. Recall that £ is the number of i-sets in #.

o

sel
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Claim 5.2.
i+t n )
i +||N¢«|%_|TTIM il O=i=ss.
Proof. Let us consider a(%*"™"). If A is in this family, then AZFY since
otherwisc |AUB‘|=n—t+1 holds for B eyt ACB, violating the hy-
pothesis. Thus, f -+ lo (") < (7). Since ¥ is t-intersecting we may apply

Theorem 3.8 to get

?ﬂfs\:lw:: W\\T:i\:@. +1-1)/i,

[AMAN

which yiclds Claim 5.2. 3

Proof of Theorem 5.1 (continued). For {=s one has n —i—t+1=1i and from
Claim 5.2, [ = (" 1) follows. Adding up this incquality, together with Claim 5.2

applicd to 0=/ <s and noting f,=0 for i >n —1, we obtain
‘n—1 n n—1
Wmf{_f > (i)=22 7, vn_ﬁ:,c_.

0=i<s 0=i<s

If t=2. then (i +t—1)/i>1; thus in the case of equality gD = ¢ and
consequently 77 = (1) for i <s, which gives already the bulk of the proof of
uniqueness. To conclude the proof one notes that F“ is intersccting, and
f.=(" |).so by the uniqueness part of the Erdés-Ko—Rado Theorem (which we

will discuss subsequently) F = {F € (11): 1 € F}. This implies & = J(, N 0

Theorem 5.3 (Kleitman 1966b). Suppose that F C 2% satisfies |F AF'|<n —t for
all F. Fre 7. Then |F|<|%(n, 1))

Proof. In viow of Lemma 4.6 we may repeatedly replace F by D{%). Thus by
Proposition 4.7 we may suppose that % is hereditary. Since for arbitrary G,
G' =7 we can take subsets F, F' € F with FAF' = G UG', F has the r-union

property. Thus Theorem 5.3 follows from Theorem 5.1. ]

PNy P o

Lot us define some intersecting families #(k, s) for 2=s =< k:

ﬁ \,
mhoy=yHE AT\M; 1€H and [2,5 + Sjtﬁi

CﬁmmAHM_v” [2,5+ :AIHiW.

It i sy 1o cheek that for i > 2k, [H(k.3) < < 9(k, k)| holds.
Checking the degrees one sees that

)

::
X
=
-
i
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Theorem 5.4 (Frankl 1987a). Let ¥ C (11 be intersecting, n>2k. If

AT Aﬂslwlexlylmv

@<= 1) ("l

holds forisome 2<s <k, then |F|< |9(k. 5)|. Moreover. equality holds onl.
is isomorphic to #(k,s), or s =3 and F is isomorphic to #(k,2).

Fmﬂm\uﬂﬂwvvmm:w:anmoomsm QB:%SEE%:‘65830233 omm_
satisfies (1 & = 0. That is, for each i €X there is some FEF with i &F

implies
Ao AA:I_V A:\»\_v
sO=\—1) 7\ k-1 /)
Thus Theorem 5.4 implies:

Theorem 5.5 (Hilton and Milner 1967). If F C(}) is an infersecting famil
(\F =0, then for n>2k, |F|<|%(n k)| with equality holding if and ¢
F=Hn, k), or k=3 and F=H(n, 2).

Let us mention that the restriction n>2k 1s essential because for n =
family & C (12} is intersecting if and only if it contains no sct together w
complement. Thus there are 2GE distinet intersecting families with
members in (1%1). Can they be regular, i.c., d (i) =d for some d and all i €
Simple computation shows that d = 1(3 7)) which is an integer if and only
not a power of 2.

Theorem 5.6 (Brace and Daykin 1972). There exisis a regular intersecting
of maximum size (32{') in (2%Y) if and only if k is not @ power of 2.

Definition 5.7. Let A denote the sct of all even integers 2k such that there
an intersecting family & C (1%1) with |F| = (%) and such that the
morphism group Aut(F) is transitive on [2k].

Theorem 5.8 (Cameron et al. 1989).
(i) If a€ A then abE A for b€ A and for b odd.
{ii) 4a 4 2€ A for all positive integers

(iii) 3-2" £ A for k=2

Actually. an even number 2k € A if and only if there is a transitive perm
group on {2k] in which cvery 2-element has a fixed point.
PRl

~ . J ~
Conjecture 5.9. a-2" Z A holds for every fixed « and o do .

iy determined

The maximum size of t-intersecting tamilics n (4
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Erdés-Ko-Rado Theorem for n = ny(k, t). However, for ¢ =2 this leaves open a
E:o._w range of cases 2k —t<mn<(k—t+1)(t+1). Define the r-intersecting
families s, = «,(n, k,t) for Osi<k —1 by:

[n]
k

NOcamn::.m 5.10 (Frankl 1978). If & C ({) is t-intersecting and n =2k —t, k=t =
, then

,ﬁn?mA v“ _\»DEIL_WIL.

|7 <=max |« .
I3
Let us prove a weaker statement.

Proposition 5.11. [f & C(¥) is t-intersecting and n =2k — t, then

] = ﬁ,»\hﬁv ’

Proof. In view of Lemma 4.2 we may assume that & is stable. The following
lemma is often uscful.

Lemma 5.12 %B:W,_ 1978). If F C(¥) is t-intersecting and stable, then |F (O F' N

(2k = ]| =1, ie.. Fy_, is tintersecting.

F..oom. Suppose that Lemma 5.12 is not true and choose a counterexample (F, F')
with |F N [2k — r]| as large as possible. Fix j € FNF' with j>2k —t. f i€ FU F’
for some i <[2k —r]. then replacing (by Proposition 4.4) F by (F\{j})U {i}
contradicts the maximality of |F M [2k —¢]|. Thus FU F’ 2 [2k —t]. However,

UYLk =< |FI+|F| = [FOF N2k ~t]| <2k —1t,

a contradic

Y A N

foaElT M AFEeF A=FO 2k~

na 3,12 and induction,
2h =1
o v

holds. This nmplics

N

S Ykenn =2kt fon
e R
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Theorem 5.13 (Kleitman 1966a). Let &,,..., % C 2% be intersecting. Th
[F U UF|=<2"-2""

Proof. Apply induction on r; the case r=11s just Theorem 1.1. We can assui
Z, By the inducti

that %, ..., % are filters. Consider ¥ =% U---U¥ ..
hypothesis, |#|<2"-2""""". Also |%] <2""! by Theorem 1.1. Since % and
are both filters, using Theorem 3.11 we obtain | N F|=|F|-1%,]/2". Sumn
rizing,
N Ca i
B0+ UF| = |F]+ F] - 15 05| <5+ [F] -

r

The right-hand side is monotone increasing in both |%| and |#|. Thus we
an upper bound by substituting |F,| = 2" 'and |F|=2"-2""""". This comple

the proof.

Another application of Theorem 3.11 is the following result which was pros
originally in a different way by Daykin and Lovéasz, and Schonheim.

Theorem 5.14. If & C 2% is intersecting and has the “union property” (FUF' 5
for F, F'€ F), then |F|<2""".

Proof. Define
F*={GCX:IFEF FCG}, and %%HAQ”mwm.\\\u,QmE.

Then F* is an intersecting filter and &, is hereditary and has the union prope
Using Theorems 1.1 and 3.11 we deduce

o

\F|=|F nF |=|F|FJ2r =2

It was shown by Frankl (1975) (proving a conjecture of Katona) that
maximum size of an intersccting family having the r-union property is | (

1,0

Example. Let,1'=1 and suppose X = Y U Y is a partition with Yy
Let & C27 be a copy of H{|Y], i) and .z S22V b a copy o .
CY)={HCX: HNYES, HNY €%} Then € 1 -intersecting and has

{’-union property.

P Y

(o2

Coniecture 5.15. If # C 2% is r-intersecting and has the (-union property,
jectus g property
<|%(Y)| for an appropriate ¥ C X.

|F

This conjecture can be found in Frankl’s dissertation of 1976 and first appe:

in English in Bang et al. (1981).
Let us closc this section with the following important conjecture of Chvat
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Conjecture 5.16. f ¢ is hereditary, F C6, and F is intersecting, then |F|=
A(6).

For some partial results and references on this conjecture see Miklos (1984).

6. Families with prescribed intersection sizes

N

Let L={l,.....0}C[0.k—1] with o<l < - <.

Definition 6.1. A family F C () is called an (n, k, L)-system, or an L-system for
short, if [F N F'{ € L holds for all distinct F, F' € %. For example, a t-intersecting
family is an L-system with L ={t,t+1,..., k—1}.

Definition 6.2. Let mi(n. k. L) denote the maximum size of an (1, k, L)-system.
The next fundamental thecorem was first proved by Deza.

Theorem 6.3 (Dcza ct al. 1978).
mn k. Ly=]] (1 —Ditk=1) forn>nyk,L).

fed

We remark that an L-system F C () with L={0,1,...,1— 1}, is called a
partial t-design and clearly Theorem 6.3 holds for all n=k in this case. A
celebrated result of Radi (1985) is the following.

L T:TAT%VVS\A\MV.

where k=1t>0 ure fived and n—=.

Theorem 6.4.

mn, k.|

Taking L = {r.r~1.....k— 1}, one sees that for n>ny(k, L), Theorem 6.3

5

extends Theorem 3.2.

Definition 6.5. We sav that Theorem 6.3 is asymptotically exact (respectively,
gives the correct exponent) il

n—1
k—1

/o
lim sup min. k. L '\ 11
:l\ \NMN\

is equal to onc (respectively, is positive). For example, Theorem 6.4 shows that
Theorem 6.3 is asvmptotically exact for all k=¢>0and L = {0,1,...,1—1}.

Definition 6.6. [ —« - il —a: €L}
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In view of the following result of Deza et al. (1978) we may supposc in what
follows that 0€ L.

Proposition 6.7. m(n, k, LYy=m(n—1ly, k=1, L=1,) forn> ny(k.L).

The next result gives some values of kK and L for which Theorem 6.3 is
asymptotically exact.

Theorem 6.8 (Frankl and Radl 1985). Let d=t>0 and let q be a prime power.
Then Theorem 6.3 is asympiotically exact for

k=g, L={0,1,....4""
and

k=(q¢"-D/(qg-1), L={(¢-Dig=1ri=01,...t=T}.

Definition 6.9. a(k, L) =sup{a: limsup,_. m(n. k, Ly >0},

That is, a(k, L) <|L| with equality if and only if Theorem 6.3 gives the correct
exponent. Clearly a(k, L)=1 for all @=L Cl0, k—1].

Conjecture 6.10. There exist positive constants c(k. L) and é(k. L) for all k. L
such that

k. IYa“* D < m(n, k, L) < &k, L™t

5 £ i ~ L) 5

~f
“A

Theorem 6.11 (Frankl 1986b). For every rational number a = 1 there are infinitely
many choices of k and L for which Conjecture 6.10 holds with alk.L) =«

One can use Lemma 4.15 and Proposition 4.16 to get upper bounds on «(k. L).
Let F be an (n, k, L)-system and apply Lemma 4.15 with [ =k + 1 to get the
intersection-closed family & = [1@FC 2l

We call a set B C [k] a base (for &) if BZ A for all A € = but no proper subsct
of B has this property. Also, b(sf) = min{|B|: B is a base}.

For D C [k] define (D)= M{A:DCAE(AU {[k]})}. Thatis, (D) = [k} it
and only if D contains some base for .

Since #* is an L-system, |A| € L for all A€ +/. By Proposition 4.16, there is at
most onc I -clement set in &/ and one can prove easily that b(s/) = |L|. In fuct.
more is true. For elementary properties of matroids, we refer the reader to

chapter 9.

Theorem 6.12 (Frankl 1982). b(f )= |L{— 1 unless «d U[A] Jorms the flats of
matroid of rank |L|. In this case b(si )= [L].

Proof. We apply induction on k. the casc L= 1 is trivial. Suppose that h(/1
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|L|. Define o/, = {A € sf: |A|=1},0<i<s=|L|. We have to show that for every
AE o, and x € [k]\A, there is a unique member of s, containing both x and A.
Define A = (N {A": (AU{x})C A’ E€s}. Then AE . All we have to show is
A€, . Itis casy to see that there exists a set D with (D) = A, |D| <i. Also, if
A€si, then one can find a set E with |[E[<s—j and (AUE) =1[k]. Thus
(DU{x) UE) =k], giving i +1+s—j<s, ie., j<i+1. Since |A[>[, )=
i+ 1 follows. 0

Definition 6.13. Define b(k, L) = max b(s ), where the maximum is taken over all
intersection-closed families ./ C2!*! with JA| € L for all A€ .

Conjecture 6.14 (Fiiredi 1983). a(k, L)>b(k, L) —1 for all k and L.

Since a(k. L) =b(k. L) by Proposition 4.17, this conjecture would mean that
[a(k, L)} = b(A. L) holds.

The smallest open cases are L = {0, 1,3}, k=1o0r3 (mod 6), k = 13 [b(k, L) =
3 in this casc. but a(k, L)>2 is unknown for k# 3 or 29—1], and L=
{0,1.2.3.5). k=11 [b(k, L) =5 in this case]. Recently, all exponents for k =10
were determined by Frankl et al. (1995b).

In Deza et al. (1983), an infinite family of cases where Theorem 6.3 gives the
correct exponent is exhibited, e.g., L=1{0,1,2,q+ 1}, k= q>+1, q a prime
power.

For & and L with h(k, L) =1, Conjecture 6.14 is obvious, since then a(k, L)y=1
follows from a(k.L)<b(k,L). If b(k,L)=2, then a(k,L)>1 follows using
constructions due to Frankl (see Firedi 1983).

A general upper bound, extending earlier results of Ray-Chaudhuri and Wilson
(1975) and Babai and Frankl (1980), is the following.

Theorem 6.15 (Frankl and Wilson 1981). Suppose that p is a prime such that k # |

(mod py holds for all | € L. Let r be the number of residue classes of L modulo p.
Then

7. Onc iisuing infersection

An important special case of the problem treated in the preceding section is when
L=1[0.k 1]/ for some [ €0,k —1].

Set mtu. k. Dy = min k[0, k= TR{)}).

There are two natural constructions for excluding the intersection size /. One is
by taking aii & -subscts of X containing a fixed (/ + 1)-element subset. This gives

i »: . A

;.w - - Hv
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The other is by taking a partial [-design. By Rodl’s Theorem o.b;:im. gives ¢
lower bound of (1—o(1))(7)/(%). The next result of Frankl and Firedi (1985
shows that one of these constructions always gives the correct exponent.

Bmxﬁ,kl\\:v

Theorem 7.1. m(n, k, ) =0(n

Proof. Consider « = [[ (%*) from the preceding section. We have to show tha

b(sd)<max{l,k —{—1}. Let B be a base for & and supposc ::‘: |B| =1 Fo

x € B consider A, = {B\{x}) € &{. Note that A, N B = B\{x}. Definc the famil

(of not necessarily distinct sets)
€ ={A\B: xeB)C2M7.

Claim 7.2. The size of the intersection of r members of € is never r—«

L<r<|B|=1|€|, where c=|B|—1>0.

A, N0 A DBl
[

Proof. Since for distinct clements x,, ..., X, € B on¢ has
|B| ~r.|A, 0 NA_|#[implics the claim.
./— ,’w

Proof of Theorem 7.1 (continued). Now a simple result of Frank! and Katona (c
Frankl and Fiiredi 1985) says that any family % of not necessarily distinct subse
of a b-element set and satisfying the assertion of Claim 7.2 has |€]=b+c -
Since in our case b =k — |B|, ¢ = |B| — [, we infer that |B|=16|<k—1—1.Sin
B was an arbitrary base for &, the result follows.

For the case k>2[ + 1, more is true.

Theorem 7.3 (Frankl and Fiiredi 1985). m(n, k, D=2} ‘C holds for k=21 +
and n > n, (k). Moreover, the only optimal family is F={Fe(: [/ +1)C F

For k <2/ + 1 one can improve on the lower bound given by partial [-desigr
Proposition 7.4. Let 2 C {5, (") |} be a partial l-design. Then IFNF'#1 for
F, F' € g (P).

. :y,)_, T;,A

Proof. Take P. P'€ P with FCP. F' C P If P# P then [F O F
If P =P then |[FNF'|=|F|+|F'|=|P|=1+1.

Using Theorem 6.4 again one obtains

] 1~ Ly {2k =1 ]
min k. D= (1 —o( "G T

This inequality is partially complemented by the following resuli of br
Recall that an S(1. a.1) is a partial I-design # C (11}) with o= )i
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Theorem 7.5.

mn ko 1)~ Am» »»\I ﬂVAMV\AN» |\| Hv

\BEM.N,\ k=2l +1and k — is a prime power. Moreover, if k — | is a prime, then
equality is achieved only for o (¥) where ¥ is an S(n, 2k —1—1,1).

Conjecture 7.6. Thcorem 7.5 holds even if k — [ is not a prime power.

Settling a long-standing open problem of Erdés (cf. Erdés 1981), the following
result was proved in Frankl and Rodl (1986).

,E-.mo_.n:_ .\..q.\\E:AQMWERNNvma:SRWmﬁQ:M\Mﬁiav:.ﬂ&m:Smxm
exists & = ¢(«) > 0 such that every family & C 21" with |F|> (2 — &)" contains two

sets whose intersection has size exactly l.

12,;\ _._,/_ri and n sufficiently large the problem was solved cxactly by Frankl
.m:g T:ﬁ_ (1984a). To avoid intersections of size / one can take J(n, [ + 1) which
is (I + 1)-intersecting from Katona’s Theorem 5.1 and adjoin all subsets of size
less than /.

Theorem 7.8. {f % C 27 satisfies |[F N F'|#1 for all distinct F, F' € ¥, then

F

, n
= Hn L+ 1)+ ...M\,._ C
\Q\ n > ::Qv.

An 5%@25.: 62 in the proof is the following result extending Theorem 3.8 on
the shadow of r-intersecting families. Recalling the definition of M, we have:

Theorem .\.fc. Suppose that the columns of M(j, F) are linearly independent over
R, where .7 C(Y). Then o (F)|/NF|= (5 )I(*57) forall j<s<k.

The lem was raised by Larman and Rogers (1972). Determine

stn) = maxi | F C2UL|FAF |2 ni2 for all F, F' €}

It is casy to see that s(n) = 27 if n is odd and that s(n) =2"""if n =2 (mod 4). Let
n =4[ and consider the following family:

2y I R.RS: Re2l

RO —1)j<i-1}.

poe b (M) Ty and [RAR'|# 2/ for all R, R € R(]).
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Theorem 7.10 (Frankl 1986a). s(4/) =4 Vi (7YY if 1is the power of an odd
prime.

Conjecture 7.11. Theorem 7.9 holds for all positive integers /.

8. s-wise t-intensecting families

Let g(n, s, t) denote the maximum size of an s-wise i-intersecting family % C 2%,
For a more complete treatment we refer the reader to Frankl (1987b).

Proposition 8.1. q(n, s, 1)/{27" is monotone increasing and therefore gls, 1) =
lim,_,, q(n,s,1)/27" exists.

Proof. 1If F C2% is s-wise r-intersccting, then so s F'=FU{FU{n+1}: FeE
%}, showing g(n+1,s,1)=2q(n,s, 1), as desired. The sccond part of the
proposition is a direct consequence of the first part. t

2. t=1. Since

From the proposition we see  that s,y for all s=
tim, . |%#(n,0)]/2" =1, g(2,1) =5 for all r=1.

In view of Lemma 4.2 (iii), from now on F 2% will be a stable, s-wise
t-intersecting family of maximum size. (Consequently, F is a filter.) Define the
sets:

A, =[n\t+i+ps: 0sp=<(n —r—1i)ls}
for 0=i<s and note that

A,N-NA_ =[t—1]. (8.

S8

Lemma 8.3. (i) A, € F;
(ii) for every FEF there exists a | =0 with IFNt+spll=e+ (s —1p.

Proof. Since F is a stable filter, A, € F would imply by repeated applications o
Proposition 4.4 that A, €%, 1=i=<s— 1. However, by (8.2) this is impossible
which proves (i). To prove (ii), suppose that F=[n]\a,,....q;} is in F
lsa,<---<a. Mfa,<t+psforl=ps= (n —t)/p [in particular, /= (n — 1)/p]
then A, € F follows from Proposition 4.4, contradicting (i). Thus for some p Wi
have a, >t+ps.ie. [FOli+ ps|l =t + p(s — 1), as desired. C

Let us consider the polynomial x" — 2x + 1, for s =3. It has exactly onc root
mmv\mﬁv,53@0@@:582&@:.moﬂ example, B(3)=(V3—1)/2.

Theorem 8.4 (Frankl 1976). g(n.s.1) < 2"B(s).

Proof (sketch). Consider the probability space of all infinite (0. Di-scquences wit



1312 P. Frankl

the uniform distribution. Standard computation shows that the probability of the
event {therc cxists p =0 such that the number of 1’s up to ¢ + ps is =t +pls—1)}
_m m@ By Lemma 8.3 this is a (strict) upper bound on |F]/2" [we associate with

% all the (0. 1)-sequences extending its characteristic vector]. |

Define the families:
S =H,0s.)={BCn]:[BN[t+spl|=t+(s—1)p}, p=< (n—1t)is.

Then 2, is s-wise t-intersecting and |8, |/2" is independent of n. The following
result 0059:? Theorem 8.4 and some computation involving _Qw [12".

Corollary 8.5. There exists a positive constant ¢ such that cB(s) 1t < g(t, sy < B(s)".

Conjecture 8.6. ¢(n.5.1)= 1 0sp<(n—1)is}.

Let us mention that Conjecture 8.6 holds for s =2 (Katona's Theorem) and in
general for 1+ v+ 2'/150 (Frankl 1979). It also holds for s == 2 with g(n,s, )=
277" Next. we show how to use this last result to give a simple proof of an
56015: theorem of Brace and Daykin (1971).

Theorem 8.7. Let 7 C2" be s-wise intersecting with () F =@. Then

Sns, D] =(s+2)2" 7!

Proof. We mav suppose that & is a filter and thus, since N F =49, it contains
[n]\{i} for ali 1~ i=n. This will not change by shifting. Therefore, we may
assume that .7 is stable.

We apply induction on s. For s =2, one has [%,(n,2,1)}=2 2"7"; thus the
statement follows from Theorem 1.1. Let s =3 and suppose that Theorem 8.7 has
been proved for smaller values of s. Consider %(1) and & F(1).

(i)

= |F(1)| + |F(1)| once we prove the claim.

Proof om :.:_: 8. m Note that F(1) is (s — 1)- 27@ intersecting on [2, :_ since
= {1} for some F,, ..., F,_, implying {1} € D . Also,
(n\{i im 7 ::1:9 ;u;L/?Cm F(1) for 2=<i=n. Thus {1 %(1)=4. Hence,
(i) follows from the induction assumption. To prove (ii), we only have to show
that (1) is s-wise s-intersecting (on [2, n]). 0502,:3 m_:om F(1) is a stable
filter, we can find F,.. . F, €F(1)CF with F, N~ F. =[2.s]. Define G,

Qu/?i, :

Il

Vfori=2....,s. Then G,€F by _uao_uom:mo: 4.4. However, F; N
G, N -1 G =, which is a contradiction. 3
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9. The covering number
Recall the definition of 7(%).

Theorem 9.1 AQv\mlmm 1977). A k-graph F has at most k™7 covers T of size
(F).

Proof. Set t=7(%¥). We prove by backward induction on /= that cvery
[-element set is contained in at most k'~ covers of . The case [ =t is trivial and
the case /=0 will prove the theorem.

Let 0=</<t and consider an [-element set A. Since | <t=7(%). there exists
an FEF with ANF=40. Every cover of ¥ containing A must contain at

least one of the (/ + 1)-clement scts AU {x}, x € F. Each of these scts 7 (by
1

induction) in at most k'~'™' covers of & of size ¢. This gives altogether & - &' =
k'l

(.

For a generalization scc Tuza (1988).
Considering 7 pairwise disjoint sets of size k& shows that Theorem 9.1 is best
possible. An important corollary of the theorem is the following.

Theorem 9.2 (ErdSs and Lovdsz 1975). Let & be an intersecting k-graph with
(F)=k. Then |F|<k".

Proof. Every FE % is a cover of size k.

Construction (Erdos and Lovisz 1975). Let X,.. ... X, be disjoint scts of size
l,...,k, respectively. Define

={E: [E|=k,X,CE.X,NE#9.i<j<k)

Set =% U--U%.

Now € is intersecting with 7(€) = k and |€] = |kle]. Lovisz conjectured tha
no intersecting k-graph with covering number £ has more edges. but this i
disproved in Frankl et al. (1995b).

How few edges can such a k-graph have

Let g(k) denote the minimum size of a A-graph # with 7.7 ) — A, [Zrdos anc
Lovisz (1975) show that g(k)=8k/3 - 3 and they conjecture that lim, . g(k)

=w%. However, using an ingenious construction, Kahn (1992) proved tha
g(k) = O(k) holds.

Let 2 be the set of lines of a projective plane of order & — 1. Then /2 has the
following strong property.

= k. then S& P,

Claim 9.3. If S is u cover of P with |S
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Proof. Suppose that S is not a line and let L €2 be a line with ILNS|=2.
Choose x € L\S. Then there are k — 1 lines besides L through x, and each of
them has to intersect S. Thus |S|=2+k—-1>k. O

Such an intersecting family is called a maximal intersecting family, i.e., the
addition of any new k-set destroys the property of being intersecting.

Let f(k) denote the minimum size of a maximal intersecting k-graph. Meyer
(1974) conjectured that f(k)=k*—k + 1 with equality if a projective plane of
order k —1 exists. This was disproved in Fiiredi (1980) by the following
construction.

Example 9.4. Let o/ be the family of lines of an affine plane of order k and let
d=% U -UZ.,, be the partition of the lines into parallel classes. Consider
three vertex-disjoint copies & ! o4?, and ° of & and let N\T ey NLM be the lines
in &, ,,. Define:

F={LUL: LEZL,i=1,2,3,j=1,...,k}.
Then | 7| = 3% and F is a maximal intersecting family, showing f(2k) =< 3k° if
an affine plane of order k exists.

Theorem 9.5 (Boros et al. 1989). f(g +1)<q’/2+O(q) for g=—1(mod 6), g a
prime power.

5
Aky<k® for all k.

Theorem 9.6 (Bl

Thus. Theorem 9.6 gives a polynomial upper bound for all k. However, it is not
even known whether lim, . f(k)/k==.

10. 7-critical k-graphs

Let us start

Theorem 10t A, A, Yand {B,.....B,)} betwo families of subsets of
[n] satisfying

(1) A, 15 V. Sy

(i) A "B -0 l=izj<m.
Then

oo BT
[

Proof. Appl. nduction on n; the cases n=20, 1 are trivial. For notational

convenenee we shall speak of the two families as a set-pair family {(A,. B,):
1= 7= ot wntedvine (0 and (if).
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For each x € [n] consider the set-pair family 2 = (A, BA\{x}), where / runs
over i with x& A, Then @ satisfies (i) and (ii). Applying the induction
hypothesis to ? on [a]\{x} and adding up the corresponding inequalitics one
notes that Q\J_M._E.JL occurs n — |A,] —|B;| times, and C\:.Tﬁ; “Hy T oceurs | By
times. Thus iﬂfmé

S -lal-18)-(

i<ism

- A +]B] — 1y
+_®L.A T»L v

Dividing by n, the theorem follows.

Tuza (1984) notes that the inequality of Yamamoto (1954) is a consequence of
Theorem 10.1.

Corollary 10.2. Let {A,,...,A,} be an antichain on X. Then

2 A_M;v‘_mf

I=ism

Proof (Tuza 1984). Set B, =X — A, and note that the hypotheses of Theoren
10.1 are fulfilled. C

Recall the definition of 7-critical families.

Corollary 10.3. If & is T-critical with 7(4) =1, then

[Aj+:-1)\"!
M v =1.
Acd =1
Proof. Let &/ ={A,,..., A, } and let B, be a cover of size t 1 for 2 [A]
Now, apply Theorem 10.1. C

Note that Corollary 10.3 implies that g| =< (%L~ ") for every r-critical k-grap
with 7(sf ) = 1. Considering (/¥ *{ ') shows that this is best possibic.

This result was re-proved and extended in several ways. We refer to the surve
of Fiiredi (1988) for a full account. Here we mention only two retated results.

Theorem 10.4 (Furedi 1984). Ler (A, .... A, be w colleciivii of wodis ¢

(B,....,B,) acollection of b-sets such that |A, OB, =<tforall i and 1A 1B,
for lsi<j=m. Then m=(" b,

Theorem 10.5 (Tuza 1985). Let {A,..... A, }and (B, ... B} be collectior,
of sets with A N B, =@ for all i und (A, B)U(A OB 78 Jor & o The
X ,\im:i <1 holds for all positive p and g with p +g = 1.

—ii=m P

Proof. Let [n] be the union of all the sets A, U B Consider ali subscts o
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a weight function w(E) =plElg" &l Define of, = {EC[n]: A,CE, B,NE=0}
and note that /.. ..., are pairwise disjoint. Also, note that

> w(E)y=ptilghtt,

Ak
=

i

Now we can deduce the result:

S optgt= 3 X wE)s 2 pflgt =1, 0

Laiisom lsism E€E,; EC[n}

For a more gencral result see Tuza (1988).

11. Matchings

Let s =2 be fixed. How large can a family & C 2% be if »(F) <s? For s =2, this
means that .F is intersecting and the answer 2"~ ' was given in Theorem 1.1.

Let v(n.s) denote max |%|, where & C2%, v(F)<s. Clearly, v(n +1,s5)=
2v(n, s) holds for all n. Considering % = {K C X: |K|>n/s} shows that

v(n.s) = M A:v

imnis !

Kleitman (1968a) showed that this is best possible for n = —1 (mods).

Theorem 11.1.

B " \\\\N
vibs —1.5) = WW fv ,
v(bs,s)=2v(bs —1,5).

For n # 0., —1 (mods), the value of v(n, s) is unknown, except for s =3, where
Quinn (1987) showed that for n =3b + 1 the best construction is

D=uu F e A,M_%vn 1e Pﬂ ={ocln):lol+1oN[1)|=b+1}.
Conjecture 11.2. For n=bs +r, 1 =r <s,
rin.s)=UKC[n]: K|+ |Kn[s—r—1]|=b+1}].
A problem with a similar flavor was solved by Kleitman (1968b) for s = 2 and,
using the same technique, by Frankl (1977) for all s.
Theorem 11.3. Lot n = bs +5 — 1 and suppose that # C 2V contains no s pairwise

disjoint seis along with their union. Then

L CR A T \.w\,_mw_\,\g:,
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Again, the maximum value is unknown for n# —1 (mods). Let v(n,s, k)
denote max|%|, where F C(¥) and »(F) <s. To avoid trivialities, suppose that

n=sk.
Example. &, =l 1), € =€, (n)={EC(W). EN[s—1]#0}.
Conjecture 11.4 (ErdSs 1965). v(n, s, k) = max{|%,], |¢,]}.

Erdds (1965) proved that for n > ny(s, k) the conjecture is true and &, is the
only extremal example. Bollobas et al. (1976) show that n,(s, k) < 2sk” holds.
The next proposition is essentially due to Kleitman (1968a).

Proposition 11.5. v(ks,s, k)= (') and, fors =3, the only optimal family is €.

Proof. Take & C (%)) with »(¥)=<s—1. Consider a random partition P =
(P,,...,P)of X. That is, P,U---UP, =X, |P|=k and all P have the same
chance of being chosen. Then the probability of the event P, € F is |F|/(%).
Thus the expected number of / with P,€F is s|#|/(%). On the other hand,
v(%)<<s implies that this number is always less than 5. Thus s|#|/(%)=<s— 1.
[One can come to the same conclusion by the double-counting argument of
Katona (1974).]

Rearranging gives |#| < (% '), with equality holding if and only if out of cach
partition P, exactly s — 1 sets are in &%. That is, (¥ )\F is an intersecting family of
size (%) — (&7 ')y=(%-}). Now the uniqueness of F for s =3 follows from the

k-1
—

uniqueness part of the Erd6s—Ko-Rado Theorem (see Theorem 5.3). O

Proposition 11.6. v(n,s, k)< (s — 1)(4 1) for all n=sk.

Proof. Use induction on n. The case n = sk is covered by Proposition 11.5. Let
F C({) be a family with |F| = v(u, s, k), v(F) <s. In view of Lemma 4.2 (iv) we
may assume that F is stable. Consider the two familics F(n), F(n).

Claim 11.7. [F(a)|<(s — D122, |Fm)| < (s — 1)1 3.
Since |F| =|F(#)| + |F(n)|, this implies the theorem

Proof of Claim 11.7. The first inequality is true by induction. To prove the second

we have to show »(#(n))<s. Suppose the contrary and let G,..... G, be
pairwise disjoint sets in F(n). Since |G|+ - +|G |=(k—1)s. we can find
distinct elements x,, ..., x, € [n]\(G, U - UG,). Since F is stable. G, U {x } is
in #. That is, v(¥) =s, which is a contradiction. |

—

Formulating Proposition 11.5 for the complements 4 =
s-wisc intersecting family 4 C (|, [*)) can have at most (,,* " ) members.
This was generalized by Frankl (1976).

. we obtain that an
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Theorem 11.8. If 4 C (1)) is s-wise intersecting, n =sl/(s — 1), then |9 =<(}71)
Moreover. unless s =2, n =21, equality is achieved only if 4={Ge() 1€ G}.

For a new proof see Frankl (1987b).

12. The number of vertices in 7- and p-critical k-graphs

Following Tuza (1985), let us call P = {(A,,B,): 1=i<m} an (a, b)-system if
|A,|=a. |B]=b for all i, and moreover, Theorem 10.1 (i) and (ii) hold.

Let n{a.b) be max|U7, (4, U B;)|, where the maximum is over all (a, b)-
systems. Let n,(a.b) be max|U"_, A,|, where the maximum is over all (a, b)-

systems.
As we saw in the proof of Corollary 10.3, to every r-critical k-graph ¢ with

7(&f ) = ¢ one can assoclate a (k,t — 1)-system. This implies:

disn(ke—1) if o isa r-critical k-graph with () =1.

Obviously n,(a. b) < n(a, b) =n(b,a). The following surprising symmetry rela-

tion holds.
Theorem 12.1 (Tuza 1985). ny(a,b—1)= n(b,a—1) forala, b= 1.

Proposition 12.2 (Tuza 1985).
o a +b' \
na +a b tby=a bt n(a" b").
Proof. l.ct 7 (respectively, 2) be an (4’ b')-system ((a", b")-system). For each
(A.B)E 2. let ), be a copy of 2, where @, 2,,....,2, are all vertex-disjoint.
The general clement of 2, is denoted by AQ:, D\SV. Define:

2= AU, BUDY): (A, B)ED, (€. D" eI}

Then /7 i an la’ + ', '+ b")-system, which proves the theorem. 3
Tura 1ol pivies the following surprisingly sharp bounds
Theorem 2.3,
; .;_Tr;\ b \A=+v+_, X b a1
S A nfa, by < b+l v fora=b,a=1;
. ‘ﬁmx‘\.‘*w/_\ b A\Q+®+H/v 1. h=0
(i) e f<n@b)<\ piq | fora=1,b=0.

Lot us miention that Tuza proves both the upper and lower bounds in a stronger
form. In particular. applying Proposition 12.2 with a’ = [abi(b + 1)]. b~ b, he

Extremal set systems 1

obtains

lab/(b+1)] +b

iaéw:\@ii b v+ labl(b + 1)} +b

m
and he suggests that equality holds here for a = b +2. He also conjectures
n,(a, b) = n(a, b) holds if and only if a=b.

1

Recall the definition of a v-critical family . A family # is said to have rar

if kK =max.cg |F| holds.
Improving earlier bounds of Lovisz (1975), Tuza (1985) shows:

Theorem 12.4. If & is a v-critical family of rank k, then it has fewer |
(VE) T EY vertices.

Proof. Set v = »(%) and let J# consist of those scts which arc the union
pairwise disjoint edges in F. Let ¥'={H,,....H,}CKbe minimal with res
to %' = UJ. Then for every H, € 9%’ there is a vertex x, € H, such that x;}
for i # j. By v-criticality there is some FeFwith FNH= {x,} and consequc
(F\{x,})) N H,# for all i #j. Now ((H,, F\{x;}): I=i<m]} is a system sat
ing Theorem 10.1 (i) and (ii), and also |H,| < vk. [F\Mx}| <k —1 Thus,

vk +k
_C%_N_Cmﬁ_m:_?».»u:* Mv

In the case » =1 we have the following sharper results.

Theorem 12.5 (Tuza 1985). Ler v(k) denote the maximuwm order of a v-cr
intersecting family F with rank k. Then

I

a2 = 0= ()00

Both bounds improve earlier results of Erd6s and Lovasz (1975).
conjectures that the lower pound — given by the following constructio
optimal for A =4.

Example. For cach partition [2k — 4} =+ U Foowith (Fr= 0 [ — A L. ahi
new vertices x, x’, v. v’ and form the k-clement sets £ U Ixovio oy
F U {x,y'} and F'U{x’, y}. These sets form a p-critical k-graph

For k fixed and v large we have the following.

h that

Conjecture 12.6 (Lovisz 1975). There exists a constant ¢ = o(k) su

p-critical family # of rank k& has at most cv(#) vertices, For & 20 the
possible bound 3p(F) was shown by Gallai (1963)
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13. Excluded configurations I

Let €= {4, ..., )} be a collection of k-graphs.

Set ex(n. €)= max|%|, where the maximum is taken over all #FC (%), ¥
containing no subfamily isomorphic to a family in €. If €= {4} then we also
write ex(n. 7 ) instead of ex(n, €). A classical result of Katona et al. (1964) is the

following.

Theorem 13.1. ex(n, €)/(}) is monotone decreasing, and therefore u(€)=
lim, . ex(n. €)/(}) exists.

Proof. Let 1=<h<n and consider a family % C () without any subfamily
isomorphic to some &/ € € and such that |#| =ex(n, €). Choose a subset
H e () at random, with uniform distribution. Then [(4) N Fl=ex(h, €) holds
for all 1. On the other hand, the expectation of |(¥)N &| is |#| times the
probability that a fixed F€(¥) is in ({), i.e., |Z1(2)/(}). Thus |F|(X)/(4)=
ex(n, €)(2)/ (1) = ex(h, €).

Dividing by (}) shows the desired result. d

It follows from a result of Erdés (1964) that w(€)=0 if € contains some
k-partite k-graph. Actually, Erdés obtains an upper bound of the form n*
where ¢(% ) is a positive constant. The determination of the best possible value of
e(€) seems to be very difficult even in very simple cases. In this section we
suppose that there are no k-partite k-graphs in €. Let us first state Turdn’s
well-known problem.

Example. Lct [#] =X, U X, UX, be a partition with |X,| = L(n+i)/3]. Define:

o n::m,__ﬁm@v” _ﬂak_ninc;,&

X
c?mf\f ITAX|=2.TNX,.,|=1forsomei=0.1,2.

4
where X, denotes N& .

:_,.4,~_:f._(,4,:_‘ca3,%:2\5Eﬁx:,&uwvum.ﬁﬁ,w:.Womamn:wxﬁcxwvrmw
given eapenentially many non-isomorphic 3-graphs with [7(4,3)| edges and
3. This suggests, that if Turdn’s conjecture is correct. then it could

d 1o prove. Kalai (1985) has proposed a more general algebraic

witl

be very

conjeciuic.

Example. 1ot la]= X, U X, U - UX,_, be a partiton with 1X,1 = ({0 1 i)n].

Extremal set systems

Define:

[n] X;
I, k-1 +1,k) = - U .
\ﬁ O=i<t \ﬂ
i
Clearly, J(n, t(k — 1) + 1, k) contains no (1*=" ). It is conjectured tha
n>ny(t, k) one has |T(n, ttk 1) + 1, k)| = t(n, tlk — 1) + 1, k), although Br
(1983) has produced other examples with the same cardinality.
The simplest non-3-partite 3-graph is &, = (‘{})\[2, 4]. Even for this 3-gr
ex(n, R,;) is unknown.

Proposition 13.2. 2 < (%) <4.

Here, the upper bound is due to de Caen (1982), the lower bound to Fr

and Fiiredi (1984b).
With every k-graph & let us associate a polynomial g(#) as follows.

Definition 13.3. Define g(%,x) = X s Llicp x.-

Then g(%) is a homogeneous polynomial of degree k which is linear in
variable.

Define the Lagrange function A(¥) = max q(#, x), where the maximum is
over all x=(x,,...,x,) with x;=0,x, +---+x, =1

Using the theory of Lagrange multipliers one obtains:

Lemma 13.4 (Frank! and Rédl 1984). There exists an x = (X,,. ... X,) with x
X, + -+ x, =1, such that (i)-(iii) (following) hold. Set Y = supp x = {i: x,
(i) MF)=q(F, x);
(ii) 9q(F, x)/ox; = kMF) for all i€ Y
(ili) every pair P €(Y) is contained in some edge F'€ Fwith FCY.

Note that A(%) = | |/n". One can use this to show the following simple r

w(€)=ktsup{A(F): F is a k-graph without a copy of any A€
(

4

Katona (1974) asked for the determination ot the maximun nu
symm(n, k) of k-subsets of an n-set such that nonc of them contain

symmetric difference of two others. This problem cuu be formulated in ter
ex(n, €), but for k large € will contain many A-graphs (all with three edg
Conjecture 13.5 (Bollobds 1974). svmm(n. k) = [T i -0y kl with eq
holding for the complete equipartite A-graph.

Bollobds (1974) solves the case & =3 (the case A 2 o vory casy ale
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solved by Mantel in 1906). De Caen (1986) gives a new proof for k=3 and
proposcs a different problem.

Problem. Determine ex(n, €,) = c(n, k), where €, = (sty, by, . .., o} with ;=
(1K L k=1U{k+ 1}, [k +i— 1]}.

Clearly. symm(n. k) < c(n, k) for all k and for k =2, 3, the two problems are

the same.
Sidorenko (1987) realized the relevance of Lemma 13.4 and proved the

following.
Theorem 13.6. ¢(n, k)= : s LnF iy/k) holds for k=2,3.4.

Proof. To avoid technical difficulties we shall only prove cln, k)= (n/k)* (which
is the same as the theorem if a2 is a multiple of k), i.e., MF)= 1/k* if F contains
no copy ol A, €€

In view of Lemma 13.4 in proving the above inequality we may supposc that
o, (7= (1) fe.. every air Pe (12 is contained in some Fe%. Now if F,
F'e 7 with [FNF'| =k —1, then |F AF'| =2 and therefore we find F" € # with
FAF CF i {F.F,F'} €%, which is a contradiction. Thus |[FOF'{<k—2
tor all /. F" & 4. (Note that this is not true in general for & containing no copy of
of - ¢, however, Lemma 13.4 ensures the existence of a subfamily with this

-

property and the sume value for the Lagrange function.) That is, (, 7 ,) N (") =
@ for distinct F. F’' € . In other words, dg(F, x)/dx; and ag(%, x)/dx; have no
common term for i #J. Let

[T x,

IEA

be the (k- 1)th clementary symmetric polynomial. Adding up Lemma 13.4 (ii)
for 1= [+ n.we obtain

ALY S5, (x) = A\a W HVAH_MV»L .

Roearranging gives

(n—1)---(n—k+2)
—— 3.
kin®™! . (137
Now for i k. the right-hand side of (13.7) is at most k%, both for k =2 and
k=3 uand also for k=4 unless n =5. However, the case n = 5 is impossible.
becatiae any two 4-subsets of [5] overlap in three elements. This concludes the
proof. O

Ao ) =

Usine tlic same approach, Frankl and Furedi (1989) determined p(6,) for

A =D and A =6

Extremal set systems

Let W,, (W,,) be the (unique) (11, 5, 4) ((12, 6, 5)) Steiner-system. Ti
W,, C (121) and for each A € (1)) there is a unique set Be W, with SCI
W =W, (12).

Examplef For X = X, U---UX,,. |X,| =n/12, define:

By Hﬁm S AU {i: BNX,#0} € &x_uw ;
%As is defined analogously.

Theorem 13.8. (i) ex(n. 6;) < 66(n/11)° with equality iff 11 |n. in which ¢
is the only optimal family.

(i) ex(n, 6,) = 132(n/12)" with equality iff 12|n, in which casc A, s th
optimal family.

14. Excluded configurations 1I: k-partite k-graphs

Many of the problems treated earlier can be formulated in the form: det
ex(n, €). For example, the determination of m(n, k. L) is such a problem.
start with three problems which come up in other contexts.

Call a family F C2% barely overlapping if FZ F'UF" holds for all dist
F', F"€%. Let h(n, k) denote the maximum size of a barcly overlapping
FC),

Theorem 14.1 (Erdds et al. 1982). (i) A(n. 21— Dy Y with e
holding iff there exists an S(n, 20— 1,1).

(i) A(n, 20 ("7 1)/I(¥; ") with equality achieved for some F if and
N F| =1 (say N F={1}) and F(1) is an S(n — 1. 2~ 1.1).
Proof. We only prove (1) and cven this only for n = AL Gl e W
a distinguished subset of F if GZ F' for all F=F & #. Let us define a
function w : F x (1)Y= R, by:

w(F, G)
1 if Ge A \v and G is an cigen-subset of T,

Fo
1 it GNF=He :\ Tq and H iy an cigen-subset of

0 otherwise .

Claim. Y, w(F,G)= 1. U, wF. G)=(").

Proof. The first part tollows by noting that if v i» an cipen-sabsei of I
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subset of GG can be an eigen-subset of some other F' € ¥ and w(F, G) =1/l can
hold for a fixed G at most ! times, once for each of its (I — 1)-subsets

To prove the second part, note that if F= AUB, |4| =1, |B|=[—1, then
either A or B (or both) are eigen-subsets of F because ¥ is barely overlapping. If
A is an eigen-subset, it contributes 1; if B is, then B contributes (n — (k — 1)/i>
1. Since there are (2'; ') such partitions of F, the inequality follows. O

Proof of Theorem 14.1 (continued). Using the claim, it is easy to show that

AN E S wre -3 wra=()),

FEF Geky

e, |F|=(1)/("", "), as desired. In case of n@:m_:vﬁ equality must hold in (i).
ﬁEv all G € (%) are eigen-subsets. That is, & is a partial /-design. Consequently,
|F|=(1)/(*;")if and only if & is an MAFNNIHVD. O

For further results and problems on barely overlapping and related families we
refer to Frankl (1988).

We call i C2% union-free if FUF' =G UG’ implies for F, F', G, G' € F that
{F,F’}={G.G"}. Let u(n, k) denote max |%|, where & C (¥) is union-free.

Theorem 14.2 (Frankl and Fiiredi 1986a). There are positive constants ¢, ¢, such
that

oA

A k)
con " <un, ky<cin

i

213 +e(k)
3

with e(k)=0. | or | according to whether k=0, 1 or 2 (mod 3).

3 3]

Let us mention that the proof of the lower bound is rather involved. The
amilyv 7 is defined via systems of nonlinear equations over finite fields.

acquircd

Again. for more information on this and related problems we refer to Frankl
(1988)

We cull .7 disjoint-union-free if it contains no four sets F, G, H, K with
FUG-H_~Aand FNG=HNK=8. Let uy(n, k) denote the maximum size of
F C (7. .+ disjoint-union-free.

Clearly. nokyE (o + 1 (take {Gel): 1€GyU{[2, k+1]}). Tt is
POsSILIv G Lor A 0 g (h), equality holds. However, it was unknowi for
many vears whether w,(n, k) =O(n* ') held. Firedi (1983) gave an ingenious

w the following.

argument o sh

Theorem 4.3, w0 (n. k)y<<i(, ") forall n>k=3.

Let us note
C-tree and o,
The

t in the case of graphs (k = 2), the condition is that the graph is

1.2) is of the order n''* (cf. chapter 23).
trankl and Firedi (1987) gives a rather general treatment (and
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often solutions) of a class of excluded-configuration-type problems for k-graph
We mention just a few of the results of that paper.

Let ¢(a, b) be the maximum size of an a- mawn: without sunflowers of size
Also, let ¢(n, k,1,5) be the maximum size of F C(¥), where ¥ contains r
sunflower of size s whose center has size /.

Theorem 14.4. ¢(n, k,[,s) = (p(/+1,5) +o(IN(G=iZ}) if k>20+ 1.

It is conjectured that the same holds for & =2/ + 1 as well; however, this h
only been proved (in Chung and Frankl 1987) for / = 1. For k < i + 1 it folloy
from Theorem 7.1 via ha:::m 4.15 that ¢(n, k, 1, s) has order n'; however, tl
correct coefficient of n' is unknown.

Conjecture 14.5.

o= () )

The construction is given by taking F = o, (), where ¥ C(,. Ny 1) 1S
(partial) [-design.

Let & be a k-graph. Set p =] .
degree 2 or more.

and let ¢ be the number of vertices of

Theorem 14.6. If 2p + ¢ + 1 <k, then ex(n, )= (y(/) = oI 4 7). wih
y(&f) is a positive integer depending only on .

In the case p =0, one can define y(s) by taking y(«/) + 1 to be the size of t
smallest set T satisfying |T N A| =1 for all A € 5. Note that such o 7 exists i
is k-partite, which—in turn ~ follows from ¢ <k. In general, y(#)=¢(p+
lsZ]).

Theorem 14.7. Set f = {{1,2,3,5,7}, {1,2,3.6,8}. {1.2,4,5.8}}. Then ex(n,
=o(n"). However, lim,_, ex(n, d)/n" == for all @ <4.

This result shows that ex(r, &) does not always have a proper cxponent. 1
proof extends that of Ruzsa and Szemerédi (1978). where a similar phenomer
15 described.

Another type of extremal problem. considered by Kdszonyt and Tuza (1980)
the following.

denote min |7

Definition 14.8. For a k-graph #/, let sat(n, .
and F contains no copy of &4, but adding any new A-subsct of [n] produces 1 o
of 4.

Conjecture 14.9 (Tuza). sat{n. 4 ) = O:n Yy for every A-graph .
A gl
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