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Lecture 1. Introduction

Computing, or at least estimating, the volume of a body is one of the oldest
questions in mathematics, studied already in Egypt and continued by Euclid and
Archimedes. Here we are mostly concerned with the computational complexity
of estimating volumes of convex bodies in R

n , with n large. The problems and
results to be discussed are all rather recent, most of them less than ten years
old, and although there was a breakthrough a few years ago and by now there
are several substantial and exciting results, there is much to be done.

In vague terms, we would like to find a fast algorithm that computes, for each
convex body K in Rn , positive numbers volK and volK such that

volK ≤ volK ≤ volK,

and volK/volK is as small as possible.
This formulation has several flaws. It is not clear what our algorithm is

allowed to do and how its speed is measured; we also have to decide how our
convex body is given and how small volK/volK we wish to make. Our first aim
is then to make this problem precise.

We write |x| for the standard Euclidean norm of a vector x ∈ Rn , and 〈x, y〉
for the standard inner product. Bn = Bn

2 denotes the Euclidean ball of radius 1
in Rn , and Bn(ε) the ball of radius ε. If there is no danger of confusion, we write
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volK for the volume of a body K, in whatever the appropriate dimension is; if
we want to draw attention to the dimension we write volk L for the k-dimensional
volume of a k-dimensional body L.

By a convex body in R
n we mean a compact convex subset of Rn , with

nonempty interior. Following [Grötschel, Lovász, and Schrijver 1988], we shall
assume that our convex body K ⊂ R

n is given by a certain oracle; this will en-
able us to obtain results that are valid for a large class of specific algorithms. An
oracle is a “black box” that answers various questions put to it. When we talk
about a convex body K given by an oracle, the questions tend to be simple, for
example: “What about the point x ∈ Rn?” A strong membership oracle answers
this question in one of two ways: “x ∈ K” or “x /∈ K.” A strong separation
oracle answers either “x ∈ K” or, in addition to replying that “x /∈ K,” it gives
a linear functional separating x from K. In other words, when the answer is
negative, the oracle justifies its assertion by displaying a vector c ∈ Rn such that
〈c, x〉 > 〈c, y〉 for every y ∈ K. We can assume that ‖c‖∞ = 1, where ‖ · ‖∞
denotes the sup norm.

In a weak membership oracle the question is slightly different: “What about
the point x ∈ Rn and the positive number ε?” Let

Kε = K + Bn(ε) = {y ∈ Rn : |y − z| ≤ ε for some z ∈ K}
and

K−ε = R
n \ (Rn \K)ε = {y ∈ Rn : |y − z| > ε for every z /∈ K} ;

the weak membership oracle answers either “x ∈ Kε” or “x /∈ K−ε”. (For
x ∈ Kε \K−ε it may return either answer.)

Similarly, a weak separation oracle replies to the same question in one of the
following two ways: either

“x ∈ Kε”

or “x /∈ K−ε and here is a functional c ∈ Rn , ‖c‖∞ = 1, proving it:

〈c, y〉 < 〈c, x〉+ ε for all y ∈ K−ε.”

An algorithm then is a sequence of questions to the oracle, each question
depending on the answers to the previous questions. The complexity or running
time of an algorithm is the number of questions asked before the bounds are
produced.

A moment’s thought tells us that with the oracles just described no algorithm
can produce bounds other than volK = 0 and volK = ∞, since we can do no
better than this if we imagine that K is “at infinity” in the direction of the
x1-axis, say; if to the question: “What about x = (xi)n

1 ?” the oracle replies that

K ⊂ {y = (yi)n
1 : y1 > x1 + 1},

then after some questions all we know is that min{y1 : (yi) ∈ K} is large, but
we know nothing about the volume of the body. Indeed, we cannot even find a
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single point of K in a finite time, even if K is known to have large volume. In
order to give the algorithm a chance, we need some guarantees about K, namely
that it is not “at infinity” and it is not too small. The standard way to do this
is to assume that

rBn ⊂ K ⊂ RBn (1.1)

for some positive numbers r and R. If (1.1) holds we say that the algorithm is
well guaranteed, with guarantees r and R.

We should also specify how the data are measured: the size of the input
(r, R, n) for a convex body K ⊂ R

n satisfying (1.1) is

〈K〉 = n + 〈r〉 + 〈R〉,

where 〈x〉 is the number of binary digits of a dyadic rational x.
In what follows, it will make very little difference which of the above oracles we

shall use: the difficulty is not in going from one oracle to another but in finding
suitable algorithms. For example, Grötschel, Lovász, and Schrijver [1988] showed
that a weak separation oracle can be obtained from a weak membership oracle
in polynomial time.

We are only interested in algorithms that are fairly fast, namely those whose
complexity is polynomial and of not too high a degree. In view of this, our
problem could be restated as follows. Given a polynomial f(x) = xa + b, find
a function g(x) such that, if the oracle describing our convex body K ⊂ R

n

has guarantees 2−l1 and 2l2 , we can compute, after no more than f(n + l1 + l2)
appeals to the oracle, numbers volK and volK such that

volK ≤ volK ≤ volK

and volK/volK ≤ g(n). Moreover, g(x) should grow as slowly as possible.
As we shall see in the next section, the solution to this problem is rather

disappointing: no matter what polynomial f we choose, the approximation g(n)
cannot be guaranteed to be better than polynomial. However, if we do not
insist that our approximations volK and volK be valid every time, we can do
much better. In 1989, Dyer, Frieze, and Kannan [1991] devised a randomized
algorithm that approximates with high probability the volume of a convex body
as closely as desired in polynomial time. After this breakthrough, faster and
faster algorithms have been devised, but it is unlikely that we are near to a best
possible algorithm. In Section 4 we describe one of the most elegant (although
not quite the fastest) algorithms found so far. This algorithm and every other
are based on rapidly mixing random walks: we shall present the relevant results
in Section 3.
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Lecture 2. Volumes of Convex Hulls
and Deterministic Bounds

Our aim in this section is to show that there is no fast deterministic algorithm
for approximating the volume of a convex body:

Theorem 2.1. For every polynomial-time algorithm for computing the volume
of a convex body in R

n given by a well-guaranteed separation oracle, there is a
constant c > 0 such that

volK
volK

≤
(

cn

log n

)n

cannot be guaranteed for n ≥ 2.

Nevertheless, we start with a positive result, claiming that in polynomial time
we can achieve some kind of approximation. To be precise, Lovász [1986] proved
that for every convex body K given by a well-guaranteed oracle there is an affine
transformation ϕ : x → Ax + b computable in polynomial time and such that

B ⊂ ϕ(K) ⊂ n
√

n + 1 B.

In particular, this algorithm produces estimates volK and volK with

volK/volK ≤ nn(n + 1)n/2.

Furthermore, Lovász showed that if K is centrally symmetric—say, if it is the
unit ball of a norm on Rn—there is a polynomial-time algorithm that produces
estimates volK and volK with volK/volK ≤ nn.

Elekes [1986] was the first to realize that this bound is not as outrageous
as it looks at first sight. Indeed, he showed that, for 0 < ε < 2, there is no
polynomial-time algorithm that returns volK and volK with

volK/volK ≤ (2− ε)n.

What Elekes noticed was that the convex hull of polynomially many points
in Bn is only a small fraction of Bn, and that this fact implies that every poly-
nomial algorithm is bound to give a poor result. The theorem of Elekes was soon
improved by Bárány and Füredi [1988] to an essentially best possible result: this
is the main result we shall present.

Let’s start with the problem of approximating the unit ball Bn ⊂ R
n by the

convex hull of m points of Bn. As we shall see later, a similar (and essentially
equivalent) problem is that of approximating Bn by the intersection of m slabs,
each containing Bn. A question of this type was considered in Section 2 of Keith
Ball’s lectures in this volume [Ball 1997], where the measure of approximation
was the Banach–Mazur distance. Here our aim is rather different: we wish to
approximate Bn by polytopes contained by Bn (or containing Bn) that have
relatively few vertices, and the measure of our approximation is the difference of
volumes.
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The following beautiful and simple result of Elekes [1986] shows that we cannot
hope for a good approximation unless we take exponentially many points. This
result is reminiscent of [Ball 1997, Theorem 2.1], but the proof is considerably
simpler.

Theorem 2.2. Let v1, . . . , vm ∈ R
n and K = conv{v1, . . . , vm}. Then K ⊂⋃m

i=1 Bi, where Bi = B(vi/2, |vi|/2) is the ball of centre vi/2 and radius |vi|/2.
In particular , if each vi is in the unit ball Bn of Rn then

voln K/voln Bn ≤ m/2n.

Proof. Suppose x /∈ Bi, so that 〈x − vi/2, x− vi/2〉 > ‖vi‖2/4. Then

|x|2 > 〈x, vi〉,

that is, vi is in the open half-space H(x) = {y ∈ R
n : 〈x, y〉 < ‖x‖2}. Hence if

x /∈ ⋃m
i=1 Bi then vi ∈ H(x) for every i, and so K = conv{v1, . . . , vm} ⊂ H(x).

But x /∈ H(x), so x /∈ K. Hence K ⊂ ⋃m
i=1 Bi, as claimed. The last statement

of the theorem follows immediately. �

To give a more geometric argument for why K ⊂ ⋃m
i=1 Bi, note that Bi is the

set of points x for which the angle vi x v0 is at least π/2, where v0 = 0 ∈ Rn . All
we have to notice is that if v = λvi + (1−λ)vj for some λ with 0 < λ < 1, then
x /∈ Bi ∪ Bj implies that the angle v x v0 is less than π/2, as the angles vi x v0

and vj x v0 are less than π/2. But then if x /∈ ⋃m
i=1 Bi and v ∈ K then the angle

v x v0 is less than π/2. Hence
⋃m

i=1 Bi contains the set

α(K) = {x ∈ Rn : angle v x v0 ≥ π/2 for some v ∈ K},

which certainly contains K.
If m is not too large the inequality of Theorem 2.2 is fairly good, but if m is

exponential, let alone at least 2n, it is very weak. Our next aim is to present a
result of Bárány and Füredi [1988] (Theorem 2.5) that gives an essentially best
possible bound.

Let’s write V (n, m) for the maximal volume of the convex hull of m points in
Bn:

V (n, m) = max {voln K : K = conv{v1, . . . , vm} ⊂ Bn} ,

and let

W (n, m) =
V (n, m)
voln Bn

be the proportion of the volume. In order to get our upper bound for V (n, m),
we need an extension of a result from [Fejes Tóth 1964] closely related to Fritz
John’s theorem [1948]. Theorem 3.1 in [Ball 1997] is a sharper version of Fritz
John’s theorem: here we shall need only the original result.



156 BÉLA BOLLOBÁS

Theorem 2.3. For every convex body K ⊂ R
n , there is a unique ellipsoid E of

maximal volume contained in K. If E has centre 0 then

E ⊂ K ⊂ nE. (2.1)

Proof. By a simple compactness argument, there is at least one ellipsoid of
maximal volume. To prove uniqueness, suppose that there are two ellipsoids
of maximal volume, say E and E′. Then the ellipsoid 1

2 (E + E′) is contained
in the convex hull of E ∪ E′. By the Brunn–Minkowski Theorem (or by the
AM/GM inequality), voln

(
1
2 (E + E′)

)
is greater than voln E = voln E′, unless

E′ is a translate of E. If E′ is a translate of E we can assume without loss of
generality that each is a unit ball, and then conv(E∪E′) is easily seen to contain
an ellipsoid E′′ with voln E′′ > voln E. Hence E is indeed unique.

To see that K ⊂ nE, all we have to check is that if Bn is the unit ball in Rn

and |v| > n then conv(Bn ∪ {v}) contains another ellipsoid of volume voln Bn.
This can be done by simple calculations. �

Let S0 be a regular simplex with inscribed ball B0 = Bn and so with circum-
scribed ball nB0. By the uniqueness of the ellipsoid of maximal volume in a
convex body, B0 is the ellipsoid of maximal volume in S0. Also, it is simple
to see that S0 is a simplex of maximal volume contained in nB0. Since the
volume ratio is affine invariant, it follows that if S is any simplex in R

n and
E1 ⊂ S ⊂ E2 for some ellipsoids E1 and E2, then volE1/volE2 ≤ n−n. In
particular, if E ⊂ S ⊂ λE for some ellipsoid E and positive real λ then λ ≥ n.
A fortiori, if K is a simplex, we cannot replace n in Theorem 2.3 by a smaller
constant.

Also, if a simplex S ⊂ R
n contains a ball of radius r1 and is contained in a

ball of radius r2, then r2 ≥ nr1. This last assertion is the result from [Fejes Tóth
1964] that we shall need and extend.

In order to state and prove this extension, we introduce some notation. First,
given a set S ⊂ R

n , let U = spanS = lin{x − y : x, y ∈ S} be the subspace of
R

n defined by S, and for ρ > 0 set

Sρ = S +
(
U⊥ ∩ ρBn

)
,

where U⊥ is the orthogonal complement of the subspace U . Thus Sρ is the set
of x ∈ R

n for which n(x, S) is attained at some y ∈ S with n(x, y) ≤ ρ and
(x − y) ⊥ U . If S is convex and dim U = k, then clearly

voln Sρ = (volk S)
(
voln−k Bn−k

)
ρn−k. (2.2)

Secondly, for 1 ≤ k ≤ n define

ρ(n, k) =




1 if k = 0,√
(n− k)/(nk) if 1 ≤ k ≤ n− 2,

1/n if k = n− 1.
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Lemma 2.4. Let x ∈ S = conv{v0, v1, . . . , vn} ⊂ Bn. Then, for every k such that
0 ≤ k ≤ n−1, the simplex S has a k-dimensional face Sk = conv{vi0 , vi1 , . . . , vik

}
and a point xk in the interior of the face Sk (in the sense that xk =

∑k
j=0 λjvij

with
∑k

j=0 λj = 1 and λj > 0 for every j), such that (x − xk) ⊥ spanSk and

‖x− xk‖ ≤ ρ(n, k). In particular , x ∈ S
ρ(n, k)
k .

Proof. We know the result for k = n − 1, and from it we shall deduce the
result for 1 ≤ k ≤ n − 2. Set xn = x, Sn = S, and let Sn−1 be a (n − 1)-
dimensional face of Sn containing a point xn−1 such that (xn−xn−1) ⊥ spanSn−1

and |xn − xn−1| ≤ 1/n. Next, let Sn−2 be a (n − 2)-dimensional face of Sn−1

containing a point xn−2 such that (xn−1−xn−2) ⊥ spanSn−2 and |xn−1−xn−2| ≤
1/(n − 1). Proceed in this way up to xk in Sk. Then the vectors xn − xn−1,
xn−1 − xn−2, . . . , xk+1 − xk are orthogonal, with |xl − xl−1| ≤ 1/l. Hence

x− xk = xn − xk = (xn − xn−1) + (xn−1 − xn−2) + · · ·+ (xk+1 − xk)

is orthogonal to spanSk and

|x− xk|2 ≤ 1
n2

+
1

(n− 1)2
+ · · ·+ 1

(k + 1)2

≤ 1
n(n− 1)

+
1

(n− 1)(n− 2)
+ · · ·+ 1

k(k + 1)

=
1
k
− 1

k + 1
+

1
k + 1

− 1
k + 2

+ · · ·+ 1
n− 1

− 1
n

=
1
k
− 1

n
=

n− k

nk
,

as required.
Finally, let’s consider the case k = 0. Suppose that ‖x − vi‖ > 1 for every i,

and so
{v0, v1, . . . , vn} ⊂ Bn \B(x, 1).

But then every point of S = conv{v0, v1, . . . , vn} is closer to 0 than to x and so
x /∈ S. Hence S ⊂ ⋃n

i=0 B(vi, 1), as claimed. �

The alert reader must have noticed that this simple proof does not give a
tight bound except in the cases k = n and k = 1. This is because the later
simplices Sn−1, Sn−2, . . . , Sk+1 are likely to be contained in balls of radii less
than 1. However, the loss is surprisingly little. Trivially, we cannot do bet-
ter than in the case of a regular simplex inscribed in Bn: to cover the origin
by neighbourhoods of the k-dimensional faces we must have ρ(n, k) at least√

(n− k)/(n(k + 1)) rather than
√

(n− k)/(nk). It is very likely that, in fact,
ρ(n, k) =

√
(n− k)/(n(k + 1)).

The Bárány–Füredi upper bound for V (n, m) follows easily from Lemma 2.4:

Theorem 2.5. There is a constant c > 0 such that for m = m(n) ≥ 1 we have

W (n, m) ≤
(

c(log(m/n) + 1)
n

)n/2
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and so

V (n, m) ≤
(

γ(log(m/n) + 1)1/2

n

)n

,

where γ = (2πec)1/2. Furthermore, if ε > 0 is fixed and we take m/n →∞ and
n/log(m/n) →∞, then

V (n, m) ≤
(

(2e + ε) log(m/n)
n2

)n/2

.

Proof. Let K = conv{v1, v2, . . . , vm} ⊂ Bn. By Carathéodory’s theorem
([Carathéodory 1907]; see also [Eckhoff 1993]) K is the union of its n-dimensional
simplices:

K =
⋃

i0<···<in

conv{vi0 , vi1 , . . . , vin}.

Hence, by Lemma 2.4, for all k such that 1 ≤ k ≤ n− 1 we have

K ⊂
⋃

i0<···<ik

{
Sρ(n,k) : S = conv{vi0 , . . . , vik

}},

and so

voln K ≤
(

m

k + 1

)
max

{
voln Sρ(n,k) : S = conv{x0, x1, . . . , xk} ⊂ Bn

}
.

By identity (2.2), for a simplex S as above,

voln Sρ(n,k) = (volk S)
(
voln−k Bn−k

)
ρ(n, k)n−k.

Furthermore, easy computations show that the maximal volume of an n-simplex
in Bn is (n + 1)(n+1)/2/nn/2n! and

voln Bn =
πn/2

Γ(n/2 + 1)
≤ (2πe/n)n.

Putting together the last four relations and the definition of ρ(n, k) we get

voln K ≤
(

m

k + 1

) (k + 1)(k+1)/2

kk/2k!
π(n−k)/2

Γ((n− k + 2)/2)

(
n− k

nk

)(n−k)/2

.

Therefore

voln K ≤
(

em

k + 1

)k+1( e

k

)k(2eπ

nk

)(n−k)/2

and so
voln K

voln Bn
≤

(
em

k + 1

)k+1

nk/2k−(n+k)/2. (2.3)

All that remains is to find a value of k for which the right-hand side is small.
Let’s do this under the assumptions m/n → ∞ and n/log(m/n) → ∞; the

existence of c can be shown similarly. We claim that k = dn/2 log(m/n)e is a
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suitable choice. To avoid too much clutter, we shall just take k = n/2 log(m/n).
Note that k →∞, k = o(n) and(

m

k + 1

)k

≤ exp(k log(m/k)) = exp (k(log(m/n) + log(n/k)))

= exp
(

n

2
+ n

log(2 log(m/n))
2 log(m/n)

)
= e(1+o(1))n/2. (2.4)

Also,

(n/k)k = (2 log(m/n))k = exp
(

n

2 log(m/n)
log(2 log(m/n))

)
= eo(n),

since m/n →∞. Hence

nk/2k−(n+k)/2 = (n/k)(n+k)/2n−n/2 = eo(n)(2 log(m/n))n/2n−n/2.

Together with (2.3) and (2.4), this implies that

voln K

voln Bn
≤ eo(n) (2e log(m/n)/n)n/2

,

completing the proof. �

Theorem 2.5 is essentially best possible in a large range of m, except for the
constant 2e. In fact, the theorem can be read out of some earlier results of
Carl [1985], and over the years it has been discovered many times, having been
published in [Bárány and Füredi 1988; Carl and Pajor 1988; Gluskin 1988; Bour-
gain, Lindenstrauss, and Milman 1989]. Numerous related results can be found
in [Vaaler 1979; Figiel and Johnson 1980; Bárány and Füredi 1986; 1987; Ball
and Pajor 1990; Gordon, Reisner, and Schütt ≥ 1997], and elsewhere.

We see from Theorem 2.5 that a polytope K contained in Bn with voln K ≥
1
2 voln Bn, say, has exponentially many vertices. In fact, if voln K can be close
to voln Bn then 1− voln K/voln Bn is a more significant measure of the volume
approximation. Gordon, Reisner and Schütt [≥ 1997] proved that in order to get
1 − ε proportion of the volume, we need about nn/2 points: there are positive
constants ε0 and ε1 such that 1−voln K/voln Bn ≥ ε0 whenever K is a polytope
in Bn with m ≤ (ε1n)n/2 vertices—in other words,

W (n, m) ≤ 1− ε0

if m ≤ (ε1n)n/2. Even more, there are positive constants δ0 and δ1 such that

1−W (n, m) ≥ δ0nm−2/(n−1)

whenever n ≥ 2 and m ≥ (δ1n)n/2.
Many of the papers fleetingly mentioned above concern the volume of the

intersection of slabs, rather than the volume of the convex hull of points. In
order to prove the main result of this section, namely that computing the volume
is difficult, we need one of these results as well. Given natural numbers n and
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m, let S(n, m) be the infimum of the volumes of intersections of m slabs in Rn ,
each of the form

{x : |〈x, v〉| ≤ 1},
where v ∈ R

n is a vector of length at most 1. The intersection of m such slabs
is precisely a centrally symmetric polytope K containing Bn, with at most 2m

facets [Ball 1997, Theorem 2.1]. The following lower bound for S(n, m) is given
in [Carl and Pajor 1988; Gluskin 1988].

Theorem 2.6. There is a constant δ > 0 such that if 1 ≤ n ≤ m then

S(n, m) ≥
(

δ

(log(m/n) + 1)1/2

)n

.

Rather than proving this directly (which would not be difficult), we shall deduce
it from Theorem 2.5 and a beautiful and important result, the reverse Santaló
inequality of Bourgain and Milman. For a convex body K in R

n , the polar
of K is

K◦ = {x ∈ Rn : 〈x, y〉 ≤ 1 for all y ∈ K} .

If K is a ball, that is the unit ball B(X) of a normed space X = (Rn , ‖ · ‖), then
K◦ is precisely the unit ball of the dual: K◦ = B(X∗). For us this is precisely
the most important case.

What can one say about the product volK volK◦ for a ball K ⊂ R
n? San-

taló [1949] proved that it is at most (volBn)2, so that the maximum is attained
for K = Bn. Thus

volK volK◦ ≤ πn/Γ(n/2 + 1)2 ∼
(2πe

n

)n/
πn = (2e)nπn−1/nn+1.

Taking X = ln1 , so that X∗ = ln∞, we see that volK volK◦ can be as small
as volB(ln1 ) volB(ln∞) = 4n/n! ∼ (4e/n)n/

√
2πn. Mahler conjectured that this

value is, in fact, the minimum of the product. Although this long-standing
conjecture is still open, Bourgain and Milman [1985] proved the following reverse
Santaló inequality, which is only a little weaker than Mahler’s conjecture.

Theorem 2.7. There is a constant c0 > 0 such that if K is any ball in Rn then

volK volK◦ ≥ (c0/n)n. �

It is frequently convenient to state both inequalities together as follows: if K is
a ball in Rn then

c0 ≤
(

(vol K)(volK◦)
(vol Bn)2

)1/n

≤ 1

for some constant c0 > 0.
Theorem 2.6 is an easy consequence of Theorems 2.5 and 2.7. Indeed, let

L = {x ∈ Rn : |〈x, ui〉| ≤ 1, i = 1, . . . , m} ,
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where u1, . . . , um ∈ Bn, be the intersection of m slabs containing Bn. Then
L = K◦, where K = conv{u1, . . . , um}. Hence, by Theorems 4 and 5,

volL ≥ (c0/n)n/volK ≥ (c0/n)n(n/(γ log(m/n) + 1)1/2)n

=
(
c2
0γ(log(m/n) + 1)

)n/2
.

Proof of Theorem 2.1. It suffices to prove the theorem for large n. Playing
the role of the oracle, we shall give away much more than we have to. First of
all, we specify that

B (ln1 ) ⊂ K ⊂ B (ln∞) .

Thus r ≤ 1/
√

n and R ≥ √
n will do, so we can have input size at most 2n.

For x ∈ R
n , x 6= 0, define x◦ = x/‖x‖, H+(x◦) = {z ∈ Rn : 〈z, x◦〉 ≤ 1}, and

H−(x◦) = {z ∈ Rn : 〈z,−x◦〉 ≤ 1}. Here H+(x◦) and H−(x◦) are half-spaces
containing Bn, and their intersection is a slab.

To the question posed by the algorithm “And what about x?”, the oracle
replies very generously that x◦ ∈ K, −x◦ ∈ K, and K is contained in the slab
H+(x◦) ∩H−(x◦). This is, of course, consistent with K = Bn.

Now let’s run the algorithm until m ≤ da/2 − n questions have been asked
for some a ≥ 2, say x1, x2, . . . , xm. Setting C = conv{±e1,±e2, . . . ,±en,±x◦1,
±x◦2, . . . ,±x◦m}, we see that the answers are consistent with K = C and K = C◦

as well. Consequently,
volC = volC◦ ≥ volC◦

and
volC ≤ volC.

Therefore
volC
volC

≥ volC◦

volC
≥ S(n, na)

V (n, na)
.

By Theorems 2.5 and 2.6,

volC
volC

≥
(
δ/(a logn)1/2

)n(
γ(a log n)1/2/n

)n =
(

n

γδa log n

)n

,

proving the assertion. �

Numerous related results concerning the hardness of approximations can be
found in [Khachiyan 1988; 1989; 1993; Lawrence 1991; Lovász and Simonovits
1992].

To conclude this section, let’s say a few words about the volumes of intersec-
tions of slabs. For u1, . . . , um ∈ Rn , set

S(u1, . . . , um) = {x ∈ Rn : |〈x, ui〉| ≤ 1, i = 1, . . . , m} .

Then Theorem 2.6 claims that if max |ui| ≤ 1 then

volS(u1, . . . , um) ≥ {δ/(log(m/n) + 1)}n
.
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The earliest significant slab-intersection theorem is in [Vaaler 1979], and says
that if

∑m
i=1 |ui|2 ≤ n then

volS(u1, . . . , um) ≥ 2n. (2.5)

An attractive reformulation of this result is the following: for 1 ≤ k ≤ n, any
central section of the unit cube [−1/2,−1/2]n by a k-dimensional subspace has
volume at least 1. For k = n − 1 this was first proved by Hensley [1979], who
also showed that such an (n− 1)-dimensional intersection has volume at most 5.
Subsequently, Ball [1986] improved the upper bound to the following surprising
and beautiful best possible result: any section of the unit cube [−1/2, 1/2]n by
an (n− 1)-dimensional affine subspace has volume at most

√
2.

Clearly, Theorem 2.6 and Vaaler’s inequality (2.5) are the p = ∞ and p = 2
members of a family of inequalities parameterized by p. The general case was
proved in [Ball and Pajor 1990]: if 1 ≤ p < ∞, m ≥ n, and u1, . . . , um ∈ Rn are
such that

∑m
i=1 |ui|p ≤ rpn, then

volS(u1, . . . , um) ≥
{

(2
√

2/
√

p r)n if p ≥ 2,
r−n if 1 ≤ p ≤ 2.

Vaaler’s theorem is the case p = 2 of this result. It is interesting to note that
Vaaler’s theorem was used by Bombieri and Vaaler [Bombieri and Vaaler 1983]
to sharpen an important result in the geometry of numbers, namely Siegel’s
lemma. In turn, Ball and Pajor made use of their extension above to prove a
generalization of Siegel’s lemma.

Lecture 3. Rapidly Mixing Random Walks

We saw in the preceding lecture that there is a polynomial-time algorithm
that, for every convex body k ⊂ R

n , produces volume estimates volK and
volK satisfying volK/volK ≤ nn, and this is the best one can do, except for
a factor (c log n)−n. The exciting part of the story is that if we are willing
to replace certainty by high probability—that is, if we are willing to consider
randomized algorithms that fail with a small probability—then we can do much
better. Estimating the volume of a convex body K is akin to sampling at random
from the uniform distribution on K. In order to find a random point of K,
one runs a random walk on K (to be precise, a discrete version of K) till the
distribution of the last point is close to the stationary distribution, which is the
uniform distribution. The problem is then to decide when we can stop so that we
are likely to be close to the stationary distribution. This leads us to the question
of mixing time, the time it takes to get close to the stationary distribution, and
to criteria for rapid mixing, that is getting close to the stationary distribution in
unexpectedly few steps. The aim of this section is to give a beautiful and simple
condition for rapid mixing in terms of the conductance of the random walk.
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Alon and Milman [Alon and Milman 1985; Alon 1986] were the first to connect
combinatorial properties—especially expansion properties—of a graph with the
second eigenvalue of its Laplace operator. Loosely speaking, a graph G with
n vertices expands well if, for every set U of at most n/2 vertices, there are
relatively many edges with precisely one endvertex in U . The Laplacian of a
simple graph G = (V, E) (where V is the set of vertices, E is the set of edges,
and simple means there is at most one edge joining two vertices and no loops
from a vertex to itself) is the linear operator map Q : L2(V ) → L2(V ) given by
the matrix

diag(d(v))v∈V −A,

where d(v) is the degree of the vertex v ∈ V (the number of edges incident on
v) and A is the adjacency matrix of G (the matrix whose rows and columns are
indexed by V and where each entry is 1 or 0, depending on whether or not there
is an edge in E connecting the two vertices in question). (See [Bollobás 1979]
for details and other standard terminology.)

Alon and Milman also proved a discrete version of Cheeger’s inequality [1970]
related to isoperimetric inequalities on manifolds. Connecting expansion with
mixing time, Aldous [1987] showed that random walks on graphs with good
expansion properties of low degree mix rapidly. Building on these ideas, Jer-
rum and Sinclair [1989; Sinclair and Jerrum 1989] defined the conductance of a
random walk, and showed that large conductance implies fast mixing rate.

Our aim here is to present the connection between conductance and mixing
rate. Rather than consider general Markov chains, we shall take essentially the
simplest case, that of simple random walks on regular graphs. As so often, it
takes no effort to step up from here to a more general setting. We shall follow the
simple and elegant approach of [Mihail 1989]; for a more substantial review of
random walks, conductances and eigenvalues, see [Vazirani 1991]; for the related
spectral properties of graphs, see [Chung 1996].

Let G = (V, E) be a connected d-regular simple graph (d-regular means that
every vertex has degree d). We write V = {1, . . . , n} for notational simplicity.
For the purposes of these lectures, a simple random walk on G with initial state
X0 is a sequence of random variables

X̃ = (X0, X1, . . .),

taking values in V , such that for i, j ∈ V and t ≥ 0 we have

P(Xt+1 = j | Xt = i) =




1
2 if i = j,
1/2d if ij ∈ E,
0 otherwise.

Intuitively, if Xt represents the probability distribution of the random walker’s
position at time t; that is, P(Xt = i) is the probability that she will be at vertex
i at time t. The display above says that from time t to time t + 1 the random
walker has a 50% chance of staying put, and equal chances of moving away from
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the current vertex along any of the edges incident on it. Since the transition
probabilities are independent of t, the sequence (X0, X1, . . .) is a Markov chain.

The elementary theory of Markov processes guarantees that, with these prob-
abilities, P(Xt = i) → 1/n for all i as t → ∞, no matter what the initial state
is (see [Kemeny and Snell 1976], for example). The question is, how fast? Set
p
(t)
i = P(Xt = i) and let ei,t = p

(t)
i − 1/n be the excess probability at i. The

excess probabilities satisfy

ei, t+1 = p
(t+1)
i − 1

n
=

(
1
2p

(t)
i +

1
2d

∑
j∈Γ(i)

p
(t)
j

)
− 1

n

= 1
2

(
p
(t)
i − 1/n

)
+

1
2d

∑
j∈Γ(i)

(
p
(t)
j − 1/n

)

= 1
2ei,t +

1
2d

∑
j∈Γ(i)

ej,t =
1
2d

∑
j∈Γ(i)

(ei,t + ej,t) . (3.1)

Define
d1(t) = d1(X̃, t) =

∑
i

|ei,t|

and
d2(t) = d2(X̃, t) =

∑
i

e2
i,t.

A simple random walk X̃ on G is rapidly mixing if there is a polynomial f such
that if 0 < ε < 1

3 and t ≥ f(log n) log(1/ε) then d1(t) ≤ ε.
Strictly speaking, this definition does not make much sense since if we have

only one graph n itself is really a constant. For a proper definition, we need a
sequence (Gi)∞i=1 of regular graphs, where each Gi has ni vertices and ni →∞.
We say that the simple random walks on G1, G2, . . . are rapidly mixing if there
is a polynomial f , depending only on the sequence (Gi), such that if 0 < ε < 1

3

and t ≥ f(log ni) log(1/ε) then d1(X̃i, t) ≤ ε whenever X̃i is a simple random
walk on Gi.

Let’s define the conductance of G or the conductance of a simple random walk
on G as follows. For U ⊂ V set Ū = V − U and

ΦG(U) =
e(U, Ū)
d |U | .

Note that 0 ≤ ΦG(U) ≤ 1. Also, for 1 ≤ |U | ≤ n/2, ΦG(U) is small if there are
relatively few U − Ū edges, that is, if there is a “bottleneck” when we try to go
from U to Ū . The conductance of G is then

ΦG = min
|U|≤n/2

ΦG(U).

The conductance is also called the isoperimetric number of the graph or its
Cheeger constant. The quantity d |U | is the “volume” of U , the sum of the
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degrees of its vertices. If G = (V, E) is not necessarily regular then for U ⊂ V

the volume of U is volU =
∑

u∈U d(u), and the conductance of G is

min
U⊂V

e(U, Ū)
min{volU, vol Ū} .

With this definition, the results below are easily extended to general graphs and
beyond; we shall state one of these results at the end of the lecture.

Clearly, we have 0 ≤ ΦG ≤ 1, although the upper bound is somewhat unreal-
istic: if ΦG = 1 then G is either the trivial graph consisting of one vertex, or a
single edge, or a triangle. If G has many vertices, the best we can hope is that
ΦG is not far from 1

2 . Concerning the lower bound, note that ΦG = 0 if and only
if G is disconnected.

Our main aim is to prove the following fundamental result, which clearly
shows the importance of the conductance.

Theorem 3.1. Every simple random walk on G satisfies

d2(t + 1) ≤ (
1− 1

4Φ2
G

)
d2(t).

In particular , as d2(0) ≤ 2,

d2(t) ≤
(
1− 1

4Φ2
G

)t
d2(0) ≤ 2

(
1− 1

4Φ2
G

)t
.

We shall deduce this result from two lemmas that are of interest in their own
right.

Lemma 3.2. d2(t + 1) ≤ d2(t)− 1
2d

∑
ij∈E

(ei,t − ej,t)2.

Proof. By (3.1),

d2(t + 1) =
1

4d2

n∑
i=1

( ∑
j∈Γ(i)

(ei,t + ej,t)

)2

.

Applying the Cauchy–Schwarz inequality to the inner sum, we find that, as
|Γ(i)| = d,

d2(t + 1) ≤ 1
4d2

n∑
i=1

( ∑
j∈Γ(i)

(ei,t + ej,t)2
)

d

=
1
2d

∑
ij∈E

(ei,t + ej,t)2 =
1
2d

∑
ij∈E

{
2

(
e2

i,t + e2
j,t

)− (ei,t − ej,t)2
}

= d2(t)− 1
2d

∑
ij∈E

(ei,t − ej,t)2. �

The second lemma needs a little more work.
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Lemma 3.3. Suppose weights xi are assigned to the elements of the vertex set
V = {1, . . . , n}, satisfying

∑n
i=1 xi = 0. Then

∑
ij∈E

(xi − xj)2 ≥ d

2
Φ2

G

n∑
i=1

x2
i .

Proof. Set m = dn/2e. We shall prove that if y1 ≥ y2 ≥ . . . ≥ yn, with ym = 0,
then ∑

ij∈E

(yi − yj)2 ≥ d

2
Φ2

G

n∑
i=1

y2
i . (3.2)

This is stronger than the desired inequality. Indeed, in the statement of the
lemma we may assume that x1 ≥ x2 ≥ . . . ≥ xn. Setting yi = xi−xm, inequality
(3.2) gives

∑
ij∈E

(xi − xj)2 =
∑
ij∈E

(yi − yj)2 ≥ d

2
Φ2

G

n∑
i=1

(xi − xm)2 =
d

2
Φ2

G

n∑
i=1

x2
i +

nd

2
Φ2

Gx2
m,

since
∑n

i=1 xi = 0.
In order to prove (3.2), set

ui =
{

yi if i ≤ m,
0 if i > m,

vi =
{

0 if i ≤ m,
yi if i > m.

Thus yi = ui +vi for every i. Also, if ui 6= 0 then ui > 0 and i < m, and if vi 6= 0
then vi < 0 and i > m. Since (yi−yj)2 = (ui−uj+vi−vj)2 ≥ (ui−uj)2+(vi−vj)2

for every edge ij, it suffices to prove that

∑
ij∈E

(ui − uj)2 ≥ d

2
Φ2

G

m∑
i=1

u2
i (3.3)

and ∑
ij∈E

(vi − vj)2 ≥ d

2
Φ2

G

n∑
i=m

v2
i .

Furthermore, as m ≥ n − m, it suffices to prove (3.3). We may assume that
u1 > 0. By the Cauchy–Schwarz inequality,( ∑

ij∈E

(
u2

i − u2
j

))2

=

( ∑
ij∈E

(ui − uj)(ui + uj)

)2

≤
∑
ij∈E

(ui − uj)2
∑
ij∈E

(ui + uj)2

≤
∑
ij∈E

(ui − uj)2
∑
ij∈E

2
(
u2

i + u2
j

)

= 2d

n∑
i=1

u2
i

∑
ij∈E

(ui − uj)2. (3.4)
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We may assume that, in all the sums
∑

ij∈E over the edges ij, we have i < j.
Note that

∑
ij∈E

(
u2

i − u2
j

)
=

∑
ij∈E

j−1∑
l=i

(
u2

l − u2
l+1

)
=

n−1∑
l=1

(
u2

l − u2
l+1

)
e(Ul, Ūl),

where Ul = {1, . . . , l} and Ūl = {l+1, . . . , n}. Since um = um+1 = . . . = un = 0,
this gives

∑
ij∈E

(
u2

i − u2
j

)
=

m−1∑
l=1

(
u2

l − u2
l+1

)
e(Ul, Ūl) ≥

m−1∑
l=1

(
u2

l − u2
l+1

)
dΦGl

= dΦG

m−1∑
l=1

u2
l = dΦG

n∑
l=1

u2
l . (3.5)

Inequalities (3.4) and (3.5) give

∑
ij∈E

(ui − uj)2 ≥
(

dΦG

n∑
i=1

u2
i

)2/(
2d

n∑
i=1

u2
i

)
=

d

2
Φ2

G

n∑
i=1

u2
i ,

as desired. �

Proof of Theorem 3.1. By Lemma 3.2,

d2(t)− d2(t + 1) ≥ 1
2d

∑
ij∈E

(ei,t − ej,t)2.

Applying Lemma 3.3 with xi = ei,t, we find that

d2(t)− d2(t + 1) ≥ 1
4Φ2

G

n∑
i=1

e2
i,t = 1

4Φ2
Gd2(t),

completing the proof. �

By the Cauchy–Schwarz inequality, d1(t) ≤ (n d2(t))1/2, so Theorem 3.1 has the
following immediate consequence.

Corollary 3.4. Every simple random walk on a graph G of order n with
conductance ΦG satisfies

d1(t) ≤ (2n)1/2
(
1− 1

4Φ2
G

)t/2
. �

Corollary 3.4 implies that if we assume that G connected (so that ΦG > 0), that
0 < ε < 1/3, and that

t > 8Φ−2
G

(
log(1/ε) + 1

2 log(2n)
)

then
d1(t) ≤ (2n)1/2

(
1− 1

4Φ2
G

)t/2
< exp

(
1
2 log(2n)− 1

8Φ2
Gt

)
< ε.

In particular, if n ≥ 3 and t ≥ 8Φ−2
G log n log(1/ε) then d1(t) < ε. This gives us

the following sufficient condition for rapid mixing.
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Theorem 3.5. Let (Gi)∞1 be a sequence of regular graphs with |Gi| = ni →∞.
If there is a k ∈ N such that

ΦGi ≥ (log ni)−k

for sufficiently large i, the simple random walks on (Gi)∞1 are rapidly mixing.

Proof. We have just seen that f(x) = 8x2k+1 will do if ni ≥ 3. �

Let’s see some families of regular graphs for which we can give a good lower
bound for the conductance. As a trivial example, take the complete graph Kn.
It is immediate that ΦKn > 1

2 for n ≥ 2, so the simple random walks on (Kn) are
rapidly mixing. Of course, this can be derived very simply from first principles
as well.

As a less trivial example, we take the cubes Q1, Q2, . . ., defined as follows:
the vertex set of Qd is {0, 1}d, the set of sequences x = (xi)n

1 , xi = 0 or 1, and
two sequences joined by an edge if they differ in only one term. Qd is obviously
d-regular, and it is easy to prove that ΦQd

= 1/d. The worst bottlenecks arise
between the “top” and “bottom” of Qn: for U = {(xi) ∈ Qd : x1 = 1} and Ū =
{(xi) ∈ Qd : x1 = 0}, say. Clearly, e(U, Ū) = |U | = 2d−1 so that ΦQn(U) = 1/d.

Since ΦQd
= 1/d = 1/logn, where n = 2d = |Qd|, simple random walks on

(Qd)∞1 are rapidly mixing.
The cube Qd is just Kd

2 = K2 × . . . × K2, that is, the product of d paths of
lengths 1. Taking the product of d cycles, each of length l, we get the torus T d

l .
This graph has ld vertices and it is 2d-regular. One can show that for G = T d

2l

we have ΦG = 2/(ld). (Note that T d
4 is just the cube Q2d.) Hence, for a fixed

value of l, simple random walks on (T d
2l)

∞
d=1 are rapidly mixing.

It is straightforward to extend Theorem 3.1 to aperiodic random walks. To
be precise, let V be a finite set and let X be a random walk on V with transition
probabilities p(u, v) such that p(u, u) ≥ 1

2 . Suppose that X is reversible, that
is, there is a (stationary) probability distribution λ on V with λ(u)p(u, v) =
λ(v)p(v, u). Here it is natural to view λ(u)p(u, v) as the flow from u to v: it
is the same as the flow from v to u. Such a random walk is a straightforward
generalization of a simple random walk on a regular graph discussed above; in
fact, it is hardly more than that. Denoting by λ(U) =

∑
u∈U λ(u) the “volume”

of a U ⊂ V , the conductance of X is

Φ̃X = min
λ(U)≤1/2

∑
u∈U

∑
v∈V \U λ(u)p(u, v)

λ(U)
.

Note that this definition makes the conductance half as large as before since
if X is the simple random walk on a d-regular graph then p(u, v) = 1/(2d), so
Φ̃X = 1

2ΦG. The fact is that for random walks this is the natural definition,
while for graphs ΦG is natural.
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Needless to say, we are interested in convergence to the stationary distribu-
tion λ. To measure the distance from λ, as before, we put

d2(t) =
∑
v∈V

(
p(t)

v − λ(v)
)2

.

Let’s state then the analogue of Theorem 3.1: the proof is unchanged.

Theorem 3.6. With the notation above,

d2(t + 1) ≤ (
1− Φ̃2

X

)
d2(t)

and so

d2(t) ≤ 2
(
1− Φ̃2

X

)t
. �

This is the theorem we shall need in the next section.

Lecture 4. Randomized Volume Algorithms

We have seen that no polynomial-time algorithm can estimate the volume of
a convex body substantially better than within a factor of nn. Thus, if we want
our algorithm to produce a lower bound and an upper bound that are guaranteed
to be valid in every instance and be reasonably fast, we cannot demand that the
ratio of the two bounds be substantially less than nn. The situation is entirely
different if we allow randomization and do not insist that the bounds of the
algorithm be valid every time, only that they be valid with high probability.

Estimating the volume can be viewed as a game between Hider, trying to
“hide” the volume of a convex body, and Seeker, the algorithm trying to pin
down the volume. In the case of a deterministic algorithm, Hider is allowed
to change his mind as the game progresses: to be precise, there is no way of
telling whether he changes his mind or not, as all he has to make sure is that the
answers he gives remain consistent with some convex body. On the other hand,
a randomized algorithm is applicable only if Hider is required to play an honest
game, that is if he has to fix a convex body once and for all at the beginning of
the game. Then Seeker may keep tossing coins in order to decide his next appeal
to the oracle, and so he may come up with a randomized algorithm that gets
good results fast, with probability close to 1. Seeker trades certainty for speed
and efficiency, with large probability. The probability of failure should be small
and independent of the body Hider chooses.

Let’s assume that our body K ⊂ R
n , where n ≥ 2, is given by a well-

guaranteed strong membership oracle (although, as we mentioned earlier, it is
unimportant which membership oracle we take). Let ε and η be small positive
numbers, say less than 1

3 . An ε-approximation to volK is a number ṽolK such
that

(1− ε)ṽolK < volK < (1 + ε) volK.
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If all goes well, we may hope to find a fully polynomial approximation scheme
(FPRAS) for approximating the volume of a convex body: a randomized algo-
rithm that runs in time polynomial in 〈K〉, 1/ε and log(1/η), and with proba-
bility at least 1− η produces an ε-approximation to volK.

In 1989, Dyer, Frieze, and Kannan [1991] found precisely such an algorithm.
In describing the speed of an FPRAS, it is convenient to use the “soft-O” nota-
tion O∗, one that ignores powers of log n and polynomials of 1/ε and log(1/η).
In this notation, Dyer, Frieze, and Kannan produced an FPRAS running in time
O∗(n23)—to be precise, in time O(n23(log n)5ε−2(log 1ε)(log 1/η)). With this
result, the floodgates opened: Lovász and Simonovits [1990] found a O∗(n16)
algorithm, Applegate and Kannan [1991] and Lovász and Simonovits [1992] re-
duced the complexity to O∗(n10), then Dyer and Frieze [1991] to O∗(n8), Lovász
and Simonovits [1993] to O∗(n7), and Kannan, Lovász, and Simonovits [≥ 1997]
to O∗(n5).

All algorithms are modelled on the original algorithm of Dyer, Frieze and
Kannan, so they use a multiphase Monte Carlo algorithm to reduce volume
computation to sampling, and use random walks to sample. In order to decide
when we are likely to be close to the stationary distribution, conductance is used
to bound the mixing time. Finally, isoperimetric inequalities are used to bound
the conductance.

In this lecture, we shall sketch one of the most beautiful of these algorithms,
given in [Dyer and Frieze 1988]. We do not give nearly all the details, to avoid
making the presentation too technical.

Before stating the result, let’s say a few words about an obvious naive ap-
proach to estimating the volume by a randomized algorithm, which goes as
follows. Place a fine grid on K: for example, assuming n2Bn∞ ⊂ K ⊂ n4Bn∞, we
may take Zn ∩ n4Bn∞. Consider a random walk on this grid, whose stationary
distribution is exactly the uniform distribution on the grid. Run such a random
walk long enough so that it gets close to the stationary distribution. Stop it and
check whether the point is in K or not. Roughly, with probability volK/(2n4)n

we should get a point of K, so running this walk sufficiently many times, we
should be able to estimate volK.

All this, of course, leads nowhere, since the probability of our random walk
ending in K is likely to be exponentially small: it need not even be more than
n−n. Thus, to estimate it, we would have to run O(nn) walks.

The moral of all this is that we should try to estimate only rather large ratios
of volumes. The problem is easily reduced to this, but at the expense of not
knowing the shape of the larger body either. Thus what we can have is two
bodies L ⊂ K, given by oracles, with volL > 1

2 volK, say, and our task is to
estimate volL/volK. Now it would be good enough to estimate this ratio by
running a random walk on the part of a fine grid inside K, with the uniform
distribution being the stationary distribution. But now the problem is that we
would like to define a random walk on the grid inside a body K we know almost
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nothing about, in a way that makes its stationary distribution uniform. This is
a pretty tall order.

The following beautiful idea solves our difficulty. Define on a set larger than
the grid inside K (an entire grid graph, say) a random walk with the following
properties: the stationary distribution is uniform on the points belonging to K;
the stationary distribution gives a fairly large probability to the set of points
in K; and the walk converges to the stationary distribution fast: it is rapidly
mixing. At the first sight, all this seems to be a pie in the sky, but the beauty
of it all is that Dyer, Frieze, and Kannan managed to define precisely such a
random walk.

Needless to say, there are a good number of technical difficulties to overcome,
the most important of which is that the random walk is rapidly mixing. This is
proved with the aid of isoperimetric inequalities.

After this preamble, let’s state the main result of this lecture, first proved in
[Dyer, Frieze, and Kannan 1991], and sketch its proof.

Theorem 4.1. There is a fully polynomial randomized approximation scheme
for the volume of a convex body given by a well-guaranteed membership oracle.

Proof. Sketch of proof We divide the proof into seven steps, saying rather little
about each. Let K ⊂ R

n be a convex body given by the strong membership
oracle, with guarantees r ≥ 1 and R, so that the size of the input is 〈K〉 =
n + dlog2 re+ dlog2 Re. As always, we may assume that n is large.

1. Rounding. Let’s write Bn
∞ = {x ∈ R

n : |xi| ≤ 1 for every i} for the cube
of side length 2 centred at the origin. There is a polynomial algorithm that
replaces K by its affine image (also denoted by K) such that

2n2Bn
∞ ⊂ K ⊂ 2n4Bn

∞,

say. The ratio n2 of the radii of the balls is rather unimportant: n20 would
do just as well. In fact, one can do much better: making use of an idea of
Lenstra [1983], Applegate and Kannan [1991] showed that we can achieve

Bn
∞ ⊂ K ⊂ 2(n + 1)Bn

∞

as well. To this end, we start with a right simplex S in K and gradually
expand it. By rescaling everything so that S becomes the standard simplex
conv{0, e1, e2, . . . , en}, where (ei)n

1 is the standard basis of Rn , one can check in
polynomial time whether the region {x ∈ K : |xi| ≥ 1 + 1/n2} is empty. If it is
not empty, we replace S by a simplex S′ ⊂ K with volS′ ≥ (1+1/n2) volS, and
if it is empty we terminate the process.
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2. Subdivision. Let’s place a number of cubes Ci = riB
n∞ between the cube

C0 = 2n2Bn
∞ and Cl = 2n4Bn

∞, where l = d2(n + 1) log2 ne: we take ri =
b2i/(n+1)n2c for 0 ≤ i < l. Also, set Ki = Ci ∩K, so that K0 = C0 and Kl = K.
With

αi = volKi−1/volKi,

we have

volK =
volKl

volKl−1
· volKl−1

volKl−2
· · · · · volK1

volK0
· volK0 = 2n

/ l∏
i=1

αi.

Hence it suffices to find an approximation of each αi.
At the first sight, this does not seem to be much of a progress. However, since

Ki ⊂ ri

ri−1
Ki−1

and

ri/ri−1 ≤ 21/(n+1) ri−1 + 1
ri−1

< (1 + 1/2n2)21/(n+1) < 21/n,

we have

αi =
volKi−1

volKi
>

1
2
.

Thus the gain is that it suffices to approximate the proportion of the volume
of a convex body L in a convex body K, when this proportion is rather large.
In other words, we do not have to search for an exponentially small body inside
another body, only for a body taking up at least half of the volume.

3. Density. With a slight abuse of notation, we set K = Ki and L = Ki−1,
where 1 ≤ i ≤ l. Thus

K0 = 2n2Bn
∞ ⊂ L ⊂ K ⊂ Kl = wn4Bn

∞

and
L ⊂ K ⊂ 21/nL.

Let V be the set of lattice points Zn in Kl and let G = (V, E) be the subgraph
of Zn induced by V . Then G is the grid graph Pn

m, with m = 4n4 + 1, having
mn vertices: the product of n paths, each of length 4n4 and so with m = 4n4 +1
vertices.

We shall define a distribution on V that will turn out to be the stationary
distribution of a certain random walk on the graph G.

First, for x ∈ Rn set

ϕ0(x) = min
{
s ≥ 0 : n2x ∈ (

n2 + s
)
K

}
.

Clearly, ϕ0 is a convex function that varies at most 1 on points at distance
at most 1 in ‖ · ‖∞: if ‖x − y‖∞ ≤ 1 then n2(x − y) ∈ n2Bn∞ ⊂ K, so n2x =
n2y+n2(x−y) ∈ (n2+ϕ0(y))K+K = (n2+ϕ0(y)+1)K, giving ϕ0(x) ≤ ϕ0(y)+1.
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For x ∈ V = Z
n ∩ Kl, set ϕ(x) = dϕ0(x)e, and let ϕ1(x) be the maximal

convex function on Kl dominated by ϕ. Then

ϕ0(x) ≤ ϕ1(x) ≤ ϕ(x) < ϕ0(x) + 1

for x ∈ V . Finally, for x ∈ Kl, set

f(x) = 2−ϕ(x) and f1(x) = 2−ϕ1(x).

Then
1
2f1(x) < f(x) ≤ f1(x)

and f(x) = 1 on K.
Our aim is to define a random walk on the grid graph G whose stationary

distribution is precisely f , suitably normalized.

4. The random walk. Let’s define a random walk on the grid graph G = (V, E)
by giving the transition probabilities:

p(x, y) =




1/(4n) if xy ∈ E and ϕ(y) ≤ ϕ(x),
1/(8n) if xy ∈ E and ϕ(y) = ϕ(x) + 1,
1−∑

z∈Γ(x) p(x, z) if y = z,
0 otherwise.

Thus for every x ∈ V our random walk stays put at x with probability at least 1
2 ;

with probability 1/4n it goes to a neighbouring vertex y of “norm” ϕ(y) ≤ ϕ(x),
and with half as much probability it goes to a neighbour of larger “norm” ϕ(y).

This random walk is reversible, with stationary distribution λ(x) = cf(x),
where c > 0 is a normalizing constant.

(
Thus c

∑
x∈V f(x) = 1.

)
Indeed, if

xy ∈ E and ϕ(x) = ϕ(y) then

f(x)p(x, y) = 2−ϕ(x) 1
4n

= 2−ϕ(y) 1
4n

= f(y)p(y, x),

and if ϕ(x) + 1 = ϕ(y) then

f(x)p(x, y) = 2−ϕ(x) 1
8n

= 2−ϕ(y) 1
4n

= f(y)p(y, x).

Another very important aspect of this random walk is that, although it has
been tailored for K, it is very efficient to compute the transition probabilities
at the points where we need it. (We certainly cannot afford to compute the
transition probabilities at all the vertices! That would need exponentially many
steps.) All we have to do is to carry the value of ϕ: as ϕ is known to change by
at most one at the next step, at most 4n appeals to the oracle give us the values
of ϕ at all the neighbours. Having got these values, we know all the transition
probabilities from our point, so we can take the next step of our random walk.
To keep things simple, we start from a point of K, say from O ∈ n2Bn∞ ⊂ K;
then ϕ(O) = O, and we are away.
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5. The error term. For the probability distribution λ on V , we have

λ(K) = λ(V ∩K) >
1
2
. (4.1)

In other words, running our random walk long enough, the probability of ending
in K is more than 1

2 . Indeed,

f(K) =
∑

x∈K∩V

f(x) = |K ∩ V | ∼ volK.

Also, if x ∈ Zn and for a positive integer s we have

x ∈
{(

1 +
s

n2

)
K −

(
1 +

s− 1
n2

)
K

}

then s − 1 < ϕ0(x) ≤ ϕ(x) ≤ s, so f(x) = 2−s. The number of lattice points
satisfying (4.1) is about the volume of the body on the right-hand side, so about{(

1 +
s

n2

)n

−
(
1 +

s− 1
n2

)n
}

volK,

so it is certainly at most (
es/n − 1

)
f(K).

Hence,

f (Zn) =
∑

x∈Zn

f(x) ≤ f(K) +
∞∑

s=1

2−s
(
es/n − 1

)
f(K) < 2f(K).

But λ is just cf , so

λ(K) = λ(K)/λ (Zn) = f(K)/f (Zn) > 1
2 ,

proving the claim.

6. A coin toss. Set α = volL/volK and α′ = λ(L∩V )/λ(K∩V ) = λ(L)/λ(K).
Then α′ is sufficiently close to α, so all we have to do is estimate α′. This will
be done by tossing a biased coin, with probability about α′ for heads. Here is
how one coin toss works.

We run our random walk long enough, till it is close enough to the stationary
distribution. Say, we stop our random walk X0 = 0, X1, . . . at Xt ∈ Z

d. Let
E0 be the event that Xt /∈ K, E1 the event that Xt ∈ L and E2 the event that
Xt ∈ K \ L. Then P(E0) is not too large: by (4.1), it is not much larger than
1
2 , so P(E1 ∪E2) is substantial, at least 1

3 . Since, on the lattice points of K, the
stationary distribution λ is uniform, we have

P(E2)/P(E1 ∪ E2) ∼ α′,

with good enough approximation.
By repeating the coin toss sufficiently many times, our approximation will be

good enough with high enough probability.
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7. The crunch. What we have to show now is that it suffices to run our
random walk for polynomial time to get close to its stationary distribution—in
short, that our random walk is rapidly mixing. By Theorem 3.6, all we need is to
show that our random walk has large enough conductance. That this is the case,
and so Theorem 4.1 holds, follows from the following isoperimetric inequality,
essentially due to Lovász and Simonovits[Lovász and Simonovits 1990].

Theorem 4.2. Let M ⊂ R
n be a convex body and let B(M) be the σ-field of

Borel subsets of M . Let F : IntM → R
+ be a log-concave function and let µ be

the measure on B(M) with density F :

µ(A) =
∫

A

F dx

for A ∈ B(M). Then, for A1, A2 ∈ B(M), we have

min {µ(A1), µ(A2)} ≤ 1
2

diamM

d(A1, A2)
µ(M \A1 ∪A2),

where diamM = max{|x− y| : x, y ∈ M} is the diameter of M and d(A1, A2) =
inf{|x− y| : x ∈ A1, y ∈ A2} is the distance between A1 and A2. �

The proof uses repeated bisections and is somewhat similar to the method of
[Payne and Weinberger 1960]. Lovász and Simonovits [1990] proved the inequal-
ity with a constant 1 instead of the best possible constant 1

2 , which was inserted
in [Dyer and Frieze 1991].

Let’s see then that Theorem 4.2 implies that the conductance of our random
walk is not too small. Let U ⊂ V , 0 < λ(U) < 1

2 , Ū = V \ U , and let ∂U be the
boundary of U , that is, the set of vertices in Ū having at least one neighbour
in U . Let M be the union of unit cubes centred at the points of V , so that M

is a solid cube. Let A1 be the union of unit cubes centred at the vertices of U ,
let B be the union of cubes of volume 2 centred at the vertices of ∂U , and set
A2 = M \ (A1 ∪B).

Writing c1, c2, . . . for positive constants, we clearly have

d(A1, A2) ≥ c1/n

and ∑
u∈U

∑
v∈Ū

λ(u)p(u, v) ≥ c2

n
λ(B).

Hence we may assume that λ(B) is small, say λ(B) < 1/n.
Define a measure µ on B(M), as in Theorem 4.2, with F = f1 = 2−ϕ1 , where

ϕ1 is the maximal convex function on M dominated by ϕ. Note that, for every
u ∈ V , λ(u) is within a constant factor of the µ-measure of the unit cube centred
at u. Hence, by Theorem 4.2,∑

u∈U

∑
v∈Ū λ(u)p(u, v)
λ(U)

≥ c3

n

µ(M \A1 ∪A2)
min{µ(A1), µ(A2)} ≥ n−7,
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since, rather crudely, diamM = O(n5) and d(A1, A2) ≥ c1/n. This completes
the sketch of a proof of Theorem 4.1.

We have made no attempt to get a really fast algorithm: in particular, one could
use an isoperimetric inequality closer to the problem at hand than Theorem 4.2.
Using a more careful analysis, Dyer and Frieze [1991] showed that the running
time of the algorithm above is O∗(n8).

We conclude with a few words about the latest results concerning FRPAS
for computing the volume. Improving the earlier results, Kannan, Lovász and
Simonovits [1995] proved the following theorem.

Theorem 4.3. Let c > 0 be a constant and let K ⊂ R
n be a convex body given

by a separation oracle, with guarantee

Bn ⊂ K ⊂ ncBn.

There is a fully randomized polynomial approximation scheme that , given ε, η >

0, returns positive numbers volK and volK such that volK ≤ (1 + ε)volK and

volK ≤ volK ≤ volK

with probability at least 1− η. This algorithm uses

O
(

n5

ε2

(
log

1
ε

)3(
log

1
η

)
(log n)5

)
= O∗

(
n5

)
calls to the oracle.

The basis of their proof is, once again, a fast sampling algorithm, that is, a
fast algorithm that generates N random points v1, v2, . . . , vN of K with almost
uniform and almost independent distributions. To be precise, if

Bn ⊂ K ⊂ dBn (4.2)

then we can achieve that

(a) the distribution of each vi is close to the uniform distribution in the total
variation distance: for U ∈ B(K) we have

|P(vi ∈ U)− vol U/ volK| < ε;

(b) for 1 ≤ i < j ≤ N and A, B ∈ B(K) we have

|P(vi ∈ A, vj ∈ B)− P(Vi ∈ A)P(Vj ∈ B)| < ε;

(c) the algorithm uses only O∗(n3d2 + Nn2d2) calls to the oracle.

The main innovation in finding such an algorithm is that instead of demanding
(4.2), Kannan, Lovász and Simonovits [≥ 1997] are satisfied with ‘approximate
sandwiching’, that is, if Bn is contained in K and d′Bn∩K is most of K, provided
d′ is small and K can be ‘turned’ into such a position by a fast algorithm. Thus
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we want an efficient way of finding an affine transformation T such that Bn ⊂ TK

and d′Bn ∩ TK is most of TK for d′ fairly small.
It is easy to show [Pisier 1989; Ball 1997] that (4.2) cannot be guaranteed

with d < n; and it is not known whether in polynomial time one can guarantee
it with d not much larger than n. However, if we demand only approximate
sandwiching then we can find an affine transformation T in O∗(n5) time and
d′ = O(

√
n/ log(1/ε)). After much work, this leads to a volume algorithm with

O∗(n) calls to the oracle.
Finally, having emphasized how surprising it is that there are fully randomized

polynomial time algorithms to approximate the volume of a convex body, let us
note that there seems to be no nontrivial lower bound on the speed of such an
algorithm. For example, it is not impossible that there are algorithms running
in time O∗(n2).
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convex

body, definition of, 152
function, maximal, 175
hull, 154

maximal volume, see V (n, m)
cube, 171, 175

central section, 162
graph, 168

degree of vertex, 163
density, 172
deterministic

algorithm, 154, 169
discrete

Laplacian, 163
version of convex body, 162

distribution
stationary, 162, 170, 172, 174, 175
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uniform, 162, 170, 174, 175
Dyer, Martin E., 153, 170, 171, 175, 176

Eckhoff, Jürgen, 158
Egypt, 151
eigenvalue of discrete Laplacian, 163
Elekes, György, 154
ellipsoid

maximal, see maximal ellipsoid
Euclid, 151
excess probability, 164
expander graph, 163
expansion, 163

Füredi, Zoltán, 154, 155, 157, 159
Fejes Tóth, László, 155, 156
Figiel, Tadeusz, 159
flow, 168
FPRAS, 170, 171
fraction of ball taken by a convex hull, see

W (n, m)
Frieze, Alan M., 153, 170, 171, 175, 176
fully polynomial approximation scheme,

see FPRAS
functional, 152

Gluskin, E. D., 159, 160
Grötschel, Martin, 152, 153
graph, 163

complete, 168
cube, 168
grid, 172

grid, 170
graph, 172

guarantee, 153, 171

Hensley, Douglas, 162
Hider, 169

inner product, 151
intersection

of slabs, 154
volume of, 159, 161

isoperimetric
inequality, 170, 175

on manifolds, 163
number, 164

Jerrum, Mark R., 163
John’s Theorem, 155

John, Fritz, 155
Johnson, William B., 159

Kannan, Ravi, 153, 170, 171
Kemeny, John G., 164
Khachiyan, Leonid G., 161

Laplacian
of graph, 163

lattice, see grid
Lawrence, Jim, 161
Lenstra, Hendrik W., 171
Lindenstrauss, Joram, 159
log-concave function, 175
Lovász, László, 152–154, 161, 170, 175

Mahler, Kurt, 160
Markov chain, 163
maximal

convex function, 173
ellipsoid, 156
simplex, 156
volume of convex hull, see V (n, m)

membership oracle, 152
Mihail, Milena, 163
Milman, Vitali D., 159, 160, 163
mixing

rate, see rapid mixing
time, 162, 163, 170

Monte Carlo algorithm, 170

norm
Euclidean, 151
sup, 152

oracle, 152–154, 161, 169–171, 173
–s, equivalence between, 153
definition, 152

Pajor, Alain, 159, 160, 162
Payne, Lawrence E., 175
Pisier, Gilles, 177
polar, 160
polynomial

-time algorithm, 153, 154
approximation scheme, see FPRAS

polynomial-time
algorithm, 162, 169

probabilistic, see randomized
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proportion of ball taken by a convex hull,
see W (n, m)

random
walk, 162, 163

aperiodic, 168
on grid, 170
on grid graph, 172
reversible, 168, 173
use for sampling, 162, 170

randomized algorithm, 153, 162, 169
rapid mixing, 162, 163, 167, 171, 174, 175
regular

graph, 163
simplex, see simplex

Reisner, Shlomo, 159
reverse

Santaló inequality, 160
reversible

random walk, 168, 173
rounding, 171
running time, 152

sampling, 162
Santaló inequality, 160

reverse, 160
Schütt, Carsten, 159
Schrijver, Alexander, 152, 153
section

of cube, 162
Seeker, 169
separation

oracle, 152
Siegel’s lemma, 162
σ-field, 175
Simonovits, Miklós, 161, 170, 175
simple

graph, 163
random walk, 163

simplex, 156, 171
maximal, 156
regular, 156, 157

Sinclair, Alistair J., 163
size of input, 153
slabs

volume of intersection of, 159, 161
Snell, J. Laurie, 164
stationary

distribution, 162, 168, 170, 172, 174, 175
strong

membership oracle, 152, 169
separation oracle, 152

subdivision, 172
symmetric body, 154

transition probability, 164, 168, 173

uniform distribution, 162, 170, 174, 175

V (n, m), 155, 157
Vaaler, Jeffrey D., 159, 162
Vazirani, Umesh, 163
volume

and sampling, 162, 170
is hard to estimate, 159
notation, 152
of a subgraph, 164, 168
of cube section, 162
of intersection of slabs, 161
ratio, 170, 172

W (n,m), 155, 157, 159
weak

membership oracle, 152
separation oracle, 152

Weinberger, Hans F., 175
well guaranteed, see guarantee
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