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CONVERGENCE OF MADELUNG-LIKE LATTICE SUMS

DAVID BORWEIN, JONATHAN M. BORWEIN, AND CHRISTOPHER PINNER

Abstract. We make a general study of the convergence properties of lattice
sums, involving potentials, of the form occurring in mathematical chemistry
and physics. Many specific examples are studied in detail. The prototype is
Madelung’s constant for NaCl:

∞X

−∞

(−1)n+m+p

p
n2 + m2 + p2

= −1.74756459 · · · ,

presuming that one appropriately interprets the summation proccess.

1. Introduction

Lattice sums of the form arising in crystalline structures – and defined precisely
in the next section – have been subject to intensive study. A very good overview is
available in [5] and related research may be followed up in [2, 1, 4]. These sums are
highly conditional in their convergence, and the subject of how best to interpret
their convergence is discussed in [2, 1, 3, 4] and the references therein.

The prototype is Madelung’s constant for NaCl :

∞∑
−∞

(−1)n+m+p√
n2 +m2 + p2

= −1.74756459 · · · ,

presuming that one sums over expanding cubes but not spheres, [1].
Since the analytic or numerical evaluations of such sums usually proceed by

transform (and “renormalization”) methods, these issues are often obscured, espe-
cially in the physical science literature. As we shall illustrate in this paper, while
some general theorems are available, the precise study of convergence is a delicate
and varied subject. Some of our results are unsurprising, but others are far from
intuitive.
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2. Preliminaries and Notation

We shall suppose throughout that

Q(x1, . . . , xk) :=
k∑

i=1

k∑
j=1

αijxixj ∈ R[x1, . . . , xk]

is a positive definite quadratic form with αij = αji. For a bounded set C in Rk

and a positive real number ν we understand νC to be the set of (u1, . . . , uk) ∈ Rk

such that (u1/ν, . . . , uk/ν) ∈ C, and we set

Cν := νC ∩ (Zk \ (0, . . . , 0)).

We shall chiefly be interested in C ⊂ Rk where (0, . . . ,0) lies in the interior of C,
so that

lim
ν→∞ νC = Rk.

We define the corresponding lattice sum

Aν(s) = Aν(C,Q, s) :=
∑

(x1,... ,xk)∈Cν

(−1)x1+···+xk

Q(x1, . . . , xk)s

and write

A(s) = A(C,Q, s) := lim
ν→∞Aν(C,Q, s)

whenever this limit exists. For the most part we shall suppress explicit reference
to parameters such as C and Q and simply write A(s) (except in Sections 4.2
and 7 where we use A(C,Q, s) to emphasize the dependence upon the region C).
Throughout we avoid summing over the pole at zero. We also often write σ for Re
s. [The literature is split as to whether to write A(s) or A(2s), the latter moving
the physically meaningful value from 1

2 to 1.] At s := 1
2 our sums are evaluating

weighted/signed potentials at the origin over points in the underlying lattice.
While we have stated our results with reference to integer lattice points, we can

readily generate analogues for an arbitrary lattice AZk on replacingQ(~x) byQ(A~x).
Notice that a convex body will be mapped to a convex body by the matrix A−1.

Our key result is to show that A(s) exists and is analytic at least down to
Re s > (k − 1)/2 for all reasonably shaped regions C (and hence that the limit is
independent of the shape of C chosen in that range). In fact, as the next section
shows, the same is true if we replace the “(−1)x1+···+xk” by a function q(x1, . . . , xk)
exhibiting a similar degree of cancellation when summed over one of the xi.

In Section 4 we examine in detail the question of convergence for Re s ≤ (k−1)/2
when C is an (appropriate) ellipse in Rk or C is an arbitrary polygon in R2 or R3

with rational vertices or C is a k-dimensional rectangle (showing that in the latter
case convergence actually holds for all Re s > 0). In Section 5 we give very explicit
formulae when Q(x, y) := x2 +Py2 for certain P (particularly for P = 3 or 7), and
C is the corresponding ellipse x2 +Py2 ≤ 1. Several other examples are detailed in
Section 6. Finally in Section 7, when Q(x, y) := x2 + y2, we demonstrate directly
the existence and equivalence of the limits at s = 1 (the most analytically pliable
value) for C a circle, rectangle, or diamond. Since many of the proofs are lengthy
and technical, we have chosen to postpone the majority of them until Section 8.
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3. A Convergence Theorem for General Regions

Let C be a bounded set in Rk containing (0, . . . , 0) in its interior and let
Q(x1, . . . , xk) be a positive definite quadratic form in R[x1, . . . , xk]. Let q : Zk →
R, and let

Aν(s) = Aν(C,Q, q, s) :=
∑

(x1,... ,xk)∈Cν

q(x1, . . . , xk)
Q(x1, . . . , xk)s

.

We may now state our basic result.

Theorem 1. Let χν be the characteristic function of Cν , and suppose that

wν(j1, . . . , jk−1,m) :=
m∑

l=−∞
q(j1, . . . , jk−1, l)χν(j1, . . . , jk−1, l)

is uniformly bounded for all integers j1, . . . , jk−1,m and all positive ν. Then

A(s) = A(C,Q, q, s) := lim
ν→∞Aν(s)

exists and is analytic in the region σ :=Re s > 1
2 (k − 1).

This is the most that we can in general say, as can be seen by taking C to be
(for example) the l1 ball in Rk:

Theorem 2. Suppose that q(x1, . . . , xk) := (−1)x1+···+xk , and that C is the k-
dimensional diamond a1|x1| + · · · + ak|xk| ≤ c where the a1, . . . , ak, c ∈ N with
d = gcd(a1, . . . , ak) and all the ai/d, are odd. Then Aν(1

2 (k − 1)) does not tend to
a limit as ν →∞.

Theorem 1 shows that in R2 the limit is well defined for σ > 1
2 , and in R3

for σ > 1, for any sensible region and any reasonable q. We make this precise in
the next corollary. We say that a region C in Rk is convex in the ith variable if
whenever the points (x1, . . . , x

′
i, . . . , xk) and (x1, . . . , x

′′
i , . . . , xk) are in C then so

also is the segment joining them.

Corollary 1. Suppose that q(x1, . . . , xi, . . . , xk) is bounded over Zk and is periodic
with period M in one variable, xi say, with

M∑
xi=1

q(x1, . . . , xk) = 0.

Suppose further that C is bounded, contains (0, . . . , 0) in its interior and is convex
in the ith variable. Then the conclusions of Theorem 1 hold.

Indeed, many highly non-convex regions still satisfy Theorem 1. We will refer to
a vertically convex region in Rk as being one in which the final coordinate exhibits
convexity.

We now focus on sums over specific regions; showing that in some cases conver-
gence can continue well below σ = (k − 1)/2 .
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4. Specific Regions

4.1. Lattice Sums over Sympathetic Ellipses. Given a positive definite qua-
dratic form Q(x1, . . . xk) =

∑k
i=1

∑k
j=1 αijxixj ∈ Z[x1, . . . , xk] with αij = αji and

a function q : Zk → R, we define the arithmetic function

r(n,Q, q) :=
∑

Q(~x)=n

~x∈Zk

q(~x).

In particular, when our quadratic form has integer coefficients and we sum over
the lattice points in appropriate ellipses, Q(x1, . . . , xk) ≤ ν, we can replace the
k-dimensional lattice sum by a Dirichlet series

Aν(s) = Aν(Q, q, s) :=
∑

Q(~x)≤ν

~x∈Zk\~0

q(~x)
Q(~x)s

=
∑

1≤n≤ν

r(n,Q, q)
ns

,

and decide when the limit

A(s) = A(Q, q, s) := lim
ν→∞

∑
1≤n≤ν

r(n,Q, q)
ns

exists by examining the sums

S0(x) = S0(Q, q, x) :=
∑

0≤n≤x

r(n,Q, q).(1)

We recall the formula (see Hardy [6, Theorem 7]) for the abscissa of convergence
σ0 > 0 of such a Dirichlet series;

σ0 = lim sup
x→∞

log |S0(x)|
log x

.(2)

That is (see Hardy [6, Theorem 1]), A(s) will exist for all Re s > σ0 and fail to
exist for all Re s < σ0.

We show that (at least for periodic q with suitable cancellation when summed)
convergence over these ellipses always extends below σ = (k − 1)/2:

Theorem 3. Suppose that q(x1, . . . , xk) is periodic with period M in each of the
xi. If

M∑
r1=1

· · ·
M∑

rk=1

q(r1, . . . , rk) = 0,

then the abscissa of convergence σ0 satisfies

0 < σ0 ≤


23/73, if k = 2,
25/34, if k = 3,
k/2− 1, if k ≥ 4.

If
M∑

r1=1

· · ·
M∑

rk=1

q(r1, . . . , rk) 6= 0,

then the abscissa of convergence σ0 = k/2.
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The theorem follows easily from old work of Landau and Walfisz (for k ≥ 4), and
more recent bounds of Krätzel & Nowak (for k = 3) and Huxley (for k = 2), on the
error in approximating the number of lattice points in an ellipsoid by its volume.
When k ≥ 4 these bounds cannot in general be improved:

Theorem 4. If q(x1, . . . , xk) := (−1)x1+···+xk and Q(x1, . . . , xk) := a1x
2
1 + · · · +

akx
2
k, where the ai are all odd positive integers, then for all k ≥ 2 the limit A(s)

does not exist for any Re s ≤ (k/2)− 1.

When k = 2 or 3 one expects the correct upper bounds to be 1/4 and 1/2
respectively. From this last theorem, 1/2 would certainly be sharp when k = 3. In
fact we show that for very general Q and q we have the lower bound σ0 ≥ (k−1)/4,
so that when k = 2 or 3 we usually do indeed have the lower bounds 1/4 and 1/2 :

Theorem 5. Suppose that q(x1, . . . , xk) is periodic in all of the xi with period M
and

M∑
r1=1

· · ·
M∑

rk=1

q(r1, . . . , rk) = 0.

If r(n,Q, q) (and hence Aν(s)) is not identically 0, then

σ0 ≥ 1
4
(k − 1).

Notice that there certainly will be cases with Aν(s) identically zero (with there-
fore no lower bound on σ0); indeed for any M 6= 2 we can always construct non-
trivial periodic q(~x) with q(−~x) = −q(~x) and hence, by symmetry, the r(n,Q, q)
zero for all n and any Q.

The proof of Theorem 5 will use a technique of Landau to show the existence of
a constant c0 = c0(q,Q) > 0 such that

|S0(x)| > c0x
(k−1)/4

for infinitely many integers x. The method requires some additional notation:

Given a positive definite quadratic form Q(x1, . . . , xk) =
∑k

i=1

∑k
j=1 αijxixj in

Z[x] with αij = αji, we let D denote the determinant

D :=

∣∣∣∣∣∣∣
α11 . . . α1k

...
...

αk1 . . . αkk

∣∣∣∣∣∣∣(3)

and define the positive definite adjoint quadratic form Q∗(x1, . . . , xk) in Z[x]

Q∗(x1, . . . , xk) :=
k∑

i=1

k∑
j=1

∂D

∂αij
xixj .

Notice that Q∗∗(~x) = Q(~x) and that when k = 2 we have Q∗(x, y) = Q(−y, x). We
suppose that q(x1, . . . , xk) is periodic in each of the xi with period M and define
the periodic weight function

λq(~x) :=
M∑

r1=1

· · ·
M∑

rk=1

q(r1, . . . , rk) cos
(

2π
M

(r1x1 + · · ·+ rkxk)
)
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and set
r∗(n) = r∗(n,Q, q) :=

∑
~x∈Zk

Q∗(~x)=n

λq(~x).

For the q(~x) of interest the involved looking expression for r∗(n) often simplifies.
For example, when

q(x1, . . . , xk) := (−1)x1+···+xs

for some 1 ≤ s ≤ k, we have

r∗(n) = 2k
∑

Q∗(x1,... ,xk)=n
x1,... ,xs odd

xs+1,... ,xk even

1.

We remark that r(n,Q, q) is identically zero if and only if r∗(n) is identically zero.
As with the classical circle problem, our proof relies on the ability to write the

sum S0(x) in terms of Bessel functions Jν(x);∑
0≤n≤x

∗r(n,Q, q) =
(
√
DM)

1
2 (k−2)

M
xk/4

∞∑
n=1

r∗(n)
nk/4

Jk/2

(
2π
M

√
nx

D

)
where

∑∗ denotes that if x is an integer the last term receives only half weighting
1
2r(x,Q, q). In fact we shall actually use more assuredly convergent integrated forms
of this.

As one consequence of the proof, defining

Sν(x) :=
1
ν!

∑
0≤n≤x

(x− n)νr(n,Q, q)

and setting

B(ρ)
ν (s) := Aν(s)−

ρ−1∑
i=0

Γ(s+ i)
Γ(s)

(
Si(ν)
νs+i

− q(~0)
i!

)
+

Γ(s+ ρ)
Γ(s)

q(~0)
ρ!

,

it will be apparent that for any positive integer ρ > (k − 1)/2 we can write

B(ρ)
ν (s) = A(ρ)(s) +O

(
ν−

1
2 (ρ− (k−1)

2 +2σ)
)
,

where A(ρ)(s) is analytic in the larger region{
σ > −1

2

(
ρ− 1

2
(k − 1)

)
+ ε, |s| < K

}
for any fixed K and ε > 0, and possesses the representation

A(ρ)(s) =
2k/2+ρπk/2−1

M

Γ(s+ ρ+ 1)
Γ(s)

(√
DM

2π

)k−2s−1 ∞∑
n=1

r∗(n)
nk/2−s

Fρ

(
2π
M

√
n

D
, s

)(4)

with

Fρ(z, s) := z2s−k

∫ ∞

z

vk/2−1−ρ−2sJk/2+ρ(v)dv.

When k = 3 we note some similarity to the relation of Buhler & Crandall [4, (1.5)].
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Finally, for k ≥ 4, the work of Novák enables us to extend the optimal bound
σ0 = k/2− 1 of Theorem 4 to a broader (if less easily described) class of q and Q.

We shall say that we are in the non-singular case if, as before q(x1, . . . , xk) is
periodic in all of the xi with period M and

M∑
r1=1

· · ·
M∑

rk=1

q(r1, . . . , rk) = 0,

and moreover there exist integers h and l > 0 with (h, l) = 1 and
lM∑

r1=1

· · ·
lM∑

rk=1

q(r1, . . . , rk) exp
(
−2πih

l
Q(r1, . . . , rk)

)
6= 0.

Note that any such l necessarily has (l,M) 6= 1.

Theorem 6. For non-singular pairs of q(x1, . . . , xk) and Q(x1, . . . , xk) we have

σ0 ≥ k

2
− 1.

We shall show in the following corollary that any q(x1, . . . , xk) of the form

q(x1, . . . , xk) := (−1)x1+···+xs , 1 ≤ s ≤ k,

is non-singular for all Q(x1, . . . , xk), so that we certainly recover Theorem 4 by
this approach (of course the proof of Theorem 6 will be much less elementary than
that of Theorem 4):

Corollary 2. If q(x1, . . . , xk) is of the form

q(x1, . . . , xk) := exp
(

2πi
M

(a1x1 + · · ·+ akxk)
)

for some integers ai, then the case is non-singular and

σ0 ≥ k

2
− 1

for all positive definite quadratic forms Q(x1, . . . , xk) in Z[x1, . . . , xk].

When q(x1, . . . , xk) takes the special form exp
(

2πi
M (a1x1 + · · ·+ akxk)

)
if the

xi ≡ bi (mod Mi) for some integers ai, bi and Mi (with Mi|M) and zero otherwise,
Walfisz [18] has shown (see Novák [15]) that in the singular case the upper bound
can be lowered to σ0 ≤ k/4− 1/10 for k > 4. Thus this division into singular and
non-singular cases (although not immediately digestible) is probably the correct
characterization as regards the abscissa, and Theorem 5 is conceivably the best
general lower bound.

4.2. Lattice Sums over Polygons in R2 and R3. In this section we restrict
ourselves to the usual weight function q(x1, . . . , xk) := (−1)x1+···+xk . We write
A(C,Q, s) for the corresponding lattice sum, rather than merely A(s), to emphasize
the dependence here upon the region C (the Q dependence is of use in the proof
of Theorem 8). For polygons in R2 with rational vertices we show that either
convergence occurs for all Re s > 0 or else convergence fails at s = 1/2. Moreover
we give an explicit and somewhat surprising diophantine criterion for deciding this
based on the parity of the numerators and denominators of the slopes of the lines
making up the perimeter.
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Theorem 7. Suppose P in R2 is a closed polygon with rational vertices whose
sides lie on the lines aix− biy = ci, where ai, bi, ci ∈ Z with gcd(ai, bi, ci) = 1 and
di = gcd(ai, bi).

(i) If ai/di and bi/di are of opposite parity for all i, then A(P,Q, s) exists and
is analytic for all Re s > 0.

(ii) If ai/di and bi/di are both odd for at least one of the i, then A(P,Q, s) exists
for Re s > 1/2 but does not exist for any real s ≤ 1/2.

If in addition P is star-shaped around (0, 0) then, even restricting to integer
n, the limit lim

n→∞An(P,Q, s) does not exist for any real s ≤ 1/2.

We extract two simple cases for further advertisement in the next corollary:

Corollary 3. (i) If R is a rectangle with rational vertices and sides parallel to
the axes, then A(R,Q, s) exists for Re s > 0.

(ii) If D is the diamond a|x| + b|y| ≤ c, where a, b, c ∈ N with gcd(a, b, c) = 1
and d = gcd(a, b), then A(D,Q, s) exists for Re s > 0 if a/d and b/d are of
opposite parity, but fails to exist for any real s ≤ 1/2 if a/d and b/d are both
odd.

We note that the last corollary allows us to observe that in the Hausdorff metric,
or any other reasonable metric, the convex bodies for which convergence works for
all σ > 0 are dense in the convex bodies in the unit ball, as are those for which
convergence is destroyed for s = 1

2 .
Theorem 6 follows from a more precise version that (for Re s > 0) reduces the

problem of convergence over the polygon to the question of convergence solely
along the boundary. If we define a variant of the characteristic function χ∗C where
points on the boundary of C receive weight 1/2, and a corresponding analogue of
Aν(P,Q, s),

A∗ν(C,Q, s) :=
∑

(x,y)∈Cν

(−1)x+yχ
∗
νC(x, y)
Q(x, y)s

,

then the following is true:

Proposition 1. Let Q(x, y) = αx2 + βxy + γy2 be a positive definite quadratic
form, and P a closed polygon in R2 with rational vertices whose sides lie on the
lines aix − biy = ci, where ai, bi, ci ∈ Z with gcd(ai, bi, ci) = 1. If N is a multiple
of all the gcd(ai, bi) then

A∗N (P,Q, s) = F (P,Q, s) +OP,Q(N−2σ),

where F (P,Q, s) is analytic in the whole half-plane σ := Re s > 0.

Similarly in three dimensions we show that convergence either fails at s = 1 or
continues down to s = 1/2.

Theorem 8. Suppose that P is a three dimensional polygon containing ~0 in its
interior and star-shaped about ~0, whose faces lie on the planes aix+ biy+ ciz = ei,
where the ai, bi, ci and ei are integers with di = gcd(ai, bi, ci).

(i) If every face has at least one of ai/di, bi/di, ci/di even, then A(P,Q, s) exists
for all Re s > 1/2.

(ii) If there is at least one face with ai/di, bi/di, ci/di all odd, then A(P,Q, s)
exists for all Re s > 1 but fails to exist for any real s ≤ 1.
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We presume that these two and three dimensional theorems can be generalized to
more dimensions. We have already seen in Theorem 2 that the result on diamonds
extends naturally to higher dimensions. In the next section we show that the
behaviour over squares can be similarly recaptured in arbitrary dimensions.

4.3. Sums over Rectangles. When we sum over k-dimensional rectangles we are
able to show that in general convergence holds for all Re s > 0. More precisely,
given an ~m = (m1, . . . ,mk) in Nk we define the lattice sum over the corresponding
rectangle:

A~m(s) :=
m1∑

n1=−m1

· · ·
mk∑

nk=−mk

q(n1, . . . , nk)
Q(n1, . . . , nk)s

(where as usual the pole (n1, . . . , nk) = (0, . . . , 0) is omitted), and set

A(s) := lim
minmi→∞

A~m(s)

whenever that limit exists.

Theorem 9. If the sums

l1∑
n1=−j1

· · ·
lk∑

nk=−jk

q(n1, . . . , nk)

are uniformly bounded for all integers j1, . . . , jk, l1, . . . , lk, then the limit A(s) exists
and is analytic for all σ > 0.

4.4. lp-Balls: an Open Question. It is natural to make an examination of lp
sums for p ∈ N, p > 2. That is, for example when k = 2, C := {(x, y) : |x|p + |y|p ≤
1}. We are able to state (see [8]) asymptotically sharp expressions for the number
of lattice points in these regions:∑

|n|p+|m|p≤x

(n,m)∈Z2\(0,0)

1 =
(

2Γ2(p−1)
pΓ(2p−1)

)
x2/p +O(x(1/p)−(1/p2)), p ≥ 3.

Unfortunately the lp ball and the underlying ellipse seem highly “unsympathetic”,
and we leave as an open question what one can provide in the way of lower or upper
bounds on σ0 in this case (the most natural example to consider being p = 4).

5. Some Analytic Continuations

We shall write α(s) for the alternating zeta-function

α(s) :=
∞∑

n=1

(−1)n+1

ns

and L±d(s) for the L-series

L±d(s) :=
∞∑

n=1

(±d | n)n−s

where (d | n) is the Kronecker (generalized Legendre) symbol.
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When Q(x, y) := x2 + py2 with p = 3 or 7, we can write down an analytic
continuation of our lattice sum in terms α(s) and L−p(s):∑

(x,y)∈Z2\(0,0)

(−1)x+y

(x2 + 3y2)s
= −2(1 + 21−s)α(s)L−3(s),

∑
(x,y)∈Z2\(0,0)

(−1)x+y

(x2 + 7y2)s
= −2α(s)L−7(s),

resembling the representation (see Glasser-Zuckerman [5])∑
(x,y)∈Z2\(0,0)

(−1)x+y

(x2 + y2)s
= −4α(s)L−4(s).

These will arise from our ability to write∑
(x,y)∈Z2\(0,0)

1
Qp(x, y)s

= uζ(s)L−p(s)(5)

for the quadratic form

Qp(x, y) :=
(
p+ 1

4

)
x2 +

(
p− 1

2

)
xy +

(
p+ 1

4

)
y2

when p = 3, 7, 11, 19, 43, 67 or 163 (the primes for which Q(
√−p) is a unique

factorization domain), where u = 6 if p = 3 and 2 otherwise (the number of units
in Q(

√−p)). Unfortunately it is not clear how to insert a (−1)x+y into (5) or how
to replace the Qp(x, y) in those sums by x2 + py2 other than when p = 3 or 7.

Many sums of this type have been obtained by Glasser, Zucker and Robertson
[5, 21, 22] for forms whose discriminant is disjoint (i.e. have one form per genus):∑

(x,y)∈Z2\(0,0)

(−1)x+y

(x2 + Py2)s
= −21−t

∑
µ|P

(1− (2 | µ)21−s)L±µL∓4P/µ

∑
(x,y)∈Z2\(0,0)

(−1)x

(x2 + 2Py2)s
= −21−t

∑
µ|P

(1− (2 | µ)21−s)L±µL∓8P/µ

where L±µ is taken such that µ ≡ ±1 (mod 4) and where P are certain square-free
(≡ 1 (mod 4) in the second case) numbers with t prime factors. The appropriate
P < 10, 000 are P = 5, 13, 21, 33, 37, 57, 85, 93, 105, 133, 165, 177, 253, 273,
345, 357, 385, 1365 and P = 1, 3, 5, 11, 15, 21, 29, 35, 39, 51, 65, 95, 105, 165,
231 respectively (in the latter case similar representations can be shown to hold
for x2 + 8Py2). Zucker and Robertson also obtain results for the forms x2 + Py2,
x2 + 4Py2 and x2 + 16Py2 when P = 3, 7 or 15 (thus including the continuations
of our sums above, although their approach is different from ours).

6. Some Specific Sums

We have now obtained very explicit if quite contrasting results regarding the
range of convergence from the above theorems for shapes such as circles, diamonds
and squares. We continue with some related examples.

(a) It was shown in Borwein-Borwein-Taylor [1, §VI] that study of Madelung’s
constant for a two-dimensional hexagonal lattice sum with ions of alternating unit
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charge placed at the points of a lattice with basis vectors (1, 0) and (1/2,
√

3/2)
leads naturally to sums of the form∑

(n,m)∈CN

q(n,m)
(n2 + nm+m2)s

,

where

q(n,m) :=
4
3

sin(
2
3
(n+ 1)π) sin(

2
3
(m+ 1)π)− 4

3
sin(

2
3
nπ) sin(

2
3
(m− 1)π).

Applying the above theorems, it is clear, on splitting q up appropriately, that when
Re s > 1/2 convergence occurs in such a sum when the lattice points are summed
over any vertically convex set, that for expanding rectangles convergence holds for
all Re s > 0, and that on summing over expanding ellipses m2 + mn + n2 ≤ N
convergence fails at some point between σ = 1/4 and σ = 23/73. Notice that (in
the notation of section 4.1)

r∗(n) =
9
2

∑
x2+xy+y2=n

x≡y 6≡0 (mod3)

1.

The sum was also shown to possess a similar analytic continuation to those men-
tioned in Section 5:

h2(s) = 3(1− 31−s)(1 − 21−s)−1α(s)L−3(s).

(b) In [5] sums like

c2(s) :=
∑

(j,k)∈Cν

(−1)j

(j2 + k2)s

and

c3(s) :=
∑

(j,k,p)∈Cν

(−1)j

(j2 + k2 + p2)s

are discussed and are again covered by our previous analysis, with convergence
over vertically convex sets holding for all σ > 1/2 (respectively 1) and over circles
(respectively spheres) failing at some point between 1/4 and 23/73 (respectively
1/2 and 3/4). After a change of variables j = j′ + k (respectively j = j′ + k + p)
convergence over squares (respectively cubes) can be seen (from §4.2) to fail at 1/2
(respectively 1). However (from §4.3) convergence does hold for all σ > 0 over
certain other parallelepipeds.

(c) Let rN (n) denote the number of representations of n as a sum of N squares
(counting permutation and sign). Then the Dirichlet sum

bN (s) :=
∞∑

n=1

(−1)n rN (n)
ns

is a special case of the sums covered in Theorem 3 and Theorem 4. In particular,
it follows from [2, p. 290] that

b4(s) := −8α(s)α(s− 1).

Notice that from our prior analysis the abscissa of convergence is exactly equal to
1.
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Correspondingly, b3(1
2 ) is Madelung’s constant for sodium chloride. Theorem 9

recovers the fact that the limit is taken appropriately if we sum over hypercubes.
Theorem 2 shows that diamonds fail below 1 and Theorem 3 and Theorem 4 show
that the exact abscissa for convergence over spheres lies between 1

2 and 3
4 . Theo-

rem 4 recaptures the argument in [1] that shows that convergence fails at 1
2 , and

we would conjecture that convergence obtains for σ > 1
2 .

7. Direct Analysis at s = 1

In the most basic case Q(x, y) := x2 + y2 and s := 1 one can directly establish
that the limit A(C,Q, 1) = −π log 2 when C is either the square |x| ≤ 1, |y| ≤ 1, or
the diamond |x|+ |y| ≤ 1, or the circle x2 +y2 ≤ 1 (i.e., summing over the standard
lp balls for p = 1, 2,∞), as we show below.

Observe that, when C is the above unit circle,

A(C,Q, 1) = lim
n→∞

∑
0<i2+j2≤n2

(−1)i+j

i2 + j2
=

∞∑
k=1

(−1)kr2(k)
k

,

where r2(k) is the number of ways of expressing k as the sum of two squares of
integers in Z. Let

Sn :=
n∑

k=1

(−1)kr2(k)
k

, An :=
n∑

k=1

r2(k).

Then

S2n = 2
n∑

k=1

r2(2k)
2k

−
2n∑

k=1

r2(k)
k

= −
2n∑

k=n+1

r2(k)
k

,

since r2(2k) = r2(k), because k = i2 + j2 ⇔ 2k = (i + j)2 + (i − j)2. It follows by
partial summation that

S2n = −
2n∑

k=n

Ak

k(k + 1)
− A2n

2n+ 1
+
An

n
.

Further, we are familiar with the fact that
An

n
= π + εn with εn = O(n−1/2).

Hence

S2n = −π
2n∑

k=n

1
k + 1

−
2n∑

k=n

εk
k + 1

+ o(1) = −π log 2 + o(1) as n→∞.

Finally, since r2(n) = O(n1/2), we see that S2n − S2n−1 = o(1), and therefore that

lim
n→∞Sn =

∞∑
k=1

(−1)kr2(k)
k

= −π log 2.

This shows that the method of expanding circles yields −π log 2 as the value
of the lattice sum ∑

i2+j2>0

(−1)i+j

i2 + j2
.
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We show next that the method of expanding diamonds yields the same
value. This amounts to proving that

Tn :=
∑

0<|i|+|j|≤n

(−1)i+j

i2 + j2
→ −π log 2 as n→∞.

Observe that, for 0 < t < 1,

f(t) :=
∞∑

k=1

r2(k)tk−1 =
1
t

(
2
∞∑

i=0

ti
2 − 1

)2

− 1
t

=
4
t

( ∞∑
i=0

ti
2

)2

− 4
t

∞∑
i=0

ti
2
,

and hence, by what has been proved above, that∫ 1

0

f(−t) dt = π log 2.

But we also have

−f(−t) = 4
∞∑

k=0

(−1)k

 k∑
j=0

t(k−j)2+j2−1 − tk
2−1


= 4

∞∑
k=1

(−1)k
k−1∑
j=0

t(k−j)2+j2−1,

so that

−
∫ 1

0

f(−t) dt = 4
∞∑

k=1

(−1)k
k−1∑
j=0

1
(k − j)2 + j2

= lim
n→∞Tn,

provided we can justify the term-by-term integration. This can be done as follows:
Note that, for 0 < t < 1,

−
∫ t

0

f(−u) du = 4
∞∑

k=1

(−1)kδk(t),

where

δk(t) :=
k−1∑
j=0

t(k−j)2+j2−1

(k − j)2 + j2
,

and that, for 0 ≤ j ≤ k,

k2

2
≤ (k − j)2 + j2 ≤ k2.

Further, for 0 < t < 1, k ≥ 2,

δk−1(t)− δk(t) =
k−1∑
j=1

(
t(k−j)2+j2−1

(k − j)2 + (j − 1)2
− t(k−j)2+j2−1

(k − j)2 + j2

)

+
k−1∑
j=1

t(k−j)2−1[t(j−1)2 − tj
2
]

(k − j)2 + (j − 1)2
− tk

2−1

k2
,
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so that

|δk−1(t)− δk(t)| ≤
k−1∑
j=1

(
1

(k − j)2 + (j − 1)2
− 1

(k − j)2 + j2

)

+
k−1∑
j=1

t(j−1)2 − tj
2

(k − j)2 + (j − 1)2
+

1
k2

≤
k−1∑
j=1

j2 − (j − 1)2

(k − j)2 + (j − 1)2
· 1
(k − j)2 + j2

+
2
k2

k−1∑
j=1

[
t(j−1)2 − tj

2
]

+
1
k2

≤ 4
k2(k − 1)2

k−1∑
j=1

[
j2 − (j − 1)2

]
+

2
k2

+
1
k2

=
7
k2
.

Also, for 0 < t < 1,

0 ≤ δk(t) ≤
k−1∑
j=0

1
(k − j)2 + j2

≤ 2k
k2

=
2
k
→ 0 as k →∞.

It follows, by the Weierstrass M-test, that

4
∞∑

k=1

(−1)kδk(1) = − lim
t→1−

4
∞∑

k=1

[δ2k−1(t)− δ2k(t)]

= − lim
t→1−

∫ t

0

f(−u) du = −
∫ 1

0

f(−u) du,

and this completes the proof of the expanding diamonds case.
Finally we shall show that the method of expanding squares also yields the

value −π log 2 for the lattice sum. In fact we shall deal with the slightly more
general method of expanding rectangles. Let

Rm,n :=
∑

|i|+|j|>0
|i|≤n,|j|≤m

(−1)i+j

i2 + j2
, Rm,n(t) :=

∑
|i|+|j|>0
|i|≤n,|j|≤m

ti
2+j2−1.

We shall prove that Rm,n → −π log 2 when µ := min(m,n) →∞. Observe that

Rm,n = −
∫ 1

0

Rm,n(−t) dt

and that, for 0 < t < 1,

f(t)−Rm,n(t) =
1
t

 ∑
|i|>n,|j|>m

ti
2+j2

+
∑

|i|≤n,|j|>m

ti
2+j2

+
∑

|i|>n,|j|≤m

ti
2+j2


=

4
t

 ∞∑
i=n+1

ti
2
∞∑

j=m+1

tj
2
+

n∑
i=0

ti
2

∞∑
j=m+1

tj
2

+
∞∑

i=n+1

ti
2

m∑
j=0

tj
2

 .
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Observe also that, for 0 < t < 1,∣∣∣∣∣
∞∑

i=n+1

(−t)i2

∣∣∣∣∣ < t(n+1)2 and

∣∣∣∣∣
n∑

i=0

(−t)i2

∣∣∣∣∣ < 1.

Hence, for 0 < t < 1,

|f(−t)−Rm,n(−t)| < 4t(n+1)2+(m+1)2−1 + 4t(m+1)2−1 + 4t(n+1)2−1 < 12t(µ+1)2−1,

and so

|Rm,n + π log 2| =
∣∣∣∣∫ 1

0

f(−t) dt−
∫ 1

0

Rm,n(−t) dt
∣∣∣∣ ≤ 12

(µ+ 1)2
→ 0 as µ→∞.

This completes the proof.

8. The Proofs

Proof of Theorem 1. We first note that for a positive definite quadratic form

Q(x1, . . . , xk) =
k∑

i=1

k∑
j=1

αijxixj ∈ R[x1, . . . , xk]

with αij = αji we have

Q(x1, . . . , xk) ≥ λ(x2
1 + · · ·+ x2

k)

for some λ = λQ > 0. Suppose in what follows that σ > (k − 1)/2 , ν > 0, and the
ji are integers. Let

Q(0, . . . , 0, s) := 0, Q(j1, . . . jk, s) := Q(j1, . . . , jk)−s when j21 + · · ·+ j2k 6= 0,

and let

µ := sup
ν>0

(j1,... ,jk)∈Zk

|wν(j1, . . . , jk)| <∞.

Then we have

Aν(s)

=
∞∑

j1=−∞
· · ·

∞∑
jk=−∞

q(j1, . . . , jk)χν(j1, . . . , jk)Q(j1, . . . , jk, s)

=
∞∑

j1=−∞
· · ·

∞∑
jk=−∞

wν(j1, . . . , jk){Q(j1, . . . , jk−1, jk, s)−Q(j1, . . . , jk−1, jk + 1, s)}

=:
∞∑

j1=−∞
· · ·

∞∑
jk=−∞

aj1,... ,jk
(ν, s).

Suppose next that σ > (k−1)
2 + ε > (k−1)

2 . Observe that, for 0 < u < v,∣∣∣∣ 1
us
− 1
vs

∣∣∣∣ = ∣∣∣∣s ∫ v

u

t−1−s dt

∣∣∣∣ ≤ v − u

u1+σ
|s|,
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and hence that, when (j21 + · · ·+ j2k)(j21 + · · ·+ (jk + 1)2) 6= 0,

|aj1,... ,jk
(ν, s)| ≤ |Q(j1, . . . , jk)−Q(j1, . . . , jk + 1)|

λ1+σ(j21 + · · ·+ j2k)1+σ
|s|µ

=
|2∑k−1

i=1 αikji + αkk(2jk + 1)|
λ1+σ(j21 + · · ·+ j2k)1/2

|s|µ
(j21 + · · ·+ j2k)σ+1/2

≤ λ−1−σ|s|M
(j21 + · · ·+ j2k)σ+1/2

,

where

M := sup
j2
1+···+j2

k>0

|2∑k−1
i=1 αikji + αkk(2jk + 1)|
(j21 + · · ·+ j2k)1/2

µ <∞.

Also, when (j21 + · · ·+ j2k)(j21 + · · ·+ (jk + 1)2) = 0,

|aj1,... ,jk
(ν, s)| ≤ µ

|αk,k|σ .

Since (as in Borwein-Borwein-Taylor [1])∑
j2
1+···+j2

k>0

1
(j21 + · · ·+ j2k)(k/2)+ε

<∞,

it follows, by the Weierstrass M-test, that when ν → ∞, Aν(s) → A(s) say, uni-
formly in the region {s : σ > (k − 1)/2 + ε, |s| ≤ K} with K any fixed positive
number, and, since Aν(s) is analytic in this region, that A(s) is analytic therein.
Consequently

A(s) = lim
n→∞An(s)

exists and is analytic in the region Re s > (k − 1)/2.

Proof of Theorem 2. We suppose that C is the diamond a1|x1| + · · · + ak|xk| ≤ c
where d = gcd(a1, . . . , ak) and all the ai/d are odd positive integers. Observing
that when a1|x1|+ · · ·+ ak|xk| = cn and n is a multiple of d we have

(−1)x1+···+xk = (−1)cn/d

and

|Q(x1, · · · , xk)| ≤
 k∑

i=1

k∑
j=1

|αij |
 c2n2,

it is not hard to see that when s = 1
2 (k − 1) and N is a multiple of B := a1 · · · ak∣∣AN (s)−AN−1/c (s)

∣∣ =
∑

a1|x1|+···+ak|xk|=cN

Q(x1, . . . , xk)−
1
2 (k−1)

>
1

c1Nk−1

∑
|x′1|+···+|x′k|=(cN/B)

1

≥ 1
c1Nk−1

(
(cN/B) + k − 1

k − 1

)
> c2 > 0

as N → ∞ (where in fact we have only bothered to count the points with xi =
(B/ai)x′i ≥ 0); and the limit cannot exist.
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Proof of Corollary 1. Under the hypothesis, it is simple to estimate that

wν(j1, . . . , jk−1,m) :=
m∑

l=−∞
q(j1, . . . , jk−1, l)χν(j1, . . . , jk−1, l)

is uniformly bounded.

Proof of Theorem 3. Suppose that q(x1, . . . , xk) is periodic with period M . Then,
(with S0(x) as defined in (1)) dividing the sum into residue classes modulo M , we
have

S0(x) =
M∑

r1=1

· · ·
M∑

rk=1

q(r1, . . . , rk)F0(r1, . . . , rk, x),(6)

where
F0(r1, . . . , rk, x) :=

∑
Q(x1,... ,xk)≤x
xi≡ri modM

1.

Writing xi = Myi + ri, it is easy to see that F (r1, . . . , rk, x) counts the number
of lattice points (y1, . . . , yk) ∈ Zk in the expanded ellipse x1/2E, where E is the
ellipse M2Q(y1, . . . , yk) ≤ 1 of area

A =
πk/2

Mk
√|D|Γ(k/2 + 1)

with centre shifted to (−r1/M, . . . ,−rk/M). Approximating the number of points
in the ellipse by its area, we can write

F0(r1, . . . , rk, x) = Axk/2 +O(ψ),

where from the results of Huxley [7, Theorem 5] (for k = 2), Krätzel & Nowak [9]
(for k=3), and Walfisz [17] and Landau [10, 11] (for k ≥ 8 and k ≥ 4 respectively;
see Landau [12, Satz II] for the most immediately applicable form) we can take

ψ =


x23/73(log x)315/146 when k = 2,
x25/34(log x)10/17 when k = 3,
x log2 x when k = 4,
x(k/2)−1 when k ≥ 5.

Hence
S0(x) = B1x

k/2 +O (B2ψ) ,
where

B1 :=
M∑

r1=1

· · ·
M∑

rk=1

q(r1, . . . , rk), B2 :=
M∑

r1=1

· · ·
M∑

rk=1

|q(r1, . . . , rk)|,

and the result is plain from (2).

Proof of Theorem 4. Notice that if Q(x1, . . . , xk) = a1x
2
1 + · · ·+ akx

2
k with all the

ai odd positive integers and q(x1, . . . , xk) = (−1)x1+···+xk , then

r(n,Q, q) = (−1)n
∑

Q(x1,... ,xk)=n

1.

Now by elementary methods we have∑
n≤x

|r(n,Q, q)| =
∑

Q(x1,... ,xk)≤x

1 = A(1 + o(1))xk/2
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as x→∞, where A is the area of the ellipse Q(x1, . . . , xk) ≤ 1. In particular there
must certainly be infinitely many integers n with |r(n,Q, q)| > 1

2An
(k/2)−1. Hence

if Re s ≤ (k/2)− 1 then

|AN (s)−AN−1(s)| = |r(N,Q, q)|
Nσ

6→ 0

as N →∞, and the limit A(s) cannot exist.

Proof of Theorem 5. We closely follow the proof of the corresponding omega result
for the error in the classical circle problem (as given in Landau [13]) and for ρ ≥ 1
inductively define

Sρ+1(x) :=
∫ x

0

Sρ(u)du,

where S0(x) is as defined in (1) (so that equivalently

Sρ(x) =
1
ρ!

∑
0≤n≤x

(x− n)ρr(n,Q, q) =
1

(ρ− 1)!

∫ x

0

S0(u)(x − u)ρ−1du

for all ρ ≥ 1).

We invoke the following lemma of M. Riesz [16] (as in Wilton [20]; cf. Landau
[13, Satz 533]):

Lemma 1. If f0(x) is L-integrable and bounded over (0, x) and if, when γ > 0 and
x > 0,

fγ(x) :=
1

Γ(γ)

∫ x

0

f0(u)(x− u)γ−1du

and if, further, V (x) and W (x) are increasing functions of x with

|f0(x)| < V (x)

and
|fl(x)| < W (x),

then
|fβ(x)| < b(β, l)V (x)(1−(β/l))W (x)(β/l)

for all 0 ≤ β ≤ l, where the b(β, l) depend only on β and l.

We shall show that (as long as Aν(s) is not identically zero) there are a positive
integer ν and non-zero constants Bν+1 and Cν such that

|Sν+1(x)| < Bν+1(1 + o(1))x
1
4 (k+2(ν+1)−1)

for all x and
|Sν(x)| > |Cν |(1 + o(1))x

1
4 (k+2ν−1)

for infinitely many x.
Hence by the above lemma we must have

|S0(x)| ≥ (1 + o(1))

(
|Cν |

b(ν, ν + 1)Bν/(ν+1)
ν+1

)ν+1

x
1
4 (k−1)

for infinitely many x.
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Thus it remains to justify the claimed upper and lower bounds for the Sρ(x).
We define the constants

Cρ :=
(
√
DM)

1
2 (k+2ρ−1)

Mπρ+1

( ∞∑
n=1

r∗(n)
n

1
4 (k+2ρ+1)

)
cos
(
(k + 2ρ+ 1)

π

4

)
,

Bρ :=
(
√
DM)

1
2 (k+2ρ−1)

Mπρ+1

( ∞∑
n=1

|r∗(n)|
n

1
4 (k+2ρ+1)

)
.

Lemma 2. We suppose that q(x1, . . . , xk) is periodic in all the xi with period M
and

M∑
r1=1

· · ·
M∑

rk=1

q(r1, . . . , rk) = 0.

For all ρ > 1
2 (k − 1) we have

|Sρ(x)| ≤ Bρ

(
1 +O(x−1/2)

)
x

1
4 (k+2ρ−1)

for all x, and if Cρ 6= 0

|Sρ(x)| = Cρ

(
1 +O

(
(

log x
log log x

)−1/4

))
x

1
4 (k+2ρ−1)

for infinitely many integers x.

Proof. For ρ ≥ 0 we inductively define

Fρ+1(~r, x) :=
∫ x

0

Fρ(~r, u)du,

and observe (by repeated integration of (6)) that

Sρ(x) =
M∑

r1=1

· · ·
M∑

rk=1

q(r1, . . . , rk)Fρ(r1, . . . , rk, x).

It has been shown by a number of authors (see for example Landau [10]) that the
Fρ(~r, x) can be expressed in terms of Bessel functions:

Fρ(~r, x) = Vρ(x) +
(
√
DM)

1
2 (k+2ρ−2)

Mπρ
E(~r, x),

where

Vρ(x) :=
πk/2

MkDΓ(k/2 + ρ+ 1)
xk/2+ρ

and

E(~r, x) := xk/4+ρ/2
∞∑

n=1

r∗(n;~r)
nk/4+ρ/2

Jk/2+ρ

(
2π
M

√
nx

D

)
,

with

r∗(n;~r) :=
∑

~x∈Zk

Q∗(~x)=n

cos
(

2π
M

~r · ~x
)
.

Notice that, from the straightforward bounds∑
~x∈Zk

Q∗(~x)≤z

1 = O(zk/2), Jν(z) = O(z−1/2),
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such a sequence is absolutely convergent for ρ > (k − 1)/2.
Hence if

M∑
r1=1

· · ·
M∑

rk=1

q(r1, . . . , rk) = 0,

we obtain

Sρ(x) =
(
√
DM)

1
2 (k+2ρ−2)

Mπρ
xk/4+ρ/2

∞∑
n=1

r∗(n)
nk/4+ρ/2

Jk/2+ρ

(
2π
M

√
nx

D

)
.

Approximating the Bessel functions by cosines (for example see Watson [19, p.
199]);

Jν(z) =

√
2
πz

cos
(
z − (2ν + 1)

π

4

)
+O(z−3/2),

we obtain

Sρ =
(
√
DM)

1
2 (k+2ρ−1)

Mπρ+1
x(k+2ρ−1)/4 (M1 +M2)

with

M1 :=
∞∑

n=1

r∗(n)
n(k+2ρ+1)/4

cos
(

2π
M

√
nx

D
− (k + 2ρ+ 1)

π

4

)
and

M2 := O

(
x−1/2

∞∑
n=1

r∗(n)
n(k+2ρ+3)/4

)
= O(x−1/2)

(the latter bound since ∑
n≤z

|r∗(n)| = O(zk/2)(7)

and by assumption 2ρ+ 1 > k).
The trivial bound

|M1| ≤
∞∑

n=1

|r∗(n)|
n(k+2ρ+1)/4

gives us the required upper bound.
By the box principle (in k dimensions), given an N and k real numbers ν1, . . . ,

νk, there is certainly an integer 1 ≤ m ≤ (Nk + 1) such that the distances from the
mνi to their nearest integers simultaneously satisfy ||mνi|| < 1/N . In particular
(taking k = N) there is an integer m =

√
z ≤ NN + 1 with m(

√
n/M

√
D) close

enough to an integer for n = 1, . . . , N that

cos
(

2π
M

√
nz

|D| − (k + 2ρ+ 1)
π

4

)
= cos

(
(k + 2ρ+ 1)

π

4

)
+O

(
1
N

)
= cos

(
(k + 2ρ+ 1)

π

4

)
+O

(
log log 16z

log 16z

)
for all n = 1, . . . , N (the latter equality following from the observation that, since
log 16z > e,

(log 16z)
log(log 16z)

≤ log(16(NN + 1)2)
log log(16(NN + 1)2)

= O(N)
)
.
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Using the estimate (7), we can readily bound the remaining terms in the sum by

∞∑
n=N

r∗(n)
n(k+2ρ+1)/4

= O(N−(2ρ+1−k)/4)

= O(N−1/4) = O

((
log log 16z

log 16z

)1/4
)
.

Hence for such a z, as long as Cρ 6= 0, we have

M1 = cos
(
(k + 2ρ+ 1)

π

4

)(
1 +O

((
log log 16z

log 16z

)1/4
))( ∞∑

n=1

r∗(n)
n(k+2ρ+1)/4

)
,

and the remaining bound is plain. Varying N (and hence the closeness of the
approximation), we can clearly generate infinitely many integers z in this way.

Final step of the proof. Hence it only remains to justify that (as long as r(n,Q, q)
is not identically zero) Cρ is non-zero for some ρ.

First observe that r∗(n) cannot be identically zero: If r∗(n) is identically zero
then Sρ(x) = 0 for all x ≥ 0 and any ρ > (k − 1)/2; in particular it follows from
the relation

r(N,Q, q) = (N + 1)!Sρ(N + 1)−
N−1∑
n=0

(N + 1− n)ρr(n,Q, q)

and an easy induction on N that r(n,Q, q) must be identically zero.
We suppose that w is the smallest positive integer such that r∗(w) 6= 0. From

the lower bound Q∗(x1, . . . , xk) > λ∗(x2
1 + · · · + x2

k) we certainly have the trivial
lower bound

|r∗(n)| ≤ Bnk/2, B :=

(
M∑

r1=1

· · ·
M∑

rk=1

|q(r1, . . . , rk)|
)(

2√
λ∗

)k

.

Hence if

R ≥ N := max
{
k

2
+ 2 , log

(
π2

12
B

|r∗(w)| (w + 1)k/2+2

)
/ log

(
1 +

1
w

)}
,

we have ∣∣∣∣∣
∞∑

n=w+1

r∗(n)
nR

∣∣∣∣∣ < B(w + 1)k/2+2

(w + 1)R

( ∞∑
n=1

1
n2

)
≤
∣∣∣∣r∗(w)
wR

∣∣∣∣ ,
and

∑∞
n=1 r

∗(n)/nR 6= 0. In particular at least one of ρ = [(4N−1−k)/2]+1 or ρ =
[(4N−1−k)/2]+1 will have both

∑∞
n=1 r

∗(n)/n(k+2ρ+1)/4 and cos((k+2ρ+1)π/4)
non-zero, and hence Cρ 6= 0.
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Proof of the representation (4). By partial summation and integration by parts we
obtain

Aν(s) =
S0(ν) − q(~0)

νs
−
∫ ν

1

(S0(u)− q(~0))
d

du
(u−s)du

=
ρ∑

i=0

Γ(s+ i)
Γ(s)

(
Si(ν)
νs+i

− Si(1)
)

+
Γ(s+ ρ+ 1)

Γ(s)

∫ ν

1

Sρ(u)u−s−ρ−1du

=
ρ−1∑
i=0

Γ(s+ i)
Γ(s)

(
Si(ν)
νs+i

− Si(1)
)
− Γ(s+ ρ)

Γ(s)
Sρ(1)

+
Γ(s+ ρ+ 1)

Γ(s)

∫ ∞

1

Sρ(u)u−s−ρ−1du+O(ν−
1
2 (ρ− 1

2 (k−1)+2σ)),

for bounded |s|, since by Lemma 2

Sρ(u) = O(u
1
4 (k+2ρ−1))

for ρ > 1
2 (k − 1).

Proof of Theorem 6. Writing

r(n,~r) = r(n; r1, . . . , rk) :=
∑

Q(x1,... ,xk)=n
xi≡ri (mod M)

1,

for Re s > 0 we define the θ-function

θ̂(s) :=
∞∑

n=0

r(n,Q, q)e−ns

=
M∑

r1=1

· · ·
M∑

rk=1

q(r1, . . . , rk)θ̂(s;~r)

where

θ̂(s;~r) :=
∞∑

n=0

r(n;~r)e−ns.

Now by Novák [14, Lemma 1] for integers h and l (with (h, l) = 1 and l > 0) the
modular functions θ̂(s;~r) can be expanded in a neighbourhood of the cusp 2πih/l
so that for Re s > 0

θ̂(s;~r) =
πk/2

(
s− 2πih

l

)−k/2

√
DMk/2lk

∑
~m∈Zk

Sh,l(~m,~r) exp

(
− π2Q∗(~m)
DM2l2

(
s− 2πih

l

)) ,
where

Sh,l(~m,~r) :=
l∑

a1=1

· · ·
l∑

ak=1

exp
(
−2πih

l
Q(~aM + ~r) +

2πi
lM

~m · (~aM + ~r)
)
.

Thus

θ̂

(
σ +

2πih
l
, ~r

)
=

πk/2

√
DMk/2lkσk/2

(
Sh,l(~0, ~r) + Eh,l(~r, σ)

)
,



CONVERGENCE OF MADELUNG-LIKE LATTICE SUMS 3153

where for fixed h and l

Eh,l(~r, σ) ≤
∑

~m ∈ Zk

~m 6= ~0

lk exp
(
− π2λ∗

DM2l2σ
(m2

1 + · · ·+m2
k)
)

= O

( ∞∑
n=1

nk/2 exp(−cn/σ)

)
= O(e−c/σ).

Now if we are in the non-singular case we can pick h and l such that

A :=
πk/2

√
DMk/2lk

M∑
r1=1

· · ·
M∑

rk=1

q(r1, . . . , rk)Sh,l(~0, ~r) 6= 0

(notice that, since the q(r1, . . . , rk) sum to zero, h 6= 0) and hence

σk/2θ

(
σ +

2πih
l

)
= A+O(e−c/σ)

uniformly in σ.
Now, with S0(x) as in (1), writing

θ̂(s) = s

∫ ∞

0

e−xsS0(x)dx,

it is clear that |S0(x)| < cxk/2−1 for all x would imply that

σk/2θ̂

(
σ +

2πih
l

)
< c |σ + (2πih/l)|σk/2

∫ ∞

0

e−σxxk/2−1dx

= c |σ + (2πih/l)|Γ(k/2).

Hence, on letting σ → 0, we see that for any constant

c1 < A(2πh/l)−1(Γ(k/2))−1

we must have |S0(x)| > c1x
k/2−1 for infinitely many integers x.

Proof of Corollary 2. We take h = 1 and l to be a high power of M ,

l := Mγ , γ > 2α,

where α is the highest power of a prime factor of M dividing 2kD (recall that D,
defined in (3), is the determinant of the matrix of coefficients αij of Q(x1, . . . , xk)).

Writing
R := {(x1, . . . , xk) ∈ Zk : 1 ≤ xi ≤ l}

and

F (~x) := exp
(
−2πi

l
Q(~x)

)
q(~x),

non-singularity will follow once we show the non-vanishing of

S := M−k
lM∑

x1=1

· · ·
lM∑

xk=1

F (~x) =
∑
~x∈R

F (~x).
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Now

|S|2 =
∑
~x∈R

∑
~y∈R

F (~y)F (~x)

=
∑
~x∈R

∑
~u∈R

F (~u + ~x)F (~x)

=
∑
~u∈R

F (~u)
k∏

i=1

 l∑
xi=1

exp

−2πi
l
xi(2

k∑
j=1

αijuj)

 ,

on noting that
q(~u + ~x) = q(~u)q(~x),

and expanding

Q(~u+ ~x)−Q(~x) = Q(~u) +
k∑

i=1

xi(2
k∑

j=1

αijuj).

Observing that
l∑

xi=1

exp
(
−2πixiα

l

)
=
{
l if α ≡ 0 (mod l),
0 otherwise,

and setting

L :=

(u1, . . . , uk) ∈ R : 2
k∑

j=1

αijuj ≡ 0 (mod l), 1 ≤ i ≤ k

 ,

we obtain
|S|2 = lk

∑
~u∈L

F (~u).

Now it is not hard to check that any ~u satisfying the linear system in L must
necessarily satisfy

2kDui ≡ 0 (mod l ), 1 ≤ i ≤ k,

and therefore certainly

ui ≡ 0 (mod Mγ−α ), 1 ≤ i ≤ k.

Since we have chosen γ > 2α, we thus have

q(~u) = 1, Q(~u) ≡ 0 (mod l),

for any ~u ∈ L, giving
|S|2 =

∑
~u∈L

1 6= 0

(plainly (l, . . . , l) is in L), and we are in the non-singular situation for any
Q(x1, . . . , xk).

Proof of Proposition 1. Clearly it is enough to show the result for triangles T , and
in fact (by taking sums and differences) enough to consider triangles with one vertex
at the origin. Using symmetry x → −x, y → −y, we shall further assume that
the triangle T lies entirely in the quadrant x, y ≥ 0 and (replacing N by cN or
N/gcd(a, b) as necessary) that T takes the form

T = {(x, y) : r2x ≥ s2y, r1x ≤ s1y, ax− by ≤ 1},
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where a, b, si, ri ∈ Z with ri, si ≥ 0 and gcd(a, b) =gcd(ri, si) = 1. We denote the
sides of T by li:

l1 : r1x = s1y, l2 : r2x = s2y, l3 : ax− by = 1,

and by P1, P2 the points of intersection of l3 with l1 and l2 respectively;

Pi =
(

si

asi − bri
,

ri
asi − bri

)
Choosing integers x0, y0 satisfying

ax0 − by0 = 1

and writing

Ai = rix0 − siy0, Bi = asi − bri, αi =
Ai

Bi

(notice that gcd(Ai, Bi) = 1 and Bi > 0), we can parametrise the integer points on
n(l3 ∩ T ) (the intersection of the line ax− by = n with NT ) by

x = nx0 + bt, y = ny0 + at, nα1 ≤ t ≤ nα2

for n = 1, . . . , N , with (−1)x+y = (−1)n(x0+y0)+t(a+b). We distinguish two cases:
(i) 2|ab
(ii) 2 6 | ab.
(i)When a and b are not both odd.
Since a and b are of opposite parity we can pick our x0, y0 to both be odd (indeed

either (x0, y0) or (x0 + b, y0 + a) will be of this form). Hence on the line segment
n(l3 ∩ T ) our parametrisation gives (−1)x+y = (−1)t, and, writing

fn(t) := Q(nx0 + bt, ny0 + at)−s,

we have
AN (T,Q, s) =

∑
1≤n≤N

An(l3 ∩ T,Q, s),

where
An(l3 ∩ T,Q, s) =

∑
nα1≤t≤nα2

(−1)tfn(t).

We first observe some elementary bounds on fn:

|fn(t)| = |Q(x, y)−s| = O(n−2σ),
|f ′n(t)| = | − s ((2αb+ βa)x + (2γa+ βb)y)Q(x, y)−s−1| = O(n−2σ−1),

|f ′′n (t)| =
∣∣∣∣((2αb+ βa)x+ (2γa+ βb)y)2

(s+ 1)
Q(x, y)s+2

− 2s
Q(a, b)

Q(x, y)s+2

∣∣∣∣
= O(n−2σ−2).(8)

Pairing odd and even t, we have

An(l3 ∩ T,Q, s) = M1 +M2,

where
M1 :=

∑
1
2 nα1≤t≤ 1

2 nα2

(fn(2t)− fn(2t+ 1))

and
M2 := u2(n)fn(2tn,2 + 1)− u1(n)fn(2tn,1 + 1),



3156 DAVID BORWEIN, JONATHAN M. BORWEIN, AND CHRISTOPHER PINNER

where u1(n) := 1 if there is an integer tn,1 in
[

nA1
2B1

− 1
2 ,

nA1
2B1

)
and 0 otherwise, and

u2(n) := 1 if there is an integer tn,2 in
(

nA2
2B2

− 1
2 ,

nA2
2B2

]
and 0 otherwise.

Using the bound for f ′′n (t), we have

fn(2t+ 1)− fn(2t) =
∫ 2t+1

2t

f ′n(u)du =
∫ 2t+1

2t

(f ′n(2t) +O(n−2σ−2))du.

This and the observation that for a differentiable function g(x)∑
x1<n≤x2

g(n) = [x2]g([x2])− [x1]g([x1])−
∫ [x2]

[x1]

[u]g′(u)du

=
∫ [x2]

[x1]

(g(u)− {u}g′(u)) du

enable us to evaluate M1:

M1 = −1
2

∑
1
2 nα1≤t≤ 1

2 nα2

(
d

dt
fn(2t) +O(n−2σ−2)

)

= −1
2

∫ [ 1
2 nα2]

[ 1
2 nα1]

(
d

dt
fn(2t) +O(n−2σ−2)

)
dt+O(n−2σ−1)

= −1
2

(
fn

(
2
1
2
nα2

)
− fn

(
2
1
2
nα1

))
+O(n−2σ−1)

=
1
2
Q(nP1)−s − 1

2
Q(nP2)−s +O(n−2σ−1).

For M2 (approximating the (2tn,i + 1) by nαi) we have

ui(n)f(2ti,n + 1) = ui(n)Q(nPi)−s +O(n−2σ−1),

giving

An(l3 ∩ T,Q, s) =
1
2
Q(P1)−s (1− 2u1(n))

n2s
− 1

2
Q(P2)−s (1− 2u2(n))

n2s
+O(n−2σ−1).

Notice that

An(l3 ∩ T,Q, s) = O(n−2σ).(9)

Hence

AN (T,Q, s) =
1
2
Q(P1)−s

∑
n≤N

(1− 2u1(n))
n2s

− 1
2
Q(P2)−s

∑
n≤N

(1− 2u2(n))
n2s

+C1(s) +O

(
1

N2σ

)
,

where C1(s) is analytic for all Re s > 0. Noting that the functions ui(n) are defined
modulo (2Bi) and that for a function u(n) ≤ 1 defined modulo q∑

kq≤n<(k+1)q

u(n)n−2s = (kq)−2s
∑

kq≤n<(k+1)q

u(n) +O(qk−2σ−1)

=

(
1
q

q∑
m=1

u(m)

) ∑
kq≤n<(k+1)q

n−2s

+O(qk−2σ−1),
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we can plainly write

∑
1≤n≤N

(1 − 2ui(n))
n2s

=

(
1− 1

Bi

2Bi∑
m=1

ui(m)

) ∑
1≤n≤N

n−2s

+ C2,i(s) +O(N−2σ)

with C2,i(s) analytic in Re s > 0. Now

2B1∑
m=1

u1(n) = #{1 ≤ n ≤ 2B1 : nA1 ≡ 1, 2, . . . , or B1 (mod 2B1)}

=
{
B1 if 2 6 | A1,
B1 − 1 if 2|A1,

and
2B2∑
m=1

u2(n) = #{1 ≤ n ≤ 2B2 : nA2 ≡ 0, 1, . . . , or (B2 − 1) (mod 2B2)}

=
{
B2 if 2 6 | A2,
B2 − 1 if 2|A2.

Noting that (since x0 and y0 are both odd) 2|Ai exactly when 2 6 | risi we obtain

AN (T,Q, s)

=
1
2
λ(l1)
B1

Q(P1)−s
∑
n≤N

n−2s +
1
2
λ(l2)
B2

Q(P2)−s
∑
n≤N

n−2s + C3(s) +O(N−2σ),

where

λ(li) =
{

1 if 2 6 | risi,
0 if 2|risi,

and C3(s) is analytic for Re s > 0. Since we have already shown that

AN (l3 ∩ T,Q, s) = O(N−2σ),

it will be enough to show that for i = 1, 2

AN (li ∩ T,Q, s) =
λ(li)
Bi

Q(Pi)−s
∑
n≤N

n−2s + C4,i(s) +O(N−2σ),

for some suitable analytic C4,i(s).
Since N(li ∩ T ) ∩ Z2 = {nBiPi : 1 ≤ n ≤ N/Bi}, we have

AN (li ∩ T,Q, s) = Q(BiPi)−s
∑

n≤N/Bi

(−1)ri+sin−2s.

Now if λ(li) = 0 we have ri + si odd and

AN (li ∩ T,Q, s) = Q(BiPi)−s
∑

n≤N/Bi

(−1)nn−2s

= Q(BiPi)−s
∑

t≤N/2Bi

(
(2t)−2s − (2t− 1)−2s

)
+O(N−2σ)

=
∑

t≤N/Bi

O(t−2σ−1) +O(N−2σ)

= C4,i(s) +O(N−2σ),(10)
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while if λ(li) = 1 then ri + si is even and

Q(Pi)−s

Bi

∑
n≤N

n−2s

=
Q(Pi)−s

Bi

∑
n≤N/Bi

Bi∑
l=1

(nBi + l)−2s +O(N−2σ)

=
Q(Pi)−s

Bi

∑
n≤N/Bi

Bi∑
l=1

(nBi)−2s +
∑

n≤N/Bi

O(n−2σ−1) +O(N−2σ)

= Q(BiPi)−s
∑

n≤N/Bi

n−2s + C5,i(s) +O(N−2σ),

where the C4,i(s) and C5,i(s) are analytic for Re s > 0, as was required.
(ii) When both a and b are odd.
When a and b are both odd any x0, y0 satisfying ax0− by0 = 1 are necessarily of

opposite parity, so that on the line ax−by = n our parametrisation gives (−1)x+y =
(−1)n. We here choose our x0, y0 to satisfy Ai = rix0 − siy0 > 0 for i = 1, 2 (this
we can do by replacing x0, y0 by x0 + bj, y0 + aj for a suitably small j), and set

βi =
Bi

Ai
.

Hence, altering the order of the n and t summations,

AN (T,Q, s) =
∑
n≤N

(−1)n
∑

nα1≤t≤nα2

fn(t)

=
∑

α1≤t≤Nα1

E1 +
∑

Nα1≤t≤Nα2

E2,

where

E1 :=
∑

tβ2≤n≤tβ1

(−1)nfn(t),

E2 :=
∑

tβ2≤n≤N

(−1)nfn(t).

Just as in case (i) (with the roles of n and t reversed), summing along the line
joining tβ1P1 and tβ2P2, we have

E1 =
1
2
Q (β2P2)

−s (1 − 2v2(t))
t2s

− 1
2
Q (β1P1)

−s (1 − 2v1(t))
t2s

+O(t−2σ−1),

E2 =
1
2
Q

(
B2

A2
P2

)−s

(1− 2v2(t))t−2s − 1
2
fN (t)(1− 2w(N))t−2s +O(t−2σ−1),

where v1(n) = 1 if there is an integer in
(

tB1
2A1

− 1
2 ,

tB1
2A1

]
and 0 otherwise, v2(n) = 1

if there is an integer in
[

tB2
2A2

− 1
2 ,

tB2
2A2

)
and 0 otherwise, and w(N) is 1 if N is even
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and 0 if N is odd. Hence

AN (T,Q, s) =
1
2

∑
Nα1≤t≤Nα2

(−1)NfN (t) +
1
2
Q (β2P2)

−s
∑

α1≤t≤Nα1

(1− 2v2(t))
t2s

+
1
2
Q (β1P1)

−s
∑

α1≤t≤Nα1

(2v1(t)− 1)
t2s

+ C6(s) +O(N−2σ),

with C6(s) analytic in Re s > 0. It is not hard to see that the first sum is simply
1
2AN (l3 ∩ T,Q, s). Hence it remains to verify that the other sums differ from
1
2AN (l2 ∩ T,Q, s) and 1

2AN (l1 ∩ T,Q, s) by a function analytic for Re s > 0. One
proceeds just as in case (i) (with the roles of Ai and Bi reversed and with 2|Bi if
and only if 2 6 | risi), showing that for i = 1, 2

(−1)iQ (βiPi)
−s

∑
αi≤t≤Nαi

(1− 2vi(t))
t2s

=
λ(li)
Ai

Q (βiPi)
−s

∑
αi≤t≤Nαi

t−2s + C7,i(s) +O(N−2σ)

= λ(li)Q (BiPi)
−s

∑
1/Bi≤t≤N/Bi

t−2s + C8,i(s) +O(N−2σ)

= AN (li ∩ T,Q, s) + C9,i(s) +O(N−2σ),

with C9,i(s) analytic in Re s > 0, and the result is plain.

Proof of Theorem 7. Part (i): Define d to be the least common multiple of the di

and (for a given positive real ν) set N = d[ν/d]. Then νP and NP differ by at most
a finite collection of lines of the form li : aix − biy = cin, ci 6= 0, with N ≤ n ≤ ν.
Hence Aν(P,Q, s) differs from A∗N (P,Q, s) by a finite sum of 1

2An(li ∩P,Q, s) with
ci 6= 0 and N ≤ n ≤ ν, exactly 1

2AN (li ∩ P,Q, s) for any radial lines (i.e. lines
with ci = 0), together with a finite set of points lying at the intersections of these
various lines.

However, we have already seen (recall (9)) that when ai/di and bi/di are of
opposite parity the lines aix + biy = nci, ci 6= 0, contribute O((cin/di)−2σ) =
O(ν−2σ), while for the radial lines we showed (see (10)) a contribution Ci(s) +
O(N−2σ) (with Ci(s) analytic for Re s > 0 and Ci(s) = 0 unless (0, 0) lies on
li ∩ P ). The left-over points, being of distance � ν from the origin, similarly
contribute only terms of size O(ν−2σ), and the limit exists for all Re s > 0.

Part (ii): Given our polygon with sides li : aix− biy = ci, we set

δ =
1
2

min
i
|ci|−1

and observe that for an integer N going from NP to (N + δ)P we may lose some
lines of points but can gain no new lattice points, and similarly going from (N−δ)P
to NP we may gain but cannot lose lattice points. Hence the two differences

|AN±δ(P,Q, δ)−AN (P,Q, δ)|
consist solely of sums of AN (li ∩ P,Q, σ) with ci 6= 0 (together with odd points of
intersection that are of size O(N−2σ)). Further if we take N = 2nd (where d is the
least common multiple of all the gcd(ai, bi)) then every li with ci 6= 0 will appear
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in one of these sums (which one will depend on whether (0, 0) lies on the same or
opposite side of the line as the interior of the polygon). As in part (i), the lines li
with ai/di and bi/di of opposite parity and ci 6= 0 will only contribute O(N−2σ).
However, if aI/dI and bI/dI are both odd and cI 6= 0, then

AN (lI ∩ T,Q, σ) = (−1)(ci(2nd)/dI)
∑

κ1N≤t≤κ2N

fn(t)

will contribute ∑
κ1N≤t≤κ2N

fn(t) ≥ e1
∑

κ1N≤t≤κ2N

N−2σ ≥ e2N
1−2σ,

for some positive constants ei. Hence if 0 < σ ≤ 1/2 and we have at least one lI
with aI/dI and bI/dI both odd and cI 6= 0, then at least one of the two differences
|AN±δ(P,Q, δ) − AN (P,Q, δ)| will always be bounded away from 0 by a constant
(irrespective of N) and the limit A(P,Q, σ) cannot exist. When P is a star body
centred at (0,0) we set δ = 1, and (since we only gain points in going from (N−1)P
to P ) the same argument shows that AN (P,Q, σ) − AN−1(P,Q, σ) does not tend
to zero with N ; hence the limit does not exist even if we restrict ourselves (as is
natural) just to integer scalings of P . When all the li with ci 6= 0 have ai/di, bi/di

of opposite parity but there are radial lines (l1 through lk say) with ci = 0 and
ai/di, bi/di both odd we consider AN (P,Q, σ) for N = nd. By the theorem it is
clear that convergence for 0 < σ ≤ 1/2 will be determined solely by the sum over
the perimeter. As in part (i) the lines li, i > k, cannot disturb the convergence.
However the radial lines li, i = 1, . . . , k, each contribute

AN (li ∩ P,Q, σ) =
∑

κ1N≤t≤κ2N

fn(t) = f(Pi)
∑
t6=0

κ1N≤t≤κ2N

t−2σ

≥ e3

{
logN if σ = 1/2,
N1−2σ if σ < 1/2

(where e3 is some positive constant), and the resulting sum is plainly unbounded
as N →∞.

Corollary 3 is immediate from Theorem 7.

Proof of Theorem 8. We split P into a series of cones Pi with base a face of P and
vertex (0,0,0):

Pi := {(x, y, z) : aix+ biy + ciz ≤ ei, αijx+ βijy + γijz ≤ 0, 1 ≤ j ≤ Ji},
for some integers αij , βij , γij , so that

AN (P,Q, s) =
I∑

i=1

A?
N (Pi, Q, s),

where A?
N (P,Q, s) indicates that points on the sides of NP (excepting the base)

are to be counted with weight 1/2. Slicing up each three dimensional polygon NPi

into two dimensional polygons Pi,m parallel to its base,

Pi,m :={(x, y, z) ∈ Z2 : aix+ biy + ciz = m, αijx+ βijy + γijz ≤ 0, 1 ≤ j ≤ Ji},
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we have

A?
N (Pi, Q, s) =

Nei∑
m=1
di|m

∑
~x∈Pi,m

∗
Q(~x)−s

where
∑∗ denotes that points on the boundary of the polygon are to be counted

with weight 1/2.
We suppose now that Pi,m comes from a face with at least one of ai/di, bi/di or

ci/di even. We assume (replacing m by dim as necessary) that gcd(ai, bi, ci) = 1,
and (reordering as necessary) that ci is odd and ai is even. Setting αi = gcd(ai, ci)
and choosing an even integer bi such that bibi ≡ 1 (mod αi) and an odd integer
(ai/αi) such that (ai/αi)(ai/αi) ≡ 1 (mod ci/αi), we make the change of variables
demanded by the relation aix+ biy ≡ m (mod ci) on Pi,m:

y = bim+ αiy
′

and

x =
(
ai

αi

)(
1− bibi
αi

)
m−

(
ai

αi

)
biy

′ +
(
ci
αi

)
x′.

Observe that aix+ biy + ciz = m becomes

z = m

(
1− bibi
αi

)1−
(

ai

αi

)(
ai

αi

)
ci/αi

−
(
ai

αi

)
x′ − bi

1−
(

ai

αi

)(
ai

αi

)
ci/αi

 y′,

and that
(−1)x+y+z = (−1)x′+y′ .

Hence the sum of (x, y, z) over Pi,m is replaced by a sum of (x′, y′) over mRi ∩Z2,
where Ri is the polygon

Ri = {(x′, y′) ∈ Z2 : α′ijx
′ + β′ijy

′ ≤ γ′ij , 1 ≤ j ≤ Ji},
and the α′ij , β

′
ij , γ

′
ij are integers with, we shall assume, no common factor and

dij :=gcd(α′ij , β
′
ij). Writing

Q(x, y, z) = Qi(x′, y′,m)

(where Qi(x, y, z) will be a positive definite quadratic form), we have∑∗

(x,y,z)∈Pi,m

Q(x, y, z)−s =
∑∗

(x,y)∈mRi∩Z2

(−1)x+yQi(x, y,m)−s =: A∗m(Ri, Qi, s),

with
∑∗ denoting that points on the perimeter are counted with weight 1/2. To

evaluate the A∗m(Ri, Qi, s) one proceeds almost exactly as in the proof of Proposi-
tion 1 (replacing the bounds for the kth derivative, k = 0, 1, 2, in (8) by

|f (k)
n (t)| = O

(
(|n|+ |m|)−2σ−k

)
,

and so on) to obtain ∑†

(x,y)∈mRi∩Z2

(−1)x+yQi(x, y,m)−s = O(m−2σ),
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where
∑† denotes that for each side lij of the polygon Ri the last line of points

parallel to that side,

Lij(m) :=
[
m
γ′ij
dij

]
Rij , Rij :=

dij

γ′ij
(lij ∩Ri),

is to be included in the sum with weight 1/2. The desired sum A∗(Ri, Qi, s) thus
differs from this latter sum only by the addition or exclusion of the (half-weighted)
last lines of those sides lij for which m 6≡ 0 (mod dij), and

A∗m(Ri, Qi, s) = O(m−2σ) +
1
2

Ji∑
j=1

dij-m

Aij(m),

where
Aij(m) := ±

∑
(x,y)∈Lij(m)

(−1)x+yQ1(x, y,m)−s,

with the ± sign determined by whether (0,0) lies on the interior or exterior side of
lij respectively. Thus

A?
N (Pi, Q, s) = Ci,0(s) +

Ji∑
j=1

Eij +O(N1−2σ),

with
Eij :=

∑
1≤m≤Nei/di

dij-m

Aij(m)

and Ci,0(s) analytic for all Re s > 1/2.
Now if α′′ij := α′ij/dij and β′′ij := β′ij/dij are of opposite parity, one readily shows

that alternation in sign along the line Lij(m) gives (in the manner of (9))

Aij(m) = O(m−2σ),

and hence
Eij = Cij(s) +O(N1−2σ)

with the Cij(s) analytic for Re s > 1/2.
Now if the α′′ij , β

′′
ij are both odd, parametrising the line (as in the proof of

Proposition 1), we have

An(Rij , Qi(m), s) :=
∑

(x,y)∈nRij∩Z2

(−1)x+yQi(x, y,m)−s

= (−1)n
∑

nξ1≤t≤nξ2

Q1(nx0 − α′′ij , β
′′
ijt− ny0,m)−s,

for some fixed integers x0 = x0(i, j), y0 = y0(i, j) (with α′′ijx0 − β′′ijy0 = 1) and
rational numbers ξk = ξk(i, j). So for bounded integers k1 and k2 we certainly have

An+k1(Rij , Qi(m+ k2), s) = (−1)k1An(Rij , Qi(m), s) +O
(
(|m|+ |n|)−2σ

)
,

where a trivial bound gives

An(Rij , Q1(m), s) = O

(
n

(|n|+ |m|)2σ

)
.
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Hence, splitting the sum over m into multiples of 2dij , we have

Eij = Sij

∑
l≤Nei/2didij

Aij(2dij l) +
∑

1≤m≤Nei/di

O(m−2σ) +O(N1−2σ),

where (as may be readily checked)

Sij :=
2dij∑
m=1
dij -m

(−1)[mγ′ij/dij] = 0,

giving
Eij = Cij(s) +O(N1−2σ),

with Cij(s) analytic for Re s > 1/2.
Therefore

A?
N (Pi, Q, s) = Ci(s) +O(N1−2σ)

(where Ci(s) is analytic for all Re s > 1/2), and the result (i) follows at once if all
the faces have at least one ai/di, bi/di, ci/di even.

For part (ii) one proceeds in the manner of the proof of Theorem 2 to show,
by counting the number of points on the faces with ai/di, bi/di, ci/di all odd, that
(for suitable multiples N and δ := 1

2 mini e
−1
i ) the contribution from those faces to

|AN (P,Q, s)−AN−δ(P,Q, s)| does not tend to zero as N →∞.

Proof of Theorem 9. The approach resembles the proof of Theorems 5 and 6 in
Borwein-Borwein-Taylor [1, §IV]. We set

T (z) :=
∞∑

n1=−∞
· · ·

∞∑
nk=−∞

q(n1, . . . , nk)zQ(n1,... ,nk),

T~m(z) :=
m1∑

n1=−m1

· · ·
mk∑

nk=−mk

q(n1, . . . , nk)zQ(n1,... ,nk),

and define the normalized Mellin transform Ms(f) for Re s > 0 by

Ms(f) := Γ−1(s)
∫ ∞

0

f(t)ts−1dt.

We set
F (s) := Ms(T (e−t)− q(0, . . . , 0))

and observe that (since Ms(e−at) = a−s for a > 0)

A~m(s) = Ms(T~m(e−t)− q(0, . . . , 0)).

We shall need the following uniform boundedness lemma:

Lemma 3. For any t > 0 and integers Ni ≥ 0 (with at least one Ni > 0),

S :=

∣∣∣∣∣
∞∑

n1=N1

· · ·
∞∑

nk=Nk

q(n1, . . . , nk)e−tQ(n1,... ,nk)

∣∣∣∣∣ < Ce−λ(N2
1+···+N2

k)t

for some C = C(Q) > 0 and λ = λ(Q) > 0.
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Proof. We set
g(u1, . . . , uk) := e−Q(u1,... ,uk)

and write χ ~N for the characteristic function of the region {(u1, . . . , uk) ∈ Rk :
ui ≥ Ni}. Applying the partial summation technique employed in the proof of
Theorem 1,

∞∑
n=−∞

a(n)b(n) =
∞∑

n=−∞

(
n∑

l=−∞
a(l)

)
(b(n)− b(n+ 1))

= −
∞∑

n=−∞

(
n∑

l=−∞
a(l)

)∫ n+1

n

b′(u)du,

to each of the variables ni in turn, we obtain

S =

∣∣∣∣∣
∞∑

n1=−∞
· · ·

∞∑
nk=−∞

W (n1, . . . , nk)I(n1, . . . , nk)

∣∣∣∣∣ ,
where

W (n1, . . . , nk) :=
n1∑

r1=−∞
· · ·

nk∑
rk=−∞

q(r1, . . . , rk)χ ~N (r1, . . . , rk)

and

I(n1, . . . , nk) :=
∫ n1+1

n1

· · ·
∫ nk+1

nk

∂

∂u1
· · · ∂

∂uk
g(u1

√
t, . . . , uk

√
t) du1 · · · duk.

By assumption |W (n1, . . . , nk)| < B (vanishing unless ni ≥ Ni), and hence

S ≤ B

∫ ∞

N1

· · ·
∫ ∞

Nk

∣∣∣∣ ∂∂u1
· · · ∂

∂uk
g(u1

√
t, . . . , uk

√
t)
∣∣∣∣ du1 . . . duk

= B

∫ ∞

N1
√

t

· · ·
∫ ∞

Nk

√
t

∣∣∣∣ ∂∂u1
· · · ∂

∂uk
g(u1, . . . , uk)

∣∣∣∣ du1 . . . duk.

Now since Q(x1, . . . , xk) is positive definite, we have

Q(x1, . . . , xk) > 2λ(x2
1 + · · ·+ x2

k)

for some λ > 0, giving∣∣∣∣ ∂∂u1
· · · ∂

∂uk
g(u1, . . . , uk)

∣∣∣∣ ≤ |P (u1, . . . , uk)|e−2λ(u2
1+···+u2

k)

= O
(
e−λ(u2

1+···+u2
k)
)
,

where P (u1, . . . , uk) = PQ(u1, . . . , uk) is some polynomial of total degree k. Thus

S =
∫ ∞

N1
√

t

· · ·
∫ ∞

Nk

√
t

O
(
e−λ(u2

1+···+u2
k)
)
du1 . . . duk = O

(
e−λ(N2

1+···+N2
k)t
)
,

as claimed.

Observing that (replacing ui by −ui as necessary) T (e−t) − q(0, . . . , 0) can be
written as a sum of sums of the form S with at least one of the Ni ≥ 1, and
T (e−t)− T~m(e−λt) as a sum of sums with at least one Ni ≥ m = minmi, we have

T (e−t)− q(0, . . . , 0) = O
(
e−λt

)
, T (e−t)− Tm̄(e−t) = O

(
e−λm2t

)
.
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Hence

F (s) = Γ−1(s)
∫ ∞

0

(
T (e−t)− q(0, . . . , 0)

)
ts−1dt

= O

(∣∣Γ−1(s)
∣∣ ∫ ∞

0

e−λttσ−1dt

)
= O

(
Γ(σ)
|Γ(s)|

)
exists, and similarly

|F (s)−A~m(s)| = O

(∣∣Γ−1(s)
∣∣ ∫ ∞

0

e−λm2ttσ−1dt

)
= O

(
m−2σ Γ(σ)

|Γ(s)|
)
→ 0

as m→ ∞ in any region {s : σ > ε, |s| ≤ K} for a fixed positive ε and K. Thus
the limit exists and is analytic for all Re s > 0.

Proof of the §5 formulae. We recall the θ-functions

θ2(q) :=
∞∑

n=−∞
q(n+1/2)2 , θ3(q) :=

∞∑
n=−∞

qn2
,

and observe (as may be deduced from Zucker-Robertson [21, 22]) that when Q(
√−p)

is a unique factorisation domain containing u units
∞∑

n=1

r(n,Qp)qn := θ2(q)θ2(qp) + θ3(q)θ3(qp) = 1 + u

∞∑
n=1

(−p | n)
qn

(1 − qn)
.

Hence r(n,Qp), the number of integer representations of n by Qp(x, y), satisfies

r(n,Qp) = u
∑
d|n

(−p | d),

and (2) is plain.
When p = 3 or 7 we can relate r(n, p), the number of integer solutions of x2 +

py2 = n, to r(n,Qp). Setting N(x+ y
√−p) = x2 + py2 and writing

Qp(x, y) =
1
4
(x− y)2 +

1
4
p(x+ y)2,

it is easily seen that r(n, p) represents the number of integer solutions (x, y) of
N(x+y

√−p) = n, while r(n,Qp) represents the number of integer solutions (X,Y )
of N((X/2) + (Y/2)

√−p) = n with X and Y of the same parity. It is easily seen
(matching (x, y) = (X,Y )) that r(4n, p) = r(n,Qp), and by congruences modulo 4
that r(n, p) = 0 when n ≡ 2 (mod 4). When n is odd and p = 7, congruences modulo
8 show that if N((X/2)+(Y/2)

√−p) = n then X and Y are necessarily even (giving
a pairing (x, y) and (X/2, Y/2)), and r(n, 7) = r(n,Q7). When n is odd and p = 3,
putting ω =

(
1 +

√−3
)
/2, it is readily checked that exactly one of the r(n,Q3)

solutions ((X/2)+ (Y/2)
√−3), ((X/2)+ (Y/2)

√−3)ω and ((X/2)+ (Y/2)
√−3)ω2

will be of the form (x+ y
√−p), and hence that r(n, 3) = 1

3r(n,Q3).
Thus, setting λ = 1 or 1/3 as p = 7 or 3 respectively, we have
∞∑

n=1

(±1)nr(n, p)
ns

=
∞∑

n=1

r(n,Qp)
(4n)s

± λ

∞∑
n=1

n odd

r(n,Qp)
ns

=
(
4−s ± λ(1− 2−s)(1 − (−p | 2)2−s)

)( ∞∑
n=1

r(n,Qp)
ns

)
.
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So finally, noting that (−3 | 2) = −1, (−7 | 2) = 1 and (1 − 21−s)ζ(s) = α(s), we
have ∑

(x,y)∈Z2\(0,0)

1
(x2 + 3y2)s

= 2(1 + 21−2s)ζ(s)L−3(s),

∑
(x,y)∈Z2\(0,0)

(−1)x+y

(x2 + 3y2)s
= −2(1 + 21−s)α(s)L−3(s),

∑
(x,y)∈Z2\(0,0)

1
(x2 + 7y2)s

= 2(1− 21−s + 21−2s)ζ(s)L−7(s),

∑
(x,y)∈Z2\(0,0)

(−1)x+y

(x2 + 7y2)s
= −2α(s)L−7(s).
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