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Definition of a Flip

A flip operation in a graph is the deletion of an edge
followed by the insertion of a distinct edge such that
the resulting graph remains in the same graph class.
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In the literature, flips have been studied for many
different types of graph classes including:

Trees, Planar Graphs, Triangulations, Graphs
embedded on different surfaces (torus, higher genus,
projective plane, Klein bottle, etc..), Geometric
triangulations, Pseudo-triangulations, triangulated
polygons, convex polygons, maximal outer-planar
graphs . . .



Definition of a Flip

A flip operation in a graph is the deletion of an edge
followed by the insertion of a distinct edge such that
the resulting graph remains in the same graph class.
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Flips have been studied in the context of various
applications such as:

Meshes, Data Structures, Enumerating combina-
torial and geometric structures, Rigidity . . .



Definition of a Flip

A flip operation in a graph is the deletion of an edge
followed by the insertion of a distinct edge such that
the resulting graph remains in the same graph class.

flip operation

For this talk, I will concentrate on results specifically
related to flips in triangulations (in the combinatorial
setting and the geometric setting)



Definition of a Flip

The main question that has driven the research in this
area is essentially variants related to the following:

Given two n-vertex triangulations T1 and T2, is
there a finite sequence of edge flips that transforms T1

into a triangulation isomorphic to T2?

A flip operation in a graph is the deletion of an edge
followed by the insertion of a distinct edge such that
the resulting graph remains in the same graph class.

flip operation



Combinatorial Setting

• In the combinatorial setting, the graphs are triangulations
where every face including the outerface is a triangle.

• The triangulations are embedded combinatorially. That is:
the cyclic order of the edges around each vertex is defined.
This uniquely defines an embedding (Whitney, 1932).
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Combinatorial Setting

Illegal flip because it creates a parallel edge
so the graph is no longer simple

Flips in combinatorial setting:
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gulation T1 can be transformed into a triangulation isomorphic
to T2 with O(n2) flips.
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Ω(n) is a lower bound on the number of flips required to convert
one triangulation into another.



Combinatorial Setting

Wagner’s Canonical Triangulation

Komuro (1997) showed that O(n) flips suffice.

The key observation is that if the triangulation is not in
canonical form, two flips suffice to increase function by ≥ 1:

P (vi, vj) = 3 deg(vi) + deg(vj)

Since P (vi, vj) ≤ 4(n− 1) at most 8(n− 1) flips suffice.
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Combinatorial Setting

Wagner’s Canonical Triangulation
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Combinatorial Setting

Wagner’s Canonical Triangulation

vi vj

vk

Mori, Nakamoto and Ota (2003) improved this to 6n− 30.

The key step behind their proof is that n− 4 flips suffice to
convert any triangulation into a hamiltonian triangulation.

vk

4n−22 flips suffice to convert any hamiltonian triangulation
to any other. Therefore, 6n− 30 flips suffice to convert any
triangulation to any other.

vi
vj



Combinatorial Setting

Flip Graph: Every combinatorially distinct n-vertex tri-
angulation is a vertex. Two vertices are adjacent if the
two triangulations differ by exactly one flip.



Combinatorial Setting

Open Problems

• Are there triangulations that require n−4 edge flips to be
converted to hamiltonian?

• Is 4n − 22 a tight upper bound on the number of flips to
convert any hamiltonian triangulation into any other?

• Is 6n − 22 a tight upper bound on the number of flips to
convert any triangulation into any other?

• Given 2 triangulations, is it possible to determine the min-
imum number of flips to convert one into the other?
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Combinatorial Setting

Open Problems

• Are there triangulations that require n−4 edge flips to be
converted to hamiltonian?

• Is 4n − 22 a tight upper bound on the number of flips to
convert any hamiltonian triangulation into any other?

• Is 6n − 22 a tight upper bound on the number of flips to
convert any triangulation into any other?

• Given 2 triangulations, is it possible to determine the min-
imum number of flips to convert one into the other?

Main Problem in this area:

Given two n-vertex triangulations, can you convert one
into the other using the minimum number of flips?



Combinatorial Setting

What is the maximum number of flippable edges in an n-vertex
triangulations?
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Lower Bound: Start with any triangulation and add one vertex
inside each face. This gives at most n− 2 flippable edges.
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Gao, Urrutia and Wang (2001) showed that in every n-vertex
triangulation, there are always at least (n − 2) flippable edges
and there exist triangulations where this bound is reached

Lower Bound: Start with any triangulation and add one vertex
inside each face. This gives at most n− 2 flippable edges.



Combinatorial Setting

Open Problem

What is the minimum, maximum and average degree of a
vertex in the flip graph?
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Galtier, Hurtado, Noy, Pérennes and Urrutia (2003) introduced
the notion of Simultaneous Flips



Combinatorial Setting
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the notion of Simultaneous Flips



Overview of Results in Combinatorial Simultaneous Setting

1. With one simultaneous flip, any triangulation can be converted to a
hamiltonian triangulation.

2. O(log n) simultaneous flips suffice to convert any triangulation
into another.

3. There exists a simple lower bound of Ω(log n).

4. There exist triangulations with at most 6n/7 edges that can be
flipped simultaneously.

5. Every triangulation has at least (n− 2)/3 edges that can be flipped
simultaneously.

Bose, Czyzowicz, Gao, Morin, and Wood (2005)



Converting one triangulation to another

Outline of the idea to convert G1 to G2

1. Convert G1 to a hamiltonian triangulation with 1 parallel flip.

2. Convert interior of the hamiltonian cycle to a star with O(log n) flips.

3. Convert exterior of the hamiltonian cycle to a star with O(log n) flips.

4. Run this backwards to get G2 with O(log n) flips.
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Outline of the idea to convert G1 to G2
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Lower Bound

Ω(log n) simultaneous flips



Simultaneous Flips - Upper Bound

Theorem 1 There exists an infinite family of triangulations that admits
exactly 6(n− 2)/7 simultaneous flips.
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Open Problems

• Can one close the gap in the constant between the up-
per and lower bound on the number of simultaneous flips
needed to convert one triangulation into another?

• Can one compute a set of simultaneous flips that converts
one triangulation into another that is sensitive to the min-
imum number of simultaneous flips required?

• Can one close the gap between the upper bound of 6(n −
2)/7 and lower bound of (n−2)/3 on the number of simul-
taneously flippable edges?
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Geometric Setting

Lawson (1977) proved the seminal result in this setting. He
showed that O(n2) flips are sufficient to convert any triangu-
lation of n points to any other triangulation of the same n
points in the plane.

The canonical triangulation that Lawson used is the Delaunay
triangulation.

Key idea: Once an edge is flipped out, it is never flipped
back in.



Geometric Setting

Hurtado, Noy and Urrutia (1999) showed that there exists a pair
of triangulations that require (n−1)2 flips to transform one into
the other.
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Geometric Setting

Open Problem

1. Given an arbitrary triangulation of n points, can one
convert this triangulation into a hamiltonian triangu-
lation using o(n2) flips?

2. Can one compute a triangulation simply that allows
you to flip to a (Greedy, Delaunay, etc) triangulation
in o(n2) flips?

3. Given two triangulations, can one find the minimum
number of flips to convert one triangulation into the
other?
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Geometric Setting

Hanke, Ottmann and Schuierer (1996) proved the following:
Let T1 and T2 be two triangulations of the same n points in
the plane. Let M be the number of intersections between the
edges of T1 and T2. At most M flips are sufficient to convert
T1 into T2.

Key Idea: There always exists an edge that can be flipped
that reduces the number of intersections.



Simultaneous Flips in Geometric Setting

Gaultier, Hurtado, Noy, Pérennes and Urrutia (2003) in-
troduced the notion of simultaneous flips. They proved the
following:

1. Ω(n) simultaneous geometric flips are sometimes neces-
sary to convert one triangulation to another.

2. O(n) simultaneous geometric flips are sufficient to con-
vert one triangulation to another.

3. There always exist (n − 6)/4 edges that can be simul-
taneously flipped and there are triangulations where at
most (n− 4)/5 edges can be flipped simultaneously.



Simultaneous Flips in Geometric Setting

Number of flips satisfies the recur-
rence:
F (n) = F (n/2) + O(n) which re-
solves to O(n).



Simultaneous Flips in Geometric Setting

Key idea for lower bound: (n− 4)/2 edges are individually
flippable. At least a 1/3 of them can be flipped simultane-
ously which give (n− 4)/6.



Simultaneous Flips in Geometric Setting

Open Problems

1. Can the gap between 1/6 and 1/5 be closed between
the upper and lower bound on number of edges that
can be flipped simultaneously?

2. Can one flip simultaneously to a hamiltonian triangu-
lation in o(n) simultaneous flips?

3. Can one flip to the (Greedy, Delaunay, etc) triangu-
lation in o(n2) simultaneous flips?

4. Can one compute simultaneous flips in parallel?

5. Can one compute simultaneous flips that is sensitive
to the minimum number of simultaneous flips required
to convert a triangulation to another?



Extensions of the Geometric Setting

There exist discrepancies between the combinatorial setting
and geometric setting.
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Extensions of the Geometric Setting

Abellanas, Bose, Olaverri, Hurtado, Ramos, Rivera-Campo
and Tejel (2004) showed that O(n) point moves and O(n2)
edge flips are sufficient to convert any triangulation to any
other triangulation.

Aloupis, Bose, and Morin (2004) showed that O(n log n)
flips and moves are sufficient to convert any triangulation to
any other.



Thank you! Question?


