1. Introduction

- mathematical optimization
- least-squares and linear programming
- convex optimization
- example
- course goals and topics
- nonlinear optimization
- brief history of convex optimization

Mathematical optimization

(mathematical) optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i$, $i = 1, ..., m$

- $x = (x_1, \ldots, x_n)$: optimization variables
- $f_0: \mathbf{R}^n \to \mathbf{R}$: objective function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$: constraint functions

optimal solution x^{\star} has smallest value of f_0 among all vectors that satisfy the constraints

Examples

portfolio optimization

- variables: amounts invested in different assets
- constraints: budget, max./min. investment per asset, minimum return
- objective: overall risk or return variance

device sizing in electronic circuits

- variables: device widths and lengths
- constraints: manufacturing limits, timing requirements, maximum area
- objective: power consumption

data fitting

- variables: model parameters
- constraints: prior information, parameter limits
- objective: measure of misfit or prediction error

Solving optimization problems

general optimization problem

- very difficult to solve
- methods involve some compromise, *e.g.*, very long computation time, or not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

- least-squares problems
- linear programming problems
- convex optimization problems

Least-squares

minimize $||Ax - b||_2^2$

solving least-squares problems

- analytical solution: $x^{\star} = (A^T A)^{-1} A^T b$
- reliable and efficient algorithms and software
- computation time proportional to n^2k ($A \in \mathbf{R}^{k \times n}$); less if structured
- a mature technology

using least-squares

- least-squares problems are easy to recognize
- a few standard techniques increase flexibility (*e.g.*, including weights, adding regularization terms)

Linear programming

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

solving linear programs

- no analytical formula for solution
- reliable and efficient algorithms and software
- computation time proportional to n^2m if $m \ge n$; less with structure
- a mature technology

using linear programming

- not as easy to recognize as least-squares problems
- a few standard tricks used to convert problems into linear programs (*e.g.*, problems involving ℓ_1 or ℓ_∞ -norms, piecewise-linear functions)

Convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i$, $i = 1, ..., m$

• objective and constraint functions are convex:

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

 $\text{ if } \alpha+\beta=1 \text{, } \alpha\geq 0 \text{, } \beta\geq 0 \\$

• includes least-squares problems and linear programs as special cases

solving convex optimization problems

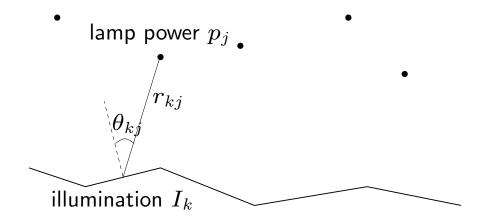
- no analytical solution
- reliable and efficient algorithms
- computation time (roughly) proportional to $\max\{n^3, n^2m, F\}$, where F is cost of evaluating f_i 's and their first and second derivatives
- almost a technology

using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
- surprisingly many problems can be solved via convex optimization

Example

m lamps illuminating n (small, flat) patches



intensity I_k at patch k depends linearly on lamp powers p_j :

$$I_k = \sum_{j=1}^m a_{kj} p_j, \qquad a_{kj} = r_{kj}^{-2} \max\{\cos \theta_{kj}, 0\}$$

problem: achieve desired illumination I_{des} with bounded lamp powers

minimize
$$\max_{k=1,...,n} |\log I_k - \log I_{des}|$$

subject to $0 \le p_j \le p_{max}, \quad j = 1,...,m$

how to solve?

- 1. use uniform power: $p_j = p$, vary p
- 2. use least-squares:

minimize
$$\sum_{k=1}^{n} (I_k - I_{des})^2$$

round p_j if $p_j > p_{\max}$ or $p_j < 0$

3. use weighted least-squares:

minimize
$$\sum_{k=1}^{n} (I_k - I_{des})^2 + \sum_{j=1}^{m} w_j (p_j - p_{max}/2)^2$$

iteratively adjust weights w_j until $0 \le p_j \le p_{\max}$

4. use linear programming:

$$\begin{array}{ll} \text{minimize} & \max_{k=1,\ldots,n} |I_k - I_{\text{des}}| \\ \text{subject to} & 0 \le p_j \le p_{\max}, \quad j = 1,\ldots,m \end{array}$$

which can be solved via linear programming

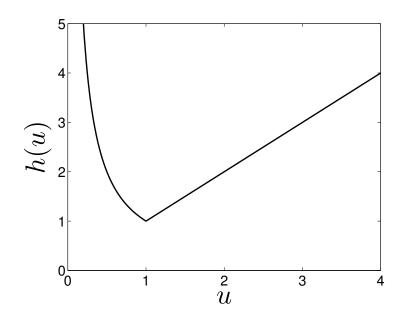
of course these are approximate (suboptimal) 'solutions'

5. use convex optimization: problem is equivalent to

minimize
$$f_0(p) = \max_{k=1,...,n} h(I_k/I_{des})$$

subject to $0 \le p_j \le p_{max}, \quad j = 1,...,m$

with $h(u) = \max\{u, 1/u\}$



 f_0 is convex because maximum of convex functions is convex

exact solution obtained with effort \approx modest factor \times least-squares effort

additional constraints: does adding 1 or 2 below complicate the problem?

- 1. no more than half of total power is in any 10 lamps
- 2. no more than half of the lamps are on $(p_j > 0)$
- answer: with (1), still easy to solve; with (2), extremely difficult
- moral: (untrained) intuition doesn't always work; without the proper background very easy problems can appear quite similar to very difficult problems

Course goals and topics

goals

- 1. recognize/formulate problems (such as the illumination problem) as convex optimization problems
- 2. develop code for problems of moderate size (1000 lamps, 5000 patches)
- 3. characterize optimal solution (optimal power distribution), give limits of performance, etc.

topics

- 1. convex sets, functions, optimization problems
- 2. examples and applications
- 3. algorithms

Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises

local optimization methods (nonlinear programming)

- find a point that minimizes f_0 among feasible points near it
- fast, can handle large problems
- require initial guess
- provide no information about distance to (global) optimum

global optimization methods

- find the (global) solution
- worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems

Introduction

Brief history of convex optimization

theory (convex analysis): ca1900–1970

algorithms

- 1947: simplex algorithm for linear programming (Dantzig)
- 1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . .)
- 1970s: ellipsoid method and other subgradient methods
- 1980s: polynomial-time interior-point methods for linear programming (Karmarkar 1984)
- late 1980s-now: polynomial-time interior-point methods for nonlinear convex optimization (Nesterov & Nemirovski 1994)

applications

- before 1990: mostly in operations research; few in engineering
- since 1990: many new applications in engineering (control, signal processing, communications, circuit design, . . .); new problem classes (semidefinite and second-order cone programming, robust optimization)

Convex Optimization — Boyd & Vandenberghe

2. Convex sets

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities

Affine set

line through x_1 , x_2 : all points

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations $\{x \mid Ax = b\}$

(conversely, every affine set can be expressed as solution set of system of linear equations)

Convex set

line segment between x_1 and x_2 : all points

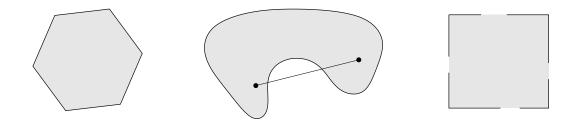
$$x = \theta x_1 + (1 - \theta) x_2$$

with $0 \le \theta \le 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$$

examples (one convex, two nonconvex sets)



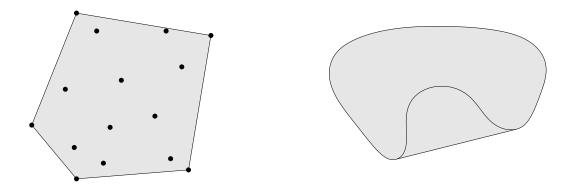
Convex combination and convex hull

convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with $\theta_1 + \cdots + \theta_k = 1$, $\theta_i \ge 0$

convex hull conv S: set of all convex combinations of points in S

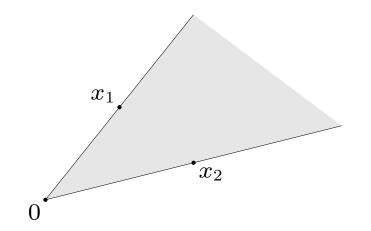


Convex cone

conic (nonnegative) combination of x_1 and x_2 : any point of the form

 $x = \theta_1 x_1 + \theta_2 x_2$

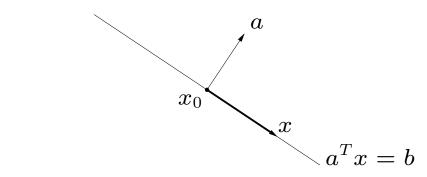
with $\theta_1 \ge 0$, $\theta_2 \ge 0$



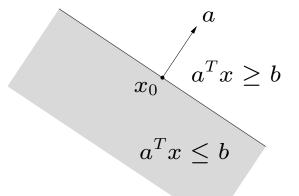
convex cone: set that contains all conic combinations of points in the set

Hyperplanes and halfspaces

hyperplane: set of the form $\{x \mid a^T x = b\}$ $(a \neq 0)$



halfspace: set of the form $\{x \mid a^T x \leq b\}$ $(a \neq 0)$



- *a* is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Euclidean balls and ellipsoids

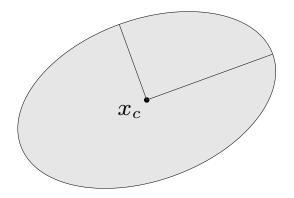
(Euclidean) ball with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with $P \in \mathbf{S}_{++}^n$ (*i.e.*, P symmetric positive definite)



other representation: $\{x_c + Au \mid ||u||_2 \leq 1\}$ with A square and nonsingular

Norm balls and norm cones

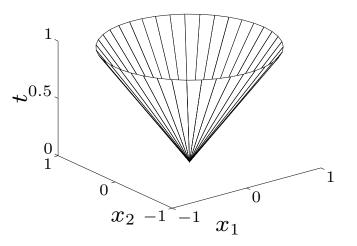
norm: a function $\|\cdot\|$ that satisfies

- $||x|| \ge 0$; ||x|| = 0 if and only if x = 0
- ||tx|| = |t| ||x|| for $t \in \mathbf{R}$
- $||x + y|| \le ||x|| + ||y||$

notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{symb}$ is particular norm **norm ball** with center x_c and radius r: $\{x \mid ||x - x_c|| \le r\}$

norm cone: $\{(x,t) \mid ||x|| \le t\}$

Euclidean norm cone is called secondorder cone



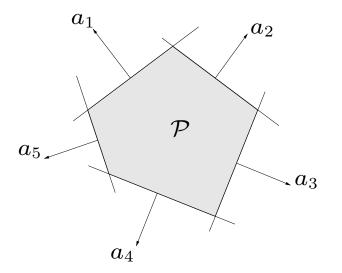
norm balls and cones are convex

Polyhedra

solution set of finitely many linear inequalities and equalities

$$Ax \leq b, \qquad Cx = d$$

 $(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \preceq \text{ is componentwise inequality})$



polyhedron is intersection of finite number of halfspaces and hyperplanes

Positive semidefinite cone

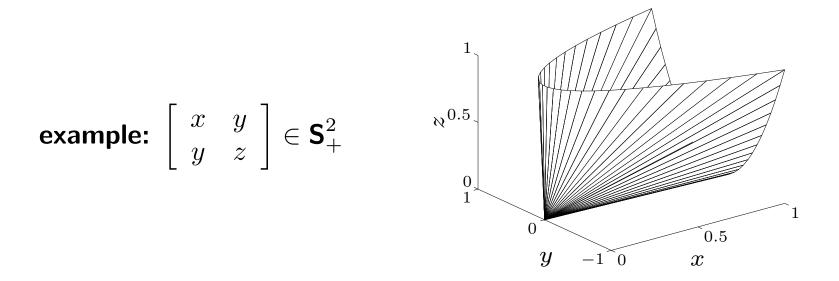
notation:

- \mathbf{S}^n is set of symmetric $n \times n$ matrices
- $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$: positive semidefinite $n \times n$ matrices

$$X \in \mathbf{S}^n_+ \quad \Longleftrightarrow \quad z^T X z \ge 0 \text{ for all } z$$

 \mathbf{S}_{+}^{n} is a convex cone

• $\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n \mid X \succ 0\}$: positive definite $n \times n$ matrices



Operations that preserve convexity

practical methods for establishing convexity of a set ${\cal C}$

1. apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . .) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

Intersection

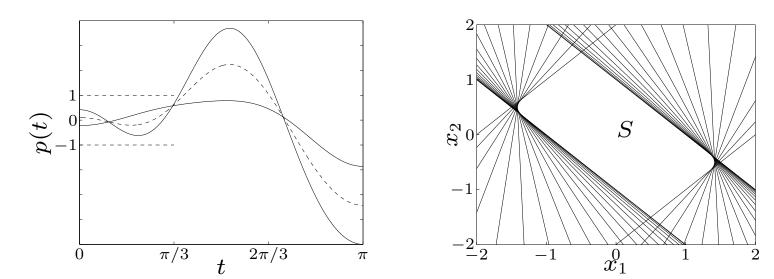
the intersection of (any number of) convex sets is convex

example:

$$S = \{ x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3 \}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \dots + x_m \cos mt$

for m = 2:



Affine function

suppose $f : \mathbf{R}^n \to \mathbf{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m)$

• the image of a convex set under f is convex

 $S \subseteq \mathbf{R}^n \text{ convex} \implies f(S) = \{f(x) \mid x \in S\} \text{ convex}$

• the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbf{R}^m$$
 convex $\implies f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\}$ convex

examples

- scaling, translation, projection
- solution set of linear matrix inequality {x | x₁A₁ + · · · + x_mA_m ≤ B} (with A_i, B ∈ S^p)
- hyperbolic cone $\{x \mid x^T P x \leq (c^T x)^2, c^T x \geq 0\}$ (with $P \in \mathbf{S}^n_+$)

Perspective and linear-fractional function

perspective function $P : \mathbb{R}^{n+1} \to \mathbb{R}$:

$$P(x,t) = x/t,$$
 dom $P = \{(x,t) \mid t > 0\}$

images and inverse images of convex sets under perspective are convex

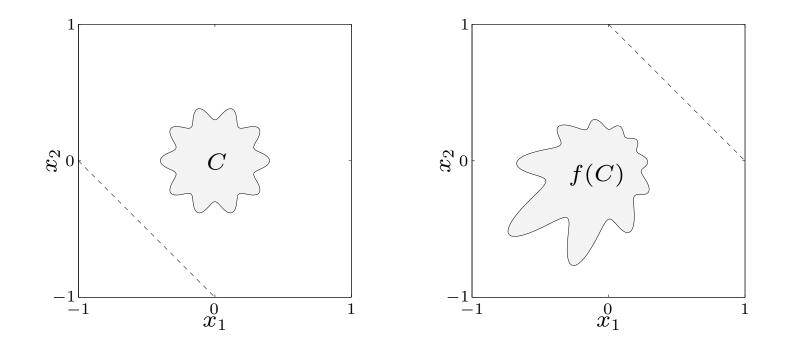
linear-fractional function $f : \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax+b}{c^T x+d}, \quad \text{dom} f = \{x \mid c^T x+d > 0\}$$

images and inverse images of convex sets under linear-fractional functions are convex

example of a linear-fractional function

$$f(x) = \frac{1}{x_1 + x_2 + 1}x$$



Generalized inequalities

a convex cone $K \subseteq \mathbf{R}^n$ is a **proper cone** if

- K is closed (contains its boundary)
- *K* is solid (has nonempty interior)
- K is pointed (contains no line)

examples

- nonnegative orthant $K = \mathbf{R}^n_+ = \{x \in \mathbf{R}^n \mid x_i \ge 0, i = 1, \dots, n\}$
- positive semidefinite cone $K = \mathbf{S}^n_+$
- nonnegative polynomials on [0,1]:

$$K = \{ x \in \mathbf{R}^n \mid x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0, 1] \}$$

generalized inequality defined by a proper cone K:

$$x \preceq_K y \quad \Longleftrightarrow \quad y - x \in K, \qquad x \prec_K y \quad \Longleftrightarrow \quad y - x \in \operatorname{int} K$$

examples

• componentwise inequality $(K = \mathbf{R}^n_+)$

$$x \preceq_{\mathbf{R}^n_+} y \iff x_i \le y_i, \quad i = 1, \dots, n$$

• matrix inequality $(K = \mathbf{S}_{+}^{n})$

$$X \preceq_{\mathbf{S}^n_+} Y \iff Y - X$$
 positive semidefinite

these two types are so common that we drop the subscript in \preceq_K **properties:** many properties of \preceq_K are similar to \leq on **R**, *e.g.*,

$$x \preceq_K y, \quad u \preceq_K v \implies x + u \preceq_K y + v$$

Minimum and minimal elements

 \preceq_K is not in general a *linear ordering*: we can have $x \not\preceq_K y$ and $y \not\preceq_K x$ $x \in S$ is **the minimum element** of S with respect to \preceq_K if

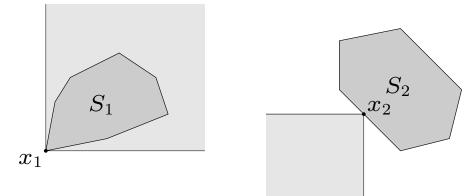
$$y \in S \implies x \preceq_K y$$

 $x \in S$ is a minimal element of S with respect to \leq_K if

$$y \in S, \quad y \preceq_K x \implies y = x$$

example $(K = \mathbf{R}^2_+)$

 x_1 is the minimum element of S_1 x_2 is a minimal element of S_2



Separating hyperplane theorem

if C and D are disjoint convex sets, then there exists $a \neq 0$, b such that

 $a^{T}x \leq b \text{ for } x \in C, \qquad a^{T}x \geq b \text{ for } x \in D$ $a^{T}x \geq b \qquad a^{T}x \leq b$ $D \qquad C$ $a \qquad C$

the hyperplane $\{x \mid a^T x = b\}$ separates C and D

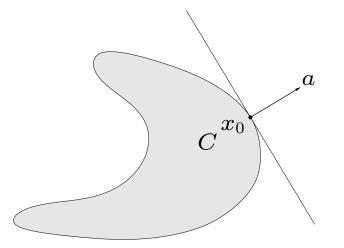
strict separation requires additional assumptions (e.g., C is closed, D is a singleton)

Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_0 :

$$\{x \mid a^T x = a^T x_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$



supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

Dual cones and generalized inequalities

dual cone of a cone *K*:

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

examples

- $K = \mathbf{R}^n_+$: $K^* = \mathbf{R}^n_+$
- $K = \mathbf{S}_+^n$: $K^* = \mathbf{S}_+^n$
- $K = \{(x,t) \mid ||x||_2 \le t\}$: $K^* = \{(x,t) \mid ||x||_2 \le t\}$
- $K = \{(x,t) \mid ||x||_1 \le t\}$: $K^* = \{(x,t) \mid ||x||_\infty \le t\}$

first three examples are self-dual cones

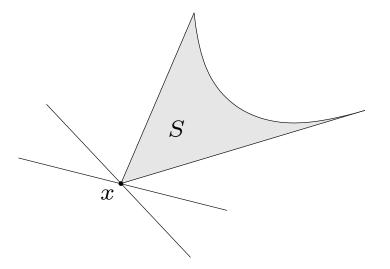
dual cones of proper cones are proper, hence define generalized inequalities:

$$y \succeq_{K^*} 0 \iff y^T x \ge 0 \text{ for all } x \succeq_K 0$$

Minimum and minimal elements via dual inequalities

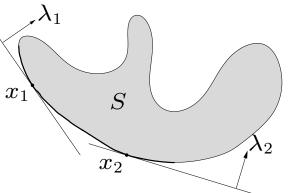
minimum element w.r.t. \preceq_K

x is minimum element of S iff for all $\lambda \succ_{K^*} 0$, x is the unique minimizer of $\lambda^T z$ over S



minimal element w.r.t. \succeq_K

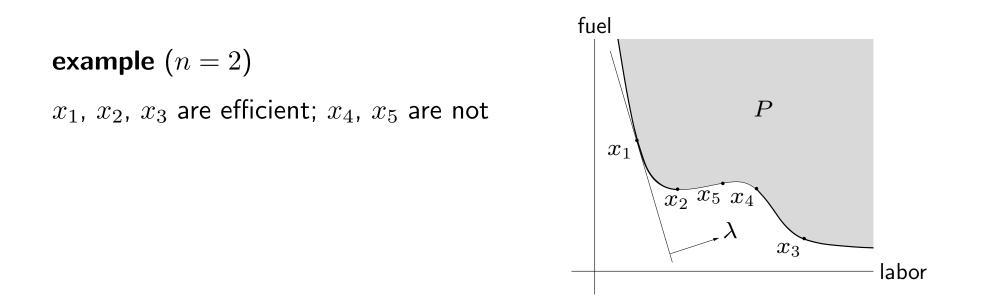
• if x minimizes $\lambda^T z$ over S for some $\lambda \succ_{K^*} 0$, then x is minimal



• if x is a minimal element of a *convex* set S, then there exists a nonzero $\lambda \succeq_{K^*} 0$ such that x minimizes $\lambda^T z$ over S

optimal production frontier

- different production methods use different amounts of resources $x \in \mathbf{R}^n$
- production set P: resource vectors x for all possible production methods
- efficient (Pareto optimal) methods correspond to resource vectors x that are minimal w.r.t. Rⁿ₊



Convex Optimization — Boyd & Vandenberghe

3. Convex functions

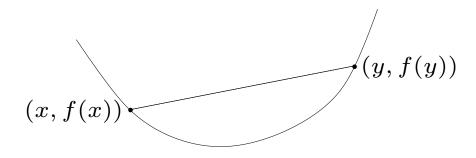
- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions
- log-concave and log-convex functions
- convexity with respect to generalized inequalities

Definition

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\mathbf{dom} f$ is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \operatorname{\mathbf{dom}} f$, $0 \le \theta \le 1$



- f is concave if -f is convex
- f is strictly convex if $\operatorname{dom} f$ is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for
$$x,y\in \operatorname{\mathbf{dom}} f$$
 , $x\neq y$, $0<\theta<1$

Examples on R

convex:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- exponential: e^{ax} , for any $a \in \mathbf{R}$
- powers: x^{α} on $\mathbf{R}_{++}\text{, for }\alpha\geq 1$ or $\alpha\leq 0$
- powers of absolute value: $|x|^p$ on **R**, for $p \ge 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}

concave:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

Examples on \mathbb{R}^n and \mathbb{R}^{m \times n}

affine functions are convex and concave; all norms are convex

examples on \mathbb{R}^n

- affine function $f(x) = a^T x + b$
- norms: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \ge 1$; $||x||_{\infty} = \max_k |x_k|$

examples on $\mathbb{R}^{m \times n}$ ($m \times n$ matrices)

• affine function

$$f(X) = \mathbf{tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

• spectral (maximum singular value) norm

$$f(X) = \|X\|_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

Restriction of a convex function to a line

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if and only if the function $g: \mathbf{R} \to \mathbf{R}$,

$$g(t) = f(x + tv), \qquad \operatorname{dom} g = \{t \mid x + tv \in \operatorname{dom} f\}$$

is convex (in t) for any $x \in \operatorname{\mathbf{dom}} f$, $v \in \mathbf{R}^n$

can check convexity of f by checking convexity of functions of one variable example. $f : \mathbf{S}^n \to \mathbf{R}$ with $f(X) = \log \det X$, $\operatorname{dom} X = \mathbf{S}_{++}^n$

$$g(t) = \log \det(X + tV) = \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2})$$

= $\log \det X + \sum_{i=1}^{n} \log(1 + t\lambda_i)$

where λ_i are the eigenvalues of $X^{-1/2}VX^{-1/2}$

g is concave in t (for any choice of $X \succ 0$, V); hence f is concave

Convex functions

Extended-value extension

extended-value extension \tilde{f} of f is

$$\tilde{f}(x) = f(x), \quad x \in \operatorname{dom} f, \qquad \tilde{f}(x) = \infty, \quad x \not\in \operatorname{dom} f$$

often simplifies notation; for example, the condition

$$0 \le \theta \le 1 \quad \Longrightarrow \quad \tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

(as an inequality in $\mathbf{R} \cup \{\infty\}$), means the same as the two conditions

- $\mathbf{dom} f$ is convex
- for $x, y \in \operatorname{\mathbf{dom}} f$,

$$0 \le \theta \le 1 \implies f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

First-order condition

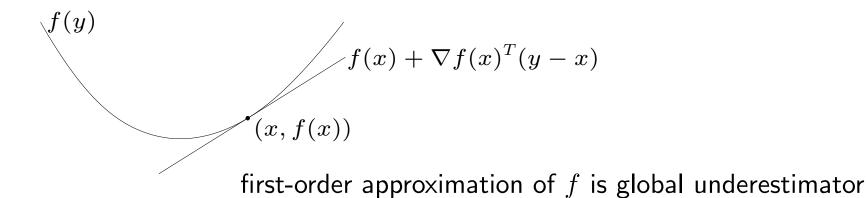
f is differentiable if $\operatorname{\mathbf{dom}} f$ is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

1st-order condition: differentiable f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \operatorname{dom} f$



Second-order conditions

f is twice differentiable if dom f is open and the Hessian $\nabla^2 f(x) \in \mathbf{S}^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

2nd-order conditions: for twice differentiable f with convex domain

• f is convex if and only if

$$\nabla^2 f(x) \succeq 0$$
 for all $x \in \operatorname{\mathbf{dom}} f$

• if $\nabla^2 f(x) \succ 0$ for all $x \in \operatorname{\mathbf{dom}} f$, then f is strictly convex

Examples

quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$ (with $P \in \mathbf{S}^n$)

$$\nabla f(x) = Px + q, \qquad \nabla^2 f(x) = P$$

convex if $P \succeq 0$

least-squares objective: $f(x) = ||Ax - b||_2^2$

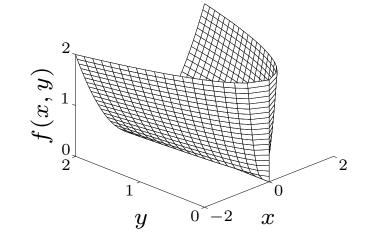
$$\nabla f(x) = 2A^T (Ax - b), \qquad \nabla^2 f(x) = 2A^T A$$

convex (for any A)

quadratic-over-linear: $f(x,y) = x^2/y$

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0$$

convex for y > 0



Convex functions

sum-log-exp: $f(x) = \log \sum_{k=1}^{n} \exp x_k$ is convex

$$\nabla^2 f(x) = \frac{1}{\mathbf{1}^T z} \operatorname{diag}(z) - \frac{1}{(\mathbf{1}^T z)^2} z z^T \qquad (z_k = \exp x_k)$$

to show $\nabla^2 f(x) \succeq 0$, we must verify that $v^T \nabla^2 f(x) \ge 0$ for all v:

$$v^T \nabla^2 f(x) v = \frac{(\sum_k z_k v_k^2) (\sum_k z_k) - (\sum_k v_k z_k)^2}{(\sum_k z_k)^2} \ge 0$$

since $(\sum_k v_k z_k)^2 \leq (\sum_k z_k v_k^2) (\sum_k z_k)$ (from Cauchy-Schwarz inequality)

geometric mean: $f(x) = (\prod_{k=1}^{n} x_k)^{1/n}$ on \mathbb{R}^n_{++} is concave (similar proof as for log-sum-exp)

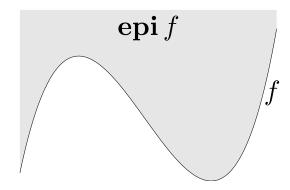
Epigraph and sublevel set

 α -sublevel set of $f : \mathbf{R}^n \to \mathbf{R}$:

$$C_{\alpha} = \{ x \in \operatorname{dom} f \mid f(x) \le \alpha \}$$

sublevel sets of convex functions are convex (converse is false) epigraph of $f : \mathbb{R}^n \to \mathbb{R}$:

$$\mathbf{epi}\,f = \{(x,t) \in \mathbf{R}^{n+1} \mid x \in \mathbf{dom}\,f, \ f(x) \le t\}$$



f is convex if and only if epi f is a convex set

Convex functions

Jensen's inequality

basic inequality: if f is convex, then for $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

extension: if f is convex, then

 $f(\mathbf{E}\,z) \le \mathbf{E}\,f(z)$

for any random variable z

basic inequality is special case with discrete distribution

$$\operatorname{prob}(z=x) = \theta, \quad \operatorname{prob}(z=y) = 1 - \theta$$

Operations that preserve convexity

practical methods for establishing convexity of a function

- 1. verify definition (often simplified by restricting to a line)
- 2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$
- 3. show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective

Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals) composition with affine function: f(Ax + b) is convex if f is convex

examples

• log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{x \mid a_i^T x < b_i, i = 1, \dots, m\}$$

• (any) norm of affine function: f(x) = ||Ax + b||

Pointwise maximum

if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex

examples

- piecewise-linear function: $f(x) = \max_{i=1,...,m}(a_i^T x + b_i)$ is convex
- sum of r largest components of $x \in \mathbf{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

is convex $(x_{[i]}$ is *i*th largest component of x) proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

Pointwise supremum

if f(x,y) is convex in x for each $y \in \mathcal{A}$, then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex

examples

- support function of a set C: $S_C(x) = \sup_{y \in C} y^T x$ is convex
- distance to farthest point in a set C:

$$f(x) = \sup_{y \in C} \|x - y\|$$

• maximum eigenvalue of symmetric matrix: for $X \in \mathbf{S}^n$,

$$\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} y^T X y$$

Composition with scalar functions

composition of $g : \mathbf{R}^n \to \mathbf{R}$ and $h : \mathbf{R} \to \mathbf{R}$:

$$f(x) = h(g(x))$$

f is convex if $\begin{array}{c}g \text{ convex, }h \text{ convex, }\tilde{h} \text{ nondecreasing}\\g \text{ concave, }h \text{ convex, }\tilde{h} \text{ nonincreasing}\end{array}$

• proof (for
$$n = 1$$
, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

• note: monotonicity must hold for extended-value extension \tilde{h}

examples

- $\exp g(x)$ is convex if g is convex
- 1/g(x) is convex if g is concave and positive

Vector composition

composition of $g : \mathbf{R}^n \to \mathbf{R}^k$ and $h : \mathbf{R}^k \to \mathbf{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$$

f is convex if $\begin{array}{c} g_i \text{ convex, } h \text{ convex, } \tilde{h} \text{ nondecreasing in each argument} \\ g_i \text{ concave, } h \text{ convex, } \tilde{h} \text{ nonincreasing in each argument} \end{array}$

proof (for n = 1, differentiable g, h)

$$f''(x) = g'(x)\nabla^2 h(g(x))g'(x) + \nabla h(g(x))^T g''(x)$$

examples

- $\sum_{i=1}^{m} \log g_i(x)$ is concave if if g_i are concave and positive
- $\log \sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i are convex

Minimization

if f(x,y) is convex in (x,y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex

examples

•
$$f(x,y) = x^T A x + 2x^T B y + y^T C y$$
 with

$$\left[\begin{array}{cc} A & B \\ B^T & C \end{array}\right] \succeq 0, \qquad C \succ 0$$

minimizing over y gives $g(x) = \inf_y f(x, y) = x^T (A - BC^{-1}B^T) x$

g is convex, hence Schur complement $A - BC^{-1}B^T \succeq 0$

• distance to a set: $\operatorname{dist}(x, S) = \inf_{y \in S} ||x - y||$ is convex if S is convex

Perspective

the **perspective** of a function $f : \mathbf{R}^n \to \mathbf{R}$ is the function $g : \mathbf{R}^n \times \mathbf{R} \to \mathbf{R}$,

$$g(x,t) = tf(x/t), \quad \text{dom} g = \{(x,t) \mid x/t \in \text{dom} f, t > 0\}$$

g is convex if f is convex

examples

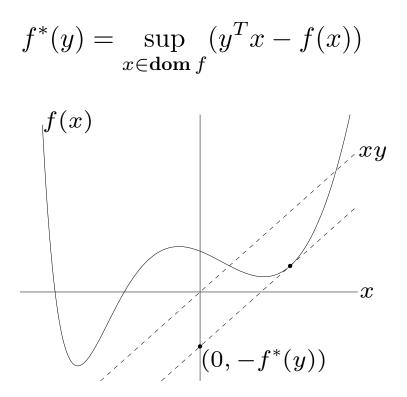
- $f(x) = x^T x$ is convex; hence $g(x,t) = x^T x/t$ is convex for t > 0
- negative logarithm $f(x) = -\log x$ is convex; hence relative entropy $g(x,t) = t\log t t\log x$ is convex on \mathbf{R}^2_{++}
- if f is convex, then

$$g(x) = (c^T x + d) f\left((Ax + b)/(c^T x + d)\right)$$

is convex on $\{x \mid c^T x + d > 0, \ (Ax + b)/(c^T x + d) \in \operatorname{\mathbf{dom}} f\}$

The conjugate function

the **conjugate** of a function f is



- f^* is convex (even if f is not)
- will be useful in chapter 5

examples

• negative logarithm $f(x) = -\log x$

$$f^{*}(y) = \sup_{x>0} (xy + \log x)$$
$$= \begin{cases} -1 - \log(-y) & y < 0\\ \infty & \text{otherwise} \end{cases}$$

• strictly convex quadratic $f(x) = (1/2) x^T Q x$ with $Q \in \mathbf{S}_{++}^n$

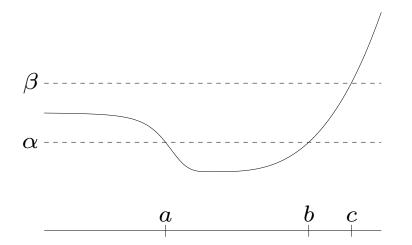
$$f^{*}(y) = \sup_{x} (y^{T}x - (1/2)x^{T}Qx)$$
$$= \frac{1}{2}y^{T}Q^{-1}y$$

Quasiconvex functions

 $f: \mathbf{R}^n \to \mathbf{R}$ is quasiconvex if $\mathbf{dom} f$ is convex and the sublevel sets

$$S_{\alpha} = \{ x \in \operatorname{dom} f \mid f(x) \le \alpha \}$$

are convex for all α



- f is quasiconcave if -f is quasiconvex
- f is quasilinear if it is quasiconvex and quasiconcave

Examples

- $\sqrt{|x|}$ is quasiconvex on **R**
- $\operatorname{ceil}(x) = \inf\{z \in \mathbf{Z} \mid z \ge x\}$ is quasilinear
- $\log x$ is quasilinear on \mathbf{R}_{++}
- $f(x_1, x_2) = x_1 x_2$ is quasiconcave on \mathbf{R}^2_{++}
- linear-fractional function

$$f(x) = \frac{a^T x + b}{c^T x + d}, \qquad \text{dom} f = \{x \mid c^T x + d > 0\}$$

is quasilinear

• distance ratio

$$f(x) = \frac{\|x - a\|_2}{\|x - b\|_2}, \qquad \mathbf{dom} \ f = \{x \mid \|x - a\|_2 \le \|x - b\|_2\}$$

is quasiconvex

internal rate of return

- cash flow $x = (x_0, \ldots, x_n)$; x_i is payment in period i (to us if $x_i > 0$)
- we assume $x_0 < 0$ and $x_0 + x_1 + \dots + x_n > 0$
- present value of cash flow x, for interest rate r:

$$PV(x,r) = \sum_{i=0}^{n} (1+r)^{-i} x_i$$

• internal rate of return is smallest interest rate for which PV(x, r) = 0:

$$\operatorname{IRR}(x) = \inf\{r \ge 0 \mid \operatorname{PV}(x, r) = 0\}$$

IRR is quasiconcave: superlevel set is intersection of halfspaces

$$\operatorname{IRR}(x) \ge R \quad \Longleftrightarrow \quad \sum_{i=0}^{n} (1+r)^{-i} x_i \ge 0 \text{ for } 0 \le r \le R$$

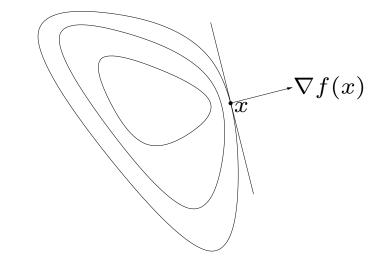
Properties

modified Jensen inequality: for quasiconvex f

$$0 \le \theta \le 1 \quad \Longrightarrow \quad f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}$$

first-order condition: differentiable f with cvx domain is quasiconvex iff

$$f(y) \le f(x) \implies \nabla f(x)^T (y - x) \le 0$$



sums of quasiconvex functions are not necessarily quasiconvex

Log-concave and log-convex functions

a positive function f is log-concave if $\log f$ is concave:

$$f(\theta x + (1 - \theta)f(y)) \ge f(x)^{\theta}f(y)^{1-\theta}$$
 for $0 \le \theta \le 1$

f is log-convex if $\log f$ is convex

- powers: x^a on \mathbf{R}_{++} is log-convex for $a \leq 0$, log-concave for $a \geq 0$
- many common probability densities are log-concave, *e.g.*, normal:

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^T \Sigma^{-1}(x-\bar{x})}$$

• cumulative Gaussian distribution function Φ is log-concave

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} \, du$$

Properties of log-concave functions

• twice differentiable f with convex domain is log-concave if and only if

$$f(x)\nabla^2 f(x) \preceq \nabla f(x)\nabla f(x)^T$$

for all $x \in \operatorname{\mathbf{dom}} f$

- product of log-concave functions is log-concave
- sum of log-concave function is not always log-concave
- integration: if $f : \mathbf{R}^n \times \mathbf{R}^m \to \mathbf{R}$ is log-concave, then

$$g(x) = \int f(x, y) \, dy$$

is log-concave (not easy to show)

consequences of integration property

 \bullet convolution $f\ast g$ of log-concave functions f,~g is log-concave

$$(f * g)(x) = \int f(x - y)g(y)dy$$

• if $C \subseteq \mathbf{R}^n$ convex and y is a random variable with log-concave pdf then

$$f(x) = \operatorname{prob}(x + y \in C)$$

is log-concave

proof: write f(x) as integral of product of log-concave functions

$$f(x) = \int g(x+y)p(y) \, dy, \qquad g(u) = \begin{cases} 1 & u \in C \\ 0 & u \notin C, \end{cases}$$

p is pdf of y

Convex functions

example: yield function

$$Y(x) = \mathbf{prob}(x + w \in S)$$

- $x \in \mathbf{R}^n$: nominal parameter values for product
- $w \in \mathbf{R}^n$: random variations of parameters in manufactured product
- S: set of acceptable values

if S is convex and \boldsymbol{w} has a log-concave pdf, then

- Y is log-concave
- yield regions $\{x \mid Y(x) \ge \alpha\}$ are convex

Convexity with respect to generalized inequalities

 $f: \mathbf{R}^n \to \mathbf{R}^m$ is K-convex if $\mathbf{dom} f$ is convex and

$$f(\theta x + (1 - \theta)y) \preceq_K \theta f(x) + (1 - \theta)f(y)$$

for x, $y \in \operatorname{\mathbf{dom}} f$, $0 \le \theta \le 1$

example $f: \mathbf{S}^m \to \mathbf{S}^m$, $f(X) = X^2$ is \mathbf{S}^m_+ -convex

proof: for fixed $z \in \mathbf{R}^m$, $z^T X^2 z = \|Xz\|_2^2$ is convex in X, *i.e.*,

$$z^T (\theta X + (1-\theta)Y)^2 z \preceq \theta z^T X^2 z + (1-\theta)z^T Y^2 z$$

for $X, Y \in \mathbf{S}^m$, $0 \le \theta \le 1$

therefore $(\theta X + (1 - \theta)Y)^2 \preceq \theta X^2 + (1 - \theta)Y^2$

4. Convex optimization problems

- optimization problem in standard form
- convex optimization problems
- quasiconvex optimization
- linear optimization
- quadratic optimization
- geometric programming
- generalized inequality constraints
- semidefinite programming
- vector optimization

Optimization problem in standard form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

- $x \in \mathbf{R}^n$ is the optimization variable
- $f_0: \mathbf{R}^n \to \mathbf{R}$ is the objective or cost function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$, are the inequality constraint functions
- $h_i: \mathbf{R}^n \to \mathbf{R}$ are the equality constraint functions

optimal value:

$$p^{\star} = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

- $p^{\star} = \infty$ if problem is infeasible (no x satisfies the constraints)
- $p^{\star} = -\infty$ if problem is unbounded below

Optimal and locally optimal points

- x is **feasible** if $x \in \operatorname{dom} f_0$ and it satisfies the constraints
- a feasible x is **optimal** if $f_0(x) = p^*$; X_{opt} is the set of optimal points
- x is **locally optimal** if there is an R > 0 such that x is optimal for

$$\begin{array}{ll} \text{minimize (over } z) & f_0(z) \\ \text{subject to} & f_i(z) \leq 0, \quad i = 1, \dots, m, \quad h_i(z) = 0, \quad i = 1, \dots, p \\ & \|z - x\|_2 \leq R \end{array}$$

examples (with n = 1, m = p = 0)

- $f_0(x) = 1/x$, dom $f_0 = \mathbf{R}_{++}$: $p^* = 0$, no optimal point
- $f_0(x) = -\log x$, **dom** $f_0 = \mathbf{R}_{++}$: $p^* = -\infty$
- $f_0(x) = x \log x$, dom $f_0 = \mathbf{R}_{++}$: $p^* = 1/e$, x = 1/e is optimal
- $f_0(x) = x^3 3x$, $p^* = -\infty$, local optimum at x = 1

Convex optimization problems

Implicit constraints

the standard form optimization problem has an **implicit constraint**

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i,$$

- \bullet we call ${\mathcal D}$ the domain of the problem
- the constraints $f_i(x) \leq 0$, $h_i(x) = 0$ are the explicit constraints
- a problem is **unconstrained** if it has no explicit constraints (m = p = 0)

example:

minimize
$$f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$$

is an unconstrained problem with implicit constraints $a_i^T x < b_i$

Feasibility problem

find
$$x$$

subject to $f_i(x) \le 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

can be considered a special case of the general problem with $f_0(x) = 0$:

minimize 0
subject to
$$f_i(x) \le 0$$
, $i = 1, \dots, m$
 $h_i(x) = 0$, $i = 1, \dots, p$

- $p^{\star} = 0$ if constraints are feasible; any feasible x is optimal
- $p^{\star} = \infty$ if constraints are infeasible

Convex optimization problem

standard form convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $a_i^T x = b_i$, $i = 1, ..., p$

- f_0 , f_1 , ..., f_m are convex; equality constraints are affine
- problem is quasiconvex if f_0 is quasiconvex (and f_1, \ldots, f_m convex)

often written as

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

important property: feasible set of a convex optimization problem is convex

example

$$\begin{array}{ll} \mbox{minimize} & f_0(x) = x_1^2 + x_2^2 \\ \mbox{subject to} & f_1(x) = x_1/(1+x_2^2) \leq 0 \\ & h_1(x) = (x_1+x_2)^2 = 0 \end{array}$$

- f_0 is convex; feasible set $\{(x_1, x_2) \mid x_1 = -x_2 \leq 0\}$ is convex
- not a convex problem (according to our definition): f_1 is not convex, h_1 is not affine
- equivalent (but not identical) to the convex problem

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 \le 0$
 $x_1 + x_2 = 0$

Local and global optima

any locally optimal point of a convex problem is (globally) optimal **proof**: suppose x is locally optimal and y is optimal with $f_0(y) < f_0(x)$ x locally optimal means there is an R > 0 such that

$$z$$
 feasible, $||z - x||_2 \le R \implies f_0(z) \ge f_0(x)$

consider $z = \theta y + (1 - \theta)x$ with $\theta = R/(2\|y - x\|_2)$

•
$$||y - x||_2 > R$$
, so $0 < \theta < 1/2$

- z is a convex combination of two feasible points, hence also feasible
- $||z x||_2 = R/2$ and

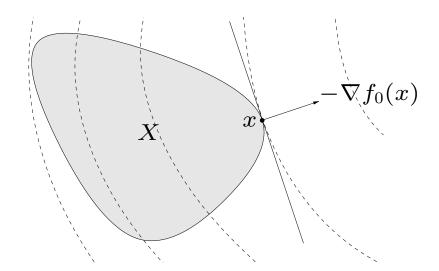
$$f_0(z) \le \theta f_0(x) + (1 - \theta) f_0(y) < f_0(x)$$

which contradicts our assumption that x is locally optimal

Optimality criterion for differentiable f_0

x is optimal if and only if it is feasible and

 $\nabla f_0(x)^T(y-x) \ge 0$ for all feasible y



if nonzero, $abla f_0(x)$ defines a supporting hyperplane to feasible set X at x

• **unconstrained problem**: x is optimal if and only if

$$x \in \operatorname{\mathbf{dom}} f_0, \qquad \nabla f_0(x) = 0$$

• equality constrained problem

minimize $f_0(x)$ subject to Ax = b

x is optimal if and only if there exists a ν such that

 $x \in \operatorname{dom} f_0, \qquad Ax = b, \qquad \nabla f_0(x) + A^T \nu = 0$

minimization over first orthant

minimize $f_0(x)$ subject to $x \succeq 0$

x is optimal if and only if

$$x \in \operatorname{dom} f_0, \qquad x \succeq 0, \qquad \left\{ \begin{array}{ll} \nabla f_0(x)_i \ge 0 & x_i = 0\\ \nabla f_0(x)_i = 0 & x_i > 0 \end{array} \right.$$

Convex optimization problems

Equivalent convex problems

two problems are (informally) **equivalent** if the solution of one is readily obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

• eliminating equality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

is equivalent to

$$\begin{array}{ll} \mbox{minimize (over z)} & f_0(Fz+x_0) \\ \mbox{subject to} & f_i(Fz+x_0) \leq 0, \quad i=1,\ldots,m \end{array}$$

where F and x_0 are such that

$$Ax = b \iff x = Fz + x_0$$
 for some z

• introducing equality constraints

minimize
$$f_0(A_0x + b_0)$$

subject to $f_i(A_ix + b_i) \le 0$, $i = 1, ..., m$

is equivalent to

$$\begin{array}{ll} \text{minimize (over } x, \ y_i) & f_0(y_0) \\ \text{subject to} & f_i(y_i) \leq 0, \quad i = 1, \dots, m \\ & y_i = A_i x + b_i, \quad i = 0, 1, \dots, m \end{array}$$

• introducing slack variables for linear inequalities

minimize
$$f_0(x)$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

is equivalent to

$$\begin{array}{ll} \text{minimize (over } x, \, s) & f_0(x) \\ \text{subject to} & a_i^T x + s_i = b_i, \quad i = 1, \dots, m \\ & s_i \geq 0, \quad i = 1, \dots m \end{array}$$

• epigraph form: standard form convex problem is equivalent to

minimize (over
$$x, t$$
) t
subject to
 $f_0(x) - t \le 0$
 $f_i(x) \le 0, \quad i = 1, \dots, m$
 $Ax = b$

• minimizing over some variables

minimize
$$f_0(x_1, x_2)$$

subject to $f_i(x_1) \leq 0$, $i = 1, \dots, m$

is equivalent to

minimize
$$\tilde{f}_0(x_1)$$

subject to $f_i(x_1) \leq 0, \quad i = 1, \dots, m$

where
$$\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$$

Quasiconvex optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

with $f_0: \mathbf{R}^n \to \mathbf{R}$ quasiconvex, f_1, \ldots, f_m convex

can have locally optimal points that are not (globally) optimal

 $(x, f_0(x))$

convex representation of sublevel sets of f_0

if f_0 is quasiconvex, there exists a family of functions ϕ_t such that:

- $\phi_t(x)$ is convex in x for fixed t
- *t*-sublevel set of f_0 is 0-sublevel set of ϕ_t , *i.e.*,

$$f_0(x) \le t \quad \Longleftrightarrow \quad \phi_t(x) \le 0$$

example

$$f_0(x) = \frac{p(x)}{q(x)}$$

with p convex, q concave, and $p(x) \ge 0$, q(x) > 0 on $\operatorname{dom} f_0$

can take $\phi_t(x) = p(x) - tq(x)$:

- for $t \ge 0$, ϕ_t convex in x
- $p(x)/q(x) \le t$ if and only if $\phi_t(x) \le 0$

quasiconvex optimization via convex feasibility problems

$$\phi_t(x) \le 0, \qquad f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Ax = b$$
 (1)

- for fixed t, a convex feasibility problem in x
- if feasible, we can conclude that $t \ge p^*$; if infeasible, $t \le p^*$

Bisection method for quasiconvex optimization

```
given l \leq p^*, u \geq p^*, tolerance \epsilon > 0.

repeat

1. t := (l+u)/2.

2. Solve the convex feasibility problem (1).

3. if (1) is feasible, u := t; else l := t.

until u - l \leq \epsilon.
```

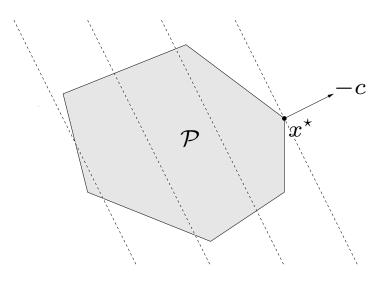
requires exactly $\lceil \log_2((u-l)/\epsilon) \rceil$ iterations (where u, l are initial values)

Linear program (LP)

minimize
$$c^T x + d$$

subject to $Gx \leq h$
 $Ax = b$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron



Examples

diet problem: choose quantities x_1, \ldots, x_n of n foods

- one unit of food j costs c_j , contains amount a_{ij} of nutrient i
- healthy diet requires nutrient i in quantity at least b_i

to find cheapest healthy diet,

 $\begin{array}{lll} \text{minimize} & c^T x\\ \text{subject to} & Ax \succeq b, \quad x \succeq 0 \end{array}$

piecewise-linear minimization

minimize
$$\max_{i=1,\dots,m}(a_i^T x + b_i)$$

equivalent to an LP

$$\begin{array}{ll} \mbox{minimize} & t \\ \mbox{subject to} & a_i^T x + b_i \leq t, \quad i = 1, \dots, m \end{array}$$

Convex optimization problems

Chebyshev center of a polyhedron

Chebyshev center of

$$\mathcal{P} = \{ x \mid a_i^T x \le b_i, \ i = 1, \dots, m \}$$

is center of largest inscribed ball

$$\mathcal{B} = \{x_c + u \mid ||u||_2 \le r\}$$

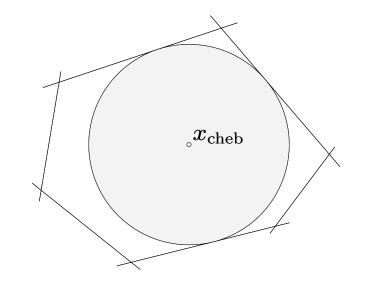
•
$$a_i^T x \leq b_i$$
 for all $x \in \mathcal{B}$ if and only if

$$\sup\{a_i^T (x_c + u) \mid ||u||_2 \leq r\} = a_i^T x_c + r ||a_i||_2 \leq b_i$$

• hence, x_c , r can be determined by solving the LP

maximize
$$r$$

subject to $a_i^T x_c + r \|a_i\|_2 \le b_i, \quad i = 1, \dots, m$



(Generalized) linear-fractional program

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & Gx \preceq h \\ & Ax = b \end{array}$$

linear-fractional program

$$f_0(x) = \frac{c^T x + d}{e^T x + f}, \qquad \text{dom } f_0(x) = \{x \mid e^T x + f > 0\}$$

- a quasiconvex optimization problem; can be solved by bisection
- also equivalent to the LP (variables y, z)

$$\begin{array}{ll} \mbox{minimize} & c^Ty + dz \\ \mbox{subject to} & Gy \preceq hz \\ & Ay = bz \\ & e^Ty + fz = 1 \\ & z \geq 0 \end{array}$$

generalized linear-fractional program

$$f_0(x) = \max_{i=1,\dots,r} \frac{c_i^T x + d_i}{e_i^T x + f_i}, \qquad \text{dom} f_0(x) = \{x \mid e_i^T x + f_i > 0, \ i = 1,\dots,r\}$$

a quasiconvex optimization problem; can be solved by bisection

example: Von Neumann model of a growing economy

maximize (over x,
$$x^+$$
) $\min_{i=1,...,n} x_i^+/x_i$
subject to $x^+ \succeq 0, \quad Bx^+ \preceq Ax$

- $x, x^+ \in \mathbf{R}^n$: activity levels of n sectors, in current and next period
- $(Ax)_i$, $(Bx^+)_i$: produced, resp. consumed, amounts of good i
- x_i^+/x_i : growth rate of sector *i*

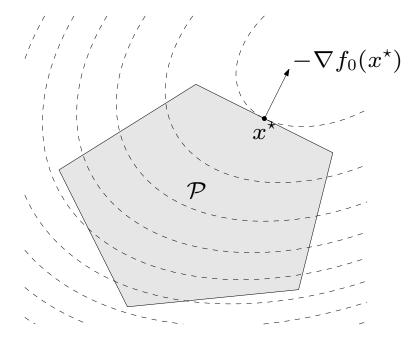
allocate activity to maximize growth rate of slowest growing sector

Quadratic program (QP)

minimize
$$(1/2)x^TPx + q^Tx + r$$

subject to $Gx \leq h$
 $Ax = b$

- $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron



Examples

least-squares

minimize $||Ax - b||_2^2$

- analytical solution $x^* = A^{\dagger}b$ (A^{\dagger} is pseudo-inverse)
- can add linear constraints, e.g., $l \preceq x \preceq u$

linear program with random cost

minimize
$$\bar{c}^T x + \gamma x^T \Sigma x = \mathbf{E} c^T x + \gamma \operatorname{var}(c^T x)$$

subject to $Gx \leq h$, $Ax = b$

- c is random vector with mean \bar{c} and covariance Σ
- hence, $c^T x$ is random variable with mean $\bar{c}^T x$ and variance $x^T \Sigma x$
- $\gamma > 0$ is risk aversion parameter; controls the trade-off between expected cost and variance (risk)

Quadratically constrained quadratic program (QCQP)

minimize
$$(1/2)x^T P_0 x + q_0^T x + r_0$$

subject to $(1/2)x^T P_i x + q_i^T x + r_i \le 0, \quad i = 1, \dots, m$
 $Ax = b$

- $P_i \in \mathbf{S}_+^n$; objective and constraints are convex quadratic
- if $P_1, \ldots, P_m \in \mathbf{S}_{++}^n$, feasible region is intersection of m ellipsoids and an affine set

Second-order cone programming

$$\begin{array}{ll} \mbox{minimize} & f^T x \\ \mbox{subject to} & \|A_i x + b_i\|_2 \leq c_i^T x + d_i, \quad i = 1, \dots, m \\ & F x = g \end{array}$$

 $(A_i \in \mathbf{R}^{n_i imes n}, F \in \mathbf{R}^{p imes n})$

• inequalities are called second-order cone (SOC) constraints:

 $(A_i x + b_i, c_i^T x + d_i) \in \text{second-order cone in } \mathbf{R}^{n_i+1}$

- for $n_i = 0$, reduces to an LP; if $c_i = 0$, reduces to a QCQP
- more general than QCQP and LP

Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m,$

there can be uncertainty in c, a_i , b_i

two common approaches to handling uncertainty (in a_i , for simplicity)

• deterministic model: constraints must hold for all $a_i \in \mathcal{E}_i$

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i$ for all $a_i \in \mathcal{E}_i$, $i = 1, \dots, m$,

- stochastic model: a_i is random variable; constraints must hold with probability η

minimize
$$c^T x$$

subject to $\operatorname{prob}(a_i^T x \le b_i) \ge \eta, \quad i = 1, \dots, m$

deterministic approach via SOCP

• choose an ellipsoid as \mathcal{E}_i :

$$\mathcal{E}_i = \{ \bar{a}_i + P_i u \mid ||u||_2 \le 1 \} \qquad (\bar{a}_i \in \mathbf{R}^n, \quad P_i \in \mathbf{R}^{n \times n})$$

center is \bar{a}_i , semi-axes determined by singular values/vectors of P_i

• robust LP

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i \quad \forall a_i \in \mathcal{E}_i, \quad i = 1, \dots, m$

is equivalent to the SOCP

minimize
$$c^T x$$

subject to $\bar{a}_i^T x + \|P_i^T x\|_2 \le b_i, \quad i = 1, \dots, m$

(follows from $\sup_{\|u\|_2 \le 1} (\bar{a}_i + P_i u)^T x = \bar{a}_i^T x + \|P_i^T x\|_2$)

stochastic approach via SOCP

- assume a_i is Gaussian with mean \bar{a}_i , covariance Σ_i $(a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i))$
- $a_i^T x$ is Gaussian r.v. with mean $\bar{a}_i^T x$, variance $x^T \Sigma_i x$; hence

$$\operatorname{prob}(a_i^T x \le b_i) = \Phi\left(\frac{b_i - \bar{a}_i^T x}{\|\Sigma_i^{1/2} x\|_2}\right)$$

where $\Phi(x) = (1/\sqrt{2\pi}) \int_{-\infty}^x e^{-t^2/2} \, dt$ is CDF of $\mathcal{N}(0,1)$

• robust LP

minimize
$$c^T x$$

subject to $\operatorname{prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m,$

with $\eta \geq 1/2$, is equivalent to the SOCP

minimize
$$c^T x$$

subject to $ar{a}_i^T x + \Phi^{-1}(\eta) \|\Sigma_i^{1/2} x\|_2 \le b_i, \quad i=1,\ldots,m$

Geometric programming

monomial function

$$f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}, \quad \text{dom } f = \mathbf{R}_{++}^n$$

with c > 0; exponent α_i can be any real number

posynomial function: sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \quad \text{dom } f = \mathbf{R}_{++}^n$$

geometric program (GP)

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 1, \quad i=1,\ldots,m \\ & h_i(x)=1, \quad i=1,\ldots,p \end{array}$$

with f_i posynomial, h_i monomial

Geometric program in convex form

change variables to $y_i = \log x_i$, and take logarithm of cost, constraints

• monomial
$$f(x) = cx_1^{a_1} \cdots x_n^{a_n}$$
 transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = a^T y + b \qquad (b = \log c)$$

• posynomial
$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$$
 transforms to

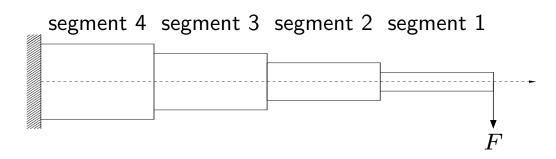
$$\log f(e^{y_1}, \dots, e^{y_n}) = \log \sum_{k=1}^K e^{a_k^T y + b_k} \qquad (b_k = \log c_k)$$

• geometric program transforms to convex problem

minimize
$$\log \left(\sum_{k=1}^{K} \exp(a_{0k}^T y + b_{0k}) \right)$$

subject to $\log \left(\sum_{k=1}^{K} \exp(a_{ik}^T y + b_{ik}) \right) \le 0, \quad i = 1, \dots, m$
 $Gy + d = 0$

Design of cantilever beam



- N segments with unit lengths, rectangular cross-sections of size $w_i \times h_i$
- given vertical force F applied at the right end

design problem

minimize total weight subject to upper & lower bounds on w_i , h_i upper bound & lower bounds on aspect ratios h_i/w_i upper bound on stress in each segment upper bound on vertical deflection at the end of the beam

variables: w_i , h_i for $i = 1, \ldots, N$

objective and constraint functions

- total weight $w_1h_1 + \cdots + w_Nh_N$ is posynomial
- aspect ratio h_i/w_i and inverse aspect ratio w_i/h_i are monomials
- maximum stress in segment i is given by $6iF/(w_ih_i^2)$, a monomial
- the vertical deflection v_i and slope y_i of central axis at the right end of segment i are defined recursively as

$$v_{i} = 12(i - 1/2)\frac{F}{Ew_{i}h_{i}^{3}} + v_{i+1}$$
$$y_{i} = 6(i - 1/3)\frac{F}{Ew_{i}h_{i}^{3}} + v_{i+1} + y_{i+1}$$

for i = N, N - 1, ..., 1, with $v_{N+1} = y_{N+1} = 0$ (*E* is Young's modulus) v_i and y_i are posynomial functions of w, h

formulation as a GP

$$\begin{array}{ll} \text{minimize} & w_1h_1 + \dots + w_Nh_N \\ \text{subject to} & w_{\max}^{-1}w_i \leq 1, \quad w_{\min}w_i^{-1} \leq 1, \quad i = 1, \dots, N \\ & h_{\max}^{-1}h_i \leq 1, \quad h_{\min}h_i^{-1} \leq 1, \quad i = 1, \dots, N \\ & S_{\max}^{-1}w_i^{-1}h_i \leq 1, \quad S_{\min}w_ih_i^{-1} \leq 1, \quad i = 1, \dots, N \\ & 6iF\sigma_{\max}^{-1}w_ih_i^{-2} \leq 1, \quad i = 1, \dots, N \\ & y_{\max}^{-1}y_1 \leq 1 \end{array}$$

note

• we write
$$w_{\min} \leq w_i \leq w_{\max}$$
 and $h_{\min} \leq h_i \leq h_{\max}$

 $w_{\min}/w_i \le 1, \qquad w_i/w_{\max} \le 1, \qquad h_{\min}/h_i \le 1, \qquad h_i/h_{\max} \le 1$

• we write
$$S_{\min} \leq h_i/w_i \leq S_{\max}$$
 as

$$S_{\min}w_i/h_i \le 1, \qquad h_i/(w_i S_{\max}) \le 1$$

Convex optimization problems

Minimizing spectral radius of nonnegative matrix

Perron-Frobenius eigenvalue $\lambda_{pf}(A)$

- exists for (elementwise) positive $A \in \mathbf{R}^{n \times n}$
- a real, positive eigenvalue of A, equal to spectral radius $\max_i |\lambda_i(A)|$
- determines asymptotic growth (decay) rate of A^k : $A^k \sim \lambda_{
 m pf}^k$ as $k \to \infty$
- alternative characterization: $\lambda_{pf}(A) = \inf\{\lambda \mid Av \preceq \lambda v \text{ for some } v \succ 0\}$

minimizing spectral radius of matrix of posynomials

- minimize $\lambda_{pf}(A(x))$, where the elements $A(x)_{ij}$ are posynomials of x
- equivalent geometric program:

minimize
$$\lambda$$

subject to $\sum_{j=1}^{n} A(x)_{ij} v_j / (\lambda v_i) \le 1, \quad i = 1, \dots, n$

variables λ , v, x

Generalized inequality constraints

convex problem with generalized inequality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \preceq_{K_i} 0$, $i = 1, \dots, m$
 $Ax = b$

- $f_0: \mathbf{R}^n \to \mathbf{R}$ convex; $f_i: \mathbf{R}^n \to \mathbf{R}^{k_i} K_i$ -convex w.r.t. proper cone K_i
- same properties as standard convex problem (convex feasible set, local optimum is global, etc.)

conic form problem: special case with affine objective and constraints

minimize
$$c^T x$$

subject to $Fx + g \preceq_K 0$
 $Ax = b$

extends linear programming $(K = \mathbf{R}^m_+)$ to nonpolyhedral cones

Semidefinite program (SDP)

minimize
$$c^T x$$

subject to $x_1F_1 + x_2F_2 + \dots + x_nF_n + G \leq 0$
 $Ax = b$

with F_i , $G \in \mathbf{S}^k$

- inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints: for example,

$$x_1\hat{F}_1 + \dots + x_n\hat{F}_n + \hat{G} \leq 0, \qquad x_1\tilde{F}_1 + \dots + x_n\tilde{F}_n + \tilde{G} \leq 0$$

is equivalent to single LMI

$$x_1 \begin{bmatrix} \hat{F}_1 & 0 \\ 0 & \tilde{F}_1 \end{bmatrix} + x_2 \begin{bmatrix} \hat{F}_2 & 0 \\ 0 & \tilde{F}_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} \hat{F}_n & 0 \\ 0 & \tilde{F}_n \end{bmatrix} + \begin{bmatrix} \hat{G} & 0 \\ 0 & \tilde{G} \end{bmatrix} \preceq 0$$

LP and SOCP as SDP

LP and equivalent SDP

LP: minimize $c^T x$ SDP: minimize $c^T x$ subject to $Ax \leq b$ subject to $\operatorname{diag}(Ax - b) \leq 0$

(note different interpretation of generalized inequality \leq)

SOCP and equivalent SDP

- SOCP: minimize $f^T x$ subject to $||A_i x + b_i||_2 \le c_i^T x + d_i, \quad i = 1, \dots, m$
- $\begin{array}{lll} \mathsf{SDP:} & \mbox{minimize} & f^T x \\ & \mbox{subject to} & \left[\begin{array}{cc} (c_i^T x + d_i) I & A_i x + b_i \\ (A_i x + b_i)^T & c_i^T x + d_i \end{array} \right] \succeq 0, \quad i = 1, \dots, m \end{array}$

Eigenvalue minimization

minimize $\lambda_{\max}(A(x))$

where $A(x) = A_0 + x_1 A_1 + \dots + x_n A_n$ (with given $A_i \in \mathbf{S}^k$)

equivalent SDP

 $\begin{array}{ll} \text{minimize} & t\\ \text{subject to} & A(x) \preceq tI \end{array}$

- variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$
- follows from

$$\lambda_{\max}(A) \le t \quad \Longleftrightarrow \quad A \preceq tI$$

Matrix norm minimization

minimize
$$||A(x)||_2 = (\lambda_{\max}(A(x)^T A(x)))^{1/2}$$

where $A(x) = A_0 + x_1 A_1 + \dots + x_n A_n$ (with given $A_i \in \mathbf{S}^{p \times q}$)
equivalent SDP

minimize
$$t$$

subject to $\begin{bmatrix} tI & A(x) \\ A(x)^T & tI \end{bmatrix} \succeq 0$

- variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$
- constraint follows from

$$\|A\|_{2} \leq t \iff A^{T}A \leq t^{2}I, \quad t \geq 0$$
$$\iff \begin{bmatrix} tI & A\\ A^{T} & tI \end{bmatrix} \succeq 0$$

Vector optimization

general vector optimization problem

$$\begin{array}{ll} \text{minimize (w.r.t. } K) & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & h_i(x) \leq 0, \quad i = 1, \dots, p \end{array}$$

vector objective $f_0: \mathbf{R}^n \to \mathbf{R}^q$, minimized w.r.t. proper cone $K \in \mathbf{R}^q$

convex vector optimization problem

minimize (w.r.t.
$$K$$
) $f_0(x)$
subject to $f_i(x) \le 0, \quad i = 1, \dots, m$
 $Ax = b$

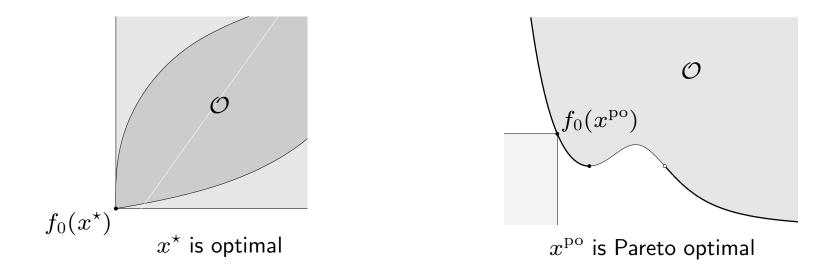
with f_0 K-convex, f_1 , ..., f_m convex

Optimal and Pareto optimal points

set of achievable objective values

 $\mathcal{O} = \{f_0(x) \mid x \text{ feasible}\}$

- feasible x is **optimal** if $f_0(x)$ is a minimum value of \mathcal{O}
- feasible x is **Pareto optimal** if $f_0(x)$ is a minimal value of \mathcal{O}



Multicriterion optimization

vector optimization problem with $K = \mathbf{R}^q_+$

$$f_0(x) = (F_1(x), \dots, F_q(x))$$

- q different objectives F_i ; roughly speaking we want all F_i 's to be small
- feasible x^{\star} is optimal if

$$y \text{ feasible} \implies f_0(x^\star) \preceq f_0(y)$$

if there exists an optimal point, the objectives are noncompeting

• feasible x^{po} is Pareto optimal if

$$y \text{ feasible}, \quad f_0(y) \preceq f_0(x^{\text{po}}) \implies f_0(x^{\text{po}}) = f_0(y)$$

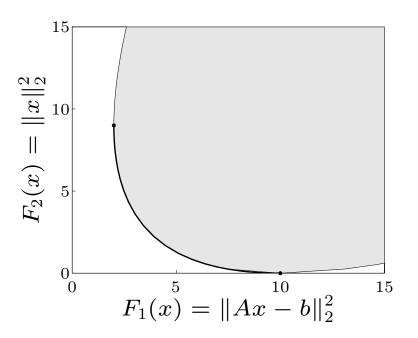
if there are multiple Pareto optimal values, there is a trade-off between the objectives

Regularized least-squares

multicriterion problem with two objectives

$$F_1(x) = ||Ax - b||_2^2, \qquad F_2(x) = ||x||_2^2$$

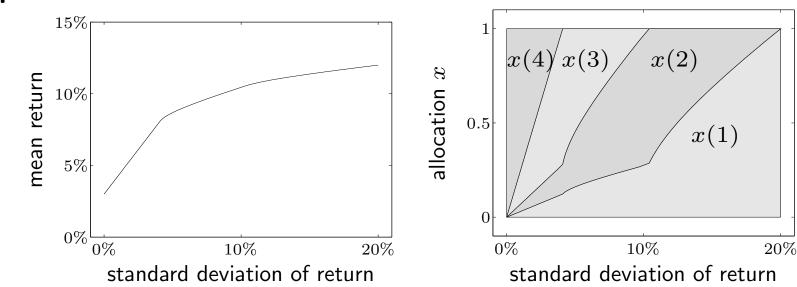
- example with $A \in \mathbf{R}^{100 \times 10}$
- shaded region is ${\cal O}$
- heavy line is formed by Pareto optimal points



Risk return trade-off in portfolio optimization

minimize (w.r.t.
$$\mathbf{R}^2_+$$
) $(-\bar{p}^T x, x^T \Sigma x)$
subject to $\mathbf{1}^T x = 1, \quad x \succeq 0$

- $x \in \mathbf{R}^n$ is investment portfolio; x_i is fraction invested in asset i
- $p \in \mathbf{R}^n$ is vector of relative asset price changes; modeled as a random variable with mean \bar{p} , covariance Σ
- $\bar{p}^T x = \mathbf{E} r$ is expected return; $x^T \Sigma x = \mathbf{var} r$ is return variance



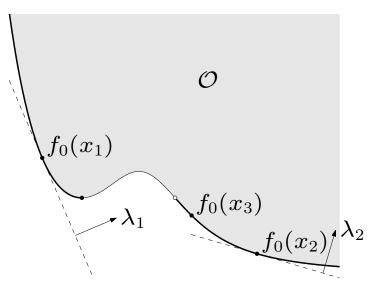
example

Scalarization

to find Pareto optimal points: choose $\lambda \succ_{K^*} 0$ and solve scalar problem

$$\begin{array}{ll} \text{minimize} & \lambda^T f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

if x is optimal for scalar problem, then it is Pareto-optimal for vector optimization problem



for convex vector optimization problems, can find (almost) all Pareto optimal points by varying $\lambda \succ_{K^*} 0$

examples

• for multicriterion problem, find Pareto optimal points by minimizing positive weighted sum

$$\lambda^T f_0(x) = \lambda_1 F_1(x) + \dots + \lambda_q F_q(x)$$

• regularized least-squares of page 4–43 (with $\lambda = (1, \gamma)$)

minimize
$$||Ax - b||_{2}^{2} + \gamma ||x||_{2}^{2}$$

for fixed $\gamma > 0$, a least-squares problem

• risk-return trade-off of page 4–44 (with $\lambda = (1, \gamma)$)

$$\begin{array}{ll} \text{minimize} & -\bar{p}^T x + \gamma x^T \Sigma x \\ \text{subject to} & \mathbf{1}^T x = 1, \quad x \succeq 0 \end{array}$$

for fixed
$$\gamma > 0$$
, a QP

5. Duality

- Lagrange dual problem
- weak and strong duality
- geometric interpretation
- optimality conditions
- perturbation and sensitivity analysis
- examples
- generalized inequalities

Lagrangian

standard form problem (not necessarily convex)

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

variable $x \in \mathbf{R}^n$, domain \mathcal{D} , optimal value p^{\star}

Lagrangian: $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with $\operatorname{dom} L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$,

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- weighted sum of objective and constraint functions
- λ_i is Lagrange multiplier associated with $f_i(x) \leq 0$
- ν_i is Lagrange multiplier associated with $h_i(x) = 0$

Lagrange dual function

Lagrange dual function: $g : \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu)$$

=
$$\inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is concave, can be $-\infty$ for some $\lambda,\,\nu$

lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^{\star}$

proof: if \tilde{x} is feasible and $\lambda \succeq 0$, then

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible \tilde{x} gives $p^{\star} \geq g(\lambda,\nu)$

Least-norm solution of linear equations

 $\begin{array}{ll} \text{minimize} & x^T x\\ \text{subject to} & Ax = b \end{array}$

dual function

- Lagrangian is $L(x,\nu) = x^T x + \nu^T (Ax b)$
- to minimize L over x, set gradient equal to zero:

$$\nabla_x L(x,\nu) = 2x + A^T \nu = 0 \quad \Longrightarrow \quad x = -(1/2)A^T \nu$$

• plug in in L to obtain g:

$$g(\nu) = L((-1/2)A^T\nu, \nu) = -\frac{1}{4}\nu^T A A^T\nu - b^T\nu$$

a concave function of ν

lower bound property: $p^{\star} \geq -(1/4)\nu^T A A^T \nu - b^T \nu$ for all ν

Standard form LP

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax = b, \quad x \succeq 0 \end{array}$

dual function

• Lagrangian is

$$L(x,\lambda,\nu) = c^T x + \nu^T (Ax - b) - \lambda^T x$$
$$= -b^T \nu + (c + A^T \nu - \lambda)^T x$$

• L is linear in x, hence

$$g(\lambda,\nu) = \inf_{x} L(x,\lambda,\nu) = \begin{cases} -b^{T}\nu & A^{T}\nu - \lambda + c = 0\\ -\infty & \text{otherwise} \end{cases}$$

g is linear on affine domain $\{(\lambda, \nu) \mid A^T \nu - \lambda + c = 0\}$, hence concave

lower bound property: $p^{\star} \geq -b^T \nu$ if $A^T \nu + c \succeq 0$

Equality constrained norm minimization

 $\begin{array}{ll} \text{minimize} & \|x\| \\ \text{subject to} & Ax = b \end{array}$

dual function

$$g(\nu) = \inf_{x} (\|x\| - \nu^{T}Ax + b^{T}\nu) = \begin{cases} b^{T}\nu & \|A^{T}\nu\|_{*} \leq 1\\ -\infty & \text{otherwise} \end{cases}$$

where $\|v\|_{*} = \sup_{\|u\| \leq 1} u^{T}v$ is dual norm of $\|\cdot\|$
proof: follows from $\inf_{x} (\|x\| - y^{T}x) = 0$ if $\|y\|_{*} \leq 1$, $-\infty$ otherwise
• if $\|y\|_{*} \leq 1$, then $\|x\| - y^{T}x \geq 0$ for all x , with equality if $x = 0$

• if $||y||_* > 1$, choose x = tu where $||u|| \le 1$, $u^T y = ||y||_* > 1$:

$$||x|| - y^T x = t(||u|| - ||y||_*) \to -\infty$$
 as $t \to \infty$

lower bound property: $p^{\star} \geq b^T \nu$ if $||A^T \nu||_* \leq 1$

Two-way partitioning

 $\begin{array}{ll} \mbox{minimize} & x^T W x \\ \mbox{subject to} & x_i^2 = 1, \quad i = 1, \dots, n \end{array}$

- a nonconvex problem; feasible set contains 2^n discrete points
- interpretation: partition $\{1, \ldots, n\}$ in two sets; W_{ij} is cost of assigning i, j to the same set; $-W_{ij}$ is cost of assigning to different sets

dual function

$$g(\nu) = \inf_{x} (x^{T}Wx + \sum_{i} \nu_{i}(x_{i}^{2} - 1)) = \inf_{x} x^{T}(W + \operatorname{diag}(\nu))x - \mathbf{1}^{T}\nu$$
$$= \begin{cases} -\mathbf{1}^{T}\nu & W + \operatorname{diag}(\nu) \succeq 0\\ -\infty & \operatorname{otherwise} \end{cases}$$

lower bound property: $p^* \ge -\mathbf{1}^T \nu$ if $W + \operatorname{diag}(\nu) \succeq 0$ example: $\nu = -\lambda_{\min}(W)\mathbf{1}$ gives bound $p^* \ge n\lambda_{\min}(W)$

Lagrange dual and conjugate function

minimize $f_0(x)$ subject to $Ax \leq b$, Cx = d

dual function

$$g(\lambda,\nu) = \inf_{x \in \text{dom } f_0} \left(f_0(x) + (A^T \lambda + C^T \nu)^T x - b^T \lambda - d^T \nu \right)$$
$$= -f_0^* (-A^T \lambda - C^T \nu) - b^T \lambda - d^T \nu$$

- recall definition of conjugate $f^*(y) = \sup_{x \in \text{dom } f} (y^T x f(x))$
- simplifies derivation of dual if conjugate of f_0 is kown

example: entropy maximization

$$f_0(x) = \sum_{i=1}^n x_i \log x_i, \qquad f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

The dual problem

Lagrange dual problem

 $\begin{array}{ll} \text{maximize} & g(\lambda,\nu) \\ \text{subject to} & \lambda \succeq 0 \end{array}$

- $\bullet\,$ finds best lower bound on $p^{\star}\textsc{,}$ obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted d^{\star}
- λ , ν are dual feasible if $\lambda \succeq 0$, $(\lambda, \nu) \in \operatorname{dom} g$
- often simplified by making implicit constraint $(\lambda, \nu) \in \operatorname{dom} g$ explicit

example: standard form LP and its dual (page 5-5)

$$\begin{array}{ll} \text{minimize} & c^T x & \text{maximize} & -b^T \nu \\ \text{subject to} & Ax = b & \text{subject to} & A^T \nu + c \succeq 0 \\ & x \succeq 0 & \end{array}$$

Weak and strong duality

weak duality: $d^{\star} \leq p^{\star}$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP

maximize
$$-\mathbf{1}^T \nu$$

subject to $W + \mathbf{diag}(\nu) \succeq 0$

gives a lower bound for the two-way partitioning problem on page 5-7

strong duality: $d^{\star} = p^{\star}$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called **constraint qualifications**

Slater's constraint qualification

strong duality holds for a convex problem

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & Ax=b \end{array}$$

if it is strictly feasible, *i.e.*,

$$\exists x \in \operatorname{int} \mathcal{D}: \quad f_i(x) < 0, \quad i = 1, \dots, m, \quad Ax = b$$

- also guarantees that the dual optimum is attained (if $p^{\star} > -\infty$)
- can be sharpened: e.g., can replace int D with relint D (interior relative to affine hull); linear inequalities do not need to hold with strict inequality, . . .
- there exist many other types of constraint qualifications

Inequality form LP

primal problem

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax \preceq b \end{array}$

dual function

$$g(\lambda) = \inf_{x} \left((c + A^T \lambda)^T x - b^T \lambda \right) = \begin{cases} -b^T \lambda & A^T \lambda + c = 0\\ -\infty & \text{otherwise} \end{cases}$$

dual problem

$$\begin{array}{ll} \text{maximize} & -b^T\lambda\\ \text{subject to} & A^T\lambda+c=0, \quad \lambda\succeq 0 \end{array}$$

- from Slater's condition: $p^{\star} = d^{\star}$ if $A\tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^{\star} = d^{\star}$ except when primal and dual are infeasible

Quadratic program

primal problem (assume $P \in \mathbf{S}_{++}^n$)

 $\begin{array}{ll} \text{minimize} & x^T P x\\ \text{subject to} & Ax \preceq b \end{array}$

dual function

$$g(\lambda) = \inf_{x} \left(x^T P x + \lambda^T (A x - b) \right) = -\frac{1}{4} \lambda^T A P^{-1} A^T \lambda - b^T \lambda$$

dual problem

maximize
$$-(1/4)\lambda^T A P^{-1} A^T \lambda - b^T \lambda$$

subject to $\lambda \succeq 0$

- from Slater's condition: $p^{\star} = d^{\star}$ if $A\tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^{\star} = d^{\star}$ always

A nonconvex problem with strong duality

 $\begin{array}{ll} \mbox{minimize} & x^TAx + 2b^Tx \\ \mbox{subject to} & x^Tx \leq 1 \end{array}$

nonconvex if $A \not\succeq 0$

dual function: $g(\lambda) = \inf_x (x^T (A + \lambda I) x + 2b^T x - \lambda)$

- unbounded below if $A + \lambda I \succeq 0$ or if $A + \lambda I \succeq 0$ and $b \notin \mathcal{R}(A + \lambda I)$
- minimized by $x = -(A + \lambda I)^{\dagger}b$ otherwise: $g(\lambda) = -b^T(A + \lambda I)^{\dagger}b \lambda$

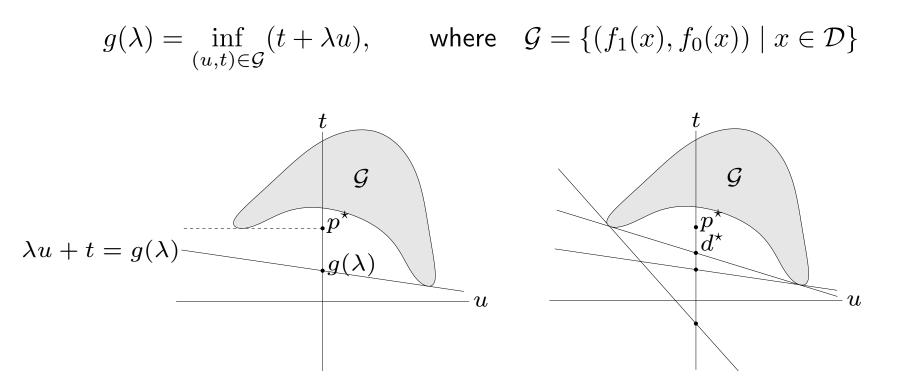
dual problem and equivalent SDP:

$$\begin{array}{ll} \text{maximize} & -b^T (A + \lambda I)^{\dagger} b - \lambda & \text{maximize} & -t - \lambda \\ \text{subject to} & A + \lambda I \succeq 0 \\ & b \in \mathcal{R}(A + \lambda I) & \text{subject to} & \begin{bmatrix} A + \lambda I & b \\ & b^T & t \end{bmatrix} \succeq 0 \end{array}$$

strong duality although primal problem is not convex (not easy to show)

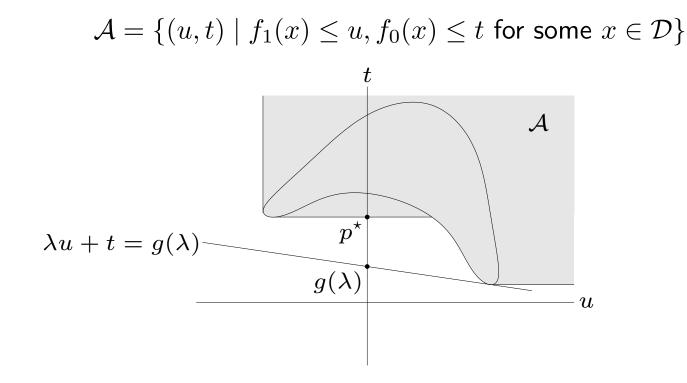
Geometric interpretation

for simplicity, consider problem with one constraint $f_1(x) \le 0$ interpretation of dual function:



- $\lambda u + t = g(\lambda)$ is (non-vertical) supporting hyperplane to \mathcal{G}
- hyperplane intersects *t*-axis at $t = g(\lambda)$

epigraph variation: same interpretation if \mathcal{G} is replaced with



strong duality

- holds if there is a non-vertical supporting hyperplane to ${\cal A}$ at $(0,p^{\star})$
- for convex problem, \mathcal{A} is convex, hence has supp. hyperplanes at $(0, p^{\star})$
- Slater's condition: if there exist $(\tilde{u}, \tilde{t}) \in \mathcal{A}$ with $\tilde{u} < 0$, then supporting hyperplanes at $(0, p^*)$ must be non-vertical

Complementary slackness

assume strong duality holds, x^{\star} is primal optimal, $(\lambda^{\star},\nu^{\star})$ is dual optimal

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_x \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right)$$
$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$$
$$\leq f_0(x^*)$$

hence, the two inequalities hold with equality

- x^* minimizes $L(x, \lambda^*, \nu^*)$
- $\lambda_i^{\star} f_i(x^{\star}) = 0$ for i = 1, ..., m (known as complementary slackness):

$$\lambda_i^{\star} > 0 \Longrightarrow f_i(x^{\star}) = 0, \qquad f_i(x^{\star}) < 0 \Longrightarrow \lambda_i(x^{\star}) = 0$$

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_i , h_i):

- 1. primal constraints: $f_i(x) \leq 0$, $i = 1, \ldots, m$, $h_i(x) = 0$, $i = 1, \ldots, p$
- 2. dual constraints: $\lambda \succeq 0$
- 3. complementary slackness: $\lambda_i f_i(x) = 0$, $i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

from page 5–17: if strong duality holds and x, λ , ν are optimal, then they must satisfy the KKT conditions

KKT conditions for convex problem

if \tilde{x} , $\tilde{\lambda}$, $\tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- from 4th condition (and convexity): $g(\tilde{\lambda}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$

hence, $f_0(ilde{x}) = g(ilde{\lambda}, ilde{
u})$

if Slater's condition is satisfied:

x is optimal if and only if there exist $\lambda,\,\nu$ that satisfy KKT conditions

- recall that Slater implies strong duality, and dual optimum is attained
- generalizes optimality condition $\nabla f_0(x) = 0$ for unconstrained problem

example: water-filling (assume $\alpha_i > 0$)

minimize
$$-\sum_{i=1}^{n} \log(x_i + \alpha_i)$$

subject to $x \succeq 0, \quad \mathbf{1}^T x = 1$

x is optimal iff $x\succeq 0,~\mathbf{1}^Tx=1,$ and there exist $\lambda\in\mathbf{R}^n,~\nu\in\mathbf{R}$ such that

$$\lambda \succeq 0, \qquad \lambda_i x_i = 0, \qquad \frac{1}{x_i + \alpha_i} + \lambda_i = \nu$$

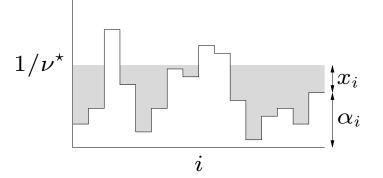
• if
$$\nu < 1/\alpha_i$$
: $\lambda_i = 0$ and $x_i = 1/\nu - \alpha_i$

• if
$$\nu \ge 1/\alpha_i$$
: $\lambda_i = \nu - 1/\alpha_i$ and $x_i = 0$

• determine ν from $\mathbf{1}^T x = \sum_{i=1}^n \max\{0, 1/\nu - \alpha_i\} = 1$

interpretation

- n patches; level of patch i is at height α_i
- flood area with unit amount of water
- resulting level is $1/\nu^{\star}$



Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

$$\begin{array}{lll} \text{minimize} & f_0(x) & \text{maximize} & g(\lambda,\nu) \\ \text{subject to} & f_i(x) \leq 0, & i = 1, \dots, m & \text{subject to} & \lambda \succeq 0 \\ & h_i(x) \leq 0, & i = 1, \dots, p \end{array}$$

perturbed problem and its dual

$$\begin{array}{ll} \min & f_0(x) & \max & g(\lambda, \nu) - u^T \lambda - v^T \nu \\ \text{s.t.} & f_i(x) \leq u_i, \quad i = 1, \dots, m & \text{s.t.} \quad \lambda \succeq 0 \\ & h_i(x) \leq v_i, \quad i = 1, \dots, p \end{array}$$

- x is primal variable; u, v are parameters
- $p^{\star}(u,v)$ is optimal value as a function of u, v
- we are interested in information about $p^{\star}(u, v)$ that we can obtain from the solution of the unperturbed problem and its dual

global sensitivity result

assume strong duality holds for unperturbed problem, and that λ^* , ν^* are dual optimal for unperturbed problem

apply weak duality to perturbed problem:

$$p^{\star}(u,v) \geq g(\lambda^{\star},\nu^{\star}) - u^{T}\lambda^{\star} - v^{T}\nu^{\star}$$
$$= p^{\star}(0,0) - u^{T}\lambda^{\star} - v^{T}\nu^{\star}$$

sensitivity interpretation

- if λ_i^* large: p^* increases greatly if we tighten constraint i ($u_i < 0$)
- if λ_i^* small: p^* does not decrease much if we loosen constraint i $(u_i > 0)$
- if ν_i^{\star} large and positive: p^{\star} increases greatly if we take $v_i < 0$; if ν_i^{\star} large and negative: p^{\star} increases greatly if we take $v_i > 0$
- if ν_i^{\star} small and positive: p^{\star} does not decrease much if we take $v_i > 0$; if ν_i^{\star} small and negative: p^{\star} does not decrease much if we take $v_i < 0$

local sensitivity: if (in addition) $p^*(u, v)$ is differentiable at (0, 0), then

$$\lambda_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial u_i}, \qquad \nu_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial v_i}$$

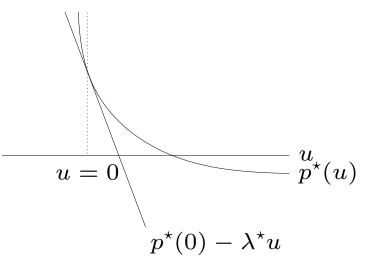
proof (for λ_i^{\star}): from global sensitivity result,

$$\frac{\partial p^{\star}(0,0)}{\partial u_i} = \lim_{t \searrow 0} \frac{p^{\star}(te_i,0) - p^{\star}(0,0)}{t} \ge -\lambda_i^{\star}$$

$$\frac{\partial p^{\star}(0,0)}{\partial u_i} = \lim_{t \nearrow 0} \frac{p^{\star}(te_i,0) - p^{\star}(0,0)}{t} \le -\lambda_i^{\star}$$

hence, equality

 $p^{\star}(u)$ for a problem with one (inequality) constraint:



Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions

e.g., replace $f_0(x)$ by $\phi(f_0(x))$ with ϕ convex, increasing

Introducing new variables and equality constraints

minimize $f_0(Ax+b)$

- dual function is constant: $g = \inf_x L(x) = \inf_x f_0(Ax + b) = p^*$
- we have strong duality, but dual is quite useless

reformulated problem and its dual

$$\begin{array}{ll} \mbox{minimize} & f_0(y) & \mbox{maximize} & b^T \nu - f_0^*(\nu) \\ \mbox{subject to} & Ax + b - y = 0 & \mbox{subject to} & A^T \nu = 0 \\ \end{array}$$

dual function follows from

$$g(\nu) = \inf_{x,y} (f_0(y) - \nu^T y + \nu^T A x + b^T \nu)$$
$$= \begin{cases} -f_0^*(\nu) + b^T \nu & A^T \nu = 0\\ -\infty & \text{otherwise} \end{cases}$$

norm approximation problem: minimize ||Ax - b||

 $\begin{array}{ll} \mbox{minimize} & \|y\| \\ \mbox{subject to} & y = Ax - b \end{array}$

can look up conjugate of $\|\cdot\|,$ or derive dual directly

$$g(\nu) = \inf_{x,y} (\|y\| + \nu^T y - \nu^T A x + b^T \nu)$$

=
$$\begin{cases} b^T \nu + \inf_y (\|y\| + \nu^T y) & A^T \nu = 0\\ -\infty & \text{otherwise} \end{cases}$$

=
$$\begin{cases} b^T \nu & A^T \nu = 0, & \|\nu\|_* \le 1\\ -\infty & \text{otherwise} \end{cases}$$

(see page 5-4)

dual of norm approximation problem

$$\begin{array}{ll} \text{maximize} & b^T\nu\\ \text{subject to} & A^T\nu=0, \quad \|\nu\|_*\leq 1 \end{array}$$

Implicit constraints

LP with box constraints: primal and dual problem

$$\begin{array}{lll} \text{minimize} & c^T x & \text{maximize} & -b^T \nu - \mathbf{1}^T \lambda_1 - \mathbf{1}^T \lambda_2 \\ \text{subject to} & Ax = b & \text{subject to} & c + A^T \nu + \lambda_1 - \lambda_2 = 0 \\ & -\mathbf{1} \preceq x \preceq \mathbf{1} & & \lambda_1 \succeq 0, \quad \lambda_2 \succeq 0 \end{array}$$

reformulation with box constraints made implicit

minimize
$$f_0(x) = \begin{cases} c^T x & -\mathbf{1} \leq x \leq \mathbf{1} \\ \infty & \text{otherwise} \end{cases}$$

subject to $Ax = b$

dual function

$$g(\nu) = \inf_{-1 \le x \le 1} (c^T x + \nu^T (Ax - b))$$

= $-b^T \nu - ||A^T \nu + c||_1$

dual problem: maximize $-b^T \nu - \|A^T \nu + c\|_1$

Problems with generalized inequalities

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \preceq_{K_i} 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

 \preceq_{K_i} is generalized inequality on \mathbf{R}^{k_i}

definitions are parallel to scalar case:

- Lagrange multiplier for $f_i(x) \preceq_{K_i} 0$ is vector $\lambda_i \in \mathbf{R}^{k_i}$
- Lagrangian $L: \mathbb{R}^n \times \mathbb{R}^{k_1} \times \cdots \times \mathbb{R}^{k_m} \times \mathbb{R}^p \to \mathbb{R}$, is defined as

$$L(x, \lambda_1, \cdots, \lambda_m, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i^T f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

• dual function $g: \mathbf{R}^{k_1} \times \cdots \times \mathbf{R}^{k_m} \times \mathbf{R}^p \to \mathbf{R}$, is defined as

$$g(\lambda_1, \dots, \lambda_m, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda_1, \cdots, \lambda_m, \nu)$$

lower bound property: if $\lambda_i \succeq_{K_i^*} 0$, then $g(\lambda_1, \ldots, \lambda_m, \nu) \leq p^*$ proof: if \tilde{x} is feasible and $\lambda \succeq_{K_i^*} 0$, then

$$f_0(\tilde{x}) \geq f_0(\tilde{x}) + \sum_{i=1}^m \lambda_i^T f_i(\tilde{x}) + \sum_{i=1}^p \nu_i h_i(\tilde{x})$$

$$\geq \inf_{x \in \mathcal{D}} L(x, \lambda_1, \dots, \lambda_m, \nu)$$

$$= g(\lambda_1, \dots, \lambda_m, \nu)$$

minimizing over all feasible \tilde{x} gives $p^* \geq g(\lambda_1, \ldots, \lambda_m, \nu)$

dual problem

maximize
$$g(\lambda_1, \ldots, \lambda_m, \nu)$$

subject to $\lambda_i \succeq_{K_i^*} 0, \quad i = 1, \ldots, m$

- weak duality: $p^{\star} \ge d^{\star}$ always
- strong duality: $p^* = d^*$ for convex problem with constraint qualification (for example, Slater's: primal problem is strictly feasible)

Semidefinite program

primal SDP $(F_i, G \in \mathbf{S}^k)$

minimize
$$c^T x$$

subject to $x_1F_1 + \cdots + x_nF_n \preceq G$

- Lagrange multiplier is matrix $Z \in \mathbf{S}^k$
- Lagrangian $L(x, Z) = c^T x + \operatorname{tr} \left(Z(x_1 F_1 + \dots + x_n F_n G) \right)$
- dual function

$$g(Z) = \inf_{x} L(x, Z) = \begin{cases} -\mathbf{tr}(GZ) & \mathbf{tr}(FZ_i) + c_i = 0, \quad i = 1, \dots, n \\ -\infty & \text{otherwise} \end{cases}$$

dual SDP

maximize
$$-\mathbf{tr}(GZ)$$

subject to $Z \succeq 0$, $\mathbf{tr}(F_iZ) + c_i = 0$, $i = 1, \dots, n$

 $p^{\star} = d^{\star}$ if primal SDP is strictly feasible ($\exists x \text{ with } x_1F_1 + \cdots + x_nF_n \prec G$)

Duality

Convex Optimization — Boyd & Vandenberghe

6. Approximation and fitting

- norm approximation
- least-norm problems
- regularized approximation
- robust approximation

Norm approximation

minimize ||Ax - b||

 $(A \in \mathbf{R}^{m \times n} \text{ with } m \ge n, \|\cdot\| \text{ is a norm on } \mathbf{R}^m)$

interpretations of solution $x^{\star} = \operatorname{argmin}_{x} \|Ax - b\|$:

- geometric: Ax^* is point in $\mathcal{R}(A)$ closest to b
- estimation: linear measurement model

$$y = Ax + v$$

y are measurements, x is unknown, v is measurement error given y=b, best guess of x is x^\star

optimal design: x are design variables (input), Ax is result (output)
 x* is design that best approximates desired result b

examples

• least-squares approximation $(\|\cdot\|_2)$: solution satisfies normal equations

$$A^T A x = A^T b$$

$$(x^{\star} = (A^T A)^{-1} A^T b \text{ if } \operatorname{rank} A = n)$$

• Chebyshev approximation $(\|\cdot\|_{\infty})$: can be solved as an LP

minimize
$$t$$

subject to $-t\mathbf{1} \preceq Ax - b \preceq t\mathbf{1}$

• sum of absolute residuals approximation $(\|\cdot\|_1)$: can be solved as an LP

minimize
$$\mathbf{1}^T y$$

subject to $-y \preceq Ax - b \preceq y$

Penalty function approximation

minimize $\phi(r_1) + \dots + \phi(r_m)$ subject to r = Ax - b

 $(A \in \mathbf{R}^{m \times n}, \phi : \mathbf{R} \to \mathbf{R} \text{ is a convex penalty function})$

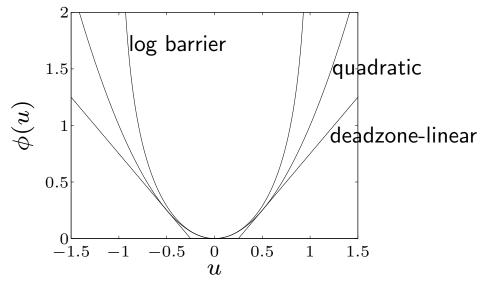
examples

- quadratic: $\phi(u) = u^2$
- deadzone-linear with width *a*:

$$\phi(u) = \max\{0, |u| - a\}$$

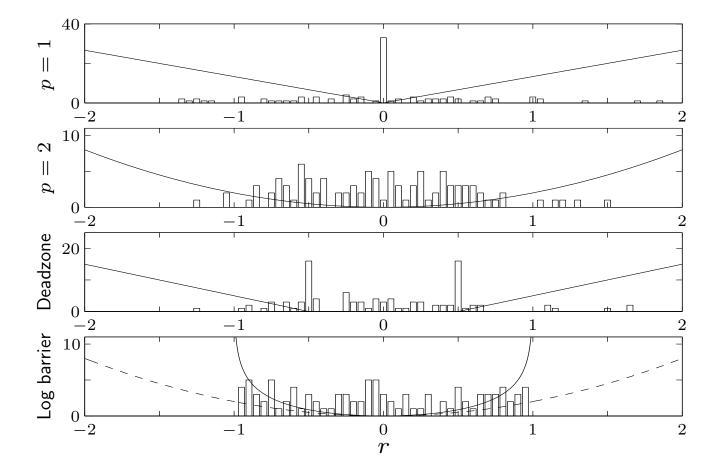
• log-barrier with limit *a*:

$$\phi(u) = \begin{cases} -a^2 \log(1 - (u/a)^2) & |u| < a \\ \infty & \text{otherwise} \end{cases}$$



example (m = 100, n = 30): histogram of residuals for penalties

$$\phi(u) = |u|, \quad \phi(u) = u^2, \quad \phi(u) = \max\{0, |u| - a\}, \quad \phi(u) = -\log(1 - u^2)$$

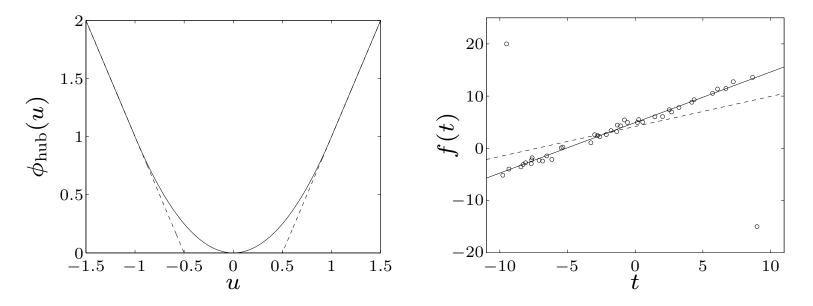


shape of penalty function has large effect on distribution of residuals

Huber penalty function (with parameter M)

$$\phi_{\text{hub}}(u) = \begin{cases} u^2 & |u| \le M\\ M(2|u| - M) & |u| > M \end{cases}$$

linear growth for large u makes approximation less sensitive to outliers



• left: Huber penalty for M = 1

• right: affine function $f(t) = \alpha + \beta t$ fitted to 42 points t_i , y_i (circles) using quadratic (dashed) and Huber (solid) penalty

Least-norm problems

 $\begin{array}{ll} \text{minimize} & \|x\| \\ \text{subject to} & Ax = b \end{array}$

 $(A \in \mathbf{R}^{m \times n} \text{ with } m \leq n, \|\cdot\| \text{ is a norm on } \mathbf{R}^n)$

interpretations of solution $x^{\star} = \operatorname{argmin}_{Ax=b} \|x\|$:

- geometric: x^* is point in affine set $\{x \mid Ax = b\}$ with minimum distance to 0
- estimation: b = Ax are (perfect) measurements of x; x* is smallest ('most plausible') estimate consistent with measurements
- design: x are design variables (inputs); b are required results (outputs)
 x* is smallest ('most efficient') design that satisfies requirements

examples

least-squares solution of linear equations (|| · ||₂):
 can be solved via optimality conditions

$$2x + A^T \nu = 0, \qquad Ax = b$$

• minimum sum of absolute values $(\|\cdot\|_1)$: can be solved as an LP

minimize
$$\mathbf{1}^T y$$

subject to $-y \leq x \leq y$, $Ax = b$

tends to produce sparse solution x^\star

extension: least-penalty problem

minimize
$$\phi(x_1) + \dots + \phi(x_n)$$

subject to $Ax = b$

 $\phi: \mathbf{R} \rightarrow \mathbf{R}$ is convex penalty function

Regularized approximation

minimize (w.r.t.
$$\mathbf{R}^{2}_{+}$$
) ($||Ax - b||, ||x||$)

 $A \in \mathbf{R}^{m \times n}$, norms on \mathbf{R}^m and \mathbf{R}^n can be different

interpretation: find good approximation $Ax \approx b$ with small x

- estimation: linear measurement model y = Ax + v, with prior knowledge that ||x|| is small
- optimal design: small x is cheaper or more efficient, or the linear model y = Ax is only valid for small x
- robust approximation: good approximation $Ax \approx b$ with small x is less sensitive to errors in A than good approximation with large x

Scalarized problem

minimize $||Ax - b|| + \gamma ||x||$

- solution for $\gamma>0$ traces out optimal trade-off curve
- other common method: minimize $||Ax b||^2 + \delta ||x||^2$ with $\delta > 0$

Tikhonov regularization

minimize
$$||Ax - b||_2^2 + \delta ||x||_2^2$$

can be solved as a least-squares problem

minimize
$$\left\| \begin{bmatrix} A \\ \sqrt{\delta}I \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|_2^2$$

solution $x^{\star} = (A^T A + \delta I)^{-1} A^T b$

Optimal input design

linear dynamical system with impulse response *h*:

$$y(t) = \sum_{\tau=0}^{t} h(\tau)u(t-\tau), \quad t = 0, 1, \dots, N$$

input design problem: multicriterion problem with 3 objectives

- 1. tracking error with desired output y_{des} : $J_{\text{track}} = \sum_{t=0}^{N} (y(t) y_{\text{des}}(t))^2$
- 2. input magnitude: $J_{\text{mag}} = \sum_{t=0}^{N} u(t)^2$
- 3. input variation: $J_{der} = \sum_{t=0}^{N-1} (u(t+1) u(t))^2$

track desired output using a small and slowly varying input signal

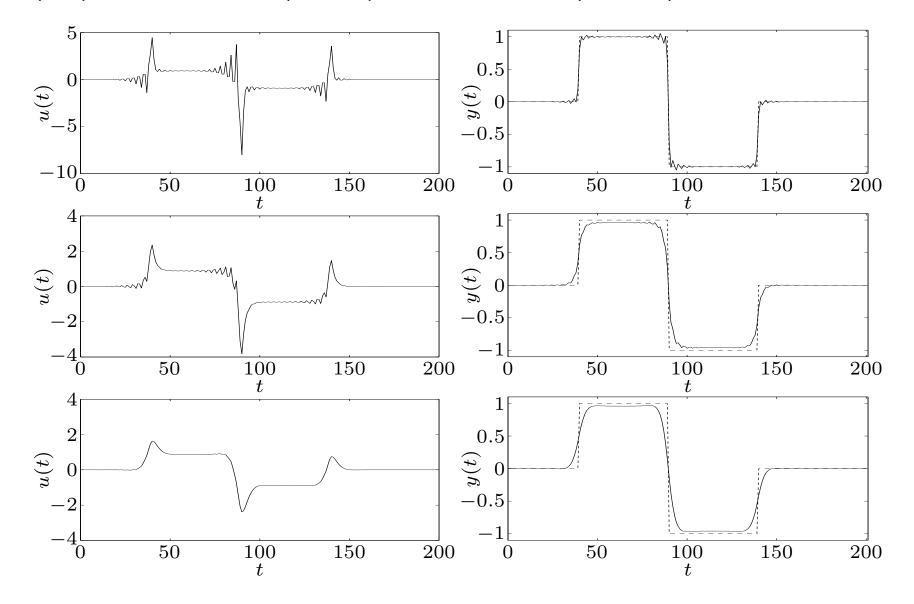
regularized least-squares formulation

minimize
$$J_{\text{track}} + \delta J_{\text{der}} + \eta J_{\text{mag}}$$

for fixed $\delta, \gamma > 0$, a least-squares problem in u(0), . . . , u(N)

example: 3 solutions on optimal trade-off curve

(top) $\delta = 0$, small η ; (middle) $\delta = 0$, larger η ; (bottom) large δ



Approximation and fitting

Signal reconstruction

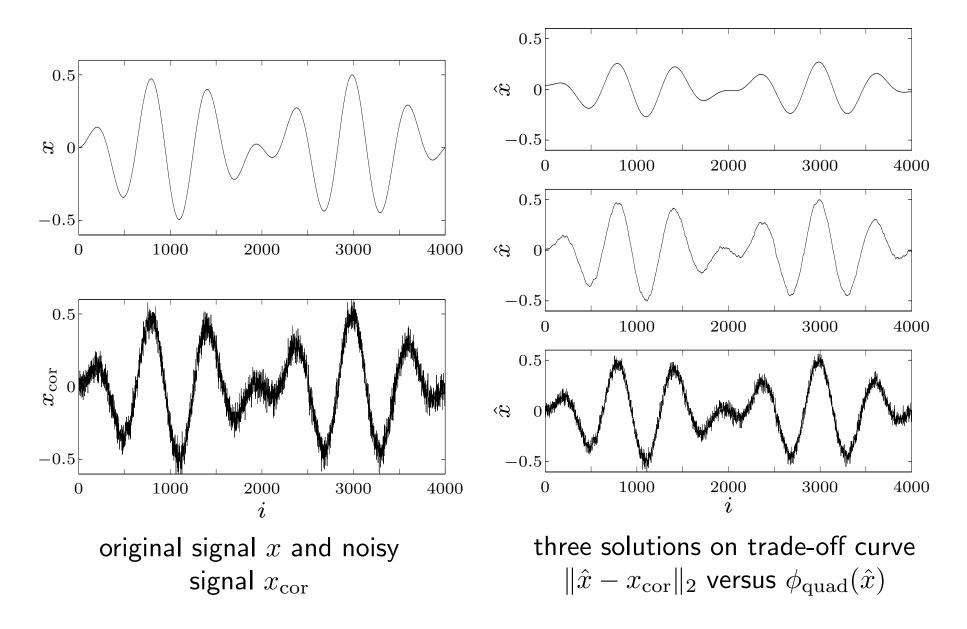
minimize (w.r.t.
$$\mathbf{R}^2_+$$
) $(\|\hat{x} - x_{cor}\|_2, \phi(\hat{x}))$

- $x \in \mathbf{R}^n$ is unknown signal
- $x_{cor} = x + v$ is (known) corrupted version of x, with additive noise v
- variable \hat{x} (reconstructed signal) is estimate of x
- $\phi : \mathbf{R}^n \to \mathbf{R}$ is regularization function or smoothing objective

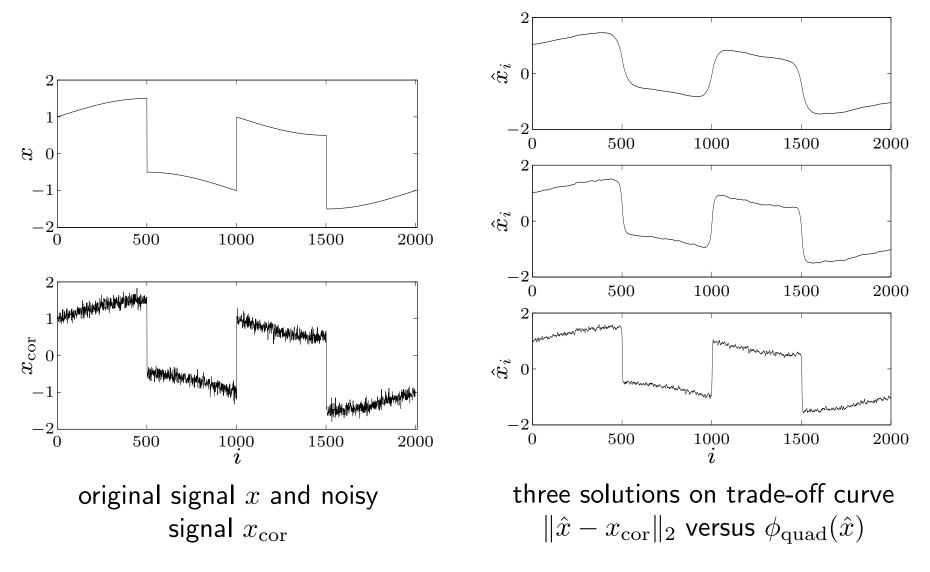
examples: quadratic smoothing, total variation smoothing:

$$\phi_{\text{quad}}(\hat{x}) = \sum_{i=1}^{n-1} (\hat{x}_{i+1} - \hat{x}_i)^2, \qquad \phi_{\text{tv}}(\hat{x}) = \sum_{i=1}^{n-1} |\hat{x}_{i+1} - \hat{x}_i|$$

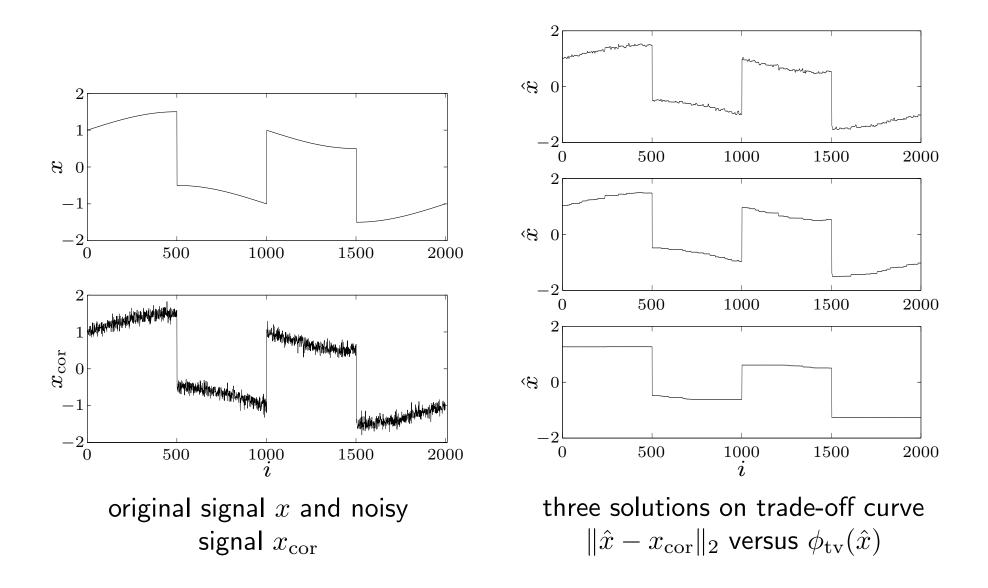
quadratic smoothing example



total variation reconstruction example



quadratic smoothing smooths out noise and sharp transitions in signal



total variation smoothing preserves sharp transitions in signal

Robust approximation

minimize ||Ax - b|| with uncertain A

two approaches:

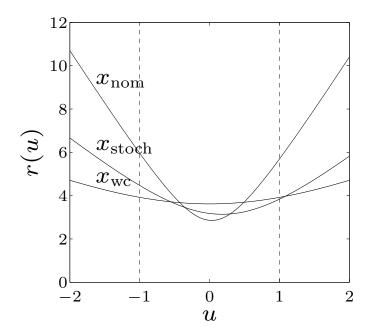
- **stochastic**: assume A is random, minimize $\mathbf{E} ||Ax b||$
- worst-case: set \mathcal{A} of possible values of A, minimize $\sup_{A \in \mathcal{A}} ||Ax b||$

tractable only in special cases (certain norms $\|\cdot\|$, distributions, sets \mathcal{A})

example: $A(u) = A_0 + uA_1$

- x_{nom} minimizes $||A_0x b||_2^2$
- x_{stoch} minimizes $\mathbf{E} ||A(u)x b||_2^2$ with u uniform on [-1, 1]
- x_{wc} minimizes $\sup_{-1 \le u \le 1} \|A(u)x b\|_2^2$

figure shows $r(u) = ||A(u)x - b||_2$



stochastic robust LS with $A = \overline{A} + U$, U random, $\mathbf{E} U = 0$, $\mathbf{E} U^T U = P$

minimize
$$\mathbf{E} \| (\bar{A} + U)x - b \|_2^2$$

• explicit expression for objective:

$$\begin{split} \mathbf{E} \|Ax - b\|_{2}^{2} &= \mathbf{E} \|\bar{A}x - b + Ux\|_{2}^{2} \\ &= \|\bar{A}x - b\|_{2}^{2} + \mathbf{E} x^{T} U^{T} Ux \\ &= \|\bar{A}x - b\|_{2}^{2} + x^{T} Px \end{split}$$

• hence, robust LS problem is equivalent to LS problem

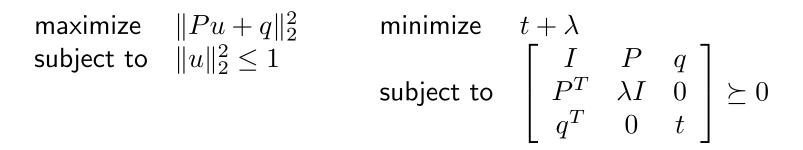
minimize
$$\|\bar{A}x - b\|_2^2 + \|P^{1/2}x\|_2^2$$

• for $P = \delta I$, get Tikhonov regularized problem

minimize
$$\|\bar{A}x - b\|_{2}^{2} + \delta \|x\|_{2}^{2}$$

worst-case robust LS with $\mathcal{A} = \{\bar{A} + u_1 A_1 + \dots + u_p A_p \mid ||u||_2 \le 1\}$ minimize $\sup_{A \in \mathcal{A}} ||Ax - b||_2^2 = \sup_{||u||_2 \le 1} ||P(x)u + q(x)||_2^2$ where $P(x) = \begin{bmatrix} A_1 x & A_2 x & \cdots & A_p x \end{bmatrix}$, $q(x) = \bar{A}x - b$

• from page 5–14, strong duality holds between the following problems



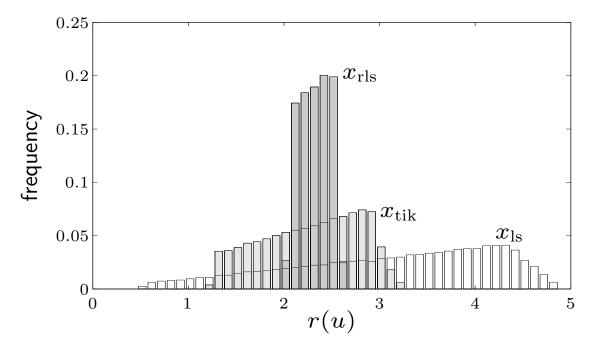
• hence, robust LS problem is equivalent to SDP

$$\begin{array}{ll} \text{minimize} & t+\lambda \\ \text{subject to} & \left[\begin{array}{ccc} I & P(x) & q(x) \\ P(x)^T & \lambda I & 0 \\ q(x)^T & 0 & t \end{array} \right] \succeq 0 \\ \end{array}$$

example: histogram of residuals

$$r(u) = \|(A_0 + u_1A_1 + u_2A_2)x - b\|_2$$

with u uniformly distributed on unit disk, for three values of x



- x_{ls} minimizes $||A_0x b||_2$
- x_{tik} minimizes $||A_0x b||_2^2 + ||x||_2^2$ (Tikhonov solution)
- x_{wc} minimizes $\sup_{\|u\|_2 \le 1} \|A_0 x b\|_2^2 + \|x\|_2^2$

Convex Optimization — Boyd & Vandenberghe

7. Statistical estimation

- maximum likelihood estimation
- optimal detector design
- experiment design

Parametric distribution estimation

- distribution estimation problem: estimate probability density p(y) of a random variable from observed values
- parametric distribution estimation: choose from a family of densities $p_x(y)$, indexed by a parameter x

maximum likelihood estimation

maximize (over x)
$$\log p_x(y)$$

- y is observed value
- $l(x) = \log p_x(y)$ is called log-likelihood function
- can add constraints $x \in C$ explicitly, or define $p_x(y) = 0$ for $x \notin C$
- a convex optimization problem if $\log p_x(y)$ is concave in x for fixed y

Linear measurements with IID noise

linear measurement model

$$y_i = a_i^T x + v_i, \quad i = 1, \dots, m$$

- $x \in \mathbf{R}^n$ is vector of unknown parameters
- v_i is IID measurement noise, with density p(z)
- y_i is measurement: $y \in \mathbf{R}^m$ has density $p_x(y) = \prod_{i=1}^m p(y_i a_i^T x)$

maximum likelihood estimate: any solution x of

maximize
$$l(x) = \sum_{i=1}^{m} \log p(y_i - a_i^T x)$$

(y is observed value)

examples

• Gaussian noise $\mathcal{N}(0,\sigma^2)$: $p(z) = (2\pi\sigma^2)^{-1/2}e^{-z^2/(2\sigma^2)}$,

$$l(x) = -\frac{m}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^m (a_i^T x - y_i)^2$$

ML estimate is LS solution

• Laplacian noise: $p(z) = (1/(2a))e^{-|z|/a}$,

$$l(x) = -m\log(2a) - \frac{1}{a}\sum_{i=1}^{m} |a_i^T x - y_i|$$

ML estimate is ℓ_1 -norm solution

• uniform noise on [-a, a]:

$$l(x) = \begin{cases} -m \log(2a) & |a_i^T x - y_i| \le a, \quad i = 1, \dots, m \\ -\infty & \text{otherwise} \end{cases}$$

ML estimate is any x with $|a_i^T x - y_i| \leq a$

Logistic regression

random variable $y \in \{0,1\}$ with distribution

$$p = \operatorname{prob}(y = 1) = \frac{\exp(a^T u + b)}{1 + \exp(a^T u + b)}$$

- a, b are parameters; $u \in \mathbf{R}^n$ are (observable) explanatory variables
- estimation problem: estimate a, b from m observations (u_i, y_i)

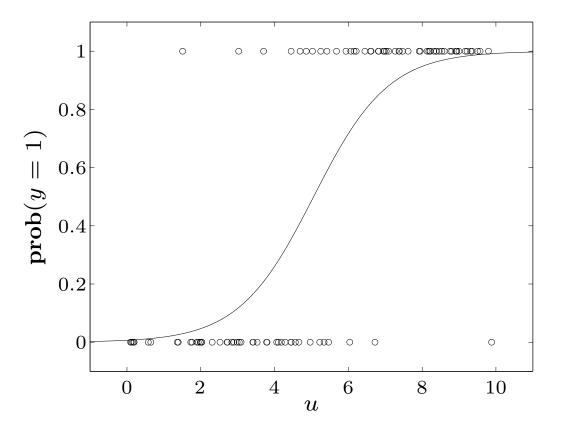
log-likelihood function (for $y_1 = \cdots = y_k = 1$, $y_{k+1} = \cdots = y_m = 0$):

$$l(a,b) = \log\left(\prod_{i=1}^{k} \frac{\exp(a^{T}u_{i}+b)}{1+\exp(a^{T}u_{i}+b)} \prod_{i=k+1}^{m} \frac{1}{1+\exp(a^{T}u_{i}+b)}\right)$$
$$= \sum_{i=1}^{k} (a^{T}u_{i}+b) - \sum_{i=1}^{m} \log(1+\exp(a^{T}u_{i}+b))$$

concave in a, b

Statistical estimation

example (n = 1, m = 50 measurements)



• circles show 50 points (u_i, y_i)

• solid curve is ML estimate of $p = \exp(au + b)/(1 + \exp(au + b))$

(Binary) hypothesis testing

detection (hypothesis testing) problem

given observation of a random variable $X \in \{1, \ldots, n\}$, choose between:

- hypothesis 1: X was generated by distribution $p = (p_1, \ldots, p_n)$
- hypothesis 2: X was generated by distribution $q = (q_1, \ldots, q_n)$

randomized detector

- a nonnegative matrix $T \in \mathbf{R}^{2 \times n}$, with $\mathbf{1}^T T = \mathbf{1}$
- if we observe X = k, we choose hypothesis 1 with probability t_{1k} , hypothesis 2 with probability t_{2k}
- if all elements of T are 0 or 1, it is called a deterministic detector

detection probability matrix:

$$D = \begin{bmatrix} Tp & Tq \end{bmatrix} = \begin{bmatrix} 1 - P_{\rm fp} & P_{\rm fn} \\ P_{\rm fp} & 1 - P_{\rm fn} \end{bmatrix}$$

- $P_{\rm fp}$ is probability of selecting hypothesis 2 if X is generated by distribution 1 (false positive)
- $P_{\rm fn}$ is probability of selecting hypothesis 1 if X is generated by distribution 2 (false negative)

multicriterion formulation of detector design

$$\begin{array}{ll} \text{minimize (w.r.t. } \mathbf{R}^2_+) & (P_{\rm fp}, P_{\rm fn}) = ((Tp)_2, (Tq)_1) \\ \text{subject to} & t_{1k} + t_{2k} = 1, \quad k = 1, \dots, n \\ & t_{ik} \ge 0, \quad i = 1, 2, \quad k = 1, \dots, n \end{array}$$

variable $T \in \mathbf{R}^{2 \times n}$

scalarization (with weight $\lambda > 0$)

minimize
$$(Tp)_2 + \lambda (Tq)_1$$

subject to $t_{1k} + t_{2k} = 1, t_{ik} \ge 0, i = 1, 2, k = 1, ..., n$

an LP with a simple analytical solution

$$(t_{1k}, t_{2k}) = \begin{cases} (1,0) & p_k \ge \lambda q_k \\ (0,1) & p_k < \lambda q_k \end{cases}$$

- a deterministic detector, given by a likelihood ratio test
- if $p_k = \lambda q_k$ for some k, any value $0 \le t_{1k} \le 1$, $t_{1k} = 1 t_{2k}$ is optimal (*i.e.*, Pareto-optimal detectors include non-deterministic detectors)

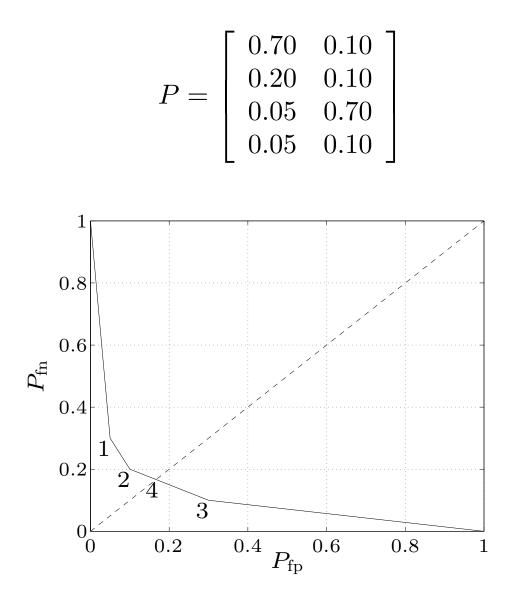
minimax detector

minimize
$$\max\{P_{\text{fp}}, P_{\text{fn}}\} = \max\{(Tp)_2, (Tq)_1\}$$

subject to $t_{1k} + t_{2k} = 1, t_{ik} \ge 0, i = 1, 2, k = 1, \dots, n$

an LP; solution is usually not deterministic

example



solutions 1, 2, 3 (and endpoints) are deterministic; 4 is minimax detector

Experiment design

m linear measurements $y_i = a_i^T x + w_i$, $i = 1, \ldots, m$ of unknown $x \in \mathbf{R}^n$

- measurement errors w_i are IID $\mathcal{N}(0,1)$
- ML (least-squares) estimate is

$$\hat{x} = \left(\sum_{i=1}^{m} a_i a_i^T\right)^{-1} \sum_{i=1}^{m} y_i a_i$$

• error $e = \hat{x} - x$ has zero mean and covariance

$$E = \mathbf{E} \, e e^T = \left(\sum_{i=1}^m a_i a_i^T\right)^{-1}$$

confidence ellipsoids are given by $\{x \mid (x - \hat{x})^T E^{-1} (x - \hat{x}) \le \beta\}$

experiment design: choose $a_i \in \{v_1, \ldots, v_p\}$ (a set of possible test vectors) to make E 'small'

Statistical estimation

vector optimization formulation

minimize (w.r.t.
$$\mathbf{S}_{+}^{n}$$
) $E = \left(\sum_{k=1}^{p} m_{k} v_{k} v_{k}^{T}\right)^{-1}$
subject to $m_{k} \ge 0, \quad m_{1} + \dots + m_{p} = m$
 $m_{k} \in \mathbf{Z}$

- variables are m_k (# vectors a_i equal to v_k)
- difficult in general, due to integer constraint

relaxed experiment design

assume $m \gg p$, use $\lambda_k = m_k/m$ as (continuous) real variable

minimize (w.r.t.
$$\mathbf{S}_{+}^{n}$$
) $E = (1/m) \left(\sum_{k=1}^{p} \lambda_{k} v_{k} v_{k}^{T}\right)^{-1}$
subject to $\lambda \succeq 0, \quad \mathbf{1}^{T} \lambda = 1$

- common scalarizations: minimize $\log \det E$, $\operatorname{tr} E$, $\lambda_{\max}(E)$, . . .
- can add other convex constraints, e.g., bound experiment cost $c^T\lambda \leq B$

D-optimal design

minimize
$$\log \det \left(\sum_{k=1}^{p} \lambda_k v_k v_k^T \right)^{-1}$$

subject to $\lambda \succeq 0$, $\mathbf{1}^T \lambda = 1$

interpretation: minimizes volume of confidence ellipsoids

dual problem

maximize
$$\log \det W + n \log n$$

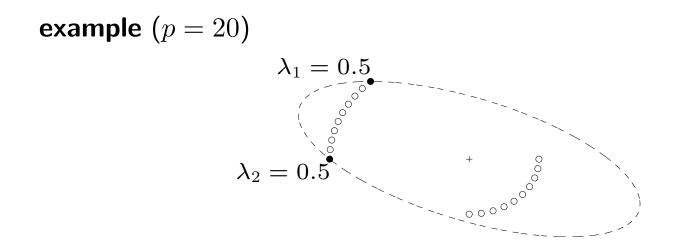
subject to $v_k^T W v_k \leq 1, \quad k = 1, \dots, p$

interpretation: $\{x \mid x^T W x \leq 1\}$ is minimum volume ellipsoid centered at origin, that includes all test vectors v_k

complementary slackness: for λ , W primal and dual optimal

$$\lambda_k (1 - v_k^T W v_k) = 0, \quad k = 1, \dots, p$$

optimal experiment uses vectors v_k on boundary of ellipsoid defined by W



design uses two vectors, on boundary of ellipse defined by optimal \boldsymbol{W}

derivation of dual of page 7–13

first reformulate primal problem with new variable X:

minimize
$$\log \det X^{-1}$$

subject to $X = \sum_{k=1}^{p} \lambda_k v_k v_k^T$, $\lambda \succeq 0$, $\mathbf{1}^T \lambda = 1$

$$L(X,\lambda,Z,z,\nu) = \log \det X^{-1} + \mathbf{tr} \left(Z \left(X - \sum_{k=1}^{p} \lambda_k v_k v_k^T \right) \right) - z^T \lambda + \nu (\mathbf{1}^T \lambda - 1)$$

- minimize over X by setting gradient to zero: $-X^{-1} + Z = 0$
- minimum over λ_k is $-\infty$ unless $-v_k^T Z v_k z_k + \nu = 0$

dual problem

$$\begin{array}{ll} \text{maximize} & n + \log \det Z - \nu \\ \text{subject to} & v_k^T Z v_k \leq \nu, \quad k = 1, \dots, p \end{array}$$

change variable $W = Z/\nu$, and optimize over ν to get dual of page 7–13

Convex Optimization — Boyd & Vandenberghe

8. Geometric problems

- extremal volume ellipsoids
- centering
- classification
- placement and facility location

Minimum volume ellipsoid around a set

Löwner-John ellipsoid of a set C: minimum volume ellipsoid \mathcal{E} s.t. $C \subseteq \mathcal{E}$

- parametrize \mathcal{E} as $\mathcal{E} = \{v \mid ||Av + b||_2 \le 1\}$; w.l.o.g. assume $A \in \mathbf{S}_{++}^n$
- $\operatorname{vol} \mathcal{E}$ is proportional to $\det A^{-1}$; to compute minimum volume ellipsoid,

minimize (over A, b)
$$\log \det A^{-1}$$

subject to $\sup_{v \in C} ||Av + b||_2 \le 1$

convex, but evaluating the constraint can be hard (for general C)

finite set $C = \{x_1, ..., x_m\}$:

minimize (over A, b) $\log \det A^{-1}$ subject to $||Ax_i + b||_2 \le 1, \quad i = 1, \dots, m$

also gives Löwner-John ellipsoid for polyhedron $conv\{x_1, \ldots, x_m\}$

Maximum volume inscribed ellipsoid

maximum volume ellipsoid \mathcal{E} inside a convex set $C \subseteq \mathbf{R}^n$

- parametrize \mathcal{E} as $\mathcal{E} = \{Bu + d \mid ||u||_2 \le 1\}$; w.l.o.g. assume $B \in \mathbf{S}_{++}^n$
- $\operatorname{vol} \mathcal{E}$ is proportional to $\det B$; can compute \mathcal{E} by solving

$$\begin{array}{ll} \mathsf{maximize} & \log \det B \\ \mathsf{subject to} & \sup_{\|u\|_2 \leq 1} I_C(Bu+d) \leq 0 \end{array}$$

(where
$$I_C(x) = 0$$
 for $x \in C$ and $I_C(x) = \infty$ for $x \notin C$)

convex, but evaluating the constraint can be hard (for general C)

polyhedron $\{x \mid a_i^T x \le b_i, i = 1, ..., m\}$:

maximize $\log \det B$ subject to $||Ba_i||_2 + a_i^T d \le b_i, \quad i = 1, \dots, m$

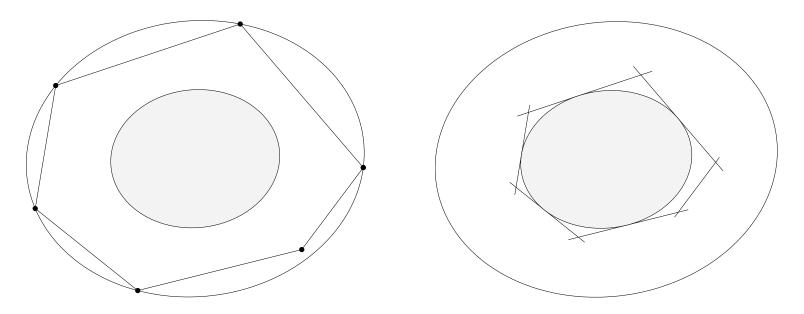
(constraint follows from $\sup_{\|u\|_2 \leq 1} a_i^T (Bu + d) = \|Ba_i\|_2 + a_i^T d$)

Efficiency of ellipsoidal approximations

 $C \subseteq \mathbf{R}^n$ convex, bounded, with nonempty interior

- Löwner-John ellipsoid, shrunk by a factor n, lies inside C
- maximum volume inscribed ellipsoid, expanded by a factor n, covers C

example (for two polyhedra in \mathbf{R}^2)



factor n can be improved to \sqrt{n} if C is symmetric

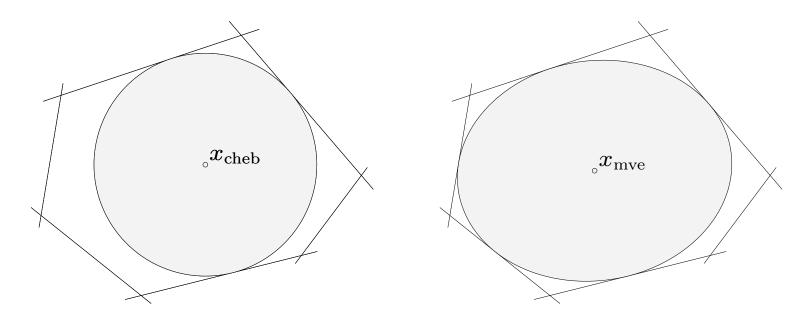
Centering

some possible definitions of 'center' of a convex set C:

• center of largest inscribed ball ('Chebyshev center')

for polyhedron, can be computed via linear programming (page 4-19)

• center of maximum volume inscribed ellipsoid (page 8–3)



MVE center is invariant under affine coordinate transformations

Analytic center of a set inequalities

the analytic center of set of convex inequalities and linear equations

$$f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Fx = g$$

is defined as the optimal point of

minimize
$$-\sum_{i=1}^{m} \log(-f_i(x))$$

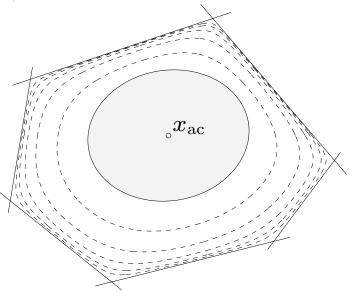
subject to $Fx = g$

- more easily computed than MVE or Chebyshev center (see later)
- not just a property of the feasible set: two sets of inequalities can describe the same set, but have different analytic centers

analytic center of linear inequalities $a_i^T x \leq b_i$, $i = 1, \ldots, m$

 $x_{\rm ac}$ is minimizer of

$$\phi(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$$



inner and outer ellipsoids from analytic center:

$$\mathcal{E}_{\text{inner}} \subseteq \{x \mid a_i^T x \leq b_i, \ i = 1, \dots, m\} \subseteq \mathcal{E}_{\text{outer}}$$

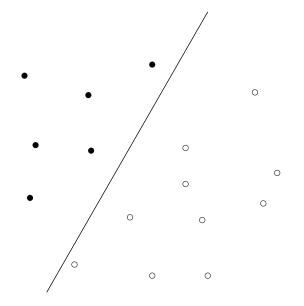
where

$$\begin{aligned} \mathcal{E}_{\text{inner}} &= \{ x \mid (x - x_{\text{ac}})^T \nabla^2 \phi(x_{\text{ac}}) (x - x_{\text{ac}} \le 1 \} \\ \mathcal{E}_{\text{outer}} &= \{ x \mid (x - x_{\text{ac}})^T \nabla^2 \phi(x_{\text{ac}}) (x - x_{\text{ac}}) \le m(m-1) \} \end{aligned}$$

Linear discrimination

separate two sets of points $\{x_1, \ldots, x_N\}$, $\{y_1, \ldots, y_M\}$ by a hyperplane:

 $a^T x_i + b_i > 0, \quad i = 1, \dots, N, \qquad a^T y_i + b_i < 0, \quad i = 1, \dots, M$



homogeneous in a, b, hence equivalent to

$$a^T x_i + b_i \ge 1, \quad i = 1, \dots, N, \qquad a^T y_i + b_i \le -1, \quad i = 1, \dots, M$$

a set of linear inequalities in \boldsymbol{a} , \boldsymbol{b}

Geometric problems

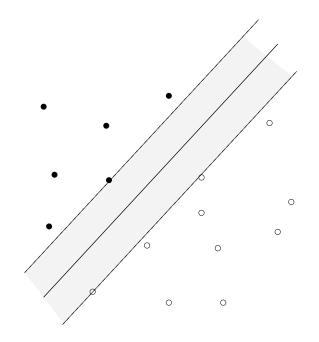
Robust linear discrimination

(Euclidean) distance between hyperplanes

$$\mathcal{H}_{1} = \{ z \mid a^{T}z + b = 1 \}$$

$$\mathcal{H}_{2} = \{ z \mid a^{T}z + b = -1 \}$$

is $\operatorname{dist}(\mathcal{H}_1, \mathcal{H}_2) = 2/\|a\|_2$



to separate two sets of points by maximum margin,

minimize
$$(1/2) ||a||_2$$

subject to $a^T x_i + b \ge 1, \quad i = 1, ..., N$
 $a^T y_i + b \le -1, \quad i = 1, ..., M$ (1)

(after squaring objective) a QP in a, b

Lagrange dual of maximum margin separation problem (1)

maximize
$$\mathbf{1}^T \lambda + \mathbf{1}^T \mu$$

subject to $2 \left\| \sum_{i=1}^N \lambda_i x_i - \sum_{i=1}^M \mu_i y_i \right\|_2 \le 1$ (2)
 $\mathbf{1}^T \lambda = \mathbf{1}^T \mu, \quad \lambda \succeq 0, \quad \mu \succeq 0$

from duality, optimal value is inverse of maximum margin of separation **interpretation**

- change variables to $\theta_i = \lambda_i / \mathbf{1}^T \lambda$, $\gamma_i = \mu_i / \mathbf{1}^T \mu$, $t = 1 / (\mathbf{1}^T \lambda + \mathbf{1}^T \mu)$
- invert objective to minimize $1/(\mathbf{1}^T\lambda+\mathbf{1}^T\mu)=t$

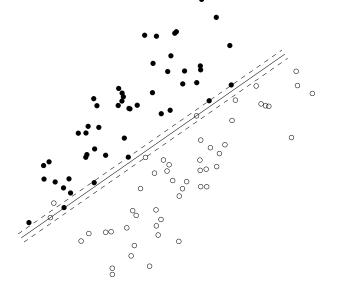
$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & \left\| \sum_{i=1}^{N} \theta_{i} x_{i} - \sum_{i=1}^{M} \gamma_{i} y_{i} \right\|_{2} \leq t \\ & \theta \succeq 0, \quad \mathbf{1}^{T} \theta = 1, \quad \gamma \succeq 0, \quad \mathbf{1}^{T} \gamma = 1 \end{array}$$

optimal value is distance between convex hulls

Approximate linear separation of non-separable sets

$$\begin{array}{ll} \text{minimize} & \mathbf{1}^T u + \mathbf{1}^T v \\ \text{subject to} & a^T x_i + b \geq 1 - u_i, \quad i = 1, \dots, N \\ & a^T y_i + b \leq -1 + v_i, \quad i = 1, \dots, M \\ & u \succeq 0, \quad v \succeq 0 \end{array}$$

- an LP in a, b, u, v
- at optimum, $u_i = \max\{0, 1 a^T x_i b\}$, $v_i = \max\{0, 1 + a^T y_i + b\}$
- can be interpreted as a heuristic for minimizing #misclassified points



Support vector classifier

$$\begin{array}{ll} \text{minimize} & \|a\|_2 + \gamma (\mathbf{1}^T u + \mathbf{1}^T v) \\ \text{subject to} & a^T x_i + b \ge 1 - u_i, \quad i = 1, \dots, N \\ & a^T y_i + b \le -1 + v_i, \quad i = 1, \dots, M \\ & u \succeq 0, \quad v \succeq 0 \end{array}$$

produces point on trade-off curve between inverse of margin $2/||a||_2$ and classification error, measured by total slack $\mathbf{1}^T u + \mathbf{1}^T v$



same example as previous page, with $\gamma=0.1$:

Nonlinear discrimination

separate two sets of points by a nonlinear function:

$$f(x_i) > 0, \quad i = 1, \dots, N, \qquad f(y_i) < 0, \quad i = 1, \dots, M$$

• choose a linearly parametrized family of functions

$$f(z) = \theta^T F(z)$$

$$F = (F_1, \ldots, F_k) : \mathbf{R}^n \to \mathbf{R}^k$$
 are basis functions

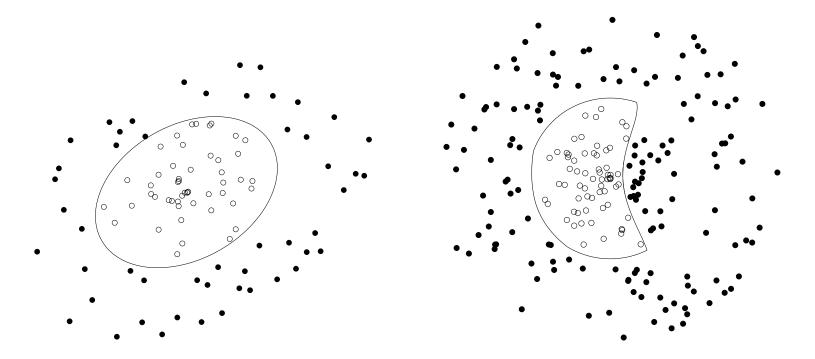
• solve a set of linear inequalities in θ :

$$\theta^T F(x_i) \ge 1, \quad i = 1, \dots, N, \qquad \theta^T F(y_i) \le -1, \quad i = 1, \dots, M$$

quadratic discrimination: $f(z) = z^T P z + q^T z + r$

$$x_i^T P x_i + q^T x_i + r \ge 1, \qquad y_i^T P y_i + q^T y_i + r \le -1$$

can add additional constraints (e.g., $P \leq -I$ to separate by an ellipsoid) polynomial discrimination: F(z) are all monomials up to a given degree



separation by 4th degree polynomial

separation by ellipsoid

Placement and facility location

- N points with coordinates $x_i \in \mathbf{R}^2$ (or \mathbf{R}^3)
- some positions x_i are given; the other x_i 's are variables
- for each pair of points, a cost function $f_{ij}(x_i, x_j)$

placement problem

minimize
$$\sum_{i \neq j} f_{ij}(x_i, x_j)$$

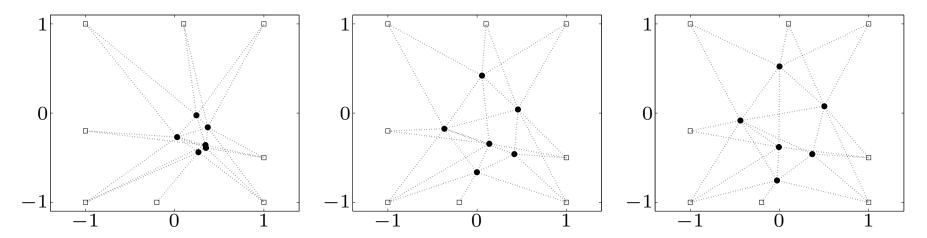
variables are positions of free points

interpretations

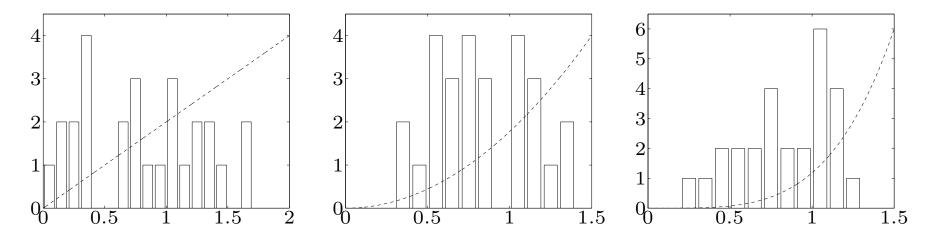
- points represent plants or warehouses; f_{ij} is transportation cost between facilities i and j
- points represent cells on an IC; f_{ij} represents wirelength

example: minimize $\sum_{(i,j)\in\mathcal{A}} h(||x_i - x_j||_2)$, with 6 free points, 27 links

optimal placement for h(z) = z, $h(z) = z^2$, $h(z) = z^4$



histograms of connection lengths $||x_i - x_j||_2$



9. Numerical linear algebra background

- matrix structure and algorithm complexity
- solving linear equations with factored matrices
- LU, Cholesky, LDL^T factorization
- block elimination and the matrix inversion lemma
- solving underdetermined equations

Matrix structure and algorithm complexity

cost (execution time) of solving Ax = b with $A \in \mathbf{R}^{n \times n}$

- for general methods, grows as n^3
- less if A is structured (banded, sparse, Toeplitz, ...)

flop counts

- flop (floating-point operation): one addition, subtraction, multiplication, or division of two floating-point numbers
- to estimate complexity of an algorithm: express number of flops as a (polynomial) function of the problem dimensions, and simplify by keeping only the leading terms
- not an accurate predictor of computation time on modern computers
- useful as a rough estimate of complexity

vector-vector operations $(x, y \in \mathbf{R}^n)$

- inner product $x^T y$: 2n 1 flops (or 2n if n is large)
- sum x + y, scalar multiplication αx : n flops

matrix-vector product y = Ax with $A \in \mathbf{R}^{m \times n}$

- m(2n-1) flops (or 2mn if n large)
- 2N if A is sparse with N nonzero elements
- 2p(n+m) if A is given as $A = UV^T$, $U \in \mathbf{R}^{m \times p}$, $V \in \mathbf{R}^{n \times p}$

matrix-matrix product C = AB with $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$

- mp(2n-1) flops (or 2mnp if n large)
- less if A and/or B are sparse
- $(1/2)m(m+1)(2n-1) \approx m^2n$ if m = p and C symmetric

Linear equations that are easy to solve

diagonal matrices $(a_{ij} = 0 \text{ if } i \neq j)$: n flops

$$x = A^{-1}b = (b_1/a_{11}, \dots, b_n/a_{nn})$$

lower triangular $(a_{ij} = 0 \text{ if } j > i)$: n^2 flops

$$x_{1} := b_{1}/a_{11}$$

$$x_{2} := (b_{2} - a_{21}x_{1})/a_{22}$$

$$x_{3} := (b_{3} - a_{31}x_{1} - a_{32}x_{2})/a_{33}$$

$$\vdots$$

$$x_{n} := (b_{n} - a_{n1}x_{1} - a_{n2}x_{2} - \dots - a_{n,n-1}x_{n-1})/a_{nn}$$

called forward substitution

upper triangular $(a_{ij} = 0 \text{ if } j < i)$: n^2 flops via backward substitution

orthogonal matrices: $A^{-1} = A^T$

- $2n^2$ flops to compute $x = A^T b$ for general A
- less with structure, e.g., if $A = I 2uu^T$ with $||u||_2 = 1$, we can compute $x = A^T b = b 2(u^T b)u$ in 4n flops

permutation matrices:

$$a_{ij} = \left\{ egin{array}{cc} 1 & j = \pi_i \\ 0 & {
m otherwise} \end{array}
ight.$$

where $\pi = (\pi_1, \pi_2, \dots, \pi_n)$ is a permutation of $(1, 2, \dots, n)$

- interpretation: $Ax = (x_{\pi_1}, \ldots, x_{\pi_n})$
- satisfies $A^{-1} = A^T$, hence cost of solving Ax = b is 0 flops

example:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \qquad A^{-1} = A^T = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

The factor-solve method for solving Ax = b

• factor A as a product of simple matrices (usually 2 or 3):

$$A = A_1 A_2 \cdots A_k$$

 $(A_i \text{ diagonal, upper or lower triangular, etc})$

• compute $x = A^{-1}b = A_k^{-1} \cdots A_2^{-1}A_1^{-1}b$ by solving k 'easy' equations

$$A_1 x_1 = b,$$
 $A_2 x_2 = x_1,$..., $A_k x = x_{k-1}$

cost of factorization step usually dominates cost of solve step

equations with multiple righthand sides

$$Ax_1 = b_1, \qquad Ax_2 = b_2, \qquad \dots, \qquad Ax_m = b_m$$

cost: one factorization plus m solves

Numerical linear algebra background

LU factorization

every nonsingular matrix \boldsymbol{A} can be factored as

A = PLU

with P a permutation matrix, L lower triangular, U upper triangular cost: $(2/3)n^3$ flops

Solving linear equations by LU factorization.

given a set of linear equations Ax = b, with A nonsingular.

- 1. LU factorization. Factor A as A = PLU ((2/3) n^3 flops).
- 2. *Permutation.* Solve $Pz_1 = b$ (0 flops).
- 3. Forward substitution. Solve $Lz_2 = z_1$ (n^2 flops).
- 4. Backward substitution. Solve $Ux = z_2$ (n^2 flops).

cost: $(2/3)n^3 + 2n^2 \approx (2/3)n^3$ for large n

sparse LU factorization

$$A = P_1 L U P_2$$

- adding permutation matrix P_2 offers possibility of sparser L, U (hence, cheaper factor and solve steps)
- P_1 and P_2 chosen (heuristically) to yield sparse L, U
- choice of P_1 and P_2 depends on sparsity pattern and values of A
- cost is usually much less than $(2/3)n^3$; exact value depends in a complicated way on n, number of zeros in A, sparsity pattern

Cholesky factorization

every positive definite A can be factored as

 $A = LL^T$

with L lower triangular

cost: $(1/3)n^3$ flops

Solving linear equations by Cholesky factorization.

given a set of linear equations Ax = b, with $A \in \mathbf{S}_{++}^n$.

- 1. Cholesky factorization. Factor A as $A = LL^T$ ((1/3) n^3 flops).
- 2. Forward substitution. Solve $Lz_1 = b$ (n^2 flops).
- 3. Backward substitution. Solve $L^T x = z_1$ (n^2 flops).

cost: $(1/3)n^3 + 2n^2 \approx (1/3)n^3$ for large n

sparse Cholesky factorization

$$A = PLL^T P^T$$

- adding permutation matrix P offers possibility of sparser L
- P chosen (heuristically) to yield sparse L
- choice of P only depends on sparsity pattern of A (unlike sparse LU)
- cost is usually much less than $(1/3)n^3$; exact value depends in a complicated way on n, number of zeros in A, sparsity pattern

$\mathsf{L}\mathsf{D}\mathsf{L}^\mathsf{T}$ factorization

every nonsingular symmetric matrix \boldsymbol{A} can be factored as

 $A = PLDL^T P^T$

with P a permutation matrix, L lower triangular, D block diagonal with 1×1 or 2×2 diagonal blocks

cost: $(1/3)n^3$

- cost of solving symmetric sets of linear equations by LDL^T factorization: $(1/3)n^3 + 2n^2 \approx (1/3)n^3$ for large n
- for sparse A, can choose P to yield sparse L; cost $\ll (1/3)n^3$

Equations with structured sub-blocks

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
(1)

- variables $x_1 \in \mathbf{R}^{n_1}$, $x_2 \in \mathbf{R}^{n_2}$; blocks $A_{ij} \in \mathbf{R}^{n_i \times n_j}$
- if A₁₁ is nonsingular, can eliminate x₁: x₁ = A₁₁⁻¹(b₁ − A₁₂x₂); to compute x₂, solve

$$(A_{22} - A_{21}A_{11}^{-1}A_{12})x_2 = b_2 - A_{21}A_{11}^{-1}b_1$$

Solving linear equations by block elimination.

given a nonsingular set of linear equations (1), with A_{11} nonsingular.

- 1. Form $A_{11}^{-1}A_{12}$ and $A_{11}^{-1}b_1$.
- 2. Form $S = A_{22} A_{21}A_{11}^{-1}A_{12}$ and $\tilde{b} = b_2 A_{21}A_{11}^{-1}b_1$.
- 3. Determine x_2 by solving $Sx_2 = \tilde{b}$.
- 4. Determine x_1 by solving $A_{11}x_1 = b_1 A_{12}x_2$.

dominant terms in flop count

- step 1: $f + n_2 s$ (f is cost of factoring A_{11} ; s is cost of solve step)
- step 2: $2n_2^2n_1$ (cost dominated by product of A_{21} and $A_{11}^{-1}A_{12}$)
- step 3: $(2/3)n_2^3$

total: $f + n_2 s + 2n_2^2 n_1 + (2/3)n_2^3$

examples

• general A_{11} $(f = (2/3)n_1^3$, $s = 2n_1^2$): no gain over standard method

$$\#\mathsf{flops} = (2/3)n_1^3 + 2n_1^2n_2 + 2n_2^2n_1 + (2/3)n_2^3 = (2/3)(n_1 + n_2)^3$$

• block elimination is useful for structured A_{11} $(f \ll n_1^3)$ for example, diagonal $(f = 0, s = n_1)$: #flops $\approx 2n_2^2n_1 + (2/3)n_2^3$

Structured matrix plus low rank term

(A + BC)x = b

- $A \in \mathbf{R}^{n \times n}$, $B \in \mathbf{R}^{n \times p}$, $C \in \mathbf{R}^{p \times n}$
- assume A has structure (Ax = b easy to solve)

first write as

A	B	$\begin{bmatrix} x \end{bmatrix}$	[$\begin{bmatrix} b \end{bmatrix}$
$\left[\begin{array}{c} C \end{array}\right]$	$\begin{bmatrix} B \\ -I \end{bmatrix}$	$\begin{bmatrix} y \end{bmatrix}$		

now apply block elimination: solve

$$(I + CA^{-1}B)y = CA^{-1}b,$$

then solve Ax = b - By

this proves the matrix inversion lemma: if A and A + BC nonsingular,

$$(A + BC)^{-1} = A^{-1} - A^{-1}B(I + CA^{-1}B)^{-1}CA^{-1}$$

example: A diagonal, B, C dense

- method 1: form D = A + BC, then solve Dx = bcost: $(2/3)n^3 + 2pn^2$
- method 2 (via matrix inversion lemma): solve

$$(I + CA^{-1}B)y = A^{-1}b, (2)$$

then compute $x = A^{-1}b - A^{-1}By$

total cost is dominated by (2): $2p^2n + (2/3)p^3$ (*i.e.*, linear in n)

Underdetermined linear equations

if
$$A \in \mathbf{R}^{p \times n}$$
 with $p < n$, $\operatorname{rank} A = p$,

$$\{x \mid Ax = b\} = \{Fz + \hat{x} \mid z \in \mathbf{R}^{n-p}\}\$$

- \hat{x} is (any) particular solution
- columns of $F \in \mathbf{R}^{n \times (n-p)}$ span nullspace of A
- there exist several numerical methods for computing F (QR factorization, rectangular LU factorization, . . .)

10. Unconstrained minimization

- terminology and assumptions
- gradient descent method
- steepest descent method
- Newton's method
- self-concordant functions
- implementation

Unconstrained minimization

minimize f(x)

- f convex, twice continuously differentiable (hence dom f open)
- we assume optimal value $p^* = \inf_x f(x)$ is attained (and finite)

unconstrained minimization methods

• produce sequence of points $x^{(k)} \in \operatorname{\mathbf{dom}} f$, $k=0,1,\ldots$ with

$$f(x^{(k)}) \to p^{\star}$$

• can be interpreted as iterative methods for solving optimality condition

$$\nabla f(x^\star) = 0$$

Initial point and sublevel set

algorithms in this chapter require a starting point $x^{(0)}$ such that

- $x^{(0)} \in \operatorname{dom} f$
- sublevel set $S = \{x \mid f(x) \le f(x^{(0)})\}$ is closed

2nd condition is hard to verify, except when *all* sublevel sets are closed:

- equivalent to condition that epi f is closed
- true if $\operatorname{\mathbf{dom}} f = \mathbf{R}^n$
- true if $f(x) \to \infty$ as $x \to \mathbf{bd} \operatorname{\mathbf{dom}} f$

examples of differentiable functions with closed sublevel sets:

$$f(x) = \log(\sum_{i=1}^{m} \exp(a_i^T x + b_i)), \qquad f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$$

Strong convexity and implications

f is strongly convex on ${\cal S}$ if there exists an m>0 such that

 $\nabla^2 f(x) \succeq mI$ for all $x \in S$

implications

• for $x, y \in S$,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} ||x - y||_2^2$$

....

hence, S is bounded

• $p^{\star} > -\infty$, and for $x \in S$,

$$f(x) - p^* \le \frac{1}{2m} \|\nabla f(x)\|_2^2$$

useful as stopping criterion (if you know m)

Descent methods

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)} \quad \text{with } f(x^{(k+1)}) < f(x^{(k)})$$

- other notations: $x^+ = x + t\Delta x$, $x := x + t\Delta x$
- Δx is the step, or search direction; t is the step size, or step length
- from convexity, $f(x^+) < f(x)$ implies $\nabla f(x)^T \Delta x < 0$ (*i.e.*, Δx is a *descent direction*)

General descent method.

```
given a starting point x \in \operatorname{dom} f.
```

repeat

1. Determine a descent direction Δx .

2. Line search. Choose a step size t > 0.

3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

Line search types

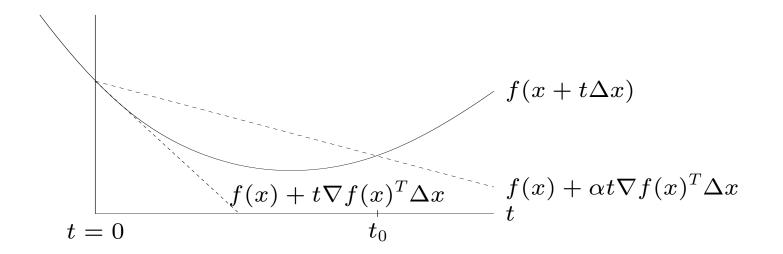
exact line search: $t = \operatorname{argmin}_{t>0} f(x + t\Delta x)$

backtracking line search (with parameters $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$)

• starting at t = 1, repeat $t := \beta t$ until

$$f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x$$

• graphical interpretation: backtrack until $t \leq t_0$



Gradient descent method

general descent method with $\Delta x = -\nabla f(x)$

given a starting point $x \in \text{dom } f$. **repeat** 1. $\Delta x := -\nabla f(x)$. 2. *Line search*. Choose step size t via exact or backtracking line search. 3. *Update*. $x := x + t\Delta x$. **until** stopping criterion is satisfied.

- stopping criterion usually of the form $\|\nabla f(x)\|_2 \leq \epsilon$
- convergence result: for strongly convex f,

$$f(x^{(k)}) - p^* \le c^k (f(x^{(0)}) - p^*)$$

 $c \in (0,1)$ depends on m, $x^{(0)}$, line search type

• very simple, but often very slow; rarely used in practice

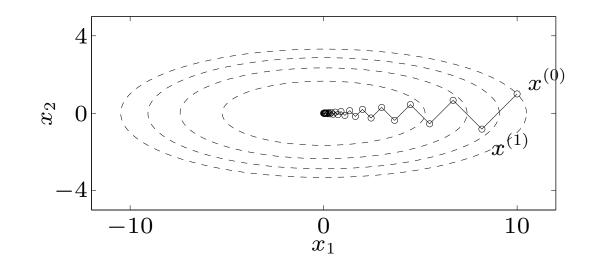
quadratic problem in \mathbf{R}^2

$$f(x) = (1/2)(x_1^2 + \gamma x_2^2) \qquad (\gamma > 0)$$

with exact line search, starting at $x^{(0)} = (\gamma, 1)$:

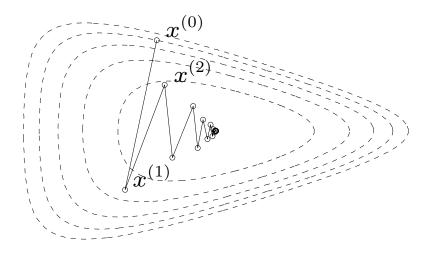
$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, \qquad x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k$$

- very slow if $\gamma \gg 1 \text{ or } \gamma \ll 1$
- example for $\gamma = 10$:



nonquadratic example

$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$



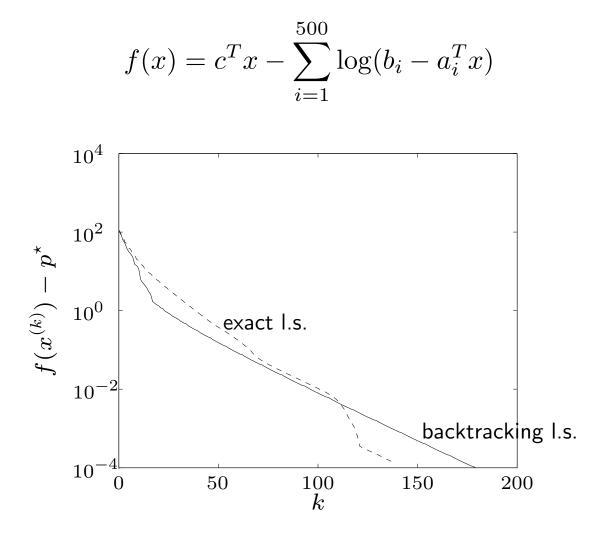
backtracking line search

exact line search

 $x^{(0)}$

 $x^{(1)}$

a problem in $\ensuremath{\mathsf{R}}^{100}$



'linear' convergence, i.e., a straight line on a semilog plot

Steepest descent method

normalized steepest descent direction (at x, for norm $\|\cdot\|$):

$$\Delta x_{\text{nsd}} = \operatorname{argmin}\{\nabla f(x)^T v \mid ||v|| = 1\}$$

interpretation: for small v, $f(x+v) \approx f(x) + \nabla f(x)^T v$; direction Δx_{nsd} is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction

$$\Delta x_{\rm sd} = \|\nabla f(x)\|_* \Delta x_{\rm nsd}$$

satisfies $\nabla f(x)^T \Delta_{\mathrm{sd}} = - \| \nabla f(x) \|_*^2$

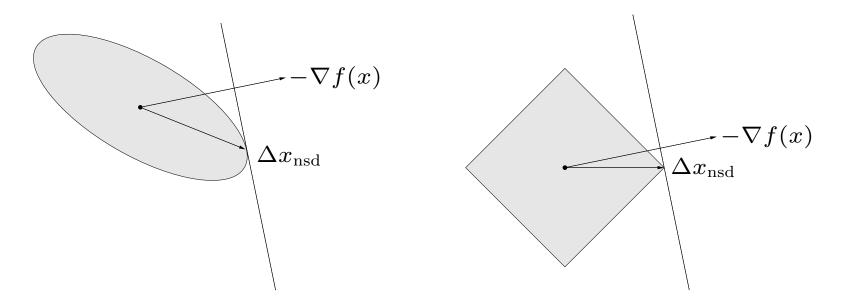
steepest descent method

- general descent method with $\Delta x = \Delta x_{\rm sd}$
- convergence properties similar to gradient descent

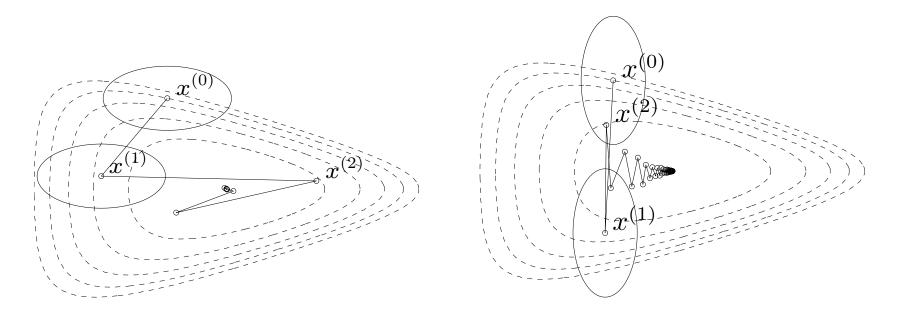
examples

- Euclidean norm: $\Delta x_{sd} = -\nabla f(x)$
- quadratic norm $||x||_P = (x^T P x)^{1/2}$ $(P \in \mathbf{S}_{++}^n)$: $\Delta x_{sd} = -P^{-1} \nabla f(x)$
- ℓ_1 -norm: $\Delta x_{sd} = -(\partial f(x)/\partial x_i)e_i$, where $|\partial f(x)/\partial x_i| = \|\nabla f(x)\|_{\infty}$

unit balls and normalized steepest descent directions for a quadratic norm and the ℓ_1 -norm:



choice of norm for steepest descent



- steepest descent with backtracking line search for two quadratic norms
- ellipses show $\{x \mid ||x x^{(k)}||_P = 1\}$
- equivalent interpretation of steepest descent with quadratic norm $\|\cdot\|_P$: gradient descent after change of variables $\bar{x} = P^{1/2}x$

shows choice of ${\cal P}$ has strong effect on speed of convergence

Newton step

$$\Delta x_{\rm nt} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

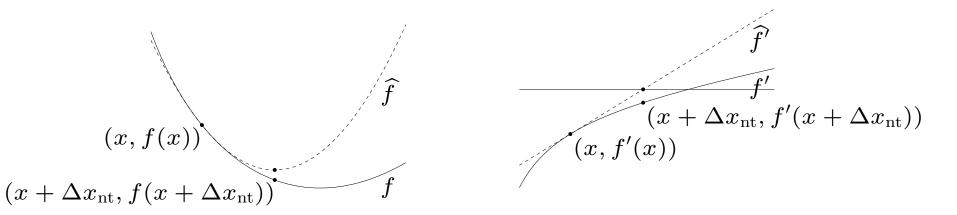
interpretations

• $x + \Delta x_{nt}$ minimizes second order approximation

$$\widehat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v$$

• $x + \Delta x_{nt}$ solves linearized optimality condition

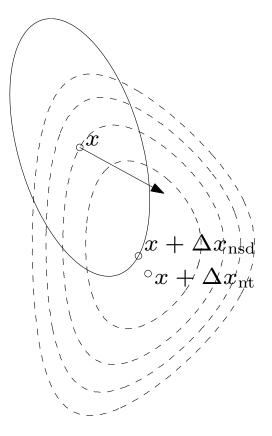
$$\nabla f(x+v) \approx \nabla \widehat{f}(x+v) = \nabla f(x) + \nabla^2 f(x)v = 0$$



Unconstrained minimization

• $\Delta x_{\rm nt}$ is steepest descent direction at x in local Hessian norm

$$||u||_{\nabla^2 f(x)} = (u^T \nabla^2 f(x)u)^{1/2}$$



dashed lines are contour lines of f; ellipse is $\{x + v \mid v^T \nabla^2 f(x)v = 1\}$ arrow shows $-\nabla f(x)$

Newton decrement

$$\lambda(x) = \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)\right)^{1/2}$$

a measure of the proximity of x to x^\star

properties

• gives an estimate of $f(x) - p^*$, using quadratic approximation \widehat{f} :

$$f(x) - \inf_{y} \widehat{f}(y) = \frac{1}{2}\lambda(x)^2$$

• equal to the norm of the Newton step in the quadratic Hessian norm

$$\lambda(x) = \left(\Delta x_{\rm nt} \nabla^2 f(x) \Delta x_{\rm nt}\right)^{1/2}$$

- directional derivative in the Newton direction: $\nabla f(x)^T \Delta x_{nt} = -\lambda(x)^2$
- affine invariant (unlike $\|\nabla f(x)\|_2$)

Newton's method

given a starting point $x \in \text{dom } f$, tolerance $\epsilon > 0$. repeat 1. Compute the Newton step and decrement. $\Delta x_{\text{nt}} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x).$ 2. Stopping criterion. quit if $\lambda^2/2 \le \epsilon$. 3. Line search. Choose step size t by backtracking line search. 4. Update. $x := x + t \Delta x_{\text{nt}}.$

affine invariant, *i.e.*, independent of linear changes of coordinates:

Newton iterates for $\tilde{f}(y) = f(Ty)$ with starting point $y^{(0)} = T^{-1}x^{(0)}$ are

$$y^{(k)} = T^{-1}x^{(k)}$$

Classical convergence analysis

assumptions

- f strongly convex on S with constant m
- $\nabla^2 f$ is Lipschitz continuous on S, with constant L > 0:

$$\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \le L \|x - y\|_2$$

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants $\eta \in (0, m^2/L)$, $\gamma > 0$ such that

- if $\|\nabla f(x)\|_2 \ge \eta$, then $f(x^{(k+1)}) f(x^{(k)}) \le -\gamma$
- if $\|\nabla f(x)\|_2 < \eta$, then

$$\frac{L}{2m^2} \|\nabla f(x^{(k+1)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2\right)^2$$

damped Newton phase $(\|\nabla f(x)\|_2 \ge \eta)$

- most iterations require backtracking steps
- function value decreases by at least γ
- if $p^* > -\infty$, this phase ends after at most $(f(x^{(0)}) p^*)/\gamma$ iterations

quadratically convergent phase ($\|\nabla f(x)\|_2 < \eta$)

- all iterations use step size t = 1
- $\|\nabla f(x)\|_2$ converges to zero quadratically: if $\|\nabla f(x^{(k)})\|_2 < \eta$, then

$$\frac{L}{2m^2} \|\nabla f(x^l)\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^k)\|_2\right)^{2^{l-k}} \le \left(\frac{1}{2}\right)^{2^{l-k}}, \qquad l \ge k$$

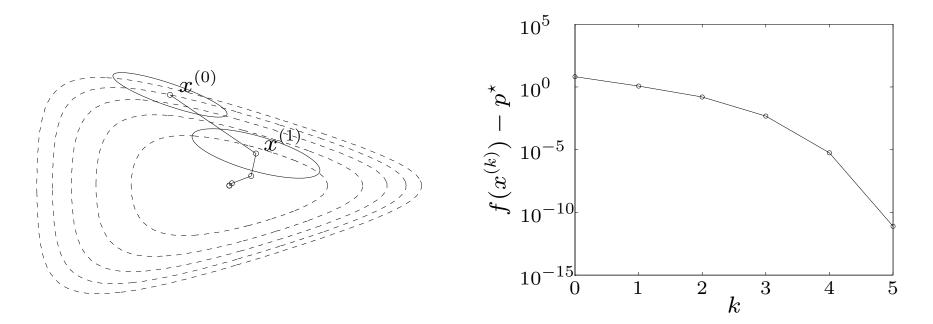
conclusion: number of iterations until $f(x) - p^* \leq \epsilon$ is bounded above by

$$\frac{f(x^{(0)}) - p^{\star}}{\gamma} + \log_2 \log_2(\epsilon_0/\epsilon)$$

- γ , ϵ_0 are constants that depend on m, L, $x^{(0)}$
- second term is small (of the order of 6) and almost constant for practical purposes
- in practice, constants m, L (hence γ , ϵ_0) are usually unknown
- provides qualitative insight in convergence properties (*i.e.*, explains two algorithm phases)

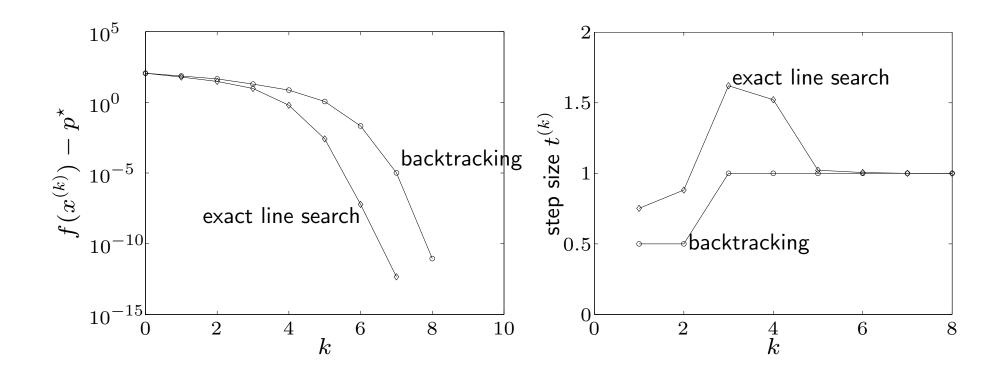
Examples

example in \mathbb{R}^2 (page 10–9)



- backtracking parameters $\alpha=0.1$, $\beta=0.7$
- converges in only 5 steps
- quadratic local convergence

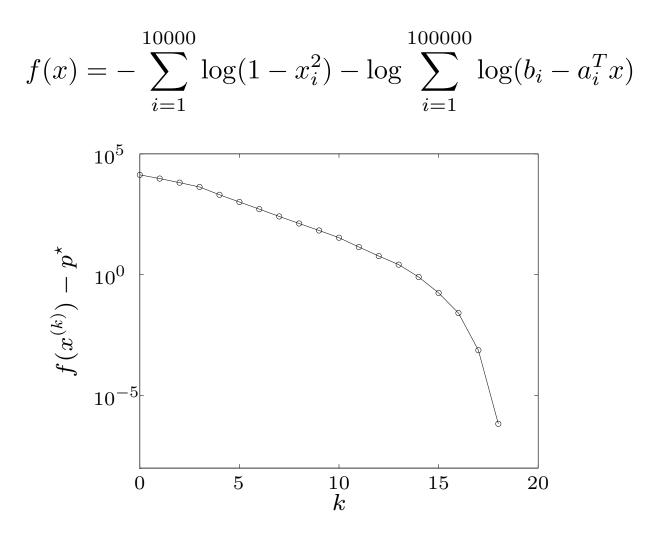
example in \mathbf{R}^{100} (page 10–10)



• backtracking parameters $\alpha = 0.01$, $\beta = 0.5$

- backtracking line search almost as fast as exact l.s. (and much simpler)
- clearly shows two phases in algorithm

example in $\ensuremath{\mathsf{R}}^{10000}$



- backtracking parameters $\alpha=0.01$, $\beta=0.5.$
- performance similar as for small examples

Self-concordance

shortcomings of classical convergence analysis

- depends on unknown constants (m, L, ...)
- bound is not affinely invariant, although Newton's method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

- does not depend on any unknown constants
- gives affine-invariant bound
- applies to special class of convex functions ('self-concordant' functions)
- developed to analyze polynomial-time interior-point methods for convex optimization

Self-concordant functions

definition

- $f: \mathbf{R} \to \mathbf{R}$ is self-concordant if $|f'''(x)| \le 2f''(x)^{3/2}$ for all $x \in \mathbf{dom} f$
- $f : \mathbf{R}^n \to \mathbf{R}$ is self-concordant if g(t) = f(x + tv) is self-concordant for all $x \in \mathbf{dom} f$, $v \in \mathbf{R}^n$

examples on R

- linear and quadratic functions
- negative logarithm $f(x) = -\log x$
- negative entropy plus negative logarithm: $f(x) = x \log x \log x$

affine invariance: if $f : \mathbf{R} \to \mathbf{R}$ is s.c., then $\tilde{f}(y) = f(ay + b)$ is s.c.:

$$\tilde{f}'''(y) = a^3 f'''(ay+b), \qquad \tilde{f}''(y) = a^2 f''(ay+b)$$

Self-concordant calculus

properties

- preserved under positive scaling and sum
- preserved under composition with affine function
- if g is convex with dom $g = \mathbf{R}_{++}$ and $|g'''(x)| \le 3g''(x)/x$ then

$$f(x) = \log(-g(x)) - \log x$$

is self-concordant

examples: properties can be used to show that the following are s.c.

- $f(x) = -\sum_{i=1}^{m} \log(b_i a_i^T x)$ on $\{x \mid a_i^T x < b_i, i = 1, \dots, m\}$
- $f(X) = -\log \det X$ on \mathbf{S}_{++}^n
- $f(x) = -\log(y^2 x^T x)$ on $\{(x, y) \mid ||x||_2 < y\}$

Convergence analysis for self-concordant functions

summary: there exist constants $\eta \in (0, 1/4]$, $\gamma > 0$ such that

• if $\lambda(x) > \eta$, then

$$f(x^{(k+1)}) - f(x^{(k)}) \le -\gamma$$

• if $\lambda(x) \leq \eta$, then

$$2\lambda(x^{(k+1)}) \le \left(2\lambda(x^{(k)})\right)^2$$

(η and γ only depend on backtracking parameters α , β)

complexity bound: number of Newton iterations bounded by

$$\frac{f(x^{(0)}) - p^{\star}}{\gamma} + \log_2 \log_2(1/\epsilon)$$

for $\alpha = 0.1$, $\beta = 0.8$, $\epsilon = 10^{-10}$, bound evaluates to $375(f(x^{(0)}) - p^{\star}) + 6$

numerical example: 150 randomly generated instances of

minimize
$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$$

O: $m = 100, n = 50$
 $\square: m = 1000, n = 500$
 $\Leftrightarrow: m = 1000, n = 500$
 $\Leftrightarrow: m = 1000, n = 500$

- number of iterations much smaller than $375(f(x^{(0)}) p^{\star}) + 6$
- bound of the form $c(f(x^{(0)}) p^*) + 6$ with smaller c (empirically) valid

Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

$$H\Delta x = g$$

where $H=\nabla^2 f(x)$, $g=-\nabla f(x)$

via Cholesky factorization

$$H = LL^T$$
, $\Delta x_{\rm nt} = -L^{-T}L^{-1}g$, $\lambda(x) = ||L^{-1}g||_2$

- cost $(1/3)n^3$ flops for unstructured system
- $\cos t \ll (1/3)n^3$ if H sparse, banded

example of dense Newton system with structure

$$f(x) = \sum_{i=1}^{n} \psi_i(x_i) + \psi_0(Ax + b), \qquad H = D + A^T H_0 A$$

- assume $A \in \mathbf{R}^{p \times n}$, dense, with $p \ll n$
- D diagonal with diagonal elements $\psi_i''(x_i)$; $H_0 = \nabla^2 \psi_0(Ax + b)$

method 1: form H, solve via dense Cholesky factorization: (cost $(1/3)n^3$) **method 2** (page 9–15): factor $H_0 = L_0 L_0^T$; write Newton system as

$$D\Delta x + A^T L_0 w = -g, \qquad L_0^T A\Delta x - w = 0$$

eliminate Δx from first equation; compute w and Δx from

$$(I + L_0^T A D^{-1} A^T L_0)w = -L_0^T A D^{-1} g, \qquad D\Delta x = -g - A^T L_0 w$$

cost: $2p^2n$ (dominated by computation of $L_0^T A D^{-1} A L_0$)

Unconstrained minimization

11. Equality constrained minimization

- equality constrained minimization
- eliminating equality constraints
- Newton's method with equality constraints
- infeasible start Newton method
- implementation

Equality constrained minimization

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$

- f convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{\mathbf{rank}} A = p$
- we assume p^{\star} is finite and attained

optimality conditions: x^* is optimal iff there exists a ν^* such that

$$\nabla f(x^{\star}) + A^T \nu^{\star} = 0, \qquad Ax^{\star} = b$$

equality constrained quadratic minimization (with $P \in S^n_+$)

minimize
$$(1/2)x^TPx + q^Tx + r$$

subject to $Ax = b$

optimality condition:

$$\left[\begin{array}{cc} P & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} x^{\star} \\ \nu^{\star} \end{array}\right] = \left[\begin{array}{c} -q \\ b \end{array}\right]$$

- coefficient matrix is called KKT matrix
- KKT matrix is nonsingular if and only if

$$Ax = 0, \quad x \neq 0 \qquad \Longrightarrow \qquad x^T P x > 0$$

• equivalent condition for nonsingularity: $P + A^T A \succ 0$

Eliminating equality constraints

represent solution of $\{x \mid Ax = b\}$ as

$$\{x \mid Ax = b\} = \{Fz + \hat{x} \mid z \in \mathbf{R}^{n-p}\}\$$

- \hat{x} is (any) particular solution
- range of $F \in \mathbf{R}^{n \times (n-p)}$ is nullspace of A (rank F = n p and AF = 0)

reduced or eliminated problem

minimize $f(Fz + \hat{x})$

- an unconstrained problem with variable $z \in \mathbf{R}^{n-p}$
- from solution z^{\star} , obtain x^{\star} and ν^{\star} as

$$x^{\star} = F z^{\star} + \hat{x}, \qquad \nu^{\star} = -(AA^T)^{-1}A\nabla f(x^{\star})$$

example: optimal allocation with resource constraint

minimize
$$f_1(x_1) + f_2(x_2) + \cdots + f_n(x_n)$$

subject to $x_1 + x_2 + \cdots + x_n = b$

eliminate $x_n = b - x_1 - \cdots - x_{n-1}$, *i.e.*, choose

$$\hat{x} = be_n, \qquad F = \begin{bmatrix} I \\ -\mathbf{1}^T \end{bmatrix} \in \mathbf{R}^{n \times (n-1)}$$

reduced problem:

minimize
$$f_1(x_1) + \dots + f_{n-1}(x_{n-1}) + f_n(b - x_1 - \dots - x_{n-1})$$

(variables x_1, \dots, x_{n-1})

Newton step

Newton step of f at feasible x is given by (1st block) of solution of

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\rm nt} \\ w \end{bmatrix} = \begin{bmatrix} -\nabla f(x) \\ 0 \end{bmatrix}$$

interpretations

• $\Delta x_{\rm nt}$ solves second order approximation (with variable v)

$$\begin{array}{ll} \mbox{minimize} & \widehat{f}(x+v) = f(x) + \nabla f(x)^T v + (1/2) v^T \nabla^2 f(x) v \\ \mbox{subject to} & A(x+v) = b \end{array}$$

• equations follow from linearizing optimality conditions

$$\nabla f(x + \Delta x_{\rm nt}) + A^T w = 0, \qquad A(x + \Delta x_{\rm nt}) = b$$

Newton decrement

$$\lambda(x) = \left(\Delta x_{\rm nt} \nabla^2 f(x) \Delta x_{\rm nt}\right)^{1/2}$$

properties

• gives an estimate of $f(x) - p^*$ using quadratic approximation \widehat{f} :

$$f(x) - \inf_{Ay=b} \widehat{f}(y) = \frac{1}{2}\lambda(x)^2$$

• directional derivative in Newton direction:

$$\left. \frac{d}{dt} f(x + t\Delta x_{\rm nt}) \right|_{t=0} = -\lambda(x)^2$$

• in general, $\lambda(x) \neq \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) \right)^{1/2}$

Newton's method with equality constraints

given starting point $x \in \operatorname{dom} f$ with Ax = b, tolerance $\epsilon > 0$.

repeat

- 1. Compute the Newton step and decrement $\Delta x_{
 m nt}$, $\lambda(x)$.
- 2. Stopping criterion. quit if $\lambda^2/2 \leq \epsilon$.
- 3. Line search. Choose step size t by backtracking line search.
- 4. Update. $x := x + t\Delta x_{nt}$.

- a feasible descent method: $x^{(k)}$ feasible and $f(x^{(k+1)}) < f(x^{(k)})$
- affine invariant

Newton's method and elimination

Newton's method for reduced problem

minimize
$$\tilde{f}(z) = f(Fz + \hat{x})$$

- variables $z \in \mathbf{R}^{n-p}$
- \hat{x} satisfies $A\hat{x} = b$; rank F = n p and AF = 0
- Newton's method for \tilde{f} , started at $z^{(0)}$, generates iterates $z^{(k)}$

Newton's method with equality constraints

when started at $x^{(0)} = Fz^{(0)} + \hat{x}$, iterates are

$$x^{(k+1)} = Fz^{(k)} + \hat{x}$$

hence, don't need separate convergence analysis

Newton step at infeasible points

2nd interpretation of page 11–6 extends to infeasible x (*i.e.*, $Ax \neq b$) linearizing optimality conditions at infeasible x (with $x \in \text{dom } f$) gives

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\rm nt} \\ w \end{bmatrix} = -\begin{bmatrix} \nabla f(x) \\ Ax - b \end{bmatrix}$$
(1)

primal-dual interpretation

• write optimality condition as r(y) = 0, where

$$y = (x, \nu), \qquad r(y) = (\nabla f(x) + A^T \nu, Ax - b)$$

• linearizing r(y) = 0 gives $r(y + \Delta y) \approx r(y) + Dr(y)\Delta y = 0$:

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\rm nt} \\ \Delta \nu_{\rm nt} \end{bmatrix} = -\begin{bmatrix} \nabla f(x) + A^T \nu \\ Ax - b \end{bmatrix}$$

same as (1) with $w=
u+\Delta
u_{
m nt}$

Infeasible start Newton method

given starting point $x \in \text{dom } f$, ν , tolerance $\epsilon > 0$, $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$. repeat

- 1. Compute primal and dual Newton steps $\Delta x_{
 m nt}$, $\Delta
 u_{
 m nt}$.
- 2. Backtracking line search on $||r||_2$. t := 1. while $||r(x + t\Delta x_{nt}, \nu + t\Delta \nu_{nt})||_2 > (1 - \alpha t)||r(x, \nu)||_2$, $t := \beta t$. 3. Update. $x := x + t\Delta x_{nt}$, $\nu := \nu + t\Delta \nu_{nt}$. until Ax = b and $||r(x, \nu)||_2 \le \epsilon$.
- not a descent method: $f(x^{(k+1)}) > f(x^{(k)})$ is possible
- directional derivative of $\|r(y)\|_2^2$ in direction $\Delta y = (\Delta x_{\rm nt}, \Delta \nu_{\rm nt})$ is

$$\frac{d}{dt} \|r(y + \Delta y)\|_2 \Big|_{t=0} = -\|r(y)\|_2$$

Solving KKT systems

$$\left[\begin{array}{cc} H & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} v \\ w \end{array}\right] = - \left[\begin{array}{c} g \\ h \end{array}\right]$$

solution methods

- LDL^T factorization
- elimination (if H nonsingular)

$$AH^{-1}A^Tw = h - AH^{-1}g, \qquad Hv = -(g + A^Tw)$$

• elimination with singular H: write as

$$\begin{bmatrix} H + A^T Q A & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = -\begin{bmatrix} g + A^T Q h \\ h \end{bmatrix}$$

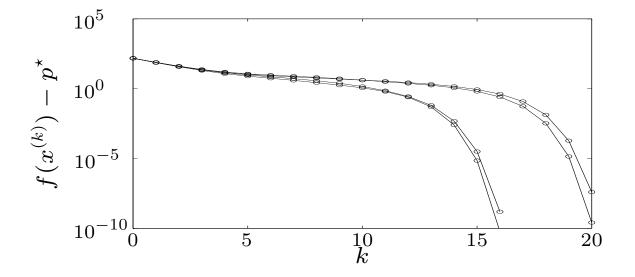
with $Q \succeq 0$ for which $H + A^T Q A \succ 0$, and apply elimination

Equality constrained analytic centering

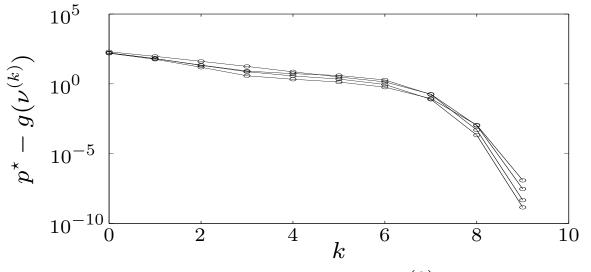
primal problem: minimize $-\sum_{i=1}^{n} \log x_i$ subject to Ax = bdual problem: maximize $-b^T \nu + \sum_{i=1}^{n} \log(A^T \nu)_i + n$

three methods for an example with $A \in \mathbf{R}^{100 \times 500}$, different starting points

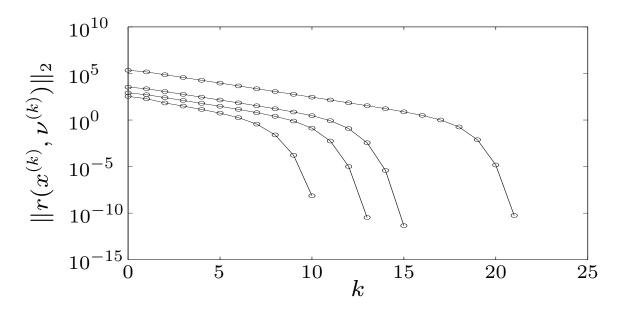
1. Newton method with equality constraints (requires $x^{(0)} \succ 0$, $Ax^{(0)} = b$)



2. Newton method applied to dual problem (requires $A^T \nu^{(0)} \succ 0$)



3. infeasible start Newton method (requires $x^{(0)} \succ 0$)



complexity per iteration of three methods is identical

1. use block elimination to solve KKT system

$$\begin{bmatrix} \operatorname{diag}(x)^{-2} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ w \end{bmatrix} = \begin{bmatrix} \operatorname{diag}(x)^{-1} \mathbf{1} \\ 0 \end{bmatrix}$$

reduces to solving $A \operatorname{diag}(x)^2 A^T w = b$

- 2. solve Newton system $A \operatorname{diag}(A^T \nu)^{-2} A^T \Delta \nu = -b + A \operatorname{diag}(A^T \nu)^{-1} \mathbf{1}$
- 3. use block elimination to solve KKT system

$$\begin{bmatrix} \operatorname{diag}(x)^{-2} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \nu \end{bmatrix} = \begin{bmatrix} \operatorname{diag}(x)^{-1} \mathbf{1} \\ Ax - b \end{bmatrix}$$

reduces to solving $A \operatorname{diag}(x)^2 A^T w = 2Ax - b$

conclusion: in each case, solve $ADA^Tw = h$ with D positive diagonal

Network flow optimization

minimize $\sum_{i=1}^{n} \phi_i(x_i)$ subject to Ax = b

- $\bullet\,$ directed graph with n arcs, p+1 nodes
- x_i : flow through arc *i*; ϕ_i : cost flow function for arc *i* (with $\phi''_i(x) > 0$)
- node-incidence matrix $\tilde{A} \in \mathbf{R}^{(p+1) \times n}$ defined as

$$\tilde{A}_{ij} = \begin{cases} 1 & \text{arc } j \text{ leaves node } i \\ -1 & \text{arc } j \text{ enters node } i \\ 0 & \text{otherwise} \end{cases}$$

- reduced node-incidence matrix $A \in \mathbf{R}^{p \times n}$ is \tilde{A} with last row removed
- $b \in \mathbf{R}^p$ is (reduced) source vector
- $\operatorname{rank} A = p$ if graph is connected

KKT system

$$\left[\begin{array}{cc} H & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} v \\ w \end{array}\right] = - \left[\begin{array}{c} g \\ h \end{array}\right]$$

• $H = \operatorname{diag}(\phi_1''(x_1), \dots, \phi_n''(x_n))$, positive diagonal

• solve via elimination:

$$AH^{-1}A^Tw = h - AH^{-1}g, \qquad Hv = -(g + A^Tw)$$

sparsity pattern of coefficient matrix is given by graph connectivity

$$\begin{split} (AH^{-1}A^T)_{ij} \neq 0 &\iff (AA^T)_{ij} \neq 0 \\ &\iff \text{ nodes } i \text{ and } j \text{ are connected by an arc} \end{split}$$

Analytic center of linear matrix inequality

minimize
$$-\log \det X$$

subject to $\mathbf{tr}(A_i X) = b_i, \quad i = 1, \dots, p$

variable $X \in \mathbf{S}^n$

optimality conditions

$$X^* \succ 0, \qquad -(X^*)^{-1} + \sum_{j=1}^p \nu_j^* A_i = 0, \qquad \mathbf{tr}(A_i X^*) = b_i, \quad i = 1, \dots, p$$

Newton equation at feasible *X*:

$$X^{-1}\Delta X X^{-1} + \sum_{j=1}^{p} w_j A_i = X^{-1}, \qquad \mathbf{tr}(A_i \Delta X) = 0, \quad i = 1, \dots, p$$

- follows from linear approximation $(X + \Delta X)^{-1} \approx X^{-1} X^{-1} \Delta X X^{-1}$
- n(n+1)/2 + p variables ΔX , w

Equality constrained minimization

solution by block elimination

- eliminate ΔX from first equation: $\Delta X = X \sum_{j=1}^{p} w_j X A_j X$
- substitute ΔX in second equation

$$\sum_{j=1}^{p} \operatorname{tr}(A_i X A_j X) w_j = b_i, \quad i = 1, \dots, p$$
(2)

a dense positive definite set of linear equations with variable $w \in \mathbf{R}^p$

flop count (dominant terms) using Cholesky factorization $X = LL^T$:

- form p products $L^T A_j L$: $(3/2)pn^3$
- form p(p+1)/2 inner products $tr((L^TA_iL)(L^TA_jL))$: $(1/2)p^2n^2$
- solve (2) via Cholesky factorization: $(1/3)p^3$

12. Interior-point methods

- inequality constrained minimization
- logarithmic barrier function and central path
- barrier method
- feasibility and phase I methods
- complexity analysis via self-concordance
- generalized inequalities

Inequality constrained minimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$ (1)
 $Ax = b$

- f_i convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{\mathbf{rank}} A = p$
- $\bullet\,$ we assume p^{\star} is finite and attained
- we assume problem is strictly feasible: there exists \tilde{x} with

$$\tilde{x} \in \operatorname{\mathbf{dom}} f_0, \qquad f_i(\tilde{x}) < 0, \quad i = 1, \dots, m, \qquad A\tilde{x} = b$$

hence, strong duality holds and dual optimum is attained

Examples

- LP, QP, QCQP, GP
- entropy maximization with linear inequality constraints

minimize
$$\sum_{i=1}^{n} x_i \log x_i$$

subject to $Fx \leq g$
 $Ax = b$

with $\operatorname{dom} f_0 = \mathbf{R}_{++}^n$

- differentiability may require reformulating the problem, *e.g.*, piecewise-linear minimization or ℓ_{∞} -norm approximation via LP
- SDPs and SOCPs are better handled as problems with generalized inequalities (see later)

Logarithmic barrier

reformulation of (1) via indicator function:

minimize
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$

subject to $Ax = b$

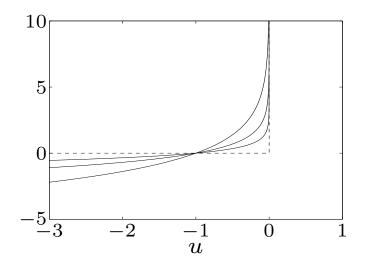
where $I_{-}(u) = 0$ if $u \leq 0$, $I_{-}(u) = \infty$ otherwise (indicator function of \mathbf{R}_{-})

approximation via logarithmic barrier

minimize
$$f_0(x) - (1/t) \sum_{i=1}^m \log(-f_i(x))$$

subject to $Ax = b$

- an equality constrained problem
- for t > 0, $-(1/t)\log(-u)$ is a smooth approximation of I_-
- approximation improves as $t \to \infty$



logarithmic barrier function

$$\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x)), \quad \mathbf{dom} \,\phi = \{x \mid f_1(x) < 0, \dots, f_m(x) < 0\}$$

- convex (follows from composition rules)
- twice continuously differentiable, with derivatives

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x)$$

$$\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x)$$

Central path

• for t > 0, define $x^{\star}(t)$ as the solution of

minimize $tf_0(x) + \phi(x)$ subject to Ax = b

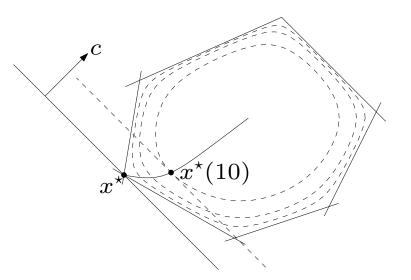
(for now, assume $x^{\star}(t)$ exists and is unique for each t > 0)

• central path is $\{x^{\star}(t) \mid t > 0\}$

example: central path for an LP

minimize $c^T x$ subject to $a_i^T x \leq b_i, \quad i = 1, \dots, 6$

hyperplane $c^T x = c^T x^*(t)$ is tangent to level curve of ϕ through $x^*(t)$



Dual points on central path

 $x = x^{\star}(t)$ if there exists a w such that

$$t\nabla f_0(x) + \sum_{i=1}^m \frac{1}{-f_i(x)} \nabla f_i(x) + A^T w = 0, \qquad Ax = b$$

 \bullet therefore, $x^{\star}(t)$ minimizes the Lagrangian

$$L(x,\lambda^{\star}(t),\nu^{\star}(t)) = f_0(x) + \sum_{i=1}^m \lambda_i^{\star}(t)f_i(x) + \nu^{\star}(t)^T (Ax - b)$$

where we define $\lambda_i^{\star}(t) = 1/(-tf_i(x^{\star}(t)))$ and $\nu^{\star}(t) = w/t$

• this confirms the intuitive idea that $f_0(x^*(t)) \to p^*$ if $t \to \infty$:

$$p^{\star} \geq g(\lambda^{\star}(t), \nu^{\star}(t))$$

= $L(x^{\star}(t), \lambda^{\star}(t), \nu^{\star}(t))$
= $f_0(x^{\star}(t)) - m/t$

Interpretation via KKT conditions

$$x=x^{\star}(t)$$
 , $\lambda=\lambda^{\star}(t)$, $\nu=\nu^{\star}(t)$ satisfy

- 1. primal constraints: $f_i(x) \leq 0$, $i = 1, \ldots, m$, Ax = b
- 2. dual constraints: $\lambda \succeq 0$
- 3. approximate complementary slackness: $-\lambda_i f_i(x) = 1/t$, $i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + A^T \nu = 0$$

difference with KKT is that condition 3 replaces $\lambda_i f_i(x) = 0$

Force field interpretation

centering problem (for problem with no equality constraints)

minimize
$$tf_0(x) - \sum_{i=1}^m \log(-f_i(x))$$

force field interpretation

- $tf_0(x)$ is potential of force field $F_0(x) = -t\nabla f_0(x)$
- $-\log(-f_i(x))$ is potential of force field $F_i(x) = (1/f_i(x))\nabla f_i(x)$

the forces balance at $x^{\star}(t)$:

$$F_0(x^{\star}(t)) + \sum_{i=1}^m F_i(x^{\star}(t)) = 0$$

example

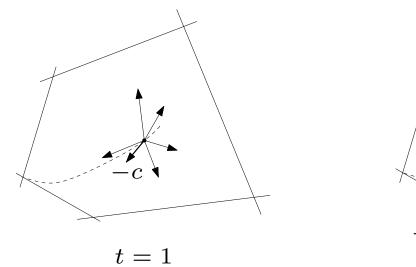
minimize
$$c^T x$$

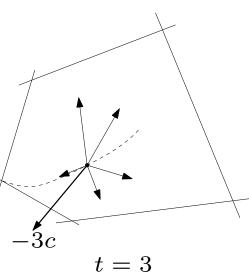
subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

- objective force field is constant: $F_0(x) = -tc$
- constraint force field decays as inverse distance to constraint hyperplane:

$$F_i(x) = \frac{-a_i}{b_i - a_i^T x}, \qquad \|F_i(x)\|_2 = \frac{1}{\mathbf{dist}(x, \mathcal{H}_i)}$$

where $\mathcal{H}_i = \{x \mid a_i^T x = b_i\}$





Barrier method

given strictly feasible x, $t := t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$. repeat

- 1. Centering step. Compute $x^{\star}(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b.
- 2. Update. $x := x^{*}(t)$.
- 3. Stopping criterion. quit if $m/t < \epsilon$.
- 4. Increase t. $t := \mu t$.

- terminates with $f_0(x) p^* \le \epsilon$ (stopping criterion follows from $f_0(x^*(t)) p^* \le m/t$)
- centering usually done using Newton's method, starting at current x
- choice of μ involves a trade-off: large μ means fewer outer iterations, more inner (Newton) iterations; typical values: $\mu = 10-20$
- several heuristics for choice of $t^{(0)}$

Convergence analysis

number of outer (centering) iterations: exactly

$$\left\lceil \frac{\log(m/(\epsilon t^{(0)}))}{\log \mu} \right\rceil$$

plus the initial centering step (to compute $x^{\star}(t^{(0)})$)

centering problem

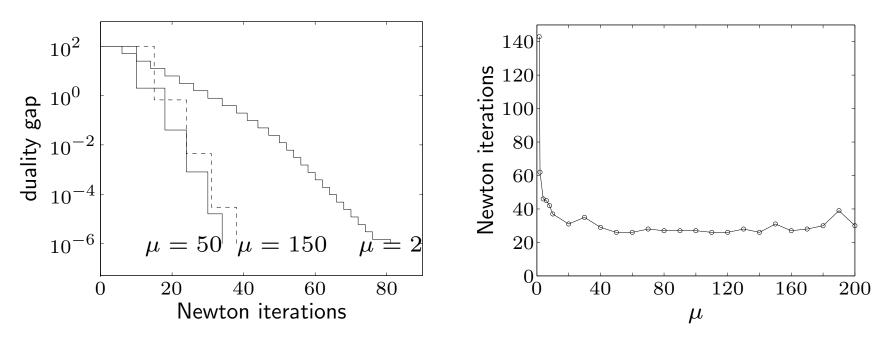
minimize $tf_0(x) + \phi(x)$

see convergence analysis of Newton's method

- $tf_0 + \phi$ must have closed sublevel sets for $t \ge t^{(0)}$
- classical analysis requires strong convexity, Lipschitz condition
- analysis via self-concordance requires self-concordance of $tf_0 + \phi$

Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

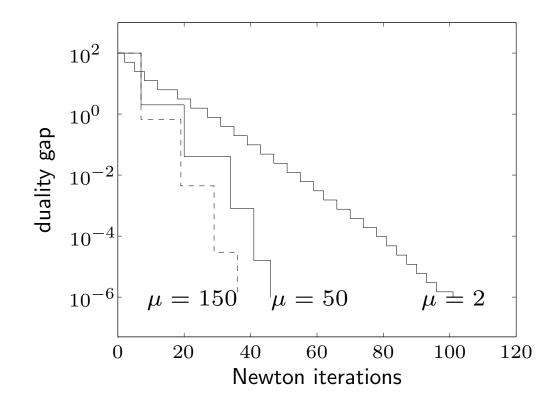


- starts with x on central path ($t^{(0)} = 1$, duality gap 100)
- terminates when $t = 10^8$ (gap 10^{-6})
- centering uses Newton's method with backtracking
- total number of Newton iterations not very sensitive for $\mu \geq 10$

geometric program (m = 100 inequalities and n = 50 variables)

minimize
$$\log \left(\sum_{k=1}^{5} \exp(a_{0k}^T x + b_{0k}) \right)$$

subject to $\log \left(\sum_{k=1}^{5} \exp(a_{ik}^T x + b_{ik}) \right) \le 0, \quad i = 1, \dots, m$

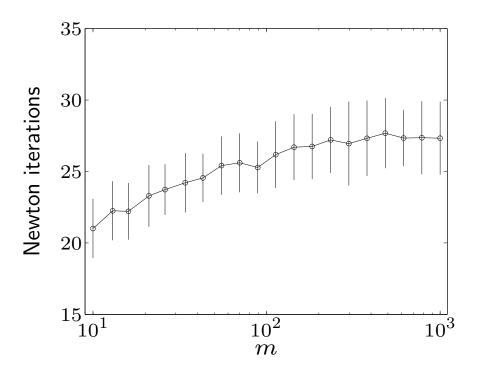


family of standard LPs ($A \in \mathbb{R}^{m \times 2m}$)

minimize
$$c^T x$$

subject to $Ax = b$, $x \succeq 0$

 $m = 10, \ldots, 1000$; for each m, solve 100 randomly generated instances



number of iterations grows very slowly as m ranges over a 100:1 ratio

Feasibility and phase I methods

feasibility problem: find x such that

$$f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Ax = b$$
 (2)

phase I: computes strictly feasible starting point for barrier methodbasic phase I method

minimize (over
$$x, s$$
) s
subject to $f_i(x) \le s, \quad i = 1, \dots, m$ (3)
 $Ax = b$

- if x, s feasible, with s < 0, then x is strictly feasible for (2)
- if optimal value \bar{p}^{\star} of (3) is positive, then problem (2) is infeasible
- if $\bar{p}^{\star} = 0$ and attained, then problem (2) is feasible (but not strictly); if $\bar{p}^{\star} = 0$ and not attained, then problem (2) is infeasible

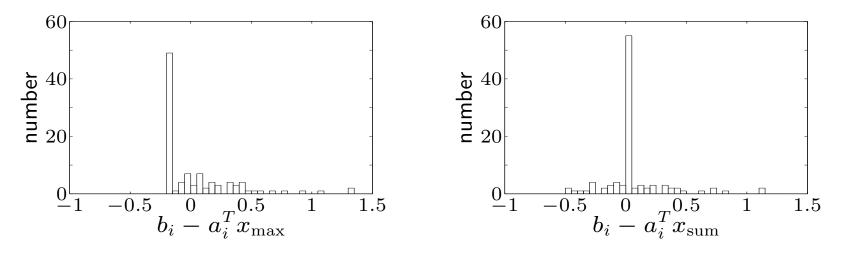
sum of infeasibilities phase I method

minimize
$$\mathbf{1}^T s$$

subject to $s \succeq 0$, $f_i(x) \leq s$, $i = 1, \dots, m$
 $Ax = b$

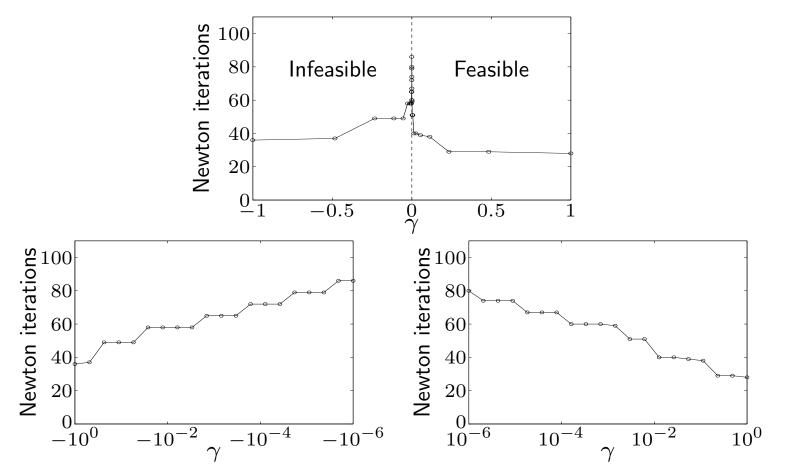
for infeasible problems, produces a solution that satisfies many more inequalities than basic phase I method

example (infeasible set of 100 linear inequalities in 50 variables)



left: basic phase I solution; satisfies 39 inequalities right: sum of infeasibilities phase I solution; satisfies 79 solutions **example:** family of linear inequalities $Ax \leq b + \gamma \Delta b$

- data chosen to be strictly feasible for $\gamma > 0$, infeasible for $\gamma \le 0$
- use basic phase I, terminate when s < 0 or dual objective is positive



number of iterations roughly proportional to $\log(1/|\gamma|)$

Complexity analysis via self-concordance

same assumptions as on page 12–2, plus:

- sublevel sets (of f_0 , on the feasible set) are bounded
- $tf_0 + \phi$ is self-concordant with closed sublevel sets

second condition

- holds for LP, QP, QCQP
- may require reformulating the problem, e.g.,

minimize $\sum_{i=1}^{n} x_i \log x_i \longrightarrow \text{minimize} \quad \sum_{i=1}^{n} x_i \log x_i$ $Fx \leq g \qquad \qquad Fx \leq g, \quad x \geq 0$

 needed for complexity analysis; barrier method works even when self-concordance assumption does not apply Newton iterations per centering step: from self-concordance theory

$$\# \text{Newton iterations} \leq \frac{\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+)}{\gamma} + c$$

- bound on effort of computing $x^+ = x^*(\mu t)$ starting at $x = x^*(t)$
- γ , c are constants (depend only on Newton algorithm parameters)
- from duality (with $\lambda = \lambda^*(t)$, $\nu = \nu^*(t)$):

$$\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+)$$

$$= \mu t f_0(x) - \mu t f_0(x^+) + \sum_{i=1}^m \log(-\mu t \lambda_i f_i(x^+)) - m \log \mu$$

$$\leq \mu t f_0(x) - \mu t f_0(x^+) - \mu t \sum_{i=1}^m \lambda_i f_i(x^+) - m - m \log \mu$$

$$\leq \mu t f_0(x) - \mu t g(\lambda, \nu) - m - m \log \mu$$

$$= m(\mu - 1 - \log \mu)$$

total number of Newton iterations (excluding first centering step)

$$\# \text{Newton iterations} \leq N = \left[\frac{\log(m/(t^{(0)}\epsilon))}{\log\mu}\right] \left(\frac{m(\mu - 1 - \log\mu)}{\gamma} + c\right)$$

$$\stackrel{5 \times 10^{4}}{4 \times 10^{4}} \int_{2 \times 10^{4}} \int_{10^{4}} \int_{$$

- $\bullet\,$ confirms trade-off in choice of $\mu\,$
- in practice, #iterations is in the tens; not very sensitive for $\mu \geq 10$

polynomial-time complexity of barrier method

• for
$$\mu = 1 + 1/\sqrt{m}$$
:

$$N = O\left(\sqrt{m}\log\left(\frac{m/t^{(0)}}{\epsilon}\right)\right)$$

- number of Newton iterations for fixed gap reduction is $O(\sqrt{m})$
- multiply with cost of one Newton iteration (a polynomial function of problem dimensions), to get bound on number of flops

this choice of μ optimizes worst-case complexity; in practice we choose μ fixed ($\mu=10,\ldots,20)$

Generalized inequalities

minimize
$$f_0(x)$$

subject to $f_i(x) \preceq_{K_i} 0$, $i = 1, \dots, m$
 $Ax = b$

- f_0 convex, $f_i : \mathbf{R}^n \to \mathbf{R}^{k_i}$, i = 1, ..., m, convex with respect to proper cones $K_i \in \mathbf{R}^{k_i}$
- f_i twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{\mathbf{rank}} A = p$
- \bullet we assume p^{\star} is finite and attained
- we assume problem is strictly feasible; hence strong duality holds and dual optimum is attained

examples of greatest interest: SOCP, SDP

Generalized logarithm for proper cone

 $\psi: \mathbf{R}^q \to \mathbf{R}$ is generalized logarithm for proper cone $K \subseteq \mathbf{R}^q$ if:

- dom $\psi = \operatorname{int} K$ and $\nabla^2 \psi(y) \prec 0$ for $y \succ_K 0$
- $\psi(sy) = \psi(y) + \theta \log s$ for $y \succ_K 0$, s > 0 (θ is the degree of ψ)

examples

- nonnegative orthant $K = \mathbf{R}^n_+$: $\psi(y) = \sum_{i=1}^n \log y_i$, with degree $\theta = n$
- positive semidefinite cone $K = \mathbf{S}_{+}^{n}$:

$$\psi(Y) = \log \det Y \qquad (\theta = n)$$

• second-order cone $K = \{y \in \mathbf{R}^{n+1} \mid (y_1^2 + \dots + y_n^2)^{1/2} \le y_{n+1}\}$:

$$\psi(y) = \log(y_{n+1}^2 - y_1^2 - \dots - y_n^2) \qquad (\theta = 2)$$

properties (without proof): for $y \succ_K 0$,

$$\nabla \psi(y) \succeq_{K^*} 0, \qquad y^T \nabla \psi(y) = \theta$$

• nonnegative orthant \mathbf{R}^n_+ : $\psi(y) = \sum_{i=1}^n \log y_i$

$$\nabla \psi(y) = (1/y_1, \dots, 1/y_n), \qquad y^T \nabla \psi(y) = n$$

• positive semidefinite cone S^n_+ : $\psi(Y) = \log \det Y$

$$\nabla \psi(Y) = Y^{-1}, \qquad \operatorname{tr}(Y \nabla \psi(Y)) = n$$

• second-order cone $K = \{y \in \mathbf{R}^{n+1} \mid (y_1^2 + \dots + y_n^2)^{1/2} \le y_{n+1}\}$:

$$\psi(y) = \frac{2}{y_{n+1}^2 - y_1^2 - \dots - y_n^2} \begin{bmatrix} -y_1 \\ \vdots \\ -y_n \\ y_{n+1} \end{bmatrix}, \qquad y^T \nabla \psi(y) = 2$$

Logarithmic barrier and central path

logarithmic barrier for $f_1(x) \preceq_{K_1} 0, \ldots, f_m(x) \preceq_{K_m} 0$:

$$\phi(x) = -\sum_{i=1}^{m} \psi_i(-f_i(x)), \quad \text{dom}\,\phi = \{x \mid f_i(x) \prec_{K_i} 0, \ i = 1, \dots, m\}$$

- ψ_i is generalized logarithm for K_i , with degree θ_i
- ϕ is convex, twice continuously differentiable

central path: $\{x^{\star}(t) \mid t > 0\}$ where $x^{\star}(t)$ solves

minimize $tf_0(x) + \phi(x)$ subject to Ax = b

Dual points on central path

$$x=x^{\star}(t)$$
 if there exists $w\in \mathbf{R}^{p}$,

$$t\nabla f_0(x) + \sum_{i=1}^m Df_i(x)^T \nabla \psi_i(-f_i(x)) + A^T w = 0$$

 $(Df_i(x) \in \mathbf{R}^{k_i \times n} \text{ is derivative matrix of } f_i)$

• therefore, $x^{\star}(t)$ minimizes Lagrangian $L(x, \lambda^{\star}(t), \nu^{\star}(t))$, where

$$\lambda_i^{\star}(t) = \frac{1}{t} \nabla \psi_i(-f_i(x^{\star}(t))), \qquad \nu^{\star}(t) = \frac{w}{t}$$

• from properties of ψ_i : $\lambda_i^{\star}(t) \succ_{K_i^{\star}} 0$, with duality gap

$$f_0(x^*(t)) - g(\lambda^*(t), \nu^*(t)) = (1/t) \sum_{i=1}^m \theta_i$$

example: semidefinite programming (with $F_i \in \mathbf{S}^p$)

minimize
$$c^T x$$

subject to $F(x) = \sum_{i=1}^n x_i F_i + G \leq 0$

- logarithmic barrier: $\phi(x) = \log \det(-F(x)^{-1})$
- central path: $x^{\star}(t)$ minimizes $tc^T x \log \det(-F(x))$; hence

$$tc_i + \mathbf{tr}(F_i F(x^*(t))^{-1}) = 0, \quad i = 1, \dots, n$$

• dual point on central path: $Z^{\star}(t) = -(1/t)F(x^{\star}(t))^{-1}$ is feasible for

maximize
$$\mathbf{tr}(GZ)$$

subject to $\mathbf{tr}(F_iZ) + c_i = 0, \quad i = 1, \dots, n$
 $Z \succeq 0$

• duality gap on central path: $c^T x^*(t) - \mathbf{tr}(GZ^*(t)) = p/t$

Barrier method

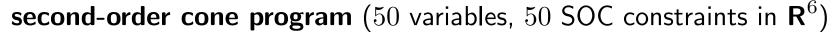
given strictly feasible x, $t := t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$. repeat

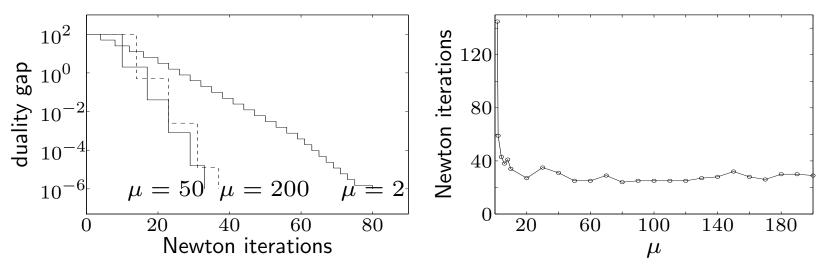
- 1. Centering step. Compute $x^{\star}(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b.
- 2. Update. $x := x^{*}(t)$.
- 3. Stopping criterion. quit if $(\sum_i \theta_i)/t < \epsilon$.
- 4. Increase t. $t := \mu t$.
- only difference is duality gap m/t on central path is replaced by $\sum_i \theta_i/t$
- number of outer iterations:

$$\frac{\log((\sum_i \theta_i)/(\epsilon t^{(0)}))}{\log \mu}$$

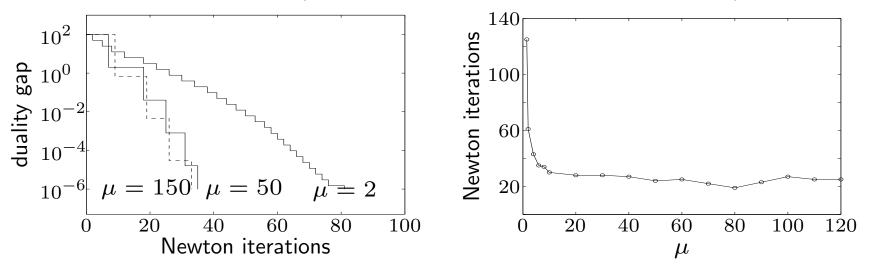
• complexity analysis via self-concordance applies to SDP, SOCP

Examples





semidefinite program (100 variables, LMI constraint in S^{100})

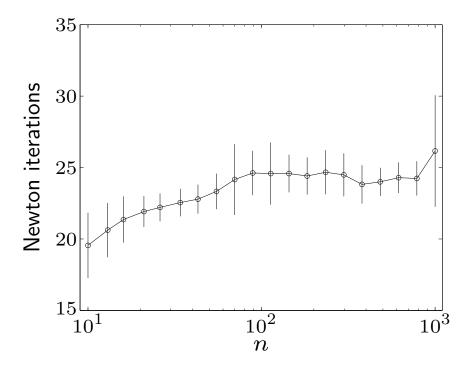


Interior-point methods

family of SDPs ($A \in \mathbf{S}^n$, $x \in \mathbf{R}^n$)

minimize $\mathbf{1}^T x$ subject to $A + \mathbf{diag}(x) \succeq 0$

 $n = 10, \ldots, 1000$, for each n solve 100 randomly generated instances



Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

- update primal and dual variables at each iteration; no distinction between inner and outer iterations
- often exhibit superlinear asymptotic convergence
- search directions can be interpreted as Newton directions for modified KKT conditions
- can start at infeasible points
- cost per iteration same as barrier method