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In (1] it

embeddable in R?. Here we give a simpler proof of this observation and we show
additionally that the same holds for the torus. We show in addition that they

are convexly embeddable. l.e.. every such triangulation is a subcomplex of the
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ABSTRACT

We show that every triangulation of the projective plane or the torus
is isomorphic to a subcomplex of the boundary complex of a simplicial

5-dimensional convex polytope and thus linearly cmbeddable in R*.

was preved that every triangulation of the projective plane is linearly

boundary complex of a simplicial 5-dimensional convex polytope.

We use an easy provable lemma being a modification of lemima 2 in [4j.

LeEmMA: Let U, V be two orthogonal subspaces of R* and P C U, Q C V two
convex polvtopes such that 0 € relint P and 0 € relint Q. Let F be the boundary

complex of P. Then |F| and Q are in general position (i.e. they are joinable) and

their join |F|Q is a convex polytope.
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THEOREM: Fach triangulation of the projective plane or the torus is a subcom-
plex of the boundary complex of some simplicial 5-dimensional convex polytope.

Proof:  Let K be a simplicial complex such that |K] is the projective plane or
the torus. Let ¢ be a cycle representing a nontrivial element of the first homology
group of K over the field of integers modulo 2 such that ¢ has a minimal number of
edges. ¢ as a Eulerian graph is the sum of circles and, because of the minimality
property, ¢ itself is a circle.

Let £ be the subcomplex of K spanned by the vertices of ¢ (that is, the set
of simplexes of K with vertex set in c¢). Then £ consists of exactly the vertices
and edges of ¢: ¢ cannot have a diagonal in K because otherwise c would be a
sum, ¢ = ¢ + ¢g, of two circles ¢, ¢y # 0, each consisting of the diagonal and of a
part of c. ¢ and ¢ being smaller than ¢ and one of them not being homologously
trivial. £ cannot contain a triangle o, otherwise ¢ would be the boundary of .

Let .M be the subcomplex of K consisting of all simplexes of K in which the
vertices of £ do not appear. Then | M| is planar because, if we remove a regular
neighborhood of £ from K, there will remain a disk or a cylinder (for the methods
of proving this see, e.g.. [2]).

M as a planar set can be extended to a triangulation M’ of the sphere (see
(3]. p. 36). By the theorem of Steinitz [5]. .M’ is the boundary complex of a
3-dimensional convex polytope P. £ can be considered as the boundary complex
of a 2-dimensional convex polytope (. By our lemma we can now construct a
5-dimensional convex polytope R by joining P and the boundary of Q such that
the join £M is the boundary complex of R.

Every simplex 0 € K is of the form ¢ = 71 where 7 € £ and v € M. It follows
that &' C LM C LM, showing the assertion. |

Remark:  The method of the proof cannot he applied for the Klein bottle or
for other surfaces of higher genus. Take, for example, two triangulations of
the projective plane. remove a triangle from each and glue them along their
boundaries in order to get a triangulation X of the Klein bottle. Let a,b,c
denote the edges of the common boundary of the two Mdbius strips. Subdivide
K to get a triangulation K’ such that a,b and ¢ are not subdivided in X and
such that. after the removal of all simplexes having a nonempty intersection with

@ b, c, there will remain two Mobius strips. Then K’ has the following obvious

property: If ¢ 1s a circle such that a removal of ¢ results in a planar complex then
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¢ has one of the edges a, b, c as a diagonal and therefore £ contains not only the
edges and vertices of ¢, with the terminology used above.
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