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How to Build Minimal Polyhedral Models of

the Boy Surface

Introduction and History

In the middle of the last century A. Mobius gave a
combinatorial description of a closed, one-sided, poly-
hedral surface, which was soon recognized as a topo-
logical model of the real projective plane. It also
turned out to be the surface that J. Steiner had defined
geometrically. Soon, algebraic definitions followed
which were used to construct plaster models of the
cross-cap and the Roman surfaces. Until the Klein
bottle, none of these non-orientable closed surfaces,
whether smooth or polyhedral, was known to be ““im-
mersible” in R3. A topological immersion i : M — R3is
a locally injective continuous mapping. An immersion
1M — R’ of a compact 2-manifold (without
boundary) is called polyhedral if the image of i is con-
tained in the union of finitely many planes.

In 1903 D. Hilbert's student W. Boy proved in [3]
that the real projective plane RP? allows an immersion
in R? (with an axis of svmmetrv of order 3). Several
efforts have been made to give an explicit description
of such an immersion. A survey of explicit combina-
torial, analytic, and algebraic descriptions of such im-
mersions is included in F. Apéry’s recent book on the
subject {1]. In [5] polyhedral immersions of RP? with
eighteen vertices were described. The polyhedral im-
mersions given in [1] have even more vertices. In this
paper the existence of symmetric polyhedral versions
of the Bov surface with only nine vertices and ten
facets is shown and an easy recipe for building card-
board models of these objects is given. Formal defini-
tions of the terms “vertex,” ““facet,” and “edge” will
be given near the end of the introduction.

T. Banchoff showed in {2] that an immersion of RP?
in R? in general position must have a triple point. A
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polyhedral immersion can always be perturbated so
that the vertices are in “‘very general” position (for ex-
ample, with the coordinates of the vertices being alge-
braically independent). Thus we get the generic case
with at least one triple point in the relative interior of
three triangular facets. The intersection of any two of
these triangles is a line segment which cannot contain
a common vertex because a polvhedral immersion is
injective in some neighborhood of any vertex. Thus
the three triangles containing the triple point have to-
gether nine different vertices, so nine is a lower bound
for the number of vertices of a polyhedral immersion
of RP2. We will show that this lower bound can indeed
be attained.
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Figure 1. A net of a polyhedral immersion P1 of RF% In
Figure 2 and Figure 3 we show orthogonal projections of P1
in the direction of the axis of symmetry from “above” and
from “below.”” We have indicated the self-intersection lines
by dotted lines. Visible lines, dotted or solid, are drawn
much thicker than invisible lines. For any two edges with
intersecting projections we indicate which of the two edges
is above the other one.
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Figure 2. The orthogonal projection in the direction of the
axis of symmetry from above.

Figure 3. The orthogonal projection in the direction of the
axis of symmetry from below.
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The nicest way to prove this is to construct a 3-di-
mensional mode! of the object wanted. This paper
contains an easy recipe for building your own card-
board models of minimal polvhedral versions of the
Boy surface. We also give the coordinates of the ver-
tices together with the combinatorial structure. Using
these data you can also construct a computer model.

Definitions. Let M be a compact 2-manifold (without
boundary) and i : M — R3a polyhedral immersion; (a)
a facet is a connected component of a non-empty set of
the form int(i~'[H]) where H C R®is a plane and int
denotes the interior of a set; (b) a vertex is a point of M
that is in the intersection of the closures of (at least)
three facets; () the connected components of the set of
points of M that are neither vertices nor contained in
some facet are called edges.

Thus if two vertices happen to be mapped onto the
same point in R3, they are still counted as different
vertices. On the other hand, the intersection of (the
relative interior of) the images of a facet and an edge is
not regarded as an additional vertex. If each facet is a
topological open disc, then Euler’s formula
fr — fi + fo = x(M) holds, where f,, f1, fo denote the
numbers of facets, edges, vertices, respectively, and
x(M) denotes the Euler characteristic of M.

If no misunderstandings can occur we call the image
of a vertex, edge, or facet also a vertex, edge, or facet,
respectively. In particular, by coordinates of a vertex
we mean alwavs the coordinates of the image point
in R3.

If M is triangulated such that i is piecewise linear,
then the local injectivity of i has to be checked only in
a neighborhood of each vertex of (the simplicial com-
plex) M.

Polyhedral Immersions of RP? with Nine
Vertices and Ten Facets

We describe three combinatorially different symmetric
polyhedral immersions P1, P2, P3 of RP? with nine
vertices and ten facets. P1 has six quadrangular and
four triangular facets, whereas each of P2 and P3 has
three pentagonal and seven triangular facets. The co-
ordinates of the vertices of P1 are

a (-2,00 b (0-20 ¢ (00-2)
d (-1.21) e (1,-12 f 1-D
¢ (11,00 kh (0-1L1) i (10.-1

In Figure 1 we give a net of our immersed polyhedron
P1. The dotted lines indicate the self-intersection lines.
The list of coordinates of the vertices of P1 shows that
the mapping (x,v.z) = (2,x,y) is a rotation by 2m/3 with
axis R(1,1,1) inducing the permutation (a.b.c) @.e.f)
(g.h.i) of the vertices. Because this permutation in-
duces an automorphism of the net (see Figure 1), P1



Figure 6. Orthogonal projection of the Mébius strip from
above.

has an axis of symmetry of order 3. The cell-complex
defined by Figure 1 (vertices and edges being identi-
fied in the obvious way) clearly is an RP? with f, = 9,
fi =18, f, = 10.

In Figure 10 you can see some pictures of a card-
board model of P1. It is easv to check that Figure 2 is
correct and that a,c,d,g are affinely dependent and
§ — a = f — i. With the symmetry this implies that P1
is indeed an immersed polyhedron with the combina-
torial structure given in Figure 1. So we get the fol-
lowing result.

THEOREM 1: P1 is a symmetric polyhedral immersion of
RP? into R® with nine vertices, cighteen edges, and ten
facets, six of which are quadrangles.

Figure 7. Orthogonal projection of the Mébius strip from
below.

Next we describe two minimal polyhedral versions
of the Boy surface containing three pentagonal facets.
The coordinates of the vertices of P2 and of P3 are

b (~1,0,1)

a (0,1,-1) ¢ (1,-1,0)
d (2,2,0) e (0,2,2) f(2,0,2)
¢ (1,1,0) h (0,1,1) i (1,0,1)

In Figure 4 and Figure 5 we give nets of our immersed
polyhedra P2 and P3. The dotted lines indicate the
self-intersection lines. The list of coordinates of the
vertices shows that the mapping (x,y.2) = (z.x,y) is a
rotation by 2w/3 with axis R(1,1,1) inducing the per-
mutation (a,b,c) (d,e.f) (g,h,i) of the vertices. Because
this permutation induces an automorphism of the nets

THE MATHEMATICAL INTELLIGENCER VOL. 12. \O 4. 1990 53




Figure 8. Part of P1.

Figure 9. Part of P3.
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How To Build Your Own
Models of the Boy Surface

We call the symmetric parts of Figure 8 and
Figure 9 consisting of four triangles the large
parts and the other parts of Figure 8 and Figure 9
the small parts of the figure.

1. Make a sufficiently large copy of Figure 8
(for P1) or/and of Figure 9 (for P3), for example
by running the figure (several times) through an
enlarging copier; the lengths of the edges ab, de,
respectively, should be at least 12 cm.

2. Make a copy of the large part and three
copies of the small part of the enlarged Figure 8
(resp., Figure 9) on cardboard by piercing the
vertices with a pin.

3. Draw the self-intersection lines on both
sides of each of the three copies of the small part.

4. Scratch the edge ai on each of the three
copies on one side and the three edges of the reg-
ular triangle on the reverse side for P1 (resp., the
same side for P3) of the cardboard.

5. Cut out the four parts of the net along the
contours. Also cut out the windows. In order to
link the three windows, make a short cut from
the edge ae to the edge of the window near u as
indicated in Figure 8 (resp., Figure 9).

6. Fold the three copies of the small part along
the edge ai and fold the large part in the opposite
direction for P1 (resp., the same direction for P3).

7. Put the three congruent pieces together,
creating the triple point; Figures 2, 3, 6, 7, 10, 11,
12 may be helpful.

8. Glue the three pieces together along the
corresponding edges using a self-adhesive
(transparent) strip and similarly close the cuts in
the triangles. In the case of P3 you get the
Mobius strip which P2 and P3 have in common.
Note that some of the dihedral angles are quite
sharp (between 23° and 30°), namely the angles
at the edges dh,ei,fg (for P1, P2 and P3) and ag,
bh, of (for P1 and P2), whereas all other dihedral
angles of P1, P2, and P3 are between 58° and
110°.

9. Add the large part to finish P1 (resp., P3)
and glue the two pieces together (along all pairs
of corresponding edges).

To build P2 you have to construct the central
part of the net of P2 (cf. Figure 4) with a circular
window in the equilateral triangle and glue this
part to the Mobius strip you got in step 8 from
the construction of P3.
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Figure 10. A model of P1.

tsee Flgure 4 and Figure 5), P2 and P3 have an axis of
svmmetry of order 3. The cell-complexes defined by
Figure 4 and Figure 5 (vertices and edges being identi-
fied in the obvious way) clearly are RP?s with fo =9,
b= I8 = 10,

P2 and P3 are combinatorially different because P3
centains o-valent vertices, whereas P2 does not con-
tain such vertices.

when omitting the four triangles that do not contain
the wriple point are identical. In Figure o and Figure 7
we show orthosonal projections of this Mobius strip in
the directon of the axis of svmmetry from “above”’
and from “below.” We have indicated the selt-inter-
section ines by dotted lines, Visible Dines. dotted or
sulid. are drawn much thicker than mvisible lines,
Note that the three pentagons torm a svmmetric polv-

Note that the Mobiys Strips arising from P2 and P3

Figure 11. A model of 3.

Figure 12. A model of P2.

hedral Mobius strip twithout self-in.tersections).

In Figure 11 and Figure 12 vou can see some pic-
tures of P3 and P2, respectively. It is easy to check that
Figure 6 is correct, that 2.d.¢.f,1 are atfinely dependent,
and that ¢ lies in the interior of the convex hull of the
vertices. With the Svmmetry this implies that P2 and
P3 are indeed immersed polvhedra with the combina-
torial structure given in Figure 4 and Figure 5. respec-
tively. S0 we get the teliowing result.

THEOREM 2: P2 gy 73 are combinatorially dierent
poluhedral immersions R mito R3 with mire rortices,
cighteen cdges, and ten 3ot three of which are 2enticons,

Now et us modity 1 by adding a new vertex ; =
(=2, -2, -2)and replacing the triangle abc by the tri-
angles ahj. a.y, bej. Because abrand abh are copianar, we
can omit the edge ab and get a non-convex pentagon
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aehbj. Symmetrically we omit the edges ac and bc. Thus
we get a polyhedral immersion P1’ with f, = 10,
fl = 18, fz = 9,

Similarly, we can modify P2 and P3, getting com-
binatorially different polyhedral immersions P2’ and
P3" with f, = 10, f; = 18, f, = 9. Thus we have
shown:

THEOREM 3: There exist symmetric polyhedral immer-
sions of RP? into R® with ten vertices, eighteen edges, and
nine facets.

REMARKS: 1) One gets a symmetric modification of
P1 such that the quadrangie acd g is convex if
a,b,c.d.ef are chosen as the vertices of a regular octa-
hedron with diagonals af,bg,ch and g,h,e are chosen as
the midpoints of the edges ad, be, cf, respectively, and
the quadrangle a g f i is split into the triangles a g i and
fgi(splitting cieh, d g b h similarly).

2) A triangulation of the Mobius strip with 9 ver-
tices, whose boundary forms a triangle and whose au-
tomorphism group has order 6, but which cannot be
immersed in R? was first described by the author in
[4].

3) In order to build nice models I suggest cutting a
circular “window”’ into the regular triangle and cut-
ting curved “windows” into the triangles containing
the triple point, such that no material self-intersections
occur. but such that the full self-intersection figure,
and in particular the triple point, are still visible (and
marked by lines on the model on both sides).

In Figure 8 we show the central part of the net of P1
and a third of the net of the self-intersecting part of P1
(cf. Figure 1) indicating the self-intersection lines and

the suggested wmdows The lengths of the lme seg-

ments are ab = =2V2,ag = dg =e¢h =

=fi= 2ad—be cf—-gz= 6fg—a1—er
\10ae—bf—cd \14gp—r-qt—st 10,
tr=tu =1ig = —\/10

In Figure 9 we ‘show the central part of the net of P3
and a third of the net of the Mobius strip which P2 and
P3 have in common (cf. Figure 5) indicating the self-
intersection lines and the suggested windows. The
lengths of the line segments are be = cf =ad =aqi = di
=el = fg—\/é ag = dg = gz fi=V2,a=0b=cd

\/lOde—-df ef = 2\/2gp—1r—qt—st \/3,

=1q = 2\ 6, (ab =1t = bc = \/_forPZ)

Acknowledgment: 1 wish to thank D. Ferus for taking
the photos of the models (Figures 10, 11, 12) and B.
Morin, U. Pinkall, D. Fems, and E. Tjaden for helpful
discussions.
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