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1. Introduction

The purpose of this paper is to investigate which polynomials naturally arising in combina-
torics are Hilbert polynomials of standard graded (commutative) k-algebras. Our motivation
comes from the fact (first proved by R. Stanley [34]) that the order polynomial of a par-
tially ordered set is a Hilbert polynomial. Since Stanley informally told me of this result
I have been wondering whether it was an isolated one or an instance of a more general
phenomenon. Several works of Stanley (see, e.g., [31, 32], and the references cited there)
show that many sequences arising in combinatorics are Hilbert functions, but Stanley never
explicitly considered Hilbert polynomials.

In this paper we begin such a systematic investigation. Our results show that several
polynomials arising in combinatorics are Hilbert polynomials, and in many (but not all)
cases we find general reasons for this. The techniques that we use are based on combi-
natorial characterizations of Hilbert functions and polynomials obtained by Macaulay in
1927 [24]. Though the characterization of Hilbert functions is very well-known and has
been extensively used since then, the one for Hilbert polynomials is not, and is our main
tool. Most of our results are non-constructive. More precisely, we often prove that a given
combinatorial polynomial is Hilbert but we are unable to construct (in a natural way) a
standard graded k-algebra having the given Hilbert polynomial.

The organization of the paper is as follows. In the next section we collect several
definitions, notation, and results that will be used in the rest of this work. In Section 3 we
develop a general theory of Hilbert polynomials. More precisely, using Macaulay’s result,
and other techniques, we present several operations on polynomials that preserve the Hilbert
property, as well as results that give sufficient conditions on the coefficients of a polynomial
(when expanded in terms of several different bases) that insure that the polynomial is
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ring of symmetric functions. Also, given A € P, we denote by A’ its conjugate, and by s;
(respectively ey, hj, pa, m;) the Schur (respectively elementary, complete homogeneous,
power sum, monomial) symmetric function associated to A. We will usually identify a
partition A = (A, ..., A,) with its diagram {(i, j)) e Px P:1 <i <r, 1 < j < A;}.

We follow [31] for notation and terminology concerning graded algebras and Hilbert
functions. In particular, by a graded k-algebra (k being a field, fixed once and for all) we
mean a commutative, associative ring R, with identity, containing a copy of the field k (so
that R is a vector space over k) together with a collection of k-subspaces {R;};en such that:

(i) R =P, Ri (as a k-vector space);
(il) Ry = k;
(i) R;R; € Riyj foralli, j € N;
(iv) R is finitely generated as a k-algebra.

Note that this implies that each R; is a finite dimensional vector space over k. The Hilbert
series of R is the formal power series

P(R:x) & > dimg(Ri)x'.

i>0

The following fundamental result is well-known, and a proof of it can be found, e.g., in [3],
Theorem 11.1, or in [31], Theorem 8.

Theorem 2.1 Let R be a graded k-algebra as above. Then

h(R;
PR x) = = BX) —,
ni_-:l(l — x*)
in Z[[x]], where h(R; x) € Z[x] and ki, ..., k, are the degrees of a homogeneous gener-

ating set of R (as a k-algebra).

We call

H(R; i) & dim(R))

the Hilbert function of R. We say that a k-algebra R as above is standard if it can be finitely
generated (as a k-algebra) by elements of R;. From now on we will always assume that
all our graded k-algebras are standard. If R is a standard graded k-algebra then we can
take k;, = --- = k, = 1 in Theorem 2.1 and this, by well known results from the theory of
rational generating functions (see, e.g., [33], Proposition 4.2.2(iii)), implies the following
fundamental result which was first proved by Hilbert (in a more general setting, see, e.g.,
[32], Corollary 9, [3], Corollary 11.2, or [12], Theorem 4.1.3).

Theorem 2.2 Let R be a standard graded k-algebra. Then there exists a polynomial
Pr(x) € Q[x]and N € P such that H(R; i) = Pg(i) foralli > N.
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Proposition 2.4 Let Y, a;x' and ). bix' be two O-series, and j € P. Then the
following are also O-series:

(i) (Z,‘zoaixi)(zizobixi);

(i) D0 ax' + Y is0 bixi —1;

(i) YL, aix’;

(iv) ZiZO ajbix';

V) Yz ajix!

Proof: (iii) is immediate from the definition of an O-series. The other statements all fol-
low from corresponding constructions in the theory of graded algebras and Theorem 2.3.
More precisely, let R= D,., R; and S= ;. S; be two standard graded k-algebras
such that P(R;x)= ), ga;x' and P(S;x)= ?:z>0b ;x!. Then R® S, R® S, R+S
(where * denotes the Segre product, i.e., R * S « @po(R ®x Si)) and RY) (where RV
denotes the jth Veronese subalgebra of R, i.e., RV & @®i>oR;;) are again standard
graded k-algebras and P(R® S; x) = P(R; x)+ P(S;x) — 1, P(R®¢ S; x) = P(R; x)
P(S;x), P(R % S;x) = Y . oabx’ and P(RV;x) = Y .., aj;x' which, by
Theorem 2.3, proves (i), (ii), (iv), and (v). O

Note that it is also possible to prove the preceding result by using the equivalence of parts
(i) and (iii) in Theorem 2.3, thus avoiding commutative algebra.

Throughout this work, we say that a sequence {h; };en (respectively, a polynomial H (x))
is a Hilbert function (respectively, a Hilbert polynomial) if there exists a standard graded
k-algebra R suchthath; = H(R; i) foralli € N (respectively, H(x) = Pr(x)). We say that
a finite sequence {hg, h1, ..., hy} is a Hilbert function if the sequence {ho, A1, ..., h4, 0,
0, ...} is a Hilbert function. S

Just as Theorem 2.3 provides a numerical characterization of Hilbert functions, there is e il
a numerical characterization of Hilbert polynomials, also due to Macaulay.

Theorem 2.5 Let P(x) € Q[x] be suchthat P(Z) C Z, and let mo, ..., my bethe uniqgte
integers such that Xewa e i

/\ /\ e ,,;x e ‘ A .

P(x)zg[((iil»—<<xi:un1“))]\ iwi '( RRC)

(where d = deg(P(x))). Then P(x) is a Hilbert polynomtal if and only' if mg > m

> - >my = 0.

The existence and uniqueness of the integers my, ..., mg is an elementary statement,
and the “if”” part of the above theorem is easy to show. A proof of the “only if” part of
Theorem 2.5 is given, e.g., in [24], p. 536, [20], Corollary 5.7, p. 47, and [28], Theorem 2.1,
(see also [12], Exercise 4.2.15, p. 165).

Because of the previous result, given a polynomial P(x) € Q[x] such that P(Z) C Z,
we call the integers my, . . ., my uniquely determined by (2) the Macaulay parameters of
P(x), and we write M(P) = (my, ..., my).
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where d = deg(P(x)). Then

S () 5

fori=0,...,d.

Proof: It is easy to see that

((537)) 5 li( o () (G)) ©

for all m,i € N. Therefore

G- (C)-5or (L)) o

Summing (7) (with m =m;) for i=0,...,d and comparing with (4) yields (5), as
desired. O

Note that the previous result makes it easy to compute the coefficients of a polynomial
with respect to the basis of twisted binomial coefficients from its Macaulay parameters
(as implicitly noted also in [24], p. 537), but not conversely (even though the relations (5)
are, of course, invertible). Hence, even a reasonably detailed knowledge of the coefficients
{co, ..., cq) in (4) will not make it easy to decide if the polynomial is Hilbert. However,
the relations (5) do have the following interesting consequence.

Theorem 3.2 Fori € N there exist ®; € Q[xo, ..., x;] such that:
(i) deg(®;) =2';
(i) if P(x) = Z?:o c,-((’i‘)) € Q[x]issuchthat P(Z) € Zand M (P (x)) = (mq, ..., my),
thenmg_; = ®;(cq,...,cq_i)fori =0,...,d;
(iii) the leading monomial of ®; is 2 ("0 )2'

Proof: We define ®; € Q[xo, ..., x;] inductively as follows,

@0 € xo, (8)

& & x - Z( 1)1( ”), ©

if i = 1. Then (i), (ii), and (i1i) follow easily by induction on i € P. In fact, by our induc-
tion hypotheses, deg(( % N={ + 12i=J for j=1, , I and hence, by (9), deg(®;) =
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(1) A(x) + B(x);

(i) A(x)B(x);
(1i1) A(kx + m);

(iv) A(x) — A(x — 1);

v) kAXx) + m;
vi) Yo_ohiA(x —0).
Proof: By hypothesis there exist H,, H; : N — N such that {H(n)},ecn and {Hy(n)}eN
are O-sequences, and H,(n) = A(n), Ha(n) = B(n) if n > ng (for some ny € N). Hence,
by (ii) of Proposition 2.4, {1, H, (1) + Hx(1), H;(2) + H»(2), ...} is an O-sequence and
Hy(n) + Hy(n) = A(n) + B(n) for n > ny and this shows that A(x) + B(x) is a Hilbert
polynomial. In an exactly analogous way (using (iv) and (v) of Proposition 2.4) one proves
(i1), and (ii1) for m ="0.

To prove (iv) note that by Theorem 2.5 and our hypotheses we have that

an=3((,2,)-((50)] a0
so-ae-n=3 (1)) - ((2))-(C2)
(50

C[(GE)- ()]

and (iv) follows from Theorem 2.5. Also, (10) implies that

=3 [(()- (5]

and hence

() R () TR

i+1

2

!

Il
=}
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Proof: Let B(x) o A(x) — A(x — 1), for brevity. Then we have from our hypothesis and
the definition of (VB)(x) that, for all n € N,

(VB)(n) = jZ:%B(j)
(R R())
S (1) () ¥ ()
) (]

where m = Z?:o((_ﬂz_l))’ and m; =m;_;,fori =1,...,d + 1. Therefore M(VB) =

(mg, mo, ..., my) and hence M((VB)(x) + A(—1)) = (A(=1) + mg, mg, ..., myg), as
desired. m

Corollary 3.7 Let A(x) € Q[x] be a Hilbert polynomial of degree d with Macaulay pa-
rameters (my, . .., mg), and B(x) € Q[x] be such that B(x) — B(x — 1) = A(x). Then
B(x) is a Hilbert polynomial if and only if e

d
cf M + 1 /
mo < ) (=1) ( . >+B(—1)- t
; i+2 ;

We now wish to study which polynomials of the bases defined in the previous section are
Hilbert polynomials.

Theorem 3.8 Letd € P, ay,...,as € P, andi € [0,d]. Then: (-4

(i) x¢ is a Hilbert polynomial if and only if d > 3; ’
(i) (x)q is a Hilbert polynomial if and only ifd = 3; 7 ‘
(iii) ag(x + ay) - -+ (x + ay) is a Hilbert polynomial, 'S aN 7 e
(iv) () is not a Hilbert polynomial, .

eios

(v) (())) is not a Hilbert polynomial; ‘;‘ R
(vi) (**97") is a Hilbert polynomial if and only if i = 0. ;

Proof: A straightforward computation using Theorem 2.5 shows that x and x? are not
Hilbert polynomials, while x3, x*, and x° are. So (i) follows from part (ii) of Theorem 3.5.
Also, it is easily verified, using Theorem 2.5, that (x), is not a Hilbert polynomial, while
(x)3 is. But, by Proposition 3.4, r and x + r are Hilbert polynomials whenever r > 1, so
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(i) cozcrz-=2ca 20 W*%UD
() wo>wy >+ > wy =0
(iil) ag,...,as € N,d >3, anday < a; < ax < as.
Then P(x) is a Hilbert polynomial.

Proof: Since P(Z) € Z we conclude easily (considering P(0), P(—1), ..., P(=d +1))
that cg, ..., cq € Z,and wy, ..., wy € Z.

Assume now that (i) holds. Then there exist By, ..., B4 € N such that ¢; = B; + Bi+1
+ -+ Byfori =0,...,d. Hence

o= Ee(()- 5500 =24 (2 ()

and the thesis follows from Theorems 3.5 and 3.8.
Similarly, if (ii) holds then there exist by, . . ., by € N such that w; = b; + biy1+---+by
fori =0,...,d. Hence

) », (x+;l—i>=2d:2":bj(x+j—i>

i=0 j=i

b,-<§("+;"">>. (13)

S ()2l (G))
-(GE))-(G2)

Hence Z{ZO(HZ_") is a Hilbert polynomial by (12) and the thesis follows from (13),
and Theorem 3.5.

Finally, assume that (iii) holds. It is easily verified (using Theorem 2.5) that x? + x°,
x +x2 4+ x3,and 1 + x + x? 4 x* are Hilbert polynomials. But

Px) =

d
i=0

d
Jj=0

Now note that

P(x) = ap(l +x + x>+ %) + (a1 — ap)(x + x* + x*) + (a2 — ap)(x* + x7)

d
+ (a3 — az)x3 + Zaixi,
i=4

so the thesis follows from our hypotheses and Theorems 3.5 and 3.8. o
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[12], Theorem 5.1.7, p. 204), and also easy to see, that the Hilbert function of R, is given
by

ifn=0,

H(Ra n) = ’
e =1 o (7)., ifneP,

(14)

and (i) follows from part (iii) of Theorem 3.5.

To prove (ii) and (iii) note that if f, > 3 then necessarily f; > 3 and (ii) and (iii)
follow from Corollary 3.10. If f, < 2 then dim(A) < 2 and it is easy to check, using
Proposition 3.4, that Zle fix' and Z?:o fi(x); are always Hilbert polynomials in this
case. U

Note that there exists a complete numerical characterization, similar to Theorem 2.3, of
the sequences that are the f-vector of some simplicial complex (see, e.g., [12], Section 5.1,
p. 201, or [31], Theorem 2.1, p. 64). Therefore, one could state Theorem 3.13 without any
reference to simplicial complexes.

We conclude our general discussion on Hilbert polynomials by introducing a concept
which measures “how far” a polynomial is from being Hilbert. The crucial result for this
definition is the following.

Theorem 3.14 Let P(x) € Z[x] be a polynomial with positive leading term. Then there
exists M € N such that P(x + i) is a Hilbert polynomial for any i > M.

Proof: Let P(x) = Z(j‘:o ajxj where a; € Z and az € P. Then

d
P(x+i) = Zaj(x + 1)/

j=0
d j .

= Zaj Z (i) xklj_k
=0 k=0
d d

= Z (Zaj (]) l"k> xk
k=0 \j=k k

Hence the coefficient of x* in P(x + i) is a polynomial in i of degree d — k and positive
leading term, for k = 0, ..., d. Therefore there exists N € N such that P(x + i) € N[x] if
i > N. The thesis follows from Corollary 3.9. O

The preceding theorem suggests, and allows us to make, the following definition. Given
a polynomial P(x) € Z[x] with positive leading term we let

H{P} % max{i e N: P(x + i) is not a Hilbert polynomial} + 1 (15)
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We begin by considering several polynomials associated to graph colorings. Let G =
(V, E) be a graph (without loops and multiple edges). A map ¢:V — P is said to be a
coloring of G if p(x) # ¢(y) forall x, y € V suchthat (x, y) € E. Givenn € P we denote
by Pg(n) the number of colorings ¢: V — P such that (V) C [n]. Itis then well known
(see, e.g., [26], or [14], Section 4.1, p. 179) that there exists a polynomial x (G; x) € Z[x],
of degree |V|, such that x(G; n) = Pg(n) for all n € P. This polynomial is called the
chromatic polynomial of G and has been extensively studied (see, e.g., [27], for a survey).
Since x (G; x) is a polynomial one may write

[V Vi

x(Gix) =Y ai(x) =Y (D" e;(x)i.
i=0

i=0

Then the polynomials o (G; x) < Zl‘;lo a;x' and t(G; x) &f Zli‘o cix' are called the
o -polynomial and the t-polynomial of G, respectively. Despite the fact that knowledge of
one of these three polynomials implies knowledge of the other two it is often the case that
o(G; x) and 7(G; x) are more convenient to handle then x(G; x) itself. For this reason
o(G; x) and 7(G; x) have also been studied, and we refer the reader to [9, 10], and the
references cited therein, for more information on these two polynomials.

Theorem 4.1 Let G = (V, E) be a graph on p vertices, with p > 3. Then the following
are Hilbert polynomials:
(1) o(G; x);
(i) (G x);
(i) (—=D?Px(G; —(x + ).

Proof: Itis easy to verify directly (using Theorem 2.5 and some patience) that the theorem
holds if p = 3.
We first prove (i) by induction on p > 3. Assume that p > 4. If G = K, (the complete

graph on p vertices) then o (G; x) = x” and (i) holds by Theorem 3.8. If G # K, then it
follows from Theorem 1 of [26] that

(3)-1El
X(Gix)=x(Kpx)+ Y, x(Gj;x),
j=1

and (therefore) that

(§)-IEl
o(Gix)=0(Kpx)+ Y 0(Gj;x)
j=1

where each G; has p — 1 vertices, and (i) follows from our induction hypothesis and
Theorem 3.5.
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enumerative invariants of the labeled poset (P, w) and has been studied extensively (see,
e.g.,[29], and [8]). In particular, it is known (see, e.g., [29], Section 1.2, Definition 3.2, p. 8,
and Proposition 8.3, p. 24) that if w is a linear extension of P then the numbers w; (P; w)
do not depend on w. In this case we write w; (P) instead of w;(P; w).

Theorem 4.3 Let P be a finite poset of size p. Then:
(i) Z(P; x + 1) is a Hilbert polynomial,

(il) Q(P; x + 1) is a Hilbert polynomial,

(iii) (w1 (P), ..., w,(P)) is a Hilbert function.

Proof: It is well known (see, e.g., [33], Proposition 3.11.1, p. 129) that

!
ZPix+1)=)Y b (xlfl) an
i=0

where b; is the number of chains of P of length i (i.e., totally ordered subsets of P of
cardinality i + 1), and [ is the length of the longest chain of P. But the collection of all
chains of P is clearly a simplicial complex (usually denoted A(P) and called the order
complex of P, see, e.g., [33], p. 120) and its f-vector is (bo, by, ..., b;). Hence (i) follows
from (17) and (14). Also, it is well known (see, e.g., [33], Section 3.11, p. 130), and easy
to see, that

Q(P;x)=Z(J(P); x) (18)

(where J (P) denotes the lattice of order ideals of P, see, e.g., [33], Section 3.4) and so (ii)
follows from (i). To prove (iii) note that using (17) and (18) we conclude that

1+Zif,- (”:1>x" =Y Z(J(P);n+ Dx"

n>1 i=0 n>0

= Z Q(P;n+ DHx"
n>0

b wi(Pyx !

T (I =x)pt!

(19)

by a well-known result from the theory of P-partitions (see, e.g., [33], Theorem 4.5.14,
p. 219), where f; is the number of chains of J(P) of length i (i.e.,, the number of
i-dimensional faces of A(J(P))). This implies, by (3) and the binomial theorem (see, e.g.,
[33], p. 16), that (w;(P), ..., w,(P)) is the h-vector of A(J(P)). But it is well-known
(see, e.g., [33], Section 3.4) that J ( P) is always a distributive lattice. This, in turn, implies
that A(J(P)) is shellable (see, e.g., [12], Theorem 5.1.12, p. 208, and [33], Section 3.3)
and (iii) follows from the fact that i-vectors of shellable complexes are O-sequences (see,
e.g., Theorem 5.1.15 of [12]). O
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one can verify directly (using Theorem 2.5) that (x + 1), x(x + 1)2, and x2(x + 1)? are all
Hilbert polynomials and the result follows. (]

Theorem 4.6 Let (W, S) be a Coxeter system and u,v € W, u < v, be such that
[(v) = l(u) > 3. Then R, ,(x + 1) is a Hilbert polynomial.

Proof: 1If [(v) — I(u) = 3 then it is easy to see (see, e.g., [21], Section 7.5) that R, , (x)
equals either (x — 1) or (x — 1)® + (x — 1)x and one can check that the result holds in this
case. So assume that [(v) — I(u) > 4. It is then well known (see, e.g., [21], Section 7.5,
p. 154, or [15], Theorem 1.3) that

L5
Ruw(x+1) =) aj(x + 1)'x* (21)
i=0

where d défl(v) —Il(u)anda; e Nfori =0, ..., L%’J. Ifi = 1thend — 2i > 2 and hence
(x + 1)x97% is a Hilbert polynomial by Theorems 3.5 and 3.8 and the fact that (x + 1)x?
is a Hilbert polynomial. If i = O then d — 2i > 4 and hence x?~% is a Hilbert polynomial
by Theorem 3.8. If i > 2 then (x + 1)'x?~% is a Hilbert polynomial by Lemma 4.5. Hence
the result follows from (21) and Theorem 3.5. a

Given a finite Coxeter system (W, S) we let

W)L [veW: dw) =i} (22)

fori € N.

Theorem 4.7 Let (W, S) be a finite Coxeter system and u,v € W, u < v. Then:
(1) Y pew x4 =", di(W)x' is a Hilbert polynomial;

(i) P, ,(x + 1) is a Hilbert polynomial,

(iii) {do(W), d (W), ..., ds(W)} is a Hilbert function.

Proof: Let, for brevity, P(W; x) & 3, _,, x4®_If|S| < 2 then either P(W; x) = 1+x
(if S| = 1) or W is a finite dihedral group, in which case P(W;x) = 1 + 2p — 2)x + x?
for some p > 2. In both cases (i) holds by Proposition 3.4. So assume that |S| > 3. Note
that it follows immediately from the definition (22) that

d(W) =1, d(W) =S|

for any (W, S) (since d(s) = 1 for all s € S). Furthermore, it is known (see, e.g., [11],
Theorem 2.4) that P(W; x) is always a symmetric unimodal polynomial. Hence

(W) = |S]
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Proof: It is clear from the definitions that 1 + ix is an O-series for all i > 1. But it is
well-known (see, e.g., [33], Proposition 1.3.4, p. 19) that

n—1 n—1
Zc(n, n— k)xk = ]—[(l +ix)
k=0 i=1

so (1) follows from part (i) of Proposition 2.4.

Toprove (i) let V ={SCn—11: n—r>|S|>rjand A (FCV: SNT =0
forall S,T € F suchthat § # T, and ) ¢ r|S| < n —r}. Itis then clear that A is a
simplicial complex on vertex set V. Also,

Je-1t(A) = S, (n, k+ 1)

forall k = 0,..., L%j — 1 (since if {Sy,..., S} € A then {Sy,..., S, [n]\(Uf:1 SH}
is a partition of [n] into k + 1 blocks, each of size >r, and this is a bijection). Hence
{S,(n, k)} k=2, 12 is the f-vector of a simplicial complex and therefore {S, (n, k)}kzlngJ,
by Theorem 2.3, is an O-sequence. a

We now prove that a rather general class of polynomials arising from the enumeration
of Stirling permutations are always Hilbert polynomials. Fix k € P and m, m,,... € P.

Recall (see, e.g., [8], Section 6.6) that a permutation a;a; - - - @y, +...4+m, Of the multiset M; &ef
{1me,2m2 o k™) is called a Stirling permutation if 1 <u <v < w <m;+ -+ my
and a, = a,, imply a, > a,. Stirling permutations have been first introduced and studied
in [19] in the case m| = --- = m; = 2, and later in [18] (in the case m; = - -- = my) and
[8] (in the general case). We denote by Q, the set of all Stirling permutations of M. So,
for example, Qy = Sy if m; = --- = my = 1. Given a permutation 7 = a,az - - - A+ +m,
of M; a descent of m is an index j € [m; + --- + my — 1] such that a; > a;,. For
0 <i < |Mi| — 1 welet By; be the number of Stirling permutations of M with exactly
i descents. So,if m; = ... = my = 1, then By is just the Eulerian number A(k,i + 1).
There are (at least) two important generating functions associated with the numbers By ;,
namely

gop Mil1 .
Bi(x) S ) Brix', (23)
i=0
and
| M| .
x4+ M| —i
fie(x) ?é"ZBk,i_l( (Ml ) (24)
P | M|

(see, [8], Section 6.6, for further information on these two polynomials). As noted in [8],
p. 78, (24) is usually the better behaved of these two generating functions. This turns out
to be true also from our present point of view. In fact, we will prove that (23) is always a
Hilbert polynomial while { f;(n + 1)},en is always a Hilbert function.
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does not provide such a combinatorial interpretation, it does provide an algebraic interpre-
tation. Furthermore, if the rings Ry referred to above can be constructed explicitly, then a
combinatorial interpretation of their Hilbert function would probably follow.

It is well-known (see, e.g., [19]), and also easy to see, that S(n + k, n) is a polyno-
mial function of n, for each k € N. An interesting consequence of Theorem 4.10 is the
following.

Corollary 4.11 Let k € N. Then {S(n + 1 + k,n + 1)}sen is a Hilbert function. In
particular, S(x + 1 + k, x + 1) is a Hilbert polynomial.

Proof: Taking m; = 2 for all i € P yields, by part (ii) of Proposition 6.6.4 of [8], that

fitn+1) = Sm+1+k,n+1) foraln €N, and the result follows from part (i) of
Theorem 4.10. O

The polynomials S(x + k, x) are usually called Stirling polynomials (see, e.g., [19], or [8],
Section 6.6, p. 80).

Corollary 4.11 can, in turn, be generalized in another direction using the theory of
symmetric functions. We need first the following simple observation.

Proposition 4.12 Let f € A. Then there exists a (necessarily unique) polynomial fx) e
Qlx] such that

fn)=f{1,2,...,n,0,0,...) 27
foralln € P.

Proof: It is well-known (see, e.g., [25], Chapter I, Section 2, Ex. 11, p. 23), and easy to
see, that

Stn+k,n)=h(1,2,...,n,0,0,...) (28)

foralln € Pand k € N, and that, as noted before Corollary 4.11, S(n+k, n) is a polynomial
function of n for all k € N. By definition (see, e.g., [25], Chapter I, Section 2) we have
that

!
hy(xt, x2,...) =Hh,\i(x1,x2,...) (29)
i=1

if A= (A{, ..., A, hence the result holds for the complete homogeneous symmetric func-
tions k1, A € P. Butevery f € A can be expressed as a finite linear combination of 4;s,
and the result follows. O

Thus Corollary 4.11 is asserting (by (28) and (27)) that {ix(1,2,...,n + D}en is a
Hilbert function and A4 (x + 1) is a Hilbert polynomial. This naturally suggests the problem
of determining those symmetric functions f € A for which these properties hold.
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Theorem 3.5), there are many sequences and polynomials naturally arising in enumerative
and algebraic combinatorics for which we have been unable to decide whether they are
Hilbert. In this section we survey the most striking such cases, and we present some
conjectures together with the evidence we have in their favor.

Our first conjecture is naturally suggested by Theorem 4.9.

caey

We have verified this conjecture for n < 24. In addition to the numerical evidence, there
is a heuristic reasoning that suggests the validity of Conjecture 5.1. A sequence of positive
integers is a Hilbert function if it “does not grow too fast”. Now, itis well-known (see, e.g.,
unimodal, hence the real content of Conjecture 5.1 is for the values of k that precede the mode
of the sequence. But itis known (see, e.g., [33], Chapter 1, Exercise 18, p. 47) that the mode

.....

ey

true since Theorem 4.9 holds.

Theorem 3.8 allows one to settle the question of whether a given polynomial is Hilbert
pretty easily if its coefficients with respect to the basis {x'};cn are nonnegative and have a
combinatorial interpretation. However, there are many polynomials for which this is not
the case (especially polynomials that “count something” when evaluated at nonnegative
integers) but that seem to be Hilbert. In this respect, we feel that the following is the most
interesting and outstanding open problem arising from the present work.

Conjecture 5.2 Let G be a graph on at least 4 vertices, and x(G; x) be its chromatic
polynomial. Then x(G; x) is a Hilbert polynomial.

We have verified the above conjecture for all graphs with at most 15 vertices. Two related
conjectures are the following:

Conjecture 5.3 Letd € P, d > 4. Then (x)4 is a Hilbert polynomial.
Conjecture 5.4 Letd € P. Then 3d (;) is a Hilbert polynomial.

We have verified these conjectures for d < 15. Note that, by Proposition 4.2, Conjec-
tures 5.2 and 5.3 are equivalent, while by Theorem 3.5 Conjecture 5.4 implies Conjecture 5.3.

For what concerns the symmetric functions f € A such that f(x + 1) is a Hilbert poly-
nomial we have the following conjectures.

Conjecture 5.5 Let . € P. Then 5, (x + 1) is a Hilbert polynomial if and only if |A| > 3.
Conjecture 5.6 Let » € P. Thenm; (x + 1) is a Hilbert polynomial if and only if |A| > 3.
We have verified the above conjectures for [A| < 7. Note that since any Schur symmet-

ric function is m-positive (see, e.g., [25], Chapter I, Section 6), Conjecture 5.6 implies
Conjecture 5.5 as well as Corollary 4.14.
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Finally, there is a general “open problem” that arises naturally with almost any result
presented in this work. Namely, whenever we prove that a certain polynomial (or sequence)
is Hilbert it is natural to ask whether one can construct, in a natural way, a standard graded
k-algebra having the given Hilbert polynomial or function. Besides giving a more illumi-
nating proof of the original result, such a graded algebra would probably have interesting
properties in its own right. We have not investigated this problem. However, we do believe
that natural constructions of graded algebras exist that “explain” all parts of Theorems 3.5,
3.12,3.13, and 4.7.
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