is applications. It aims to be an
subject, especially those with
istance, ORDER arises in com-
1 and sorting.

:ebra, combinatorics, geometry,
ity throughout the mathematical
JER intends to document and to

CLES
3 Hamiltonian paths in cocom-

ngements
1e fixed point property

partial order

wyright Clearance Center, Inc., 27

r the internal or personal use of
ers registered with the Copyright
zd that the base fee of $ 1.00 per
10se organisations that have been
nent has been arranged. The fee
1/91$ 1.00 + 0.15.

that for general distribution, for
orks, or for resale.

ined from the copyright owner.
\A Dordrecht, The Netherlands.

duals $ 95.50.

ndolph Ave., Avenel, NJ 07001

0. Box 17, 3300 AA Dordrecht,
A,
sediters of the Printed Word Ltd.,

Order 8: 225-242, 1991. 225
© 1991 Kluwer Academic Publishers. Printed in the Netherlands.

Counting Linear Extensions

GRAHAM BRIGHTWELL*
London School of Economics and Political Science, Houghton Street, London, U.K.

and

PETER WINKLER
Bellcore, 445 South St., Morristown, New Jersey, U.S.A.

Communicated by I. Rival
(Received: 6 June 1991; accepted: 25 October 1991)

Abstract. We survey the problem of counting the number of linear extensions of a partially ordered set.
We show that this problem is # P-complete, settling a long-standing open question. This result is

contrasted with recent work giving randomized polynomial-time algorithms for estimating the number of
linear extensions.

One consequence of our main result is that computing the volume of a rational polyhedron is strongly
# P-hard. We also show that the closely related problems of determining the average height of an

element x of a given poset, and of determining the probability that x lies below » in a random linear
extension, are # P-complete.
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1. Introduction

The problem of determining the number of linear extensions of a partially ordered
set is fundamental in the theory of ordered sets, and is of interest in computer
science by virtue of its connections with sorting. For instance, at each stage of any
comparison-based sorting algorithm, current information can be expressed as a
partial ordering of the data set, any linear extension of which is a possible
“solution™. If it were easy to compute the number of linear extensions of a poset,
one could determine in a sequential sort which is the optimum pair of elements to
compare next. (Kahn and Saks [15] have shown that there is always a pair whose
comparison splits the set of linear extensions in no more lopsided a fashion than
3/11:8/11, but their proof gives no way of finding such a pair short of computing
numbers of linear extensions).

Another application arises in the social sciences, when a ranking of alternatives
(e.g., products, job candidates, athletes in a competition) must be determined from

* Research carried out while this author was visiting Bellcore under the auspices of DIMACS.
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a partial ordering (see, €.g., [11]). One natural such ranking is given by “average
height”, in which each element is assigned the mean of its ranks in all linear
extensions. This approach has the advantage that certain desirable correlations are
achieved; for example, additional information to the effect that element x is below
element y can only drive the average height of x down, and y up (see [30]). Here
again, however, numbers of linear extensions must apparently be computed; and
since such numbers may be exponential in the number of elements, it is not clear
that efficient methods can be found.

The problem of counting linear extensions of a partial order can also be regarded
as a special case of the problem of calculating the volume of a polyhedron in
n-dimensional space, as we shall see later.

Unfortunately from a theoretical point of view, determining the difficulty of
counting linear extensions has itself been frustratingly difficult. In [2-4, 12, 25],
polynomial algorithms are given for counting linear extensions under various
special circumstances: for example, in cases where the poset is a tree, is series-
parallel, or has bounded width. The case of bounded height, and therefore the
general case as well, remained unsolved.

Recently, however, randomized polynomial time algorithms have been given
which approximate the number of linear extensions to within an arbitrary tolerance.
In 1989, Dyer et al. [9], by applying their work on approximating the volumes of
convex bodies to the order polytope of a poset, became the first to obtain such an
algorithm. A much more efficient algorithm for estimating the number of linear
extensions is now available, however, thanks to the bounds on conductance of the
linear extension graph achieved by Karzanov and Khachiyan [16]. We shall discuss
these results in more detail in Section 3.

On the other hand, the problem of determining exactly the number of linear
extensions has long been suspected of being intractable. The problem is clearly in
the class # P introduced by Valiant [28] in the 1970s, since it was easy to check
whether a linear ordering is consistent with the given poset. Since then Linear
Extension Count has been widely suspected of being # P-complete, and thus
probably very difficult (especially in view of Toda’s result [27], which implies that
one call to a # P oracle suffices to solve any problem in the polynomial hierarchy
in deterministic polynomial time). As far as we know the first to make the
conjecture in print was Linial {19], who called it “a most intriguing problem
in this field”. Lovasz [20, p. 61] has also mentioned the problem, and apparently
many others have considered it. It has, however, resisted analysis, despite the
substantial number of related counting problem which have by now been
shown to be # P-complete. These problems include counting antichains in a
partial order [23], counting acyclic orientations of a graph [19], computing the
number of linear extensions of certain special types [18, 26], and computing the
volume of a general convex body in Euclidean space [7]. The last of these is
known to be # P-complete “in the strong sense” (see Khachiyan [17]) as a
consequence of our result.

CUUNIING LINEAK £EX1TENSIONS

Our method is direct, showing that with the help of an oracle which counts li
extensions, a Turing machine can count the number of satisfying assignments t
instance of 3-SAT in polynomial time. This contrasts with other # P-complete:
results, as in [19, 23], which have utilized the machinery developed in Val
[28, 29]. We do, however, follow Valiant in approaching the problem via enum
tion modulo many different primes. Our technique has now been applied
Feigenbaum and Kahn [10] to show that a problem called “POMSET lang
size” is complete for the class SPAN-P.

Much of this paper has previously been published in the form of an exten
abstract [5].

2. Preliminaries

A partially ordered set (or poset) is a set P equipped with an irreflexive transi
relation <. An antichain in P is a set of elements (vertices) of P such that no i
is related by <.

A linear extension of a partially ordered set P on n vertices is a linear ordering
of the vertex set such that x <y whenever x <y in P. Equivalently, a lin
extension of P is a bijection 4 from the set of vertices of P to {1, ..., n} such t
A(x) < A(y) whenever x <y in P. We shall be making implicit use of both form:s
the definition. For a poset P, let A(P) denote the set of linear extensions of P, :
set N(P) = |A(P)|, the number of linear extensions of P.

For x and y incomparable elements of a poset P, Pr(x <y _ P) (or, brie
Pr(x <y)) denotes the probability that x precedes y in a randomly chosen lin
extension of P, where all linear extensions are equally likely. Thus Pr(x <y | P) ¢
be written as N(P U (x, y))/N(P), where P U(x, y) is the poset obtained from P
adding the relation x < y and taking the transitive closure.

We shall mostly be concerned with the following enumeration problem.

LINEAR EXTENSION COUNT
Input. A partially ordered set P.
Output. The number N(P) of linear extensions of P,

The complexity class # P consists of all counting problems whose solutions are 1
number of accepting states of some nondeterministic polynomial time Turi
machine. In this paper, we shall make use of the basic fact, proved in [28], that
following problem is # P-complete.

3-SAT COUNT
Input. A propositional formula 7 in 3-conjunctive normal form.
Qutput. The number s(I) of satisfying assignments for I.

The main result in Valiant [28] is that computing the permanent of a mat
(equivalently, counting the number of complete matchings in a bipartite graph)



# P-complete. This remains the outstanding example of a case where a decision
problem is in P, but the corresponding enumeration problem is # P-complete.

Our main result is another example of this phenomenon, even more extreme since
the decision problem is trivial: every poset has a linear extension.

THEOREM 1. Linear Extension Count is # P-complete.

The implication of Theorem 1 is that there is very unlikely to be a fast algorithm
to count the exact number of linear extensions of a general partial order. In these
circumstances, a reasonable alternative is to be able to approximate the number of
linear extensions. This is indeed possible, and we wish to contrast Theorem 1 with
the following result, due originally to Dyer et al. [9].

THEOREM 2. There exists a randomized algorithm s/ with the following properties.
The input consists of an n-element partial order P, and positive rational numbers &, f.
The output is a number L with the property that:

L
N(P)

The algorithm runs in time polynomial in n, 1/e and log(1/B).

Pr| —1ll<e)>1-4.

Such an algorithm is called a fully polynomial randomized approximation scheme ot
fpras for the problem Linear Extension Count. The interpretation is that algorithm
o finds, with arbitrarily high probability, an approximation L to the number of the
linear extensions which is within a multiplicative factor (1 + ¢) of the correct number.

We give more details concerning randomized algorithms for Linear Extension
Count in Section 3. In Section 4, we give the proof of Theorem 1, and in the final
section we discuss the consequences of Theorem 1 for some problems closely related
to Linear Extension Count.

Later, we shall have need of the following technical lemma concerning the

distribution of primes.

LEMMA. For any n = 4, the product of the set of primes strictly between n and n*
is at least n'2".

Proof. We use some facts from Hardy and Wright [13, Chapter 22] concerning the
functions $(n) =logTl, ., p, where p runs over all primes less than n, and
Y(n) = e o8 29(» /7). From [13] we find that 8(n) < 2n log2 for n > 1, and that
Y(n) =inlog2 for n=2.

We are interested in the quantity ¥ = 3(n?) — 3(n). From the above facts, we have:

2 log nflog 2 b
Veyn) — ) ) —8n)
=2
2logn |
2in’log2— Tog2 2nlog2 - 2nlog?2

>nlogn = log(n!2"),

at least provided n > 150. The inequality for 4 < n < 150 is easily verified by direct
calculation. O

It is evident that this lemma is not tight: it is possible to replace the n? upper limit
by Kn log n, for some suitably large X.

3. Approximating the Number of Linear Extensions

This section constitutes a survey of recent progress on the subject of approximation
algorithms for the number of linear extensions. Our principal aim here is to bring
this work to the attention of researchers in the theory of ordered sets. We are not
claiming any great originality for the results in this section, although not all the
material appears in detail elsewhere. In particular, we give details of a fpras having
a running time estimate with dominant term »°, which is a slight improvement on
previous estimates for this problem. However, this is certainly not optimal — in-
deed, Dyer and Frieze have announced that a running time estimate with dominant
term n® can be obtained for a fpras only slightly different to that described below.

We begin by noting the connection between counting linear extensions and
computing the volume of a convex body. Given a partial order P on an n-element
set {a,,...,a,}, we define the order-polytope Q(P) as

{x €[0, 11" x; < x, whenever g, <g; in P}.

What is the volume (n-dimensional Lebesgue measure) of Q(P)? Apart from a set
of measure 0 where some pair of coordinates is equal, [0, 1] can be partitioned into
sets

Q,={xel0, 1] x,, < Xoy < Aka@vw

where ¢ is a permutation of {1,2,...,n}. By symmetry, each of the Q, has the
same volume 1/n!. Now Q(P) is made up (apart from a set of measure 0) of those
0, where a,) <@,z <" - <y, is a linear extension of P. Thus the volume of
Q(P) is exactly N(P)/n!.

Therefore negative results about Linear Extension Count imply negative results
about volume calculation, whereas positive results about the computation of
volume give positive results about counting linear extensions.

In an important 1989 paper, Dyer et al. [9] gave a fpras for approximating the
volume of an n-dimensional convex body. (The model of computation is that one
is given initially a small ball 4 and a large ball B such that the body X satisfies
A =K < B, and the algorithm may consult a membership oracle for K: given a
point a € R”, the oracle reveals whether a € K.)

Since the order polytope of an n-clement partial order is a convex n-dimensional
body, this immediately gives a fpras for Linear Extension Count, as noted in [9].
We should remark that, although the approximation scheme runs in time polyno-
mial in n, the degree of the polynomial given in [9] is rather large. Karzanov and
Khachiyan [16] and Lovasz and Simonovits [21] have reduced this degree somewhat
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and, using a slightly more indirect approach, Applegate and Kannan [1] have
developed a scheme where the dominant term in the run-time is only »'®. Matthews
{22] has analyzed the special case of finding a random point in an order polytope.
For a survey article concentrating on the problem of volume computation, the
reader is referred to Dyer and Frieze [8]. For the remainder of this section, we shall
concentrate on a scheme based on work of Karzanov and Khachiyan [16], which is
tailored to Linear Extension Count. Perhaps it should be emphasized that none of
the schemes mentioned above gives an approximation algorithm which is truly
practical.

A feature common to several recent approximation schemes is that the problem
of approximating the cardinality of a set is reduced to that of generating a member
of that set at random according to an approximately uniform distribution. The
approximate uniform generation is then accomplished by setting up a rapidly
mixing Markov chain whose states are the members of the set. Besides those papers
we have already mentioned, such a technique is used in Broder [6], and Jerrum and
Sinclair [14] to produce a fpras for finding the number of complete matchings in a
dense bipartite graph.

The contribution of Karzanov and Khachiyan [16] was to prove the rapid mixing
property for a very natural Markov chain on the set of linear extensions of a partial
order. Thus they were able to get a fast algorithm to approximate Pr(x <y | P) for
elements x and y of an n-element partial order P. As we shall sce later, this yields
a fpras for Linear Extension Count. First, we give a brief sketch of the Karzanov-
Khachiyan algorithm.

THEOREM 3 (Karzanov—Khachiyan). There is a randomized algorithm with the
following properties. The input is an n-element partial order P and a positive number
e. The output is a linear extension of P, and for any A € A(P) we have

1 €

Pr(4 is output) — ﬂ < N

The running time of the algorithm is of order n®log n log(1/e).

Sketch of Proof. Let P be an n-element partial order. We define the linear
extension graph G(P) of P to be a graph with vertex set A(P) and two linear
extensions A, u adjacent if they differ by an adjacent transposition. So the degree
d(}) of a vertex of G(P) is at most n — 1. We consider the following random walk,
whose state space is A(P), and whose transition matrix is given by:

1/(2n —2) A and p are adjacent,
pla, ) =1 =d(D)/(2n =2)  i=y,
0 otherwise.

Note in particular that the chain stays in the same state with probability at least
1/2. Tt is evident that this chain is strongly connected and aperiodic, and that its
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unique stationary distribution is given by n(1) = 1/N(P) for every 1 e A(P). Let
n(4, ) denote the probability that the chain is in state A after ¢ steps, given some
initial distribution. Then

n(4, 1) > (L) = 1/N(P),

as ¢ tends to infinity, independent of the initial distribution. A Markov chain is said
to be rapidly mixing if, roughly speaking, this convergence takes place in time
polynomial in n.
The conductance o of the graph G(P) is defined as
1 |E(X, X))

TN w

where the minimum is taken over all subsets X of A(P) with 1 <|X|<N(P)/2,
and E(X, X) is the number of edges from X to its complement X in G(P). The
relevance of this parameter is that, if the graph has small conductance, the Markov
chain may become ‘trapped’ in X. Thus we would not expect rapid mixing to take
place if the conductance is too small. A result of Sinclair and Jerrum [24] states
that
~ RM t
i\fbla < ~|M .
for all 1 € N(P), regardless of the initial distribution.
Now it can be shown, using geometric arguments about convex bodies, that
a>2732p 32 See Karzanov and Khachiyan [16] or Lovasz and Simonovits {21].
Combining this with the Sinclair-Jerrum result, we find that

In(4, 1) — 1/N(P)| < exp( —t/16n°) <&/N(P),

provided ¢ is at least 16n° log(N(P)/e) < 16n° log n log(1/e).

The algorithm we require runs as follows. Some linear extension of P is found,
and becomes the initial point of the Markov chain. The Markov chain is then run
for T = 16n°log n log(1/e) steps, producing a random linear extension with the
required distribution properties.

The running time estimate we give is simply O(T'). This ignores the time required
to generate a random integer in the range [1,2n —2]. g

Our intention is to estimate Pr(x <y | P), for P an n-element partial order. It turns
out that we want to evaluate this to within a multiplicative constant of (1 +#). If
Pr(x < y) is exponentially small in », this is asking too much, but it will be enough
to estimate the probability under the assumption that Pr(x <y) >2/5. It is clear
what to do: we run the Karzanov—XKhachiyan algorithm a large number of times,
and take the proportion of generated linear extensions in which x precedes y as our
estimate for Pr(x < y).
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THEOREM 4. Let 0 <, 8 < 1/3 be given. There is an algorithm which, presented
with an n-element partial order P and an ordered pair (x, y) of incomparable elements
of P with Pr(x <y _ P) =y > 2/5, outputs an estimate U for such y such that

U
Pri[——1|>n)<d.

Y
The algorithm runs in time O(n®logn log(1/n)n ~*log(1/6)).

Proof. We set ¢ =1/3, and apply Theorem 3. The probability p that one run of
the Karzanov—Khachiyan algorithm produces a linear extension with x < y satisfies
lpfy — 1| < e. If we perform N runs, the number of linear extensions observed with
x <y is a Binomial random variable Sy, with parameters N and p. A standard
calculation gives that

Pr(|Sy, — Np|> eNp) < exp(—&’N/10)

whenever p > 1/3.

The conclusion is that the proportion U of the N randomly generated linear
extensions with x <y, distributed as Sy, /N, is a good approximation to p, and
hence to y. Indeed [y — p| <&y <e&(3y —p), and so

Pr(|U —y| > 3ey) < Pr(|U — p| > ¢p)
< exp( —&2N/100).

HEw can be converted to the form required by replacing 3¢ by #, and setting
= 1005 ~2 log(1/68). The time estimate given is N times the number of steps of the
orm_: required to produce one approximately random linear extension. a

Finally, let us see how this enables us to approximate N(P).

THEOREM 5. There is a randomized algorithm with the following properties. The
input is a n-dimensional partial order P, and positive rationals ¢, B. The output is a
number L such that

L
N(P)

The running time of this algorithm, is O(n® log® n log(1/e)e 2 log(1/8)).

Pr| —1l>e)<p.

Note that Theorem 5 is the same as Theorem 2, with an explicit estimate for the
running time.

Proof. The main idea is to find a sequence of n-vertex posets P = Py, Py, ..., Py,
where P, is a linear order, such that each P, is obtained from P, by adding one
new relation @, < b, (and taking the transitive closure). Then we can write

k=1 N(P. k-1
N(P) nmo i =11 (Pr(a, < b, | P) "
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If we arrange matters so that all the terms Pr(a; < b; | P;) are at least 2/5, then we
can apply Theorem 4 to estimate each term. Roughly speaking, it is enough to
estimate the probabilities to within a multiplicative factor of (14 ¢/k), with
probability of error at most 8/k. As we also have to make k estimates, it can be
seen that the running time estimate contains a factor 3, so it is worth taking a little
effort to minimize k. It is fairly easy to achieve k < n?, but one can actually get
k = O(n log n).

Given an n-vertex poset P, we define our sequence (P;) of posets as follows. The
initial poset P, is just P. We now follow some comparison sorting algorithm that
uses at most 2z logn comparisons in the worst case, such as binary insertion
sorting. When the algorithm calls for a comparison to be made, we do the
following. If the two elements to be compared are already related in the current P,
we adopt this relation as a result of our comparison. If the pair (a, b) is not related
in P, we run the algorithm of Theorem 4 to estimate Pr(a <b|P), with n =
¢/(4nlogn), and & = §/2n log n. Without loss of generality, the estimate E; we
obtain for Pr(a < b) is at least 1/2. Therefore, with probability at least 1 — 6, the
true probability is at least 2/5, and

E
Pr(a<b | P))
In this case, we set @, =a and b; = b, add the relation g, <, to P; to form P,
and return a < b as the result of the comparison.

At each stage, P; contains all the relations known to the sorting algorithm, so the
process terminates with P, a linear order for k < 2n log n.

We now take L =TIfZ¢ E;7! as our estimate for N(P), so that

L »W—J#@ <b; _wv
ZANUV j=0 m.\
With probability at least 1 — k3 > 1 — B, all the E; are within the stated bounds, so

this is a product of k terms lying between (1 +¢/2k) ~' and (1 — ¢/2k) ~'. Therefore

the estimate L satisfies
1 < ! ) < L < ! ’ <l+e
—¢
1+¢/2k N(P) 1—¢/2k ’

with probability at least 1 — j, as desired.
The running time of this process is dominated by the k < 2n log n estimates of
Pr(a < b). Each of these takes time of order

n%log n log(1/mn ~2log(1/8) < Cn®log® n log(1/e)e ~* log(1/$),

so the total running time is as given.

—lj<n.

—
L

In practice, the algorithm can doubtless be made to run somewhat faster, since the
rapid mixing of the Markov chain usually takes place in time considerably less than
that given in Theorem 3.
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4. Proof of Theorem 1

In this section, we show that Linear Extension Count is # P-complete. Before
going on to the formal proof, we give a brief outline. We suppose that we are given
an instance I of 3-SAT Count with m variables and n clauses, and that we have an
oracle which returns the number of linear extensions of any partially ordered set P
of size at most some polynomial in 7 and m. Our first step is to construct from our
instance I an auxiliary poset P, of size Tn +m, and use our oracle to calculate the
number L, of linear extensions of P,. Next, we find a set S of primes between
7n + m and (7n + m)?, whose product is at least 2m_such that no prime in S divides
L,. Our aim is now to find the number of satisfying assignments of , mod p, for
each prime p € S. Since the number of satisfying assignments is at most 27, this will
determine the number of satisfying assignments for I.

For each prime p € S, we now form a poset Q,(p) of size about p(n +m),
with the property that the number of linear extensions of Q;(p) can be written
as ap +s(/)ByL,;, where « is a positive integer, § and y are easily computable
integers (depending on p, n and m) neither of which is divisible by p, and s(I) is
the number of satisfying assignments of I. Then we use our oracle to compute
L(Q,(p)), which is equal to s(I)ByL,, mod p. Now we are able to find s(/) mod p,
as desired.

Proof of Theorem 1. Suppose we have an oracle ((f) which, when presented with
a partially ordered set P of size at most ¢, returns in unit time the number of linear
extensions of P.

We shall give an algorithm which solves the problem 3-SAT Count in time
polynomial in the number m of variables and the number n of clauses, making use
of the oracle @(s), where ¢ = (7n +m)°>.

Thus, let ] be an instance of 3-SAT Count, consisting of m variables and n clauses
which are conjunctions of three literals. For convenience, we set M =Tn + m.

Let P, be the partially ordered set defined from I as follows. The points of P,
consist of a vertex A, corresponding to each variable x in the instance, and seven
vertices for each clause. If x, y and z are the variables in some particular clause,
then each of the seven vertices corresponding to that clause is placed above a
different non-empty subset of {h,, &, #,}. There are no other comparabilities in P;.
(See Figure 1.)

Let L, be the number of linear extensions of P,. Since the size of P, is just M, this
number can certainly be calculated using O(M 3.

Let S, be the set of primes strictly between M and M?. By the number-theoretic
lemma given in Section 2, their product is at least M!2™. Since L, is at most M!,
there is a set S of primes strictly between M and M 2 none of which divide L,,
whose product is at least 2™

Let p be a prime in S. We now define a partially ordered set Q;(p) as follows.
(See Figure 2.)
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h, _J< h,

Fig. 1. The relations in P; corresponding to a clause
involving the variables x, y and z.

Fig. 2. The poset Q,(p). Here the ovals represent antichains of size p — 1. The
only clause vertices shown here are those corresponding to the clause xyz.

There are two special vertices a and b which are used to divide linear extensions of
the poset into three sections. The section below a will be referred to as the bortom
section; that between a and b is the middle section, and the section above b is the
top. Some of the other vertices will be bound into one particular section, others will
be free to appear in different sections, depending on the linear extension.
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Below a in Q,(p) is an antichain U of size (m + 1)(p — 1). This antichain is
divided into sets of size p — 1, one set U, corresponding to each variable x in the
instance, and one extra set Uj.

Similarly, between a and b is an antichain ¥ of size (n + 1)(p — 1). Again this is
divided into sets of size p — 1, with a set ¥, corresponding to each clause ¢, and one
other set V.

Next, for each variable x in the instance, we have two corresponding literal
vertices which we shall refer to as x and . (Thus we abuse notation by using the
same symbol to represent both a literal and a vertex of the poset.) The literal
vertices x and ¥ are incomparable with both ¢ and b, and are above all elements in
the set U, corresponding to the variable x.

Finally, we have eight clause vertices ¢, ¢;,...,Cq for each clause ¢ of the
instance. If x, y and z are the three variables involved in the clause c, then there is
a clause vertex above each triple of literal vertices consisting of one element from
each of {x, &}, {y, 7}, {z, Z}. The clause vertex c; which is above that triple of
literals which actually constitutes the clause ¢ is also above b; the other clause
vertices are above each element of the antichain ¥, corresponding to c. Thus all
clause vertices are above a.

The total number of vertices in the poset Q,(p) is thus

24+(p—Dn+m+2)+2m+8n <p(Tn +m) < M>.

So the number of linear extensions of Q,(p) can be found using the oracle O(M 3.
We next investigate how this number is related to the number of satisfying
assignments for 1.

We shall partition the set of linear extensions of Q,(p) according to which of the
literal and clause variables occur in each of the three sections marked off by a
and b.

We define a configuration to be a partition ¢ of the literal and clause vertices into
three sets B®, M?® and T%. Let ® denote the set of all configurations. We say a
linear extension of Q,(p) respects a configuration ¢ =(B% M ¢ T if
B®<a<M?%<b<T*?in the linear extension. The set of linear extensions respect-
ing a configuration ¢ is denoted L?.

We say that a configuration is consistent if L*? is non-empty, which is the case
whenever the information BY <a < M?%<b~<T? is consistent with the partial
order Q,(p). Also, if L? is non-empty, it is just the set of linear extensions of the
partial order P? defined by adding to Q,(p) the relations given by B*<a<
M? < b < T¢ and taking the transitive closure.

Thus we have

N@i(p) = 2. NP?).
ded

We shall prove that the only configurations which contribute to this sum, mod p,
are those where B¢ contains exactly one literal vertex for each variable, M ¢
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contains exactly one clause vertex for each clause, and T¢ contains the remaining
literal and clause vertices. Furthermore, this is only possible when the set of literal
vertices in T corresponds to a satisfying assignment for 7, and each satisfying
assignment gives rise to exactly one such consistent configuration. Finally, when
N(P?) is not divisible by p, it is equal to a readily calculable constant.

As a first step towards proving these assertions, let us remark that, for any
consistent configuration ¢, the vertices a and b are comparable with every other
vertex in P?. Let P be the poset induced on the elements below a in P?, P}, the
poset induced on the elements between a and b, and P% the poset induced on the
elements above b. Now we have

N(P?) = N(P$)N(P$,)N(P?).

Thus N(P?) is divisible by p precisely when one of these three terms is.

A consistent configuration ¢ is said to be feasible if neither N(P$) nor N (P¢) is
divisible by p.

Let ¢ be any feasible configuration. We consider first the bottom section P$ of
the poset P%. This consists of the antichain U of size (p — 1)(m + 1), together with
some of the literal vertices. The elements of U, are isolated in this poset, as are the
elements of U, for any x such that neither of the two associated literal vertices x
and % is in B®. Let k = |P%], and let r > p — 1 be the number of isolated vertices.

A linear extension of P% can be considered as a choice of positions among the
heights 1,2,...,k for each of the r isolated vertices, together with a linear
extension of the poset induced on the remaining vertices. Hence N(P3%) is divisible
by k(k —1) - - - (k —r + 1). Since ¢ is feasible, this quantity is not divisible by p,
and so r=p —1, and k = —1 (mod p). Since k lies between (p — 1)(m + 1) and
(p = D(m + 1) +2m, and p > m, this implies that exactly m literal vertices are in
B?* — one for each variable.

Therefore the poset P% consists of p — 1 isolated elements, and m components
consisting of one literal vertex above an antichain of size p — 1. We claim that the
number of linear extensions of a poset P of this form is exactly

(p(m + 1) = 1)l/p™

To see this, for each variable x, let A, be the event that a randomly chosen ordering
of the vertices of P has the literal vertex associated with x above all “its” p —1
vertices. The probability of each A, is 1/p, and the m events are independent.
Moreover, an ordering of the vertices is a linear extension of P iff each 4, occurs.

The above product (p(m + 1) — D! has just m terms which are multiples of p,
and none which are multiples of higher powers of p, so (p(m + 1) — )!/p™ is not
divisible by p.

To summarize, if ¢ is feasible, then B? contains exactly one literal vertex for each
variable, and N(P%) = (p(m + 1) — 1){/p™ £ 0 (mod p).

We now move up and consider the middle section of P¢. The argument in this
case is essentially identical to that for the bottom section.

\t



238 GRAHAM BRIGHTWELL AND PETER WINKLER

We assume once more that the configuration ¢ is feasible. We are now concerned
with the middle section P%, of the poset P¢. This consists of the antichain V of size
(p — D)(n + 1), together with some of the literal and clause variables, say j of them.
Note that 0 <j < 7n +m < p. Each of the p — 1 elements of ¥, is isolated in P,
as are all the elements of ¥, for any clause ¢, none of whose associated clause
vertices ¢, are in M.

Arguing exactly as for the bottom section, we see that, for each clause c, at least
one of the vertices ¢; associated with ¢ appears in M*, and that the total number of
vertices in P4, is congruent to —1 (mod p). The only possibility is that exactly n of
the literal and clause vertices are in the middle section. Thus M*? contains no literal
vertices and exactly one clause vertex for each clause.

Again essentially as for the bottom case, we have that, if P4, is of this form, then

N(P%) = (p(r+1) —1)Yp"#0  (mod p).

We know that, in each feasible configuration, every variable x has one of its
associated literal vertices /, appearing in B¢, and the other, h,, in T¢. Thus each
feasible configuration induces an assignment h(¢) of true literals for the instance 1,
consisting of the literals A,. We shall show that an assignment that satisfies the
instance corresponds to just one feasible configuration, whereas an assignment that
does not satisfy the instance corresponds to no feasible configurations. This will
imply that the number of feasible configurations is equal to the number of satisfying
assignments.

Suppose ¢ is feasible, and let ¢ be a clause involving variables x, y and z. Then
seven of the eight associated clause vertices ¢; are above at least one of the h,, h,
or h,, and are therefore themselves in T¢. Therefore it is the eighth clause vertex
which appears in M?, namely that ¢; whose designated triple of literal vertices is
{I.,1,,1.}. Therefore, the assignment h(¢) determines ¢ uniquely. If, however, the
set {I,,1,, 1.} corresponds exactly to the set of literals in the clause c, then this
chosen vertex is above b in Q,(p), and therefore is necessarily in T.

In other words, if any clause is not satisfied by the assignment h(¢), then ¢ is not
feasible, a contradiction. Conversely, if A is any satisfying assignment, then h = h(¢)
for some feasible ¢, namely the configuration where B? consists of the literal
vertices corresponding to false literals, and M*¢ consists of the clause vertices which
are above only “false’ literal vertices.

The next observation is that, if ¢ is a feasible configuration, then the poset P?
is isomorphic to the auxiliary poset P;. Indeed, each variable x is represented by
the literal &, in T%, and each clause by seven of the eight associated clause vertices.
If x, y and z are the variables involved in a clause ¢, then every non-empty
subset of {h,,h,, h.} has one clause vertex above just the elements of that
subset.

We are now in a position to count the number of linear extensions of Q,(p).
mod p. We know that non-feasible configurations contribute nothing to this sum,
and feasible configurations are in 1-1 correspondence with satisfying assignments
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for I. Moreover, for each feasible configuration ¢,

N(P?) = N(P$)N(P$)N(P?)
=(pm +1) — DYp" - (plr +1) —DYp" - L1,

and none of the three terms making up this product, which we denote by N, is
divisible by p. (In the case of L,, this is by definition of the set S of primes we are
using.)

In other words, for each feasible configuration ¢, N(P?) is equal to some No
depending on p, n and m but not ¢. Therefore

N(Q.(p)) = No - s(I) (mod p).

Furthermore, N, is not divisible by p, and can be calculated quickly.

The oracle O(M?) enables us to find the number of linear extensions of Q,(p) for
each prime p in our set S. This then enables us to find s(7) (mod p) for every p € S.
Since the product of the primes in S is greater than 2", and s(I) is at most 27, we
can then find the value of s(J).

It remains to check that this procedure is polynomial, given the oracle O(M?3),
where M = 7n +m. Much of the procedure consists of arithmetic manipulation,
and the largest number we have to deal with is at most (M 3)1, an overestimate
for the number of linear extensions of any @;( p). Thus, at the cost of a factor of,
say, M®, we may assume that all the arithmetic operations we carry out take unit
time.

The number of calls to the oracle is |S _ + 1 < M2 Setting up the poset P, takes
time O(M?). Finding the set S, of primes can be done by a sieve in time O(M?), and
removing those which divide L; by trial divsion takes time O(M). The number of
primes in S is at most M 2 and for each of those we construct a poset Q,(p) of size
at most M?3. Setting up the poset for submission to the oracle thus takes time at
most O(M?®). Calculating the quantities (p(m +1) — Dl/p™, (p(n + DY/p", and L,
all mod p, takes time O(M %), and inverting their product N, mod p can certainly be
done in time O(M?). Given this inverse, and L(Q,(p)), mod p, we can calculate s(/),
mod p, in unit time. Finally, given all the at most M 2 yalues of S(I), mod p, for
every p € S, we can find s(J) in time O(M?). The whole procedure thus has time
complexity O(M'), and in fact this can easily be improved to about O(M %) by
using a sharper version of our number-theoretic lemma and a more careful analysis.

This completes the proof of Theorem 1. d

Let us make a few remarks about the above proof. Firstly, it is known to be
# P-complete to compute the number of satisfying assignments for a Boolean
formula in 2-conjunctive normal form, even under very restrictive conditions: see
(19, 23]. We chose to reduce from 3.SAT Count for reasons of familiarity, as there
would be no significant simplification of the proof obtained from using 2-SAT
instead.




240 GRAHAM BRIGHTWELL AND PETER WINKLER

Note that our construction proves # P-completeness for Linear Extension Count
for posets of height at most 5. In fact, we can alter the construction slightly so as
to get the height down to 3, as we describe below.

We form a poset Q(p) from Q,(p) by removing all the comparabilities between
Uu{a}and VU {b} (keeping a below all the clause variables). Again, we partition
the linear extensions of Q;(p) according to the set B*® of elements coming below a.
If b comes below a, then the number of linear extensions of the poset restricted to
B is divisible by p, since the entire set ¥ forms an antichain of indistinguishable
elements, and so the number of linear extensions is divisible by _V__. Similarly, if
b ¢ B, but some element v of V' is, then v together with U, forms an antichain of
size p below a, so again the number of linear extensions of the poset restricted to
B¢ is divisible by p. Hence the number of linear extensions of Q(p) is congruent
to the number of linear extensions of Q,(p) (mod p), and so, to solve the instance
I of 3-SAT Count, it is sufficient to be able to count the linear extensions of the
posets P, and Q7(p), all of which have height at most 3.

We strongly suspect that Linear Extension Count for posets of height 2 is still
# P-complete, but it seems that an entirely different construction is required to
prove this.

5. Related Problems

We now discuss the implications of Theorem 1 for some closely related problems.

We saw in Section 3 that the number of linear extensions of a poset P was related
to the volume of the order polytope Q(P) by the simple formula vol(Q(P)) =
N(P)/n!. Thus Theorem 1 implies that it is # P-complete to evaluate vol(Q(P)). Yet
Q(P) is simply the intersection of at most n? half-spaces specified by inequalities of
the form x; —x, <0. Therefore the problem of calculating the volume of an
n-dimensional polytope is strongly # P-complete. This consequence of our Theo-
rem 1 was first pointed out by Khachiyan [171.

We next consider the problem of evaluating Pr(x < y). Strictly speaking, this
problem does not belong to the class # P, as it is not an enumeration problem.
However, in view of the following theorem, it may effectively be regarded as a
# P-complete problem.

THEOREM 6. The problem of evaluating Pr(x < y) in a poset P is polynomially
equivalent to Linear Extension Count.

Proof. Given an oracle for Linear Extension Count, we can apply this to the two
posets P and P U (x, y), and derive Pr(x <y | P), so evaluating Pr(x < y) is certainly
no harder than Linear Extension Count.

For the converse, we can use the method of Theorem 5. Let P be an instance of
Linear Extension Count with n vertices, and suppose we have an oracle which
computes Pr(x <y | Q) in unit time whenever x and y are incomparable elements of
an n-element poset Q.
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As in Theorem 5, we can find, in time polynomial in n, a sequence of posets (P;)
and relations (g;, b;) so that

k—1
NP =[] QAQ\.A&._@.:L.
j=0
with k <2nlogn. Our oracle can then evaluate these probabilities, which are
rational numbers with denominator at most !, and N(P) can be calculated from
these. O

A second related problem is that of determining the average height of a vertex in
a poset. If x is a vertex in a poset P, and < is a linear extension of P, then the
height of x in < is the number of elements below x in <, plus one. The average
height Hp(x) of x in P is the average over all linear extensions < of P of the height
of x in <.

THEOREM 7. The problem of determining the average height of an element of a
poset is polynomially equivalent to that of evaluating Pr(x <y).
Proof. We have the following two identities:

Hp(x)= Y, Pr(y<x|P)+1,

yEX
Hp(x) = (1= Pr(x <y | P)Hpo (50 (0) +Pr(x <y [ PMHpo ey (%)-

The first identity enables us to calculate Hp(x) given an oracle for Pr(x < y), and
the second allows us to compute Pr(x < y) given an oracle for average height. [

Thus the problem of determining the average height of an element in a poset is also
seen to be polynomially equivalent to a # P-complete problem.
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Abstract. The result stated in the title is proved in this note. Actually we show that § x N is nota circle
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1. Introduction

A poset P is called a circle order if one can assign to each x e P a circular disc C,
such that x <y in P« C, = C,. It is asked [3] whether every three-dimensional
poset is a circle order. For finite posets this problem is still open. As for infinite
posets this is much simpler. Scheinerman and Wierman [2] proved that [r] x [#] x N
is not a circle order for some large n, where [n] is the poset {1<2<3<---<n}
and N is the poset {1 <2< 3 <---}. And then Huribert [1] gave a short proof that
N x N x Nis not a circle order. In this note we will show that [2] x [3] x N is not
a circle order. Actually we prove that {(1,1), (1,2), (1, 3), (2, 1),(2,3)} x N is not
a circle order. First we introduce a notation. If P=(X, <) is a poset then let P
denote the poset with X as underlying set such that x <y in P <y <xin P. Let
us begin with a lemma.

LEMMA 1. Suppose P is a circle order. Then P is a circle order if one of the
following conditions holds.

(1) P is finite.

(2) For any x,y € P, there exists z € P such that z < x and z <.

Proof. For a point Q in the plane E? and a positive number r, we let C(Q;7r)
denote the circular disk with center Q and radius r. Let {C(Qx; rx) |xe P} bea
circular disk representation of P such that C(Q,; ry) is the circular disk correspond-
ing to x. If d > 0, it is easy to see that (C(Qy:ir.+d) | xeP}isstilla circular disk
representation of P. We may assume that P has a circular disk representation such
that the intersection of the interiors of all disks is nonempty. This is explained
below.




