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Abstract

We prove that the combinatorial diameter of the skeleton of the polytope of feasible
solutions of any m× n transportation problem is at most 8 (m + n− 2).

The transportation problem ( TP ) is a classic problem in operations research. The problem
was posed for the first time by Hitchcock in 1941 [9] and independently by Koopmans in
1947 [12], and appears in any standard introductory course on operations research.

The m × n TP has m supply points and n demand points. Each supply point i holds a

quantity ri > 0, and each demand point j wants a quantity cj > 0, with
m∑

i=1
ri =

n∑
j=1

cj . A

solution to the problem can be written as an m × n matrix X, where entries are decision
variables xij having value equal to the amount transported from supply point i to demand
point j. The set of feasible solutions of TP, the transportation polytope T , is described by

n∑

j=1

xij = ri, i = 1, 2, . . . , m;

m∑

i=1

xij = cj , j = 1, 2, . . . , n;

xij ≥ 0, i = 1, 2, . . . , m, j = 1, 2, . . . n.

The 1-skeleton ( edge graph ) of T is defined as the graph with vertices the vertices of the
polytope and edges its 1-dimensional faces. The diameter of T , which we denote by diam(T ),
is the diameter of its 1-skeleton. In 1957 W.M. Hirsch stated his famous conjecture ( cf. [5] )
saying that any d-dimensional polytope with n facets has diameter at most n− d. So far the
best known bound for arbitrary polytopes is O(nlog d+1) [10]. Any polynomial bound is still
lacking. Such bounds have been proved for some special classes of polytopes ( for examples,
see [14] ). Among those are some special classes of transportation polytopes [1, 3] and the
polytope of the dual of TP [1].
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The first polynomial bound on diam(T ) was given by Dyer and Frieze [7]. Actually, they
prove a bound on the diameter of any polytope {x ∈ Rn | A x ≤ b }, where A is a totally
unimodular matrix and b ∈ Rm. The proof is complicated and indirect, using the probabilistic
method, and the bound is huge (O(m16 n3 log3 n) ).

We will give a simple proof that diam(T ) ≤ 8 (m + n− 2). The proof is constructive : it
gives an algorithm that describes how to go from any vertex to any other vertex on T in at
most 8 (m + n− 2) steps along the edges.

We first review some known facts about T . A transportation polytope is degenerate if there
exist I ⊂ {1, . . . , m} and J ⊂ {1, . . . , n}, with 0 < |I| + |J | < n + m and

∑
i∈I

ri =
∑
j∈J

cj . By

[11, Theorem 5] we may concentrate on nondegenerate transportation polytopes by applying
small perturbations on supplies and demands in case of degeneracy. The dimension of T
is mn − m − n + 1 [11] if T is nondegenerate. Thus, if the Hirsch Conjecture is true,
diam(T ) ≤ m + n− 1.

We denote by Km,n the complete bipartite graph with vertices representing the supply
points of TP as one color class and vertices representing the demand points of TP as the
other color class. For any feasible solution X ∈ T , let G(X) be the subgraph of Km,n with
edge set E(X) = { (i, j) | xij > 0, i = 1, . . . ,m, j = 1, . . . , n }.

Lemma 1 [11]
Given a nondegenerate transportation polytope T , a feasible solution X is a vertex of T if

and only if G(X) is a spanning tree.

We explain a pivot operation ( step from one vertex on the 1-skeleton of T to a neighbouring
vertex ) as an operation on the corresponding spanning trees. Given a vertex X, an edge
(a, b) /∈ E(X) is inserted in G(X), creating a unique cycle C. Since C is an even cycle we can
label its edges alternatingly + and −, starting with label + for (a, b). Let E+(C) and E−(C)
be the edges of C with respectively label + and −, and let (c, d) be the edge in E−(C) with xcd

minimal. Removing (c, d) from G(X) ∪ (a, b) finishes the pivot operation, which we call a
pivot on (a, b).

The above corresponds to increasing the value of all xij with (i, j) ∈ E+(C) with the
amount xcd and decreasing all xij with (i, j) ∈ E−(C) with the same amount. In particular,
xab is raised from 0 to xcd ( becomes nonzero variable ), and xcd gets value 0 ( becomes zero
variable ). Since we assumed nondegeneracy, no other variable corresponding to an edge
in E−(C) becomes zero.

Theorem 2
For any pair X, Y of vertices of an m×n transportation polytope, at most 8 (m+n−2) pivot

steps are required to go from X to Y .

Proof. We use induction on m + n. If m = 1 or n = 1, then Km,n is the graph of the only
feasible solution, and the theorem is trivially true. Now assume m ≥ 2 and n ≥ 2. The proof
is based upon the following claim.
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Claim
For any two vertices X and Y , there are vertices X ′ and Y ′ and points a and b such that a is a

leaf incident to b in both G(X ′) and G(Y ′) and X ′ and Y ′ can be reached from, respectively,

X and Y by a total of at most 8 pivot steps.

Suppose that the claim is true and a is a supply point, whence ra < cb. We may remove a

from the problem and set the demand of b to cb−ra. The new problem is again nondegenerate
and the matrices X ′ and Y ′, with the row corresponding to a deleted, are vertices for the new
problem with m + n− 1 supply and demand points. The theorem then follows by induction.
A similar reasoning holds if a is a demand point.

To prove the claim, we define, for each supply point i, demand point j, and vertex Z,
Dij(Z) = dG(Z)(i) + dG(Z)(j), the sum of the degrees of i and j in G(Z). We distinguish two
cases.

Case 1 : There exist a and b with Dab(X) + Dab(Y ) ≤ 8.

Suppose without loss of generality that a is a supply point and ra < cb. This implies that
there is no vertex in which (a, b) is the only edge incident to b.

If (a, b) ∈ E(X) we set X0 = X. Otherwise we insert (a, b) in a single pivot step,
creating X0. Thus, always Dab(X0) ≤ Dab(X)+2. If (a, b) is the only edge incident to a in X0

then we choose X ′ = X0 and halt. Otherwise, there exist j 6= b such that (a, j) ∈ E(X0) and,
since ra < cb, there must also exist i 6= a such that (i, b) ∈ E(X0). This gives a path (j, a, b, i)
of length three. By performing a pivot on (i, j) we obtain a new vertex X1. Because (a, b) also
received label + on cycle (j, a, b, i, j), we have that (a, b) ∈ E(X1). Since (a, j) and (i, b) are
the only edges with label − on (j, a, b, i, j), one of them is deleted in the pivot step. Therefore
Dab(X1) = Dab(X0)− 1.

We repeat this procedure on consecutive vertices until arriving at a vertex X ′ with
dG(X′)(a) = 1. Since dG(X′)(b) ≥ 2 ( as ra < cb ), we have Dab(X ′) ≥ 3, and hence this
occurs after at most 1 + Dab(X0)−Dab(X ′) ≤ Dab(X0)− 2 ≤ Dab(X) pivot steps, including
the one to go from X to X0.

In the same way we go from Y to Y ′ with a a leaf adjacent to b in G(Y ′). Thus, the total
number of pivot steps is at most Dab(X) + Dab(Y ), which proves the claim in this case.

Case 2 : For all a and b, Dab(X) + Dab(Y ) > 8.

Suppose without loss of generality that n ≤ m. We choose a supply point a minimizing
dG(X)(a) + dG(Y )(a) and, among those with the minimum value of dG(X) + dG(Y ), the point
minimizing ra. Since |E(X)| + |E(Y )| = 2m + 2n − 2 we have dG(X)(a) + dG(Y )(a) ≤
b (2m + 2 n − 2)/m c ≤ 3. Hence, every demand point must have sum of degrees at least 6,
so 2m + 2n − 2 ≥ 6n, implying that m ≥ 2n + 1. In its turn this implies that dG(X)(a) +
dG(Y )(a) = 2, in other words a is already a leaf in both G(X) and G(Y ). Let A be the set of
all supply points that are leaves in both trees. So a ∈ A and, by choice of a, we have ra ≤ ri

for all i ∈ A.
Consider the subtrees G′(X) and G′(Y ) obtained by deleting all points in A. Since they

contain 2 (m−|A|)+2 n−2 edges together, and since their supply points have total degree at
least 3, we have 3 (m−|A|) ≤ 2 (m−|A|)+2 n−2, implying that m−|A| ≤ 2n−2. Hence, there
is a demand point b with dG′(X)(b)+dG′(Y )(b) ≤ b (2 (m−|A|)+2n−2)/n c ≤ b (6n−6)/n c ≤ 5.
As noted before, dG(X)(b) + dG(Y )(b) ≥ 6. Thus, b is adjacent to some point i ∈ A in G(X)
or G(Y ). By the choice of a, this implies immediately that ra ≤ ri < cb.
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Below we will show that there exists a vertex X ′ in which a is a leaf adjacent to b and
which is at most 1 + dG′(X)(b) pivot steps away from X. By symmetry the same holds for Y .
Since dG′(X)(b) + dG′(Y )(b) ≤ 5, this proves the claim and hence the theorem.

Case 2.1 : There is an i ∈ A with (i, b) ∈ E(X).
If i = a, no pivot step is needed : X ′ = X. Otherwise, (a, j) ∈ E(X) for some j 6= b.
Insert (a, b) in one pivot step. Notice that, apart from a, no point in A is involved in this
pivot step. In particular, i is still a leaf adjacent to b in the new vertex. If (a, j) was deleted,
we have reached our goal in one pivot step. Otherwise, inserting (i, j) in a next pivot step
will make a a leaf adjacent to b, since by choice ra ≤ ri. Therefore, at most two pivot steps
are required to arrive at the desired X ′. Note that this is as required, since G′(X) is a tree
with at least two demand points, so 2 ≤ 1 + dG′(X)(b).

Case 2.2 : There is no i ∈ A with (i, b) ∈ E(X).
Then dG′(X)(b) = dG(X)(b) > 0, and as in Case 1 we need dG(X)(b) + 1 pivot steps to get
from X to a suitable X ′, since dG(X)(a) = 1. ¤

A direct consequence is :

Corollary 3
The transportation polytope has diameter at most 8 (m + n− 2).

The transportation problem is the problem of minimizing
m∑

i=1

n∑
j=1

tij xij over T , where tij is

the unit transportation cost from supply point i to demand point j. A polynomial, but
not strongly polynomial, primal simplex algorithm has been presented in [13]. Here we use
strongly polynomial to indicate that the bound on the running time is a polynomial function
of n and m only, and not of the values in the vectors r, c. The existence of a strongly
polynomial algorithm follows directly from [15]. This algorithm is not a primal simplex
type algorithm. In fact the existence of a strongly polynomial primal simplex algorithm is
unknown. It would be interesting to investigate if the result in this paper and its proof could
help in the design of a strongly polynomial time primal simplex algorithm for the TP.

Special edges of the 1-skeleton of T are those that correspond to pivot steps in which the
cycle C used in the pivot operations has length four. We call these 2 × 2-pivot steps. In
an earlier version of this paper [8] the authors derive a quadratic bound on the diameter of
the 1-skeleton of the transportation polytope, in which the 1-skeleton is restricted to edges
corresponding to 2 × 2-pivot steps only. This bound can be improved slightly, using the
linear bound in the present paper, but remains quadratic. Such a bound is interesting for
investigating if a random walk on the vertices of T using only 2 × 2-pivot operations mixes
rapidly. The analysis of such a walk seems easier than one that allows steps along any
edge of the polytope. This would be a crucial step in devising a polynomial randomized
approximation scheme for counting the vertices of T , a #P-complete problem [6]1. So far
rapid mixing on T has been shown only for problems with a fixed number of rows or a fixed
number of columns [4].

It remains open if diam(T ) ≤ m + n − 1, as claimed by the Hirsch Conjecture. It is
unlikely that our algorithm underlying the linear bound will, if subjected to a more subtle

1In fact, [6] only claims NP-hardness, but the proof establishes #P-completeness.
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analysis, lead to that result. The desired result requires, e.g., that between two vertices on T
whose graphs have no edges in common, each of the pivot steps must decrease the difference
between the two. This may suggest the stronger conjecture that for any two vertices that
differ in k nonzero variables there exists a pivot step that reduces the number of nonzero
variables in which the vertices differ. We can prove that this is true if k = 1, and it trivially
holds if k = m + n− 1. However, from an example on pages 141,142 of [2] we know that it is
not true in general ( see [8] for details ). A simpler example, pointed out by the referee, has
two supply points with supply 3 each and three demand points with demand 2 each. The
vertices X and Y with x11 = x23 = y13 = y21 = 2 and x12 = y12 = x22 = y22 = 1 differ in two
nonzero variables. But there is no pivot step from X that will result in a vertex X ′ which
differs from Y in only one nonzero variable, as can be checked easily.

Note that the example does not disprove the Hirsch Conjecture. ( The graph of the
transportation polytope corresponding to the example is a cycle with six vertices, hence has
diameter 3, which is less than m + n − 1 for m = 2, n = 3. ) But it shows that pivot steps
need to be chosen carefully to obtain the result.
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