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1.3.3 doc/

This contains the KTEX 2¢ documentation file normaliz.tex and the compiled versions normaliz.dvi
and normaliz.ps.

1.3.4 example/

Here are the input and output files of 8 examples, called rproj2, rafa1409, squarefO, squarefl,
rafa2310, rafa2416, polytop and rees. We thank Rafael Villarreal, who sent us some of these
exaniples.

1.4 Compilation
Under Uxix, the GNU C4+4 compiler is called by the following command line:

g++ -03 normaliz.cc -o normaliz
(g++ -03 enormalz.cc -o enormalz —1g++)

If working under Dos/WIiNDows, the DiaPP port of the GNU C++4 compiler can be called by

gcc -03 normaliz.cc -o normaliz.exe
(gcc -03 enormalz.cc -o enormalz.exe -1gpp)

The executables *.exe need a DpMI server. The Dos boxes of WiNDows and OS/2 supply this

service automatically. But a DPMI server must be provided if the program is to be run under pure
Dos.

The executables created by the above compiler calls are contained in the directory bin of the file
normaliz.zip.

1.5 Running the program

The program normaliz is started by the following command:

normaliz [-fh] <filename>

It expects its input in the file <filename>.in and writes its output into <filename>.out. Therefore
the argument <filename> in your command line must not contain the suffix .in.

With the option -f, not only the standard output file <filename>.out will be written, but also the
files <filename>.gen, <filename>.supand <filename>.val which separately contain the generators,
the support hyperplanes and the values of the generators with respect to the linear forms representing
the support hyperplanes, respectively. (See Section 1.5.2 for details.)

If you include the option -h in your command line, the h-vector and the (coefficients of the) Hilbert
polynomial will be written into <filename>.out. But note that this will only work if the semigroup
is homogeneous. (See Section 1.5.2 for a definition.)

1.5.1 The input file

The input file <filename>.in is structured as follows.

The first line contains the number of generators of the semigroup S (or the number of lattice points
spanning the polytope, or the number of generators of the ideal I defining the Rees algebra).

T'he second line contains the dimension of the ambient lattice.

The next lines contain the generators of S (or the spanning lattice points, or the monomials generating
the ideal I, respectively), as shown in the examples below.
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1000000
0100000
0010000
0001000
0000100
0000010
1110001
1101001
1010101
1001011
1000111
0110011
0101101
0100111
0011101
0011011
0

This means that we wish to compute the integral closure of the semigroup generated by the 16 vectors
[1,0,0,0,0,0,0], [0,1,0,0,0,0,0], ..., [0,0,1,1,0,1,1]

in dimension 7. We compute it in the ambient lattice Z7, which is indicated by the final digit 0.
Clalling NORMALIZ by the command

normaliz rproj2

produces the file rproj2.out which has the following content:

17 generators of integral closure:
0 0 0 0 0 ©
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(original) semigroup has rank 7 (maximal)
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(original) semigroup is of index 1 1

24 support hyperplanes: (original) semigroup is homogeneous
1 1 1 1 1 0 -2
1 1 0 1 1 1 -2 multiplicity = 72

1 1 1 0 1 1 -2

Froin this. we see that there are 17 generators of the integral closure of the semigroup in Z7, that
the semigroup has index 1 in Z", and that the corresponding support hyperplanes are given by the



The desired lattice points are the 18 ones listed above. To complete the picture, we also provide all the
generators of the Ehrhart ring of the polytope. (There are 19 of them in this example.) Furthermore,
the original polytope is the solution of the system of the 4 inequalities

23>0, x2>0, x1>0 and 15z + 102+ 623 <30,

and has normalized volume 30.

Again, calling NORMALIZ by normaliz -h polytop writes additional output into polytop.out,
namely

h-vector = 1 14 15 O

Ehrhart poly : 1 4 8 5§

This provides the information that the h-vector of the Ehrhart ring is
(hos k1, ha, ha) = (1,14, 15,0),
and its Ehrhart polynomial is

P(t) = 1+ 4t + 8¢* + 5¢°.

To complete the picture, let us discuss the example in rees.in:

[y
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Comparing with the data in rproj2.in shows that rees is the origin of rproj2. (For details see the
comments on the reduction of item (3) on page 9.)

Here we want to compute the integral closure of the Rees algebra of the ideal generated by the mono-
mials corresponding to the above 10 exponential vectors. (Note again the last digit, 3 in this case.)
The output in rees.out coincides with that in rproj2.out, up to notions and the supplementary
information on the integral closure of the ideal:

10 generators of integral closure of the ideal:
11 0 0 0

O O O O O =
O O R O O O
o OO Rk, O O O
==, Ok O O - O
O kO R O RO
= O = O B KB Rk OO



Remark 1: (i) S, =CnNL for L=7Z",ZE.
(ii) S is a finitely generated semigroup.

General assumption: In the following, we always assume that C' is a strictly convex cone, i.e. C
does not contain any nontrivial linear subspace, i.e. for all z € C we have:

—rze(C = o=0.

Under this assumption, we call an element v € Sy, irreducible if a decomposition
v =v; + vy with viESL

implies v1 = 0 or vg = 0.

As you may recall, NORMALIZ is able to compute {compare with the four “modes”)

) the integral closure of an affine semigroup in Z";

1) the normalization of an affine semigroup;

2} the lattice points of an integral polytope and its Ehrhart ring;

3)  the integral closure of a monomial ideal I C K{X;,..., X,] and the integral closure of its Rees
algebra;

(H) the Hilbert series and Hilbert polynomial.

Obviously. (1) can be reduced to (0) by performing a suitable change of coordinates. As for (2), let
Ulevens vy € Z7 be the vertices of the polytope. The lattice points in the polytope are exactly the

vectors o € 7" such that [v,1] € Sgn+1, where S is generated by [v1,1],..., [vm, 1] € Z™T!. This is

how to reduce (2) to (0).
n order to solve (3), one starts as in (2). In fact this realizes the multiplication of the generators of
I by an additional indeterminate. Furthermore, one adds the generators

[1,0,...,0,0],...,[0,...,0,1,0] € Z"*!

representing the indeterminates Xq,..., X,,, and again arrives at (0).
Therefore only the following two problems have to be solved.

(G) Find an irreducible system of generators of Sr.

(H) Calculate the Hilbert series (and the Hilbert polynomial) of Sp.

In order to solve problem (G), one proceeds according to the following steps:
(C

1) Perform a change of coordinates (if necessary), such that L = Z™ and dim(C) = n.
(G2} Decompose

C=%,U---U (1)

into simplicial cones £; C R” (i.e. ¥; is spanned by exactly n linearly independent vectors).
This process is called triangulation.

(GG3. Solve problem (G) for each X;.

(G4 Collect and reduce the generators found in step (G3).

Steps ((+2)—(G4) will be discussed in the following three sections, and problem (H) is dealt with in
Section 2.5. (You can immediately proceed to Section 2.5 if you are especially interested in problem

(H).)

2.2 Constructing the triangulation

The triangulation is constructed inductively. The inductive step can be carried out as follows.

Assume that vq...., v, € Z" span a cone Cqy with decomposition

Co=X1U---UL,,



2.4 Collecting generators

For a decomposition (1) of the original cone C, step (G3) yields a set U; of generators of ¥; NZ" for
every ¥;. If we put

t
v=U;,
Jj=1

then the elements of U/ obviously generate C NZ". Now it remains to construct a subset V' C U whose
elements are irreducible and still generate C'NZ".

Let {7 = {uy,...,uy}. Set V is constructed inductively. In the 0-th step, we put V = @. In the k-th
step. we check if uy —w € C for some u € V. If so, we forget ug and increase k by 1. If not, we remove
all those u from V which satisfy u — ux € C, and add ug to V before increasing k by 1.

To test whether a vector v € Z™ lies in C, one evaluates the support hyperplanes in v.

2.5 Computing the Hilbert series

Let. s recall and extend the notation from Section 2.1, where we start with a finite set £ =
(i Wy} C Z™ The integral closure of the affine semigroup S = S(E) C Z" is denoted by
S C 2" We may assume that the cone C' = cone(E) satisfies dim(C) = n.

Next we define the corresponding semigroup rings
R:=K[X"|veS] and R:=K[X"|vels].

(Here, of course, K is a field, and X is the n-tuple (X1,..., X5) of indeterminates.) By Remark 1
{ii). R is a finite R-module.

Of special interest is the homogeneous situation, i.e. there is ¢ € Hom(Z",Z) such that ¢(w;) =1
for all i. Then there is a natural grading of R, given by

deg XV := (v},
and so R is generated in degree 1.

Throughout this section, we will assume that R is homogeneous. Then, according to the
grading, write

— g —
R = @ Ry .
k=0
(Once more we refer the reader to [BH].) As is generally known, the Hilbert function of R is defined
by
H(R, k’) - dll’l’lK(Rk) for & Z 0
and coincides with the Hilbert polynomial Py for large values of k:
H(R,k) = Pr(k) fork>>0.

The Hilbert series of R is

(e o}
Hp(ty =Y H(R,k)t*.
k=0
and can be written as

ho+hit+ - 4 hp_1t"1
Hp(t) = TG ;

where (ho, by, ..., hy,_1) is the h-vector of R. In particular,

H(R,k) = Pg(k) forallk>0.

Before discussing the general case, one should investigate the simplicial case.



For I' =, we sel Hy(t) = H(9,0) = L.

Next we claim that this definition makes sense, i.e. H(7T, k) < oo for all k > 0 and T'C C. The proof
is quite simple: 1t suffices to consider H(C,k). Now if w € C satisfies p(w) = k, then there is a

representation
w = E Qy * v

with o, > 0 and k = p(w) = ZUEE a,. Hence every a, is bounded, and so is every coordinate of w.
Altogether we have shown that there is only a finite number of possibilities for the choice of a vector
w € (' satisfying p(w) = k and w € Z".

The lollowing remark shows that the Hilbert series Hr of a subset T C C generalizes the Hilbert
series Hg of R.

Remark 4: We have H(C, k) = H(R, k) for all k > 0.
Proof: Simply write
Re= @ K-X.

vES

plv)=k
Therefore

H(R, k) = 4{v € S|p(v) =k} = H(C, k)

by Remark 1 (i). O

ln particular, the Hilbert series of any convex (in particular: simplicial) subcone C’ C C' coincides, of
course, with that of the corresponding semigroup ring K[X" |v € C'NZ").

Now there is an especially interesting connection between the Hilbert series of subsets of C'. We only
need the simplicial version.

Lemma 5: Let © C C be the simplicial cone spanned by the vectors vq,...,v, € Z". Then

Hy = Z Hint(cone(a)) )
oC{v1,..4Un}

where cone(o) = Ryq- 0 is the (possibly lower-dimensional) cone spanned by the vectors from o, and
int(cone(c)) is its interior (with respect to the standard topology of R™).

Proof: If © € ¥ NZ" has a representation

v = E ;04

iel
with a; > 0 for all 7 € I, then
v € int(cone{v; |1 € I}),
aund vice versa. The zero vector is also counted correctly due to the convention Hy = 1. (N
Finally. we are now able to discuss the general case. For this, one uses the decomposition
C=X,U---U%, (1)

of " into simplicial subcones ¥; found in step (G2). One then proceeds by induction. The case t =1
is clear from Section 2.5.1 and Lemma 5. The inductive step can be derived from Lemma 5 (and its



NORMALIZ

This program computes

(1) the normalization (or integral closure) of an affine semigroup or,
in other termsg, the Hilbert basis of a rational cone;

(2) the support hyperplanes of the cone;

(3) the lattice points and

(4) the support hyperplanes of an integral polytope;

(5) the generators of the integral closure of the Rees algebra of a

monomial ideal $IS;

(6) the generators of the integral closure of $IS;

(7) the Eilbert series and Hilbert polynomial of the semigroup in the
homogeneous case.

Download the file "normaliz.zip" to a directory of your choice and
unzip it by InfoZip’s unzip (or PKUNZIP or WinZip (take care of the
option "create subdirectories")). The names of the subdirectories
created are self-explanatory.

Detailed information can be found in the LaTeX2e documentation file
"normaliz.tex" and its compiled versions "normaliz.dvi" and

"normaliz.ps", which are all contained in the directory "doc/" of
"normaliz.zip".



