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Normal polytopes, triangulations,
and Koszul algebras

By Winfried Bruns at Osnabruck, Joseph Gubelad=¢ at Thilis,
and Ngo Viéer Trung at Hanoi

This paper is devoted o the aleebraic and combinatorial properties of polytopal
semigroup rings delined as follows. Let 22 bea lattice polytope in R" 1.e.a polytope whose
vertices have integral coordinates. and K a ficld. Then one considers the embedding
PR R () = (v and defines S, to be the semigroup generated by the lattice
points in 1(/). the K-algebra K[Sp] is called a polvtopal semigroup ring. Such a ring can
be characterized as an afline semigroup ring that is enerated by its degree 1 elements and
coincides with its normalization in degree 1.

The first question to be asked about K[S,] is whether it is normal. and a geometric
or combinatorial characterization of normality is certainly the most important problem
in the theory of polytopal semigroup rings. (Bya theorem of Hochster [18]. the normality
of K[S,) implics the Cohen-Macaulay property.) However. it is by no means clear whether
such a characterization exists. The best known upper approximation to normality is the
existence of ¢ unimodular lattice covering (that s, a covering by lattice simplices of nor-
malized volume 1). In Section 1 we show that the homothetic images ¢ P of an arbitrary
Jattice polytope have such a covering for ¢ > 0. The existence of a unimodular covering
is derived from a unimodular triangulation of the unit n-cube.

The second ring-theoretic question we are interested in is the Koszul property: a
graded K-algebra R is called Roszul if K has alinear free resolution as an R-module. (The
resolution is lincar it all the entrics of its matrices are forms of degree 1. see Backelin and
Froberg [1] for a discussion of the basic properties of Koszul algebras.) It s immediate
that @ Koszul algebra is generated by its degree T component and is defined by degree 2
relations. (Though these properties do m general not imply that Ris Koszul, no counter-
example seems o be known among the semigroup rings.) A suflicient condition for the
Koszul property is the existence of a Grobner basts of degree 2 clements for the defining
ideal of R (for example. sec 9.

An algebraic approach to the multiples ¢P yields that K[S.] is normal for
czdimpP -1, a Koszul algebra for ¢ = dim P. and a level ring of a-invariant —1 for
¢2dim P -+ 1 (this means that the canonical module 1s generated by elements of degree
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1). The Koszul property is proved by the Grébner basis argument just mentioncd: actual)y
we generalize the theorem on the Koszul property of high Veronese subrings of algebryg
generated in degree 1 (Eisenbud, Reeves, and Totaro [12]) to algebras that are Just finite
modules over a subalgebra generated in degree 1. This algebraic result is of general interey.

A basic tool for the study of polytopal semigroup rings is the connection between
regular triangulations of £ and Grobner bases of the defining ideal I, of K[S,] establisheg
by Sturmfels {23]. (All the triangulations of lattice polytopes to be considered in this paper
are triangulations into lattice simplices.) After a discussion of some auxiliary resuls for
the manipulation of regular triangulations, we show in Section 2 that polytopes whoge
facets are parallel to the hyperplanes given by the equations X;=0and X, - A =0 have
regular unimodular triangulations such that the minimal non-faces of the associated
simplicial complexes are edges. It follows that these polytopes are normal and Koszul,

Let us call the maximal number of vertices of a minimal non-face of a { angulation
Aits degree. Then it is clear that a triangulation of an /-polytope P is of degree at most
#+ 1. and there obviously exist lattice n-polytopes P for which every full triungulation,
i.e. a triangulation for which every lattice point is a vertex. has degree n 4+ 1:if Cp containg
exactly 71+ 1 lattice points and P has at teast one interior lattice point. then the boundyp,
lattice points form a minimal non-face. (A unimodular triangulation is evidently rulr)
However. it will be shown in Section 3 thut these obvious exceptions are the only ones: i
P has at least # + 2 lattice points in its boundary or no interior lattice point, then £ hyy
a regular tull triangulation of degree at most n. If P s a polygon (i.e. of dimensjon 2
then every full triungulation of 2 is unimodular. and it follows that Ip has o Grobner hasis
of degree 2, provided that P hus at least 4 lattice points in its boundary: in particutar suep
polygons yield Koszul algebras. Furthermore, in this case one can always find a unimodulyy
triangulation of degree 2 that is induced by a lexicographic term order.

Bruns and Gubeladze [6] discuss the semigroup rings defined by rectangular sim-
plices. Despite of their ‘simplicity’, these rings illustrate many of the phenomena discussed
in the following.

The visits of the second and third author to the Hochschule Vechta and Universitiy
Essen respectively that made this paper possible were supported by the DFG. We thank
the DFG for the generous grants, and the Hochschule Vechty and the Universitit Fssen
for their hospitality.
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1. Polytopal semigroup rings

¢

L1 Preliminaries.  We e the following nowton. 2. 4. B are the additive
ofintegral, rational. and real numbers. respectively: ;7

wups

eand & denote the correspond-
ing additive subsemigroups of fon-negative numbers. and S = (1,2, J- AN al
£roup is a semigroup (always containing a neutral element) which is f nitey gene
can be embedded in 7" for some ne

i
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We write gp(S) for the group of differences of S, i.e. gp(S) is the smallest group (up
; BMBES& which contains S. Thus every element x € gp(S) can be presented as s — ¢
to iSO
for some S, [ES.
1 is calle i ¢ element x € gp(S) such that cxe S
fline semigroup S is called normal if every e veg : .
>M wm_z belongs to S. It is well known that for any field K and any mm.:.a mmﬂ_,mnojcn
for moaoasuzz of the semigroup ring K[S] is mL:_S:aE S. E.Wso::i:« 0 Aumw
s %m.mn [18] or Bruns and Herzog [7]. 6.1.4). The sozdiﬁm:o: Sofa semigroup N _m_
ﬂ%ww of all x € gp(S) for which there exists ¢ € N with cx € S; it follows that §is a norma
the s all.
semigroup.
Let M be a subset of R". We set

Ly=MnZ",

Ey={x1):xel,)cZ" "

so L, is the set of lattice points in A, and E,; is the image of L,, under ﬁrwwﬁmaaa%m

WM_ .:_m\_l v (x.1). Very frequently we will consider R" as a hyperplane of R'"' un mm
- N v ’ H e - RS N v g . 0

”:i embedding: then we may identity Ly, and E,,. By §,, we denote the subsemigroup

1 generated by E,,.

Now suppose that P is a (finite convex) lattice polytope in T.,... where ._.,_.:_r,a Eﬁ_mV
I the vertices of P belong to the integral lattice Z". The affine semigroups of the type S N_.
A_ Y ) i itope P i : i is rmi
“S__ be called polviopal semigroups. A lattice polytope P is normul if S, is a no
semigroup.

It follows immediately from the dimension theory of commutative semigroup rings

that .
dim A[S,] =dim(P)+1!

"N p (OF > gener: is a graded semi-group. i.e.
for an arbitrary ficld K. Note that S, (or. more generally. Sy,) is a graded semi-group

’ ), + (S s it - aded component (5,); consists
Sp=1J (S, such that (S, +(Sp), 8,y 0 its d-th graded compone ok

e T . ‘ aded A-algebra in a natural
of m:.%a clements (x.i) e S,. Therefore R=K[S,] is a graded K mm?;%_m W_EBF,:?
way. Its i-th graded component R, is the K-vector space rmn:a_,,.:c; by (Sp). The eleme ;
'F, | ahomogeneous A-algebrain the terminology

of £, = (S,), havedegree 1. and therefore R
of [7].

Remark 1.1.1. If £ and P are two lattice polytopes in 2" that are integral-affinely
equivalent. then S, = S,

Integral-atfine cquivalence means the equivalence under some affine :.,:Z.:.Sﬂ::w:
: o 2" The remark follows from the fact that such an integral-

oo iy T
€ Aff(E") carrving =7 ont : {that such ¢ ré
affine transformation of 2% can be lifted to (o uniquely determined) linear ,.:::jonnwm_yzw
of B* " given by a matrix 2 € G, (7). (OF course. we understand that =7 is embeddec
in B by the assignment x— (x. 1))

most” a polviopal

Neat we deseribe the normalization of a semigroup ring that is

semigroup ring
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Proposition 1.1.2.  Ler M be a finite subset of Z". Let Cyy < R" be the (conrex)

. o : . ; Cone

generated by Ey. Then the normalization of R=KI[S vl is the semigroup p,
R=K[gp(S,y)n Cy/]. Furthermore, with respeci 1o the natural gradings of R ang R c:,m
L . One

has Ry = R, if and only if M = P~ 2" Sor some lattice polviope P.
1 1 i ]

Proof. Itis an elementary observation that G C is a normal semigroup for every
subgroup G of R" ™! and that every element x ep(Sp)n C satisfies the condition cxes,
for some ceN. i

Oo:maﬂﬁw_:muE.vne_::mmsﬁziN_wﬁ_vce4m..~.wm=~:n anm?c_c_c:gc_:u of
2p(S,p)n C are exactly those in the lattice polytope generated by gp(Sp)n A me, This
imphes the second assertion. O

The cluss of polytopal semigroup rings can now be characterized n purely ripg.
theoretic terms.
Proposition 1.1.3.  Ler R be a domain. Then R is isomorphic to) a polviopal sem;.

,
group ring if and only if it has a grading R = @ R, such that
=0

(1) KN=Ry s a picld. and R is u KN-algebra generated by Jinitely many elemensy
X ER

m

(i) the kernel of the natural epimorphism ¢ K[X; ..., X, ] = Roo(N)= v i
generated by binomials XY — X swhere X% = X Xom for a = la.....qa

(iiiy R, = R, where R is the normalization of R (with the grading induced by thar of
R).

Proof.  We have seen above that a polytopal semigroup ring has the properties (i)
and (iii). Let £,, = 'v,....,x, . Then the kernel I, of the natural projection

i

KV T Kyl Xy

i B
is generated by binomials (see Gilmer [16].§7).

Conversely. a ring with property (ii) is a semigroup ring over K with semigroup H
cqual to the quotient of 7% modulo the congruence relation defined by the pairs (a.b)
associuted with the binomial generators of Kero ([16]. § 70 in particular. /4 is tinitely
generated. Since R is a domain, # is cancellative and torsion-free. and 0 is It 01

n

tible element. Thus it can be embedded in 7 for u suitable n (for example sec | 7] 6.1.5)

voINver-

5
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1.2. Normality and unimodular coverings. We begin with a sufficient condition for
o.E.E:E of a polytopal semigroup ring. (Not all polytopal semigroups are normal

the 4: be amm:ozm:.n:ma by some examples in Section {.2; see also Hoa [17].)

as Wi

Proposition 1.2.1. If an affine semigroup S is a union (set-theoreticaily) of :c.x\::\.
psemigroups S, which have the same groups of differences gp(S,) (in gp(S)). then S itself
st

is E»::NN\.

In fact, gp(S,) = gp(S) for all indices x. and the proof is straightforward.

Recall that an »-dimensional lattice simplex A in R” is .mn:na a unimodular mman_nﬂ
.¢ s volume has the smallest possible value 1/#! (or :oan:,Nna <.o~:3m 1; we m“x on R
_m:mﬂg:mm& translation invariant volume function). The verification of the equivalence
%ﬂ:n« following threc conditions is left to the reader.

() A is a unimodular lattice simplex in R™
(i) A is a lattice simplex in R" and gp(S,) =Z£"" L.

(iii) A is a lattice simplex in B" and for some (equivalently. any) vertex t, of A the

elements
. L om
vy = Uy U, — U €L

form a Z-basis of 7", where v, ..., r, are the other vertices of A

A collection of (unimodular) lattice simplices covering P is called a (unimodular)
covering of P.

Proposition 1.2.2.  Let P be an n-polytope in B 1f P has awiimodular covering. then
it is normal.

B . ~ 3 v ~ 1 o e < 10 hen
Proof. Assume P = |JA, where the A, arc unimodular lattice simplices. The
x . -
Se=7v and gp(SeA)) = 7" for all 7. Sinee free semigroups are normal. the proof
A, i = - 2
O

L= =

is complete in view of the previous proposition.
Let P be an n-dimensional polytope in =", Clearly, the equ y
for the polvtopes P which are covered by lattice :::jEE_E. simplices fas we have :E:-
tioned in the prool of Proposition 1.2.2). However. it 1s not true in ,ma:o:; :w,_w_
ep(S,)=27"""' Forinstance. for any # 2 3 and ¢ € & there exits a r:.:r.a ,.ﬂ::Eoz d ﬂ;ﬁ
such that  n Z" is just the vertex set of 8 and vol(o) = ¢ 't in this situation gp(S;) 15 a
F oy eday

yvepiS) = £ ‘1 holds

L oo ey
stbgrottp-of 7

andwe may consider v as points of £7 . Set A= e tand S e Lo the
semigroup generated by the v/ We claim that R is isomorphic to A[S]
o KLY X, ]~ ATST be the epimorphism given (Y =
Kery = Kero. but the converse inclusion is also true: if ¥* — ¥? i one ol the generators
of Kero. then Y* and A® have the same total degive. and therefore they

fact. let
I

sty i

sotoe

Finally it remains 10 be shown that Xy are exactly the f
polvtope spanned by them This. however. follows directly from (i) and

However, after changing the lattice of reference, we can always assume that
' N N A RN S e c D
epiS,) = 2" Let M < B be the lattee generated by the difference of the vertices ol 2.

Then we replace &7 7' by M@ Z.
Question 1.2.3.  Let the n-dimensional lattice polytope P = =" satisfy the conditions

(i) eptSp)=Z"" 7. (i Pis normu




128
Bruns, Gubeladze and Trung. Polytopes

Does P then have a unimodular covering?

—CG.SO_m._wnﬁmx_mﬁmﬂnmo&C::‘ZOrr:r:.nO(Q_ :mm:mnmmmPM(LA;nOm
:,- Q T » * ‘ .
condition for the 1 C_:_m_:v of P i u )

|~| p . N H
:EEG&:M_M_.:_,M“”MMMN*””_m:m:w.w:oz .m.mm:: to be open. A more special case of & covering b,
unimodular lattio _,_ v ices is a triangulation CL into such simplices. called a wnin \n !
ria M ! on. Tt follows immediately that every integral point of P is a vertex of ; kar
mm:du:m“um M%Am%mv_.mw.m __w:e”w mw.wmw .on, a .E::w:\:::,: (A,). then we always require :__~ .
v . . attice simplices; it is called fu/l if every lattice point in P is o the
of some simplex A,. ’ pointin s the vertex

roposition 1.2. ¢ i
Prop 2.4, (a)y Alattice polvtope that as a unimodular triangulation is norm /
& i,

( v > il s -
rel ull triangulation :\ a luttice polvge ime 7 2, o

b) E / I i ! It "t f, ’

p 7 g (2-dimensic natl / olve TS RN TN

(¢c) There exists « normal 4-dimensione t viope P

c) 1 AVATE ormal dimensional 1 i ¢ (

) . A attice poly v

" . Iy / ope that has no wiimo lidar

Proof.  (a) This is just a special case of Proposition 1.2.2

Purt ( ) follows fro € 00! atl e ang as e
)] R { ob vafio at ¢ ice triangle A
e tion that o lan (a8 dres 2ifand

only if its vertices are the inte i ¥
e ertices are .Sn only integral points of A. In particular, a triangulation (A ) of
a lattice polygon is unimodular if and only if 1t is full , st

{c) will be d

cussed after the proof of Theorem 1.3.1. ©

In the last pe  this subsecti i
covermthe & ,:, part 2.::_7 u:w,fnn:o: we desertbe the connection between unimodular
s ¢ ¢ canonical module of a polytopul semi 1 ,
. f ytopal semigroup ring. Let P be
tope in B” and % a coveri ) ¥ ey ey
R f vering of P by (not necessarily uni 1 .
, g 3 essarily unimodular) lattice :
. . . s s . s - - ¢ o g
sav that a fuce g €% is interior if 6 & ¢ P, and we call the number , e B
int deg% := min |dima|a is an interior face of 4} + 1
’
the interior degree of every afli i
b r ar”u?r of 4. For every affinely independent set |, x,; of points we denot
Njeoool X, « simplex spanned by USRI, S
o e N > the u:;.n_r.x spanned by them. Let M, denote the ideal generated Tr, the
nonomials corresponding to the sums v+ -+ + x, with x;e E, such w t s
monomials corfesponding to e % ] R ~;€ Ep such tha
H,u : ..fﬁ\oi a minimal intertor face of % with respect to inclusion. By a f
anlov K . Ay i DO H y ! . v
i [10] and Stanley [22] the canonical module @, of rmal ath
z of a normal aftine somigroup

simplex
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g-incariant of R (se¢ [7]. Chapters 3 and 4). If R=K[S,] s normal. then

is called the ) .
ive degrees. as pointed out above.

aP < 0. since the monomials spanning wg have posit
Proposition 1.2.5. Let P be a lattice polyiope with a unimodular covering 6. Then the
jdeal M is the canonical module wg of R= K[S,]. and
a(R) = —intdeg%.
proof. LetCe denote the convex cone spanned by Ep in Er 1 The conclusion will
follow if every lattice point x in the interior of Cpcan be written as a sum X, 4o XY
> of & and yeSp Letoe” be u unimodular

for some minimal interior face {xy..
lattice simplex that covers the intersection point of P with the line passing through x and

the origin. Then we may Write v as a S Xy 4+ - 4 x, of vertices of 7 (Xy. . Xy need
not be different). Let ¢ be the convex hull of these vertices. Since X b in the interior of
Cp 0k #P. Hence ¢ is an interior face of 4. Let & bea minimal interior face of ¢ 0 o,

Lxo. Put o y=x 0 +x,. Then we get xv=x, =" 7" Lhvoas

say &= {xyae
required. O

Recall that a graded algebra R is called Jovel if the canonical module o of Ris
ma:mn:na by elements of the same degree. This notion leads us to call a unimodular
covering ¢ of P slevel if the dimension of every minimal interior face of 7 is 5 = 1.
Corollary 1.2.6. [/ P s an s-level unimodular covering. then R = K[Sp] iy lecel with
a(R)y= —3-

Now we will use the above result to prove the level property of polygon semigroup
rings. (# M denotes the cardinality of the set M)

Theorem 1.2.7. Lot P bea Jattice polygon widh # Ly 2 3 Then R=Kk[S,]) is level
with a(Ry= =2 if P has no interior lattice points. and a(Ry=—1che
1 2.4¢b)and Lemma 1.2.6 we only nead o show thut £ has
~ 1. If P has no iaterior
attice point of 7 lies on

Proof. By Proposition
an s-level triangulation % for the appropriate integer 8 = 0 or
lattice points. we choose any trinngulation 4 ot I Since every |
CP, every edgc not contained in (£ s a minimal interior face of 7. MMorcover. since
$# L,z 4. every triangle of ¢ is nota minimal interior face of 7. Therelore. % is 2-level.
If P has an interior lattice point. say x. then we connect v with the vertices of P As @
consequence we obtain i triangulation of P. Let 0 be any full trianzulation of P which
is finer than this triangulation. Then cvery cdge of % which does not lic on ¢ P must have
a vertex not contained in P, Therefore. no edge of 7 is minimal jor fuce of 2. Thus

ing R=K[ST]isspi - A by i & L =
i ‘_, ‘/ﬂzs.:rg over K v the monomials co ~.ru._.03r::» to the politts TupiS)
! et . ¥ 04_ ,w,*_:._rmn the relative interior of the cone € generated by 87 e ,* )
D0 rung and Hoa This a lies i i oy S |
ad P22 s d 1es in particul: ¢ ‘ne
l§ Q_vn o > phe particular to KT pd W here P

For a Cohen-Maca

1y graded ring R the number

A{RY = —min il
3

%1s -levell O

1.3. High multiples of polytopes. Let P = &" be a polytope. Then ¢ P denotes the
image of P under the homothetic transformation of &" With factor o and centre at the
origin 0 ¥".

Theorem 1.3.1.  For amy luttice polvtope P there exisis ¢, < 0 such that ¢ P has a unt-

hence. is normal by Proposition 122yt gl o2 0 Can

modular covering la
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Proof. We will use the well-known (and easy) observation that any finite Convey
rational polyhedral cone in R” admits a finite subdivision into simplicial cones ¢
that the edges of each C, correspond to a basis of Z*: more precisely, we obtain M
of Z" if we choose on each edge of C, the first integral point different from 0. (Equiv,
toric varieties admit equivariant resolutions of singularities; Kempf et al. [19T or
[14].) ‘Subdivision® here means that the intersection C, A C, is a face (of arbitr
sion) of both C, and C,..

Such
basis
alengy,
W::o:
ary 9.5@:.

Now let P be our polytope (of arbitrary dimension n) and v be an arbitrary v,
of it. Since the properties of P we are dealing with are invariant under integral-
transformations (see above), we can assume = Qe 7" Let C be the cone in B”
by 0 as its vertex and P itself, i.e. C corresponds to the corner of P at v. Let ¢

ertey
m:'_:n
Spanned
= C C,
be a subdivision into simplicial cones C, as above. So the edges of C, for cuch 5 are
determined by the radial directions of some basis {e,,,...,e,) of Z" Denote by [T, the
parallelepiped in R" spanned by the edges [0.¢,,]. ..., {0.e,,] = R" Thus VO[T =1 for
all x. Equivalently, 0, Z" coincides with the vertex set of [7,. Clearly, euch of the ¢
covered by parallel transtutions of (O (precisely as R is covered by paradlel transl
of the standard unit n-cube).

213
ations

For each x and each ce N let 0,. be the union of the parallel translutions of 0,
inside C, A cP. Clearly, Q,, is not convex in general. By ¢7'Q, we denote the homothetic
image of Q. centered at ¢ = 0 with factor ¢ ', The detailed verification of the following
claim is left to the reader. )

Claim. Ler F® denote the union of all the fucets of P nor containing v (i.e. O in our
Then for any real € > 0 there exists ¢, €N such that

case)
PULED S e,

whenever ¢ > ¢, (UAE) denotes the e=neighbourhood of E* in ®7),

Let us just remark that the crucial point in showing this inclusion is that the covering
of cach €, by purallel translations of the ¢ '3, becomes finer in the appropriate sense

when ¢ tends to ». (The finiteness of the collection {C,} is of course essential.)

For an arbitrary vertex w of P we define F7 analogously.

Claim.  There exists ¢ > 0 such thaat

QLCAFry =0

J——
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n the right hand side F ranges over the set of facets of P. ;.::.n U(F)is ﬂrw £-
s.rmwm_uwﬁwooa of F., and then one completes the proof as follows. Consider the function
nets

d:P = R,. dx)=max(dist(x.F)).

e F ranges over the facets of P and dist(x. F) stands for the (Euclidean) distance
wher x to m.w‘_.rm function d is continuous and strictly positive. So, by the compuctness
D‘%W .: attains its minimal value at some v, € P. Now it is enough to choose & < d{x,).
of £ 1t d ’

Summing up the two claims, one is directly _ﬂa to %,m no:n_A:mmc: that, q,oﬁ.mm Z

iently large. ¢ P is covered by lattice n-paraliclepipeds which are ::Qn.,ﬁ__”::'_si« equi-
suffic the standard unit cube, i.e. they have volume 1. Now the proofl of our theorem
muwﬁ.”whma by the well-known fact that the standard unit cube has a unimodular triangulu-
mozsamm Subsection 2.3 for more details)) O

We have still to provide a justification for part (¢) of _.u..f: W _:cr we ?:d. stated
that a normal polytope P does not always have a :.:_.:59__,,: trizngulation. _wc:En“:mE
Gonzalez-Sprinberg [5] have found that the cone ADA_: 97 z?_.::& by (1.0.0.0). Ac ﬁ,,,ﬂ,vw. V“
(0,0,0.1). and (1.3.4.7) does not have a subdivision inte z:,:_,_._r. ,mw:n.y.p, MJM:._M..“:.F
the following conditions: (i) the edges .ZA C, né._.wv?:a to a hasis of 7 E,y amVr:.Q __:
the proof of 1.3.1): (i) each edge of €, ix a ray from c through an clement of the (uniquely
determined) minimal set £ of generators of the semigroup D~

Let the polytope Pe E* be spunned by £U (0! It can .7r, checked .:::?4?...,.:.«. that
P is a normal polytope and K0 (0] = P~ Z* If P had ::::.:g:_EA.‘_L_.E:m:_::c:, A.DLM
then the cones (with vertices in 0 € B*) over those A, :.:: contain A: ek w ,..:E cw:../:“:?
a subdivision of 1) sutisfying the conditions (i) and (i) above. (See ulso Sturmiehs [24].

13.17)

As will be discussed in Subsection 2.3 the subsets 0, < ¢P. Ec:::_.ﬁg in :,.c prool
of Proposition {.3.1 have a unimodular :‘E:w.:_::c_ﬁ moreover, these :,_::E:::o:.z are
regular and the minimal non-faces of the corresponding simplicit _.c::::cz,r/ ire :nn&{_.:_.,
marmmm (i.e. have dimension 1), (For all of these notions see Subsection 2.1.) This observation

suggests the following

ttice polytope (of arbitrary dimensiony. Does the poly-
wgulation for ce ™ sulliciently farge? Can such a
the minmmal non-faces

Question 1.3.2. Let P bea
tope ¢P then have a unimod
triangulation be chosen to bhe regular? Can it be chosen such th 10 ‘
of Srm corresponding simplicial complex are edges. and furthermore level of interior

degree {7

Wewiltsee hefow that alf The algebraic propertics one van derive Tromm the exislence

"

where s runs over alf vertices of P

Indeed. first one casily observes that

we of a regular uni-

of such a triangulation are indeed satisficd. Furthernore, the exister !

modular triangulation ol ¢ P for some ¢ 22 0 is a major resul of [19] p 161, Theorem
41 0tis :E,m,,r% by no means elear that the existence of such a triang
anyth

ton tor ¢ P has

g te do with its existence for (¢ + 13/,

H C o S WA PRY dTere L ine
One can give analgebraic proof ol the normality of ¢ £ for « sufficientls | ree. avoiding
he algeb only vields an ex-

rence o the triangulations of cuhes.
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plicit range for ¢, but also several other properties of K[S,,]. Altogether. these Propery;
give a rather complete structural description of the rings K[S.,] e

Recall from the introduction that a graded K-algebra R is called Koszul algebr, i
K (considered as the R-module R;m where mt is the maximal homogencous ideal) pyg a
linear free resolution over R. Clearly. a Koszul algebra is generated over A by g degree
1 elements, and the defining ideal of every representation K[X,..... X, ] - g that 5(:?.
X,,.... X, to a basis of the vector spuace R, is generated by homogeneous Polynomiglg of
degree 2. We call a polytope P Koszul if K{Sp] is Koszul for every field K. (See also
Remark 1.3.5 below.)

The ¢-th Veronese subring P R, of a graded ring R is denoted by R¥'. |5 ¢ € R

i
homogeneous of degree k¢ as an element of R, then its normalized degree us an elemen
of R is k.

Theorem 1.3.3.  Let P be a luttice n=polytope with gp(S,) = 7" 1,

(@) Then ¢P is normal for ¢ 20— 1. Koszud for ¢ 2 n, and level of a-invarian — | for
cZzn+t.

(b) If P is normul, then ¢P is Koszul for ¢ 2 (n+1)52.

Proof. Wemay assume that K is infinite. [ K'should be finite. then we Pass to some
infinite extension field L of &7 for cach ¢ we have L[S,,] = KIS 13 L. and all the pro-

perties considered in the theorem are invariant under an extension of A"

>r,a.vvc:::_,zﬁcﬂco_._.w:E ?,_,,:::Z:vvn:,oa: KIS and the c-th Veronese
subrings of R = A[S,] and its normalization S (see 1.1.2 for the description of $): one
has the inclusions

RO < K[S, s

of graded K-algebras. (In general both of these inclusions are s d one can give

examples where the first inclusion is strict for a ) Itis easy to see that A S, p ] s normal

ifand only if K'[S,,] = $*. equivalently, if " is venerated by its clements of normalized
r

degree 1. I P is normal then this equality holds for all ¢.

Let us first show that ¢P is normal for ¢ 2 i Afterwards we will improve the bound
We choose a graded Nocther normalization £, = R Then S is a finite R, -
ated by 1e S and homogencous elements Yy vy, of positive degree. S

d
5 1s Cohen-
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. Furthermore, a(S) is the degree of Hg(r) asa B:ozz_ ?:o:o:.
Then by e n+1 ._”MAMV < n, since a(S) <0 (see the discussion preceding 1.2.5). Thus
50 that §=

deey, <n for all j.

=4 {jdegy; =

follows casily that $%% ¢ 2 n, is generated by its elements of normalized degree 1:

OllC i b Ce=A e A Y e ' e 4

:_ ment of $'is a K-linear combination of the Bo:o::.,:v.,::/:, vywherer + deg y;

every ¢ iple of ¢. Therefore, if ¢ 2 degy;. then. as a K-algebra. S*' is generuted by the
< - A =

- 1 = . e af TG S
isa Bc: . ; with v +deg y; = ¢. This proves the normality of A{S.,] for ¢ 2 .
Eo:oBE_m X, j s

In order to derive the level property we use a similar argument. Let o be the canonical
n . .
odule of S. Its Hilbert serics is
m
P e b
: _ :: +1

H, ()=

e [22] or [71. 4.3.8). It is ulso a free h:.::ﬁ:.mn. and as M:c: a module 1t ?z.: ?ZW
?..n sments of degree at most n+ 1 (and # + 1 15 indeed attained as such a degree). m:F,r
c.~ m_r:#ww. Vor e 2 n.its canonical module is o', (This follows either by general ,,_.__nﬁ&::c
wm,“:nm:l? or by the description of the c::::_n:_,_s‘sam_a mr.n: above nui m.”_,:__.,.:__.(.. n_dw
H_wm:n we conclude that the canonical module of A{S,,] 18 generated by its elements o

s ary s ti_ -
pormalized degree 1 ¢ Z i +1 (even as an R'-module).

Let us now show that ¢ P is also normal for ¢ = n — 1. This is 2,...,:. :.w:: the U?,,,‘_wr‘.w
arguments if P has no interior lattice point: i that case one has al R)< -2 In Ec, wr,:.r.?w
Ewn we start with a tull lattice triangulation (A)) of P. Avr,_r,r @ :_A.:_w;_?:::,.,__,.,...cy _nm_v.h./“
see the discussion preceding Lemma 3.1.1)) ._.:c:.n:c:. stunplex A, has no interior lattice
,no::. The normalization S, of S, is the union of the integral closures

Zm 'ihkve S, for some ket

of the semigroups S, = S, in gp(S,) = Z" "', (Note that gp(S,) = : and :Ex it N_um
is unimodular.) The assertions on the Hilbert series and the cw_u,___c,__ _:“:::,.(. of' S :ﬂ

analogously for KT8, ] (for example. see [7]. p. 263). Since «(A[S, ] < 2. _,,__w(,v E;w
K[S,]has a basis of degree at most w — [ as a K ﬁ.mL.Ez,»_:_c (the lutter ring s g _J.c../m,_v:..g :
ring whose indeterminates correspond to the vertices off A). Since such a ?77%,,5 alwavs
¢ s, we conclude that each of the semigroups S, hus a de-

be chosen to consist of monom s
scription as follows: there exist elements i, of degree at most 7 — __ such that ﬁ,_n: rm_:r.:,ﬁ
sof S, is a product v, -+ v, 1, with clements v, corresponding to the vertices of A, .o_my\r\,
quently this holds for the union .w.s. ot the S, with respect to the set of lattice _:::7 of P,
whence S is generated as an R-module by clements of degree at most 7 1L as was to be
shown, ﬂIc:yn,c_.. note that one can replace R by R in the last statement enly if P has

o interior lattice point.)

Macaulay by Hochster'stheoren—S—is— frec module over the polino

¢ R, und
thus these elements can even be chosen such that 1 v, form . basis

e

In order 1o bound the degree of the v, we look at the Hilhert RUSHN

b

P+ het+
Hory= 1 7
s (1= 1)

=hott N
, RN NV

Part (a) is complete once we have proved the Keoszul property of ATS ] tor ¢
R R . .

However, it is uselul to treat (by first. 15 £ is normal. then one has R = 8 so that
degree |elements. The Castelnuovo-Mumtord regularniy reg (R) (see [ ]

ated by
N given by

reg iRy = max /i —j: H i (R), + 0,

m

' 1
>

I the drrelevant mavimal sdeal of Ry Since (Ffor example by fog




134 Bruns, Gubeladze¢ and Trung, Polytopes

m

a(Ry=max {H}*'(R)+0] and H (R)=0 fori<n+1
j

because of the Cohen-Macaulay property of R, we see that
reg(Ry=n+1+a(R)=s5<n
(with the notation introduced above).

Now we use the theorem of Eisenbud. Reeves, and Totaro [12] by which gt i
Koszul for ¢ 2 (reg(R) + 1) 2. This completes the proof of (b). (Note thal the results :.,

[127 are formulated in terms of reg (/) = reg(R) + 1.)

If P is not normal, then S is not gencrated by its degree 1 elements. but it is Cohen-
Macaulay and a finitely generated R-module, and this is sufficient to muhe jts Veronese
subalgebras Koszul for ¢ = reg(S): see Theorem 1.4.1(b) below. ©

We single out a result derived in the previous proof:

Corollary 1.3.4. Lot P be a lattice n-polytope. Then the normalization of INEART
generated as a K{Sp}-module by clements of degree at most n— 1.

One should note that 1.3.3 and 1.3.4 include the normality of luttice polygons stated
in1.2.4

Remark 1.3.5.  (a) The theorem of Eisenbud. Reeves, and Totaro and Theorem 141
even say that the defining ideal of K[S.,] has a Grébner basis (see Eisenbud 1 1] for an
introduction to Grébner bases) of degree 2 for ¢ 2 (n+ 1) 72 if 2 is normal and for ¢ >n
in general: if we could find such a Grébner basis with squarefree initial monomials. then
we could draw strong combinatorial consequences for ¢P. (See Subsection 2.1 for the
connection between Grébner bases and regulur triangulations.) However. we do not see
how to medify the proof of 1.4.1 in order to achieve such an improvement.

(b) We do not know an exumple of a polytope P for which the Kos/ul property of
K[Spldependson K. However. in general the graded Betti numbers of A us a A [Sp]-module
depend on K. Such an example is given by the afline semigroup ring R associated with
the minimul triangulation of the real projective plane as described in Bruns and Herzog
[§]. Theorem 2.1. This semigroup ring is polytopal (with a grading ditferent from that in
[81). and the third Betti number of A in characteristic 2 is greater by | than that in any
other characteristi
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gh Veronese subrings are Koszul. The following theorem and :m proof gener-

. main result of Eisenbud, Reeves, and Totaro [12] e<:oA showed it @_. the case
alize the d ez (reg(R) + 1)/2). Unfortunately the proof given in [12] requires mm,‘nn.:
R= .w @ ns HHaOHomﬂm us to include all the details. For the application to polytopal semi-
Bo&%.wm.mw mm: (b) of the theorem is sufficient. Since the theorem is of independent
grou

interest, We treat the general case.

1.4. Hi

Let K be an infinite field and S a graded K-algebra that is a Sfinitely
graded subalgebra R generated by its degree 1 elements. Let
Voo ¥p o1 = L is a minimal system of

Theorem 1.4.1.
enerated module over a
: v € S be homogeneous elements such that v, . \ .
oneraio of the R-module S. Furthermore, let a;= R j=i+1,...n+1 denote the anni-

enerators / =i . ._\

.M»?Ex of y, modulo the R-submodule of S generated by yj oy .ooVyoq (1S 0y 0 the
He -J . " e

kernel of the structure morphism R — S). We set

e=maxdegy, and d= max (degy;+ reg(R a))).
J J

(a) Then the Sfollowing hold:
iy forcze the Veronese subring SY iy generated as a K-algebra br ity elements of
normalized degree 1.

(i) for c 2 d+1 the defining ideal of S with respect to a suituble representation as
y = ) _— . . | . T .
a quotient of a polynomial ring has u Grabuer basis of elements of degree at most 23

(ii)y $ is a Koszul algebra for ¢ 2 d + 1.

(b) Suppose thut S is « Cohen-Macauluy ring. Then the bownds ¢ and d + 1 in (1) can
be replaced by 1eg(S).

Proof. {(a)(i) appears already in Bourbaki [4]. Chap. _,:, §1. Lemme 1. Htis casily
seen as follows. Let x..... x,, be a vector space basis of Rj. Every homogencous element
veSwith u=degy 2 ¢is a A-lincar combination of the products x -y, and i Ve Y
with u = degy; + r, and therefore R' is generated as a K-algebru by ﬁ_.n: j.g.,::._ﬁ., of total
degree ¢ and normalized degree 1. Below we will always use the notation just introduced.

For (a)(ii) and (a)(iii) we consider the epimorphism

010 > S O=K[X.. ... XY,

we set deg X, = 1. deg }; = deg ;. That (a) (i) follows from (a)(ii) é/,r,—.i.«,:n_., for m:.nj )
has been shown in Bruns. Herzog. and Vetter [9]. Part (a)(ii) reguires some auxiliary

Homrave 1t lader
HH H -

entiallhveq

{¢) The assertion on the norm 4 ;
of Ewald and Wessels [13] and Liu, Trotter. and Ziegler [217 which. however. have been
derived by different methods. Modifying an example of [13]. one sees easily that the
¢z dim 2 =1 for the normality is sharp. In fact. let 2 R be the pols tope whose
arce, =0.c = (L0 .00 . ¢, = (0. Doand g, = (1, .o Lomthe
the vertices are the only lattice pointsin Poand (1, ... 1.~ 1)e 2" belon

system of generators of S, (We are grateful to G Zicgler for informing us abou

of {13} and [217))

vofePin 3.3

results

It is essential for {b) that we can replace R by a Noether norm
18 generated by degree 1 elements. Then S is gencrated as an R,,-mioduie by clements of
degree at most regi$). as shown in the proof of 1.3.3. Therefore we ¢
(possibly worse) bound reg(S) in () (1). Furthermore we have a, = 0 fora \.,::; .:5,?
fore d = ¢ = reg(S) alter the replacement of R by R,,. The rest of the proof of (b) is also

postponed. S
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In the following we will freely use that a term order on @ induces a term order o
each of its subrings generated by monomials. On Q we set up a term order evaluating the
following rules in the sequence given: in (if) we denote by #, the number of faciorg
Y p<vif (i) deg u < degv, (i) #,u < #y v, (iii) the Y-factor of pu is Sa‘aac._csccmﬂmnz.
cally smaller than that of v, (iv) the X-factor of 4 is reverse-lexicographically smaller than
that of v. The variables are ordered by ¥, < -+ < Y, and X, <+ <X, we use the term
‘reverse lexicographic order’ as in [11].

We introduce some further notation: P = K[X,,..., X,]. and O *"is the subalgebry
of Q generated by the monomials X & and Y, X, - X, with deg PHr=¢ The
epimorphism ¢: Q — S introduced above induces an epimorphism ¢ “ : Q ¢ - for
¢ Z e (as seen above). We set J = Kerp and J " = Kero® = Jn Q-

Let /; be the preimage of a; with respect to the restriction of ¢ to 2. Then R &P
and in particular reg(R a) =reg(P/1). By a theorem of Bayer and Stilimun [t]. ater g
generic change of vuriables in £ we may assume that in(Z)) is generated by clements of
degree = reg(P L)+ 1

Lemma 1.4.2. (4) Let c=d+1. Then the ideal in(J )=y~ Q" o [N
generated by monomials of the following type:
W (oY s Y with w1, g1 € Poand deg )

p=degu, Y=
(i) wY with e in(/)), degued; = ¢:

(i) vein(/, . ). degv =c.

Moreover. all monomials of type (1) are contained in in(J <),

(b) If R=K[X.....X,.] and S is a free R-module. then in(J * ) is generated by
monomials of type (i) for all ¢ 2 reg(S).

Proof. A monomial /e Q belongs to O cxactly when deg s = k¢ tor some & and
#, 4 k. The way we have ordered the monomials of Q guarantees that the initial mono-
mial of a homogencous element fe Q has the highest number of fuctors ¥, among all
its monomials. Thus. fe Q" if and only if in(/)e Q<. This tmpiies the equation
in(J ) =in(J)nQ “ since J is generated by homogeneous elements.

Since vy ... v, 1 generate S as an R-module. and thus as a P-module, it follows
B B b=
that J has a system of generators consisting of polynomials
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and that the leading monomial of every other element of a (reduced) Grébner basis

o_‘ﬂmm at most 1 factor ¥. Thus the elements of & are again of the types (1), (2). and (3).
,_Q.:w Mumm&:w monomial of (1) is ¥, ¥, that of (2) has the form p ¥, with & in(/;), and that

of (3) belongs to in(Z, ).

Since Y, Y;ein(J) for all k. /, it follows that every monomial of type (i) cn_o:‘mm to
in(J ). Thus it remains to show that every monomial of in(J * ) with at most 1 factor
W:Mu a multiple of one of the monomials of type (i) or (iii). This is evident if one uses the

.\Bcu::mw for ¢ and the fact that /; is generated by monomials of degree at most
in
¢ —degy;

For (b) we note that % consists of elements of type (11 so that only the bound
cze=reg(S)is needed. O
Let ¥ be the polynomial ring over A whose indeterminates Z, are indexed by the
monomials g =X, - Xk S Shoand u=FX, - Xk S Sk o=dee + _x.
. s Re= , ’ A
For ¢ 2 ¢ we define the epimorphism y 1 17— Q ¢ by the substitution ¢ T,) = . Then M
is a :olBoEo%En image of 1’ via the composition ¢ < - . If we let {7 be the polynomial
> ¥ 1 1 1 9 ey a1 2 -
subring of F” generated by the _sgia:::::n.m T, with #, g = 0. then we og.,:: :.ﬂ,.. E,_A_os
ing commutative diagram in which the vertical arrows denote the nutural inclusions:

U —— P — R

We introduce «a term order on Jas follows. Let M and NV be monomials of 17 In
the case in which 4 (M) =y (N) we set M < Ny My < (Vo This a&,::# an c:_aﬁc.:A
the indeterminates 7, so that the case i (M) = (V) can be corvered by letting M <V it
M precedes N in the reverse lexicographic order.

The next task is the analysis of a = Kery. For this purpese one itroduces Ea >,.,
linear map 7.} — 1" by setting (M) for & monomial M to be the ~sm. _r.,,.m.a::::::: N
with respect to < such that 4 (V) = (M) A monomial M s call rd 10 M = (M)
By the definition of 7 it is obvious that y(z( /7)) = (/) tor every element fe 1 Further-
more each monomial di Ading a standard monomial is stand
subspace spanned by the non-standard monomials is an ideal £ 001

It is useful to describe t( M) explicitly. We list all the fact
follows:

N N S i VL VL G S s

) Jo = /7Y + 1Y, with e P and a lincar form ¢ (we include the s

) fo+ 1,/ ywith £ f,e P oand

If we replace ¥ by ¢
1s clear that the ol

then (2) and (3) vield a system of generators «
!y belong to a Grobner bas

s G ol Jwith respoct Lo

or s Vo Tty followed by
VooV with

1y of degree

Then we arrange them in the following sequence. Th
YoV with = deg?; Then we procecd with ¥
t=u-+c—dea) ete. Then we cut the totad product into

'

¢ IUis not hard (o see that My=27Z, -7

We n voare in descending

¢, that cach g

In tu voassume th

order with respe

suppose o . .
socrderad asjust des-

[ AR
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cribed: the potential factor ¥ first. and then the factors X, in descending order with Tespect
to <. If their product written out in this order is not the sequence described above, then
we can pass to a smaller product Z, ---Z, by exchanging factors between v, and Y., for
some /. This contradicts the choice of 7(M). (We leave it to the reader to check all the

combinatorial details.)

The previous argument also shows that a non-standard monomial containg a nop
standard monomial of degree 2. In other words, H is generated by monomials of degree 2

Lemma 1.4.3. H =in(a). and H is generated by monomials of degree 2.

Proof. By definition the standard monomials correspond bijectively to the mono-
mials in @ ', and they also correspond bijectively to the monomial busis of }- H. kL
follows that Q- H and Q" have the same Hilbert function. Thus the equation H = in(a)
is proved. once we know that H < in(a). But this is also clear: if Af is non-standard. thep
itis the leading monomial of M — t(M)e a. That H is generated by degree 2 monomials,
has been seen above. 0O

It is useful to introduce the K-lincar map : Q' — by assigning cach monomiy]
€ Q < the unique standard monomial M with y (M) = p.

Now we look at the initial ideal of b= Kerp * - y of which we cluim that it has a
Grobner basis of degree 2.

Lemma 144, (a) For ¢ 2d + 1 the initial ideal in(b) is generated by (iy inga). (ify
the monomials Z,Z, with 4,k = #y 2 = 1. (iii) the monomials 6 (1) with

e <, pu=rvY,

ovein(d)),

and (iv) the monomials e () with r e intf, . )nQ*

(b) Undder the hypothesis of 1.4.2(b) in(b) ix gencrated by the monomials of pe (1)
and type (1) for all ¢ 2 reg(S).

Proof. (@) Pick feb. If the initial monomial 4 of fis non-standard. then it belongs
to in(a). If 4, (4 (1)) 2 2. then it is of type (ii). In the remaining case we note that y{A)
is the leading monomial of w( £). In fact, if 4 is standard. then 4 = in(c( /) as well. and
since y ({1} = (/). we may assume that /= t( /). In this case the monomials of / are
mapped to pairwise different monomials of Q¢ and the leading monomial cannot be
cancelled by the application of y. That .+ goes to the leading monomial of 1 1) follows
from the definition of the term order on 1. Since #y(4) £ 1 the rest follows from Lemma
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The reader may ask why 1.4.4 does not yet prove our claim in the general case: in
2 we have shown that the ideal in(/;) ¥;~ Q " is generated by its clements of normalized

M.A.Rm 1. Therefore 1.4.4 should yield that in(b) has a Grobner basis of degree 1 and 2
_nm:mim. However. it u|v for monomials y.ve Q . then it does by no means follow that
oM Yo ()- Fortunately this obstruction can be overcome. As usual we call a monomial
.qﬁ_h: Je K[X,..... X, ] combinatorially stuble if it contuins with each monomial
_N. S S-S < i, all the monomials X, X, - X, withj<i.
i

According to a theorem of Bayer and Stiliman [2] we may assume: in(/;)is invariant
ynder the action of the group of upper triangular matrices. Proposition 10 of [12] then

implies that in(/;), is combinatorially stable for all r 2 reg(P 1)+ 1. Here I, denotes
the ideal generated by all elements of / that have degree 2 v

We can now conclude the proof of Theorem 1.4.1. According to 4.4 we look at a
monomial g =v1;€Q  with vein(f) (the case \.H:+_ 7, cs,n_‘,ng :” we let Y, ., = 1).
By 1.4.2 there exists a monomial v’ e in(/)) that divides v and for w hich v}, hus normalized
degree 1. We write g as a product in the order from which 7 (g) is computed:

(=4

r=khke—degl .

[

Let s = ¢ — deg ;. Then v is a product of s indeterminates among the X Because of the

combinatorial stability of in(/) in degrees Z ¢ —degyyzreg(P [)~1 it follows that
X X ein(/). and a (¥ .\ - X)) divides o). Altogether this shows that in(b) is

N .
generated in degrees 1 and 2.

2. Regular triangulations

2.1. Regular triangulations and Grébner bases. [0 this subsection we recall the no-
tion of a regular polyhedral subdiv ) [19] und "coherent in
Gelfand. Kapranov. and Zelevinsky [131) and review the connection between the regular
triangulations ot a polytope 72 und the Grébner bases of the defining ideal 7, of K{S,].

Let 2 be a natural number and P < 2" a polvtope (of dimension nh. A polvhedral
subdivision of P is a finite system (Q,) of subpolytopes of 2 such that dim ¢, = dimQ,, for
allzand f and. furthermore. @, @, is a face both ol O, and @, ol arbitrary dimension,
maybe empty). A polyhedral subdivision that consists of simplices only is called a rrian-
gulation.

ra727and the Tact that = (t (1)),

hermaore. note

(b) In this case there are no monom or (iv), F

1.4.2(b) and 143 hold for ¢ Z rea(S). O

Is of tvpe (

Part (bi of 1.4.4 completes the proof of 1.4.1(h): in(b) has indecd 1 Grobner buasis
of degree 2 clements for ¢ 2 reg(S). since S is u free Ry-module with o busis in degrees
)

Assume ¢ = " is a polvtope of dimension 7. A ction 0O — = s said to be
linear if there exists a function ¢ -» = with
Gy =0 - =y,

for some C,.. Ce A osuchthat GjQ =G, C G enast 1 i uniguely deter-
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Now assume X < R" is a convex set. A function F: ¥ — R IS convex if
k k

F{ Y ixjz ¥

i=1 i=1

13
() forall keN, 7 €[0,17. M Ji=1.

i=1

AmoSm.:Bnm such functions are called concave, and the convex ones ure defy

opposite inequality.) clined by the

. Let (Q,) be a polyhedral subdivision of P. A function F: P = R is called p;

\EQ:,. with domains of linearity (Q)) if the restrictions F|Q, are lincar for M_:r‘ Pleceyy,

not linear on an arbitrary subpolytope of P strictly containing one of the © and F
g Q,.

. Umm::_c: N._.,_. > polyhedral subdivision 10,) of Pis regulur if there existy
wise linear convex function £: P — R_ with domains of linearity (O )
is called a realizing fimction of the subdivision Q. T

L)

4 picge.

). Such a functioy F

N .<<n. have the following obvious observation: if £ is a real g function of y
division (Q,). then C, F+ C, 15 so as well for arbitrary real numbers C, =0 and M.r vv:r.
> R d 220,

Not all polyhedral subdivisions of P are regular. Below we shall give an
~ phdlt & dn ex

connection with the Patching Lemma 2.2.2 “mple in

Assume (Q,) s a regular polvhedral subdivision of P wi izine 1
& g A i ston of P with realizing tion £ T

subset g function £ The

Uy Fixp)ivep) c B!

is a polyhedral ball (of dimension 1) mapping isomorphically into 2 vi
> - > afline C v Fia)) - . .- .
H, denote the afline hull of {(x. F(v) 1 ve Q.. It is an n-dimensional

of ®" 71 One easily sees that for any point ve P Q, the inequality

a projection. Let
afline hyperplane

Fvy < (v

holds. where /i R" - I is the unique afline function whose graph is /7 (this meun
hxye i forall ve "), Conversely. itis ulso true (and ecasily ,/,r.m:‘ that. 4 polchedral
subdivision [Q,} of Pund a piece-wise lincar function F: P — !
(0,). the validity of the inequalities

ora polvhed
with domuains of finea

Flv < h,x)

for all x and ali ve P.Q, implies the regularity of the subdivision (0.). In this
—_— N S - . L . =

\.,7 a realizing tunction of thi u.:g:: 100 (J, again denotes un
FiQ,). Morcover. we could require the validity of these in

situation

continuation of

i
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o(a) will be called the height at a. Consider the convex hull # (in R" *1) of
{(@,0):ae A vi(a,p(a))aed).

R" 1S identified with R"@® 0 = R"~'. We see that ¥ is an (n + 1)-dimensional poly-

: w . L .
o pelo nd conv{4) is one of its facets. Let n: B* ™! — R” denote the projection with respect

a . . . .
_ov_ﬂa fast coordinate. Then any facet of JI" different from conv(.{) will project under n
—mwﬁ‘ onto a facet of conv(.4) or onto an n-dimensional subpolytope of conv(A4). The
MH?A facets form the roof A, of Wl (If 4 =L,. then we write P, for 4,.) Clearly, the

ertices of the subpolytopes thus obtained will belong to A, but in general not all elements
¥ .
of A will appear as such vertices.

Using the general observations above we conclude that the subpolytopes of conv(4)
which are n-dimensional z-images of the facets of B constitute a regular polyhedral sub-
diviston of conv{d) (see [15]). Thus any height function ¢: 4 — R, defines a regular
subdivision of conv(4). The piecewise linear function F:conv(4) — & _ naturally deter-
mined by the facets of A, is convex and. moreover, is a realizing function of the regular
subdivision of conv(.d) determined by ¢ (in the way described above). We say that F is
spanned by @ We sce that for ,,:3.::_3. real numbers C, > o ﬁa m.“,w 0 the two height
functions ¢ and C, ¢ + C; determine the same regular subdivision of conv ().

If 4 and ¢ are as above and « is a facet or, more generuily, an arbitrary face of
conv(A4) then @| A ~d is a height function for 4~ d and. thus. defines a regular polyhedral
subdivision of d with vertices in 4 d. Strictly speaking, we should first identify Aff{d)
(the affine huli of &) with R¥™, but in this situation the identification will be tacitly under-
stood (if no confusion arises). It is obvious that this regular subdivision of d is nothing
but the subdivision induced in a natural way by the regular subdivision of conv(4) deter-
mined by ¢. Therefore we arrive at the following conclusion: if 0. ¢’ 4 —= R_ are two
height functions which agree on A~ d for some fuce d of conv (4. then both of the sub-
divisions of conv(4). determined by ¢ and ¢’ respectively, induce the same regular poly-
hedral subdivision of .

oup rings stems from

The importance of regular triangulations for polytopal sen
their connection with Grébner bases, For the convenience of the reader we briefly review
this connection: see Sturmfels [24] for a detailed treatment. Let o = # L, As discussed
in the proof of Proposition 1.1.3. the semigroup ring £[5,] has ¢ presentation

KIS = kDX, X, .

cof Poand Jp is an

where XL X, correspond bijectivels to the lattice points x,. .
T there exists a weight

< on K[V, .

Xg gl M N e . R AP C g ey » H
& «L ﬁ_: ch appeur as { FA:.r/_Z some Oy - the subdivision would
and Fwould ag z¢ it This holds true because a polytope is the ¢

vertices. Wi proserves barveentr

ohservations in the sequel

Now assume

dimension o, Ler o

idealgenerated by hinomials. For any term <
function ¢ o "ot such that the inital ideal of 1, with respect o < equals the
nttial wdeal in (7p) of T with respect to the partial term order determined by o, In this
case we say that o determines « Grasbrer bavis of 1, Considered ax a height function on
AT this case is actually a
tanzutation. This triangulation represents a simplicial complex on the set [v,..... v,
chiwe aho denote by A, (in generdl ot every Npas avertex of AL The squarefree
is o non-face of N generate the Stantev-

S, oo determines aoregular subdivision A, of Pow

als A v for which (x

Monay
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Reisner ideal 1, : as its generators are squarefree, it is a radical ideal. The Yuotien;
K[X.... X1 1, Is the Stanley-Reisner ring of A . The connection between in,(/,) and
1, is given by the following theorem of Sturmtfels (see [23] and [24]. 8.3 and 8.8).

Theorem 2.1.2. (1) Let ¢ be g weight function on {X,, ..., X,} that determines o
Grébner basis. Then Rad in,(I,) = 1,

(b) Conversely. given a regular triangulution A of P, there exists a weight funciion o
on{X, . X, with A=A that determines a Gribner basis.
t 1 m) ©

(©) A, is unimodular if and only if in, (I,) = 1,

Part (¢) explains the special interest in unimodular triangulations. (In genery] the
Grébner basis associated with a regular triangulation is not uniquely determined.)

Corollary 2.1.3. /f P hus a regular unimodular triungidation A whose niinimal non-
faces are edges (ice. of dimension 1), then Pis Koszul.

Proof. 1f the minimal non-faces of A are edges. then /y is generated by monomiuly
of degree 2, und if. in addition. A s unimodular, then 2.1.2(c) implies that 7, has u Grébner
basis of degree 2. Algebrus defined by a Grobner basis of degree 2 are Koszul aveording
to [9]. a

2.2. Perturbation and patching of regular triangulations. In this subsection we prove
three lemmas (on perturbation, patching and direct products) which will be usctul in the
construction of regulur triangulations.

m

In the foliowing a representation of v e &% 45 4 lincar combination v = 3

[

be called barveentri

;=1 and convex if additionally 2, 2 0 for all /.

Lemma 2.2.1 (Perturbution Lemma). Lot 4 < 20 pe o Sinite subser. o L n
height function and ae A. Suppose further that (Q.) iy the regular polvhedral subdivivion
of conv{.d) determined by . Then there exists § e B0 > 00 such thar for any height function

© A= &, with

o' thy=oth) forbed 'a'. und

Vio'(a) = o), < o

a polytope Q from (Q,) surtives in (i.e. i an clement of ) the regular polvicdral subdivision
of conv( ) determined b wheneer
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’ NSt
@tA{a! = @l AN{a} .

, . QU 'la). Every veconv(A4) . Q
¢ automatically have o' (h) <hy(h) forany element be A(Q v (¢)). Eve “
W =Y A¢'(a). and

x .
ati c= Y da with 2, ... A4 >0, F(x)
has @ convex presentation x= Z i L e P o
e A not all belonging to Q. Let F' be the picce-wise linear convex functio

aye oo veconv{4) @ has a convex presentation

spanned by ¢ Then every element
k

. R -
.2 >0and a,....,q.€ A not all belonging to Q. but belonging

= M Apa; with 2,
to mo_nwmw domain linearity of F'. It follows that
k

Y o Lea)< Yy

i=1

}QA:_V = \Nc:;

™
"
o[-~

te t h, preserves barycentric epresent ions S WE Nave ooserved. is i cqua .Hv.
A:O tha \t SCrV ary 1 sentatio v > A . i _ 5 ‘o~

e ./m_v‘ means Q is involved in the regular subdivision of conv(4 determined by ¢
P €Cl1S R

i set of : e .4 be
$S is i si S D A is the vertex set of Q. Letay. ... q, oy
Now assume @ is & simplex and ¢ : T L et
sertices of @. Then there exists a unique affine hyperplane H,, ) fu h
Em(ol_rn.. t A. p(a)) e B" 7' Simiturly. there exists a unique aftine hyperplane #,
| the points L 0 (c . e ©denote the corres ing atline
Mwawm:m m_:ccm: h:E points {«;. ¢ (). Let by, and &y denote the corresponding

linear functions. Assume
holx o) =Crxp+ o+ G, + C

v, + O

Boxy X = g+

Clearly, ¢, > C ¢ o Coand O C when o — 0. On the other hand @) < \5?;
early, C; = C,..... f i the o ) <ol
for .5\(. a m_ A Q~ Therefore ¢'(w) < hj(a) forue 4 Q0w :a:i,ﬁ d s sutheiently Z:m: \W“
_uown. this means @ is involved in the regular subdivision of cony () corresponding te
above. thi: ans ; o

@. O

ataf areg jangulation
It follows immediately from Lemma 2200 tb) that if (Q,) 15 a reeula iny

is determine ¢ heig ‘tion
of conv () (notation as in the lemma). which is determined by the height func

|
=

any

points of ) the corre-
ngulation (O, ).

sponding regut

This observation is frequentdy used in the
—— _ 5

divisions (137 237 [24].

(@) ud Q. or

WL Qe is the verrex set of C.

Pro Let 7 be as above 1M a¢ O then wiu) < gy (a). where byt ot
alfine linear function corre
O by r.So ¢ tuy< i

¢

onding to the fucet of 4 which is mapped iemorphiealty o
¥ for o sufficien

1 3 ere
5. C : N > rent
e E 3. Corollary 1120 In view of the diffe
The next fenma is equivadent to : Hop LS Cor " e
terminology and for the convenience of the reader. we include w proot

nensional poly-
o subdivision

Lemma 2.2.2 (Patching Lemma). Lo £ = B be a finite o
P 5
fiedron AQ 1w reguibar polyhedral subdivision. and (Q,,)

g ~ y PECRERIAAY
of Q, for e v 1 2 Suncti

CNIN
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FQ, R,
of the regular subdivisions (Q.p) (of Q) such that

RlQ.nQ, =F10,n0,

Sor all indices % and %', then (Qupry is a regular polyhedral subdivision of p.

Proof. Consider the function £: P — R, defined by F(x)= Fx) for YeQ
our hypothesis F is well defined. Let G - P — R, be any realizing function of
subdivision (Q,). For any 1 > 0 we consider the function

- B
the regyly

=

&, =G+ (1/0)F.

We claim that {Q.)s 4 is & regular polyhedral subdivision of Pand that ¢, s iy re
function for all sufliciently large 7.

Zing

We know that &, is convex on each of O, und that for all «, f the restriction o)
. . . L R Ly
is affine for all natural re N. To prove our claim it suffices to show that for sufficient)y
large the following 53:::@.:0_&% .

G (x) < Hp(x) for all fand xe PO,
where H,,,: " - & denotes the unique affine continuation of P,10,,.

Let us introduce some more notation. For any x we denote by g, the alfine conyj
nuation of G| Q, to R", and that of FlQ, (= FIOW) by £,,: B » = Thus

.C:é =g+ DSy

Let 17 denote the union of the vertex sets ofall the Q,,. Then ¢,(¢) > /(1) henever
el is not a vertex of Q.. Clearly for all xe P and all «. f# we have

D,(x) - G(v) and Hop(x) - g, (v)
when 1 - ¥ Since 17 is a finite set, there exists 1, for which
D)< 11,0

whenever >4, rel” 0, Now suppose re(l'm 0,) .0, Then

45
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] ‘ /e barycentric coordinates on Q...
for at least one j. Note that @ and H,,, preserve ?_J_.nm::“ww«n dine s
at leas i, the ualities o 3
f the fact that v; ¢ 0, for at least one j, the ineq

vm Qu“
In yiew O
k k k X
- ; ) < L H L) = Hyy | Y A ) =H,(0). O
@,(0= T Ab()< ¥ Aoyl L

k 2.2.3. Inorder to patch regular polyhedral subdivisions in the :ﬁm. Mov‘m:gwca
emark 2.2.3. g subdi sin 1 described
zBu 2.2.2 it is necessary that (Q,,); and (Q,,)y :a:fw the same .n‘o_wﬁ rat sub
in rwa on Q,nQ, (notation as in the lemma). However n:u. nnaa_:g._u :o. S X
division in Hrm _u_mm.,: case (1 =2). We consider the following triangulation A:
not even

. . R Lo . adrant by
n obtain A from the regular triangulation of the triangle in the first quadran »
o ) N N 3 1 a1 N . . N St onds
o cessive patchings. (The triangulation of the triangle in the first quadrant corresp e
. : ) . E - { B . > characteristie
Eov_:n..o:ﬂ%?n term order: see 3.2.4 below.) However, it hus the sume .r:.,:wiﬁi ¢
nction a5 i A wi : he x-axis. (The charactenstic function
ion as its mirror image A" with respect to the x-axis. : ;
ction as its mirror mmag i he y-ais. (The ¢ ‘ Jun .
?:. ns to each vertex ¢ the sum ol the volumes of the facets adjicent to ¢.) Since A% A
assig f ] olun
it is not regular (see [13]. Chapter 7. Theorem 1.7).

B be polvtopes of
(O} are regular polyhedral

o
Lemma 2.2.4 (Dircct Product Lemma),  Ler PR
jrely. S further (O L
dimensions n,. ... respectively. Stuppose oM.
subdivisions of P..... P_respectively. Then

Y % x QO et =1 k)
<P

o )
is a regular polvhiedral subdivision of Py x

ich i or simplic “the notation) we can
Proof. By induction on k (which is used only for simplicity of the :,_:,:_:#:_v. e
oL : &, be realizing fune " the subdivisions
cand APy — ® be readizing funcoons of the

assume k = 2. Let £0 P — . F.ob
(Q!"y and (Q'7) respectively. Consider the function
p O, )

FiPox Py—i 0 Feay =R+ o,

Itis now cusy to show that Fis convex and that its QE:.N: s of _.:7,,, i -
products Q x Q.. 0, 210", @, e Q) (use baryeentric coordinates). O
I R S TR 1 . 2

ﬁEn:Ev::wEuﬁiw::33A53+::?

From now on We assume ¢ > 7,

Choose an arbitrary point ve p O, Then there exists a pair

3
that xe 0, Therefore v = S v, has u convex representation with ¢ <

[

ot ar parallelepipeds. A standurd n-dimensional ree-
2.3. Polytopes related to rectangular parallelepipeds .

tangular parallelepiped 77 is a polytope given by

=X, 2,

0. Thus the points », = (0,

Throf s given by

for real numbers
0. and the vertex set v
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{y¥ xSl n

ie§

1
J

.

where Y x, = 0. If all the a; are equal to 1. then [J will be called the standurd ynj Clibe
ie0

(of dimension n). A unit cube in R" is defined as a subset of the type x + [ for

where [] is the standard unit cube., Later on we shall use the notation O, tor

sional standard unit cube.

Some x g pa
the n-dimey.

We fix the partial order on R" under which .3_, @) S (b by if q
alli=1,... . n

S h; for

We have the following obvious

Lemma 2.3.1. Suppose n 2 2. Then for any i=1,...n the i-th coordinge embedding
5

T -1
GRS Ry, Citay.o..ia, _vHT:.:..3‘_.0,:_.:;:: D

respects the order structures of B* 4 gpid B

The results of this subsection are based on a unimodular trianguliution of he unit
cube that we are going to construct now. Presumably this triangulation is well-knoy n. but
we have no reference covering the details needed below.

The system 7, of n-dimensional simplices with vertices from vert( 3,4 is mmductively
defined as foliows. For n = 1 put 7, = {3, }. Assume n > 1. Then T is d !
of simplices euch of which is the convex hull of some de CAT,
(I.....1ye (3, where / runs over ...«

efined as the system
o and the verrex

By induction on n one sees easily that dim(A) = » and vol(A) =1 ' for all Ae T,
So 7, consists of unimodular lattice simplices (sce subsection 1.1y

Here is an alternative description of 7.

Lemma 2.3.2. 7, consives precisele of those simplices whose
chain (i.e. lincarly ordered subset) of vert(O] ).

Ly

Lerlex set iy g maximal

We leave the easy proot of the lemma to the reader: in conjunction with induction.
the essential point is that (1., By is the unique maximal element of vert(,).

Now we define the system &, of (i — 1)-dimensionul hyperplanes in

w22 -
ductively as follows. For n = 2 set Yy=AR(L1Y Qe &

> > consists of the single line p ing
through the diagonal [10.0). (1. D] of 3. Let 22 3. Then i defined as the system of

(= 1)-dimensional =-subspaces of B spanned by CD)yand e =40 4

toreach7=1.... nand De 7, (Form = [ we set 1 =10.) Observe that in the de
of &, we could equ alently consider affine hy
Straightforward a cuments show

stem o

n

Lemma 2.3.3. 77,

voof the (n—1)-

determined by all the linear equarions X, =\, j—
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PR i -1
A facet Fof a simplex Ae T, is called non-coordinate if it is not parallel to C;(R"™ 1)

for any i=1,....n

Lemma 2.3.4. (a) The non-coordinate fucets of the simplices belonging to .ﬁ_ A.c\::,\:?
; . i N that
i the simplices (of dimension n — 1) spanned by the vertex sets {v,. v, ... v,} such
Jth th s e
M*o=o O)=t,<t:<--<r,=(L1..De0,

- e s faeote .
(b) &, coincides with the sct of affine hulls of the non-coordinate fucets of simplices
"
from T,

Proof. It follows from 2.3.2 that the facets of the simplices in 7, correspond _wm_nw-
ively to Em chains ¢, < -+ <r, of vertices of 7J,. If (0, ..:.9 %.5, then all the ~... _m _H:
e rplane given by the equation X; = 1 where j is the :Enco.,:gcm such that ry=1
ﬂ.ﬁnm w: +r :._m:.z: the ¢, lie in a hyperplane with the equation X, = 0 where j is the
::5._3 index such that v,, = 0.

. ..1 Ar.::iT
ﬁoséaa:u_cnncwm:ﬁ:S.oSH:AEAA:_l; _,.j, ,v_.v,?ﬁﬂ.rﬁrn cm:r.
exist uniquely determined indices £, j, & such that ¢; ., = ¢, + G+ :,._ herefore he cor
: ! i 1V A= : sven spans this
ssponding facet is contained in the hyperplane given 7..( A= X an it even ,n o
m«% ET:M as a vector space since ¢,. ... t, are linearly independent. This shows the firs
yperplane as a v E N

claim and part of the second.

i i =X MOWEe G " course
Finally, if we are given a hyperplane with equation A} = X, then we can of co
: : N y ™ -1 g g .
find a chain of vertices with exactly the data of the previous paragraph. O

7, €Y > ftersec NA S o fuce (not
Lemma 2.3.5. () For all Ne T, und all De &, the intersection DA iy a fuce (ne

"

necessarily a fucet) of A.

Z" i j = e j interior point of
(b)y For De 7, and x € Z" the iniersection (x + DYy O, contatis an interior p )
D._\::;::\‘:.\./‘WCHp:.a./m\:.

won >
Prooy. (@) We use induction on . For i = 2 the claim is clear. w:E:i_r " wv! HW:.L
N NP ; s . e at DA s
let D be the aftine hull of C;(7) and ¢, for some 7 =1, e ht and « €Y, o 4# t ! *\,. o
not a face of A means precisely that DA contains an internal point off A, Consider the
a face of A ans sely

projection
LI ) =Aay. .
i ) | = cama 2320 d=rnMed, . Since
We have = =id., . So x, CiDi=70 By Lemma 2320 . ;

internal poimts of A project into internal points of ¢ we see .:,:: (

nmicets the interior of o

=0, the translate v+ /) has the eq

Is given by an equation X, — A )
: ! < llora

It v, | 2 Lobutwe have

iy

v

.= v % O then |y,

the system of coordinate hyperplanes in =" These b
i=1.....n
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Definition 2.3.6. A finite convex polyhedron P in R* is called FD-boundey if ap
facet of P is parallel to some hyperplane from £ 0 %, Y

Lemma 2.3.7. For any n22 the polvhedral subdivision of O, determiney bY the
system of hyperplunes &, is the triangulation T, o

Moreover, for any pair of opposite Sacets of O, the induced iriungulations gy, the
same modulo the corresponding unit coordinate purallel translation.

Proof. That T, is the corresponding polyhedral subdivision follows diy
Lemma 2.3.4 and Lemma 2.3.5(a). and the assertion about the induced triang
opposite facets follows from the previous claim and Lemma 232 g

ectly from
ulations op

Now let [ be a lattice standard rectangular n-parallelepiped. For cach unit lattjee
cube [J' < [J there exists a unique x € Z* such that [}’ = v + 0, For each such unjy cube
0O we fix its triangulation x -+ T, (Recall that 7, = {0, } for n = 1.) It follows mmediately
from Lemma 2.3.7 that the fixed system ol triangulations defines a global triangulation
of [J. This triangulation will be denoted by T(J). In particular T((J,) = T

He

Now let P be any FD-bounded lattice n-polyhedron. There exists and a stan-
dard rectangular lattice parallelepiped [J such that x + P < 7. By Lemmu 2.3.5¢h) 4ng
2.3.7 the triangulation T([J) induces a triangulation of ¥ + P, say 7. Thus 7° is & triun-
gulation of x + P consisting of those simplices from T([J) which are included inx+p
One easily observes that this triangulation is independent of the choices of xand 3 It
will be denoted by 7(P). Clearly, all the lattice points of P arc involved in 7(P). and
T(P) consists of unimodulur lattice sunplices.,

Lemma 2.3.8.  For P us above the minimal non-faces of the simplical complex asso-
ciated with the triungulation T(P) are e fges.

Proof.  As above we can assume P [J for some standard rectangular lattice
parallelepiped 7. The minimal non-faces of our simplicial complex will be minimal nop-
faces of the simplicial complex associated with T(3). So we can assume P = 3. Let
Zre 5 €0NZ0 k> 2, determine a minimal non-face, Then for each pair i j=1.... k
the points z; and 2y must be connected by an edge involved in T(P). This is only possible
if all the =; belong to the same unit attice cube in [ (by the definition of 7(7)). Withow

loss of generality we can assume S 5 € [, By Lemma 2.3 2 the points 7, o deter-
mine a non-face if and only if they do not constitute a chain. Hence =, and =, are incom-
parable for some i.j = 1.... k. This contradicts the minimality of our non-fuce. o

Lemma 2.3.9.  For ull sufficiently large positive real numbers o the polyhedral sub-
division of O, determined by the height funcrion
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G P
0,02 ' ——= ,nI"— &,
.

:nduction hypothesis the polyhedral subdivisions of [, -, determined by all the
By ﬁwwm:”rm same T, _, for w sufficiently large.
Po.i o . )
iew of the induction hypothesis, the opposite of the claim is clearly the mo:o&_:m
In <_.n there exist an infinite sequence ((9,),.-, and a co_vmcvn r %;:ana by wozgm
p 1) such that w, — o¢, dim /"= and I is a polytope
etermined by ¢, = . Let . ... 7, be M_:.«Em_v\
)y = R"). Thus we have a barycentric re-

atemen A
m.::Fdw of [J, different ?oi (1. ...,
(.n m the mo;_:ma&_ subdivision of [J, d
r.m%asun:ﬁ vertices of I (i.e. conv(yy, ..., Tu+1
in ¢

sentation , ) 3
pre (... D=7+ = fpiTuer

izing I 1 3 g al's 1visi f [1,. spanned by ¢,. So

g alizing function of the polyhedral subdivision of O, sI ;
e A wr%ﬂw:nmo“‘_m:mﬁi? tor @,. Let L,: R" — 3, be the affine continuation koMP_,ﬁ
Fo mow:,os. (see mccu,mﬁ:o: 2.1y that for each point y of [J, one has @,(;) £ L, (7).

Mﬂ“ affine functions preserve barycentric coordinates, we obtain
i
n-i n-1
= ; =N o .
oAl = bl DS Ll 1) = _W.)— L ) ) 200,

n+1

I . =R + -+ x,. But the
thatis @l £ Y At where for v= (v .y =R ;

we put

i=1 . . ! _— o R
Jast inequality is obviously violated for & sufficiently large. ©

1 hedr hitrary dimension) is
Theorem 2.3.10.  Anv FD-bounded lattice polvhedron P (of arbitrary dime )

Koszul.

Proof. Let P be such a polyhedron. We can assume P < 5 for some u:_wzﬁa Rﬁrw
" ) y hl . N a1 0 ave tc
tangular lattice paraliclepiped 1. By Theorem 2.1.3 and Lemma 2.3.8 we c:_ y “_:
o , i i ) Since =T > can also assume
show the regularity of the triangulation 7(P). Since T(P)< T([J) we can also ass

P=[.
Let ¢ be a positive real number and consider the function

. 7" i T (X)) =1
o, OnZ = =k oY)

Anv unit lattice cube in [ huas the form = — ], for some -0 "

the notation {7 for = + J,. So (3 = [0,. For any unit lattice cube 5 in [0 we set
a dn - " "

A . We shall use

o T
P -=0 L&

. Va . . X b N,
0o LN = B gy, ) et

i the triangulacion T,.

Proof. We use induction on n. For n =1 there is nothing to show
Foreachi=1.... . n we lct @, ; denote the composite map

¢, . define the same polvhedral sub-

any =. 2 e 7"~ C. We know that ¢, - and @ } ! ’
forany - - Z"~ . We kng at @, o, . is obtained

division of 3. But the polvhedral subdivision of ZJ7 determined by ¢

o ! e >vector - By Lemma
by the polvhedral subdivision of [, determined by ¢,  shitted by :,7 ,rr::_u...mw: e
239 the Jatter is nuthing else but 7, for o sutliciently large. Thus for o sul _Crzaw fa rﬁ:_ .
the r nof CJE det i isz+ 171, N > 1s sufficiently
the polyhedral subdivision of [JF determined by ¢ | _is 2 - 7, Now assume e i3 51 3

.
i ! i zations -+ T, spanned by ¢, .
ng functions of the triangulizations -+ 7., spanned by ¢, .

large. and @ _ are the rea
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?,.10:n0; =

0.0 0O;

Therefore the patching lemma will complete the proof once we know the regul

D : ) . arity o
the subdivision of [J into unit lattice cubes. But the latter follows from the cvwn?m:o_.”.
that {[0,17.[1,2].....[a — 1.4]} is a regular subdivision of the segment [0.a] (with the

. . . .k
realizing function corresponding to k- sin—, k=0,...,q) and the direct Producy
lemma. O :

Question 2.3.11.  Let &, be the collection of hyperplanes given by the S Littions

DX, =0. £el0, %1},
=

Suppose P is an n-dimensional lattice polytope satisfying the following condition; jf
P ;. 2 Z" has dimension n, then the tucets of P ;. except at most one. are paralle]
to the coordinate hyperplanes, and the rematining one is parallel to some other member
of é,. (In other words, up to reversing the directions of the basis vectors. / L2 has the
form Ax.7 where A is a rectangular “unit’ simplex spanned by & basis vectors and the
origin and .4 is an (1 — k)-dimensional unit interval representing the remain v directions.)
Is such a polytope Koszul? That the answer is positive in the case 7 = 2. follows from
Theorem 3.2.5 below. But more significantly. it can also be shown by shzht
of the triangulation argument above.

extension

In dimension 2 the condition above is cquivalent to the weaker property that every
facet of P is parallel to one of the hyperplanes in &,. In dimension 172 3 this weaker

property is not sufficient for the Koszu! property. as demonstrated by the polytope with

vertices (1,0.0). (0,1,0). (0.0.1), (0,0.0). and (1.1, 1) (the authors are cerateful o B.
Sturmfels for this example).

3. Degrees of triangulations and Koszul semigroup rings

3.1. The degree of a triangulation. lct A be a simplicial complex with vertex set 1
Note that A has no non-face only it it is a simplex. If' A is not a simplen. we st

deg A= mux {dima{e is 2 minimal non-face of A} ¢+ 1

and call it the degree of A.

This notion is_closely r

cd to-the Stantes—R pr 4

:
i
i
%
£
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In the following we will frequently use that every r::cn.ni.i,ovn Pc Z._A?_v, a

full triangulation A (recall that for A to be full every ._::_na point of E.Bcvﬁ be a
regulet f some simplex of A). We simply take the lexicographic order on Z". It :a.:nm.m an
e,m:mxoos Mrm variables X,. ..., X,, corresponding to the lattice points of P. The initial ideal

o&ﬂé:: respect to the induced term order cannot contain a monomial X/ since in a
of I ial X7— Xgvo+ Xir the second term is the leading one. It follows from 2.1.2 that the
binomi i ' -

lar triangulation associated with this term order is a full triangulation.
regy <
Lemma 3.L.1. A lattice n-simplex T in P is a minimal non-fuce of a full triangulation
Aof P if and only if all fucets of T belong to A and t hus interior luttice points.
0, A K y

Proof. Let T be a minimal non-face of D m&. ..ra.Em:.::z:m..«. all w..,:.,ﬁ.m o*..ﬂ ::_WM
Jong 10 A. Suppose that t has no lattice point in its interior. Fix any point ¥ in the
.cr_oan fr. Since A is a triangulation of P, x must be covered by a simplex o of A with
i?,:oMM m.Eom GFT O :Eir?:.o a vertex v lying outside of 1. The line segment T v]
Q_B,ﬁaawnaw a proper face ¢ of t in the interior of [x.1]. Since e A and ene*0. ¢ is w,
ﬂEv of . On the other hand. v,y ¢ & 5o that the hyperplane through « separates the poiats
,.ww_a v of o. This is a contradiction.

The converse implication is obvious. 0

We note that the case # L, =2+ 1 is trivial because A{S, ] =A[V,..... ¥, Tin
this case.

ot}

Theorem 3.1.2.  Let P be a lattice polviope in B with % Ly zn =2 Then P has a

. o o 5
regular full triungulation A with deg A S if and only if %L p2n+ 2.

. : is an n-si N > facets have no

Proof. Assume that # L., =n+ _.,jF:. Pis an n ,,::Er/V W ::y,r :rr_/rw )

lattice points in their interiors. For any full triangulation & of P, the facets of £ mus

appear in A. Since # L, 2 5+ 2, P has an interior lattice pomnt. Therefore, P must be a
minimal non-face of A, hence deg A=+ 1.

Conversely, assume that # /.., = n + 2. It P has no interior lattice points. we m.:::v.n,
any regular full triangulation A of P. By Lemma 3110 A has no minimal :::.Ecc,i
dimension . hence degA S n. If P has interior lattice points. we apply Theorem 3.3.1

below which is stronger than the "if 7 part of 3.1.2. =

71

In Subscection 3.2 we will prove ar .
case |s significantly simpler than the general one. und its proot

ement of Theorem 2 1.2 in dimension 2. This
independent from 3.1.2.

Retstrerring A=+t
o A (see the discussion preceding Theorem 2.1.2). Since I, is the ideald
monomials

oA Torwhich TX, C00 X L isanon-face of A, deg A ts the manimal degree

of the dlements of w minimai system of generators ol I, Thus degA < dm - 1

A

tfollows that the degree ol any triangulation of a lattice polytope
We sh

characterize the fattice polvtopes which have reg

wtertor fiace has at most

We sav that o triangulation A s n-resericred if every minim
s 2-restiicted. that on

wwing figure the triangulation on the fe

=1 vertices. In the fo
the right s not
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3.2. Lattice polygons. The case of lattice polygons is of particular nteres
of its relationship to the Koszul property of semigroup rings. Furthermore one
Theorem 3.1.2 in the planar case by showing that there exists a degree 2 Je
unimodular triangulation for a lattice polygon P with at least 4 lattice p
boundary.

t cnomzmm
4023 nam:n
Xicographic
oimts in its

Let L,={x,, s X,y Given a total order Xy > e >x, 0n Ly the dexicoer
term order induced by > yields a regular triangulation A, (P) of P which we m:: the
lexicographic triangulation of P. In combinatorics this triangulation is known as the plaging
triangulation, see [23). It can be described recursively as follows (see [24]. Proposition m.om

aphic

Lemma 3.2.1.
AL (P) = AL (Lph] o x‘«_w weree AL (LN, E visible from .<C~ .

Let 2, be the convex hull of the set { S i 21 We call the ol order

Lp an exterior order if x, is a vertex of the polytope P forall i=1... . n.

> on

Lemma 32.2. Ler v, > - > X, be an exterior order on Lp. Pur A =3 AP and
I'= A, (P). Then degA < N\.\\:f\r\\:_:.:,nA.E:\.\.:::,,_E.w MNNNN..,,.\“~.P.K\“

(i) degl £ n,
G1) I'is nerestricted on Q.

Proof.  Assume the contrary. Then A has a minimal non-fuce 6 with dime =5+,
By (i), ¢ is not a minimal non-face of I" Since x| is a vertex of P. Xy lies cutside of P,
Hence every minimul non-face of A with vertices in P, is also a minimal non-tuce of It
follows that x, is a vertex of ¢. Let ¢ be the (1 — 1)-dimensional face of # which does not
contain x,. Since ¢ is a minimal non-face of AL s a face of A and therefore of T

All the other (n — 1)-dimensional faces ol ¢ are also faces of A, therefore the
(# —2)-dimensional faces of & that do not contain vy are visible tfrom v, Hence they
belong to Q.. Since they constitute & and since /' is n=restricted on O it tollows that
&< @, . Hence & is visible from X;.and Lemma 3.2.0 implies 6 £ A, w
diction. O

i a contra-

I is a polyeon in &2, condition (it) of the previous lemma just means that no edge
of I connects two non-neighbouring lattice points of O.,- In the case of polvzons we ¢

a connected part of ¢P that sturts and ends at vertices of P a puth ot O P Novuee that 0.
is a path of ¢ P. Two paths are said to be divioinz it they have at most one common point.

;
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In particular. there exists an exterior order > on Ly such that A, (P) is unimod-
A s
ular and of degree 2.

Proof. The triangulation A will be constructed inductively as indicated E\.hmaam

1. It is easy to see that one obtains a full lattice triangulation by E_mmo.sm::n:o:, and

u.wﬁ._.n.:m:wmo: 2 every full lattice triangulation is unimodular. Therefore it is not necessary
in di -

1o mention unimodularity any further.

Case 1: #L.,=4. Then &P is either a triangle Aa,—: 5. X3 with a Emn”_hm noﬂ_““
on the edge [x,,x;] or a quadrangle (x,.x,, x5, x,). Since the number of the pa
.M,» C.is at least 3, we may assume that x,. x, do not belong to the same path.
o G

If 4L,=4, ie. P has no interior point. we obtain the lexicographic triangulation
’ A 1 - - >, Aty -
¢ P which corresponds to the exterior order v, > x, > x; > x, by connecting x,. x,.
0

If # L, >4, then P has an interior r::r,.a _oc,::. 5;.505,Ry:ﬁ:w: $1r w:s.« uuw%«“”gm
that the triangle <{x,, x,.x,> contains an interior point of \u.xm.o. ‘,,I X sw ‘e
#L, =3 hence # L., =24 Morcover, O, uv,.vyJulyy.x,]is N_m_aro,_:mwu_ “o.q 0
,“\u into 3 disjoint paths. By induction on the :E:Un._, #* PC:. may assume that :n_w 3
w:.ﬂmzazoﬁ order > on L, such that the corresponding lexicographic triangulation I of
.W satisfies the condition

(i) degl =2,

(il) every edge of I" with vertices on @ lies on Q..
induces a lexicographic triangulation A of P with deg A = 2. Neither [x,., .,L nor T.ﬁ x,;]
are faces of A so that condition (ii) of the theorem is trivially sutisfied. In fuct. x; is not
visible from x,. and [x,.v,] has both its vertices in Q..

i teri : i as the maximal element
By Lemma 3.2.2, the resulting exterior order > on L, with v, as the maxime

Case 2: # L.,>4. Choose x| to be the common vertex x of A.; .,_.:g mu . ?.m have
#L > #L.,— tz4 0 # Lo =2, ic ¢ has no lattice points in its interior. for all
P = P = -C, . i

i=1,....r then r= # L, and 0P has & decomposition into r — 1 2 3 disjoint paths
Dyu---uD, | with
D = Jeo =t
G =2 r—1.

If there exists a path ¢, with 4 L. > 2. we may assume that

_\«._?ﬁﬁ, i=1.

1l

- T 1

i~

Theorem 3.2.3. Lot P be a luttice polveonwith # 1,24 Lei 7 p = Lo Cohe
a decomposition of EP into r =3 disjoint paths. Then there exists an o
uch thae A= X (P is unimodudar and satifies the following con

=t

b erervedve of A with vortices on Clics

~ ~

- Py
Lol =

A,
ﬁ,m,.. Per .

] it U and. if # L. > 2. the

P4 L =2 then ¢ P hus the decomposition Dooub, oD and. f \.~? # N

ositi i isjoi ; ‘ ndue n the number
decomposition D, v+ D, | L into disjoint paths. Inany case, by _:;:r:w,: on the _

cterior orde such that the corresponding

# Lp we may assume that there is un exterior order > on L, such that the corresp g

1sfies the following conditions:

lexicographic trangulation 7 of 1
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(i) degl=2,
(i) any edge of I' with vertices on a path D, lies on D;.

Note that Q. is one of the paths D;. By Lemma 3.2.2, the resulting exterior order > oy
L, with x, as its maximal element induces a lexicographic triangulation A of P wir
deg A = 2. Due to the definition of D; and the hypothesis (ii). any edge of A with verticeg
ona path C,, i=2,....r—1, must lic on C;. Fori=1,r. such an edge must have X, as
a vertex. The other vertex must be the only lattice point of C; visible from x,. Hence this
edge lieson C;. O

Remark 3.2.4. For certain classes of lattice polygons one can explicitly describe
term orders that yield unimodular lexicographic triangulations of degree 2. For example
let P be a rectangular lattice triangle with the vertices (0.0), (£,.0). and (0. 4,). By sym-
metry we may assume A, 2 4,. Then we define the order < on 2 by selling
(Vo )< (3 1) if X > vy or xp = 3y, x, < 1y, Then weextend < to a lexicogruphic term
order. It can be shown that the associated triangulation is untmodular and of degree 2.
For 7, =4 and 4, = 3 it is given by the following figure:

We now draw the consequences ot Theorem 3.1.2.

Corollary 3.2.5.  Let P be a luttice polyiope in &7 witlt # Ly 2 34 Then the following
are equivalent:

(1) #L.,24,
5

(b) P has « regular full. equivalentlyv: unimodular, triangulation A with deg A =

(¢) 1y hus a Grobner basis of elements of degree 2.,

(d) P is Koszul.

-

wr
w
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2. 8y %o X3 such that xx, = x,x, + %,x, + 2, x;. Hence [, contains a monomial of the
form XXX — X{. This monomial cannot be generated by forms of degree 2 of [,.
For, I, must contain. by a permutation of X, X3, X;. a non-trivial monomial of the form
xi—For X, X, — G for some monomials For G in K[X,..... X,]. The variables of For
G must correspond to a lattice point on the segment [iv.x,] by afline dependence. But
this segment has only x,. v, as lattice points because v, xy€¢P and L., = {x;. x5 x5}
Therefore /p can not be generated by forms of degree 2.

(a) = (b} If # L.p = 4. then Lp has a regular full triangulation A with deg A = 2 by
Theorem 3.2.3. By Proposition [.2.4(b) A is a unimodular triangulation.

(b) = (c) follows immediately from Theorem 2.1.2.
(¢} = (d) is a result of [9]. which we have already used several times above.

(d) = (e} is trivial. O
R. Koelman {207 has proved a weuaker version of Corollary 3.2.5, namely. iff P is a
lattice polygon with # L., = 4. then /, can be generated by forms of degree 2,

3.3. The general case. It remains to prove the following theorem.

Theorem 3.3.1.  Let P be a luttice polyrope in & with # L., 2 n+ 2. Suppose that
P has interior lattice points. Then P has an n-restricted regudar full triangulation A with
degA s

The proof of Theorem 3.3.1 uses induction on # L. For this we need some prepa-
ration.
o and by 0
the part of P, which can be seen from x. We shall see that the s-restrictedness can be
passed from 2, to P. Let U be a union of faces of oA triangulation A of P
restricted on Ui ¢ < U for every (1 — -simplex & of A with ca < U

For any vertex v of £ we denote by £ the convex huli of the set L,

calted n-

Lemma 3.3.2. Let P obe a lattice n-polviope in 3" with #Lp 20+ 3. Let U be u
union of facers of P Assunie that U has an intevior point x which is a vertex of P osuch that
dim Po = s and P has a regudar fudl triangadation U owitl deg U< onowhich is n-restricted on
UNP and Q. Then P has a regular fudl triangulation Mo with deg & S nowhicl is n-restricted
on U.

Proof.  There are two cuses.

tey 1, Iv gonerared breterentsof ogree 2
Proof. {¢) = (a) Let m = # L,. We use the presentation
R{SpT=ATA ... N, T 1

Assume that # [, = 3 say L-p = v xaovy ) Then Pisatriangle with vertices vy v,

There exist pos

and P has at least a lattice point in 1ts mlerior, say

*h has no other lattice

Case 10 # 1L, =n Then Qs a lattice (1 - T-simplex w
points than its vertices. Since ¢, is a facet of £ Qs a facet of an a-simplex of 1.
o. Let » be the vertex ol ¢ not contained m ). We denote by 7 the convex hull of x. 3
w:a 0. Let = be the intersection point of the scgment [x.or] with Q. 1F - is a vertex of
.QH. T is an n-simplex. The facets of 7 which contain v lic on fuacets of £ Since v is an
Interior point of L. these facets of 2 are also fucets of {7 Therefore if o is the facet of 7
which does not cont

1o then Co < L0 Sinee o i abso a tacet of o, g = 1 Using the n-
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restrictedness of I on Uné@P, we get ¢ = U. From this it follows that all facets of
contained in ¢P. Hence P=T. So we get # L, =n + 2, a contradiction. Thus, = i5 not 5
vertex of Q.. Connecting x with y we obtain a triangulation of 7T into n-simplices which
are spanned by x and the facets of ¢ containing v. Since z is not a vertex of 0, these
simplices involve all lattice points 7. Together with the simplices of I” other thay 4 they
compose a full triangulation 4 of P. .

T are

If A is not n-restricted on U, there exists an (n — 1)-simplex & of A such th
but cec U. If ee [, then e =« Un P,. Using the n-restrictedness of I on UniP, we get
e U, a contradiction. If £¢ I, then x is a vertex of &, If y ¢ ¢, ¢ is spanned by v ang a
facet of Q.. Hence & is contained in a facet of P which contains x. Such a fucet of p
also a facet of U because x is an interior point of {/. Therefore we have ¢ C.a contry.
diction. If yee. then ¢ is spanned by x. y and # — 2 vertices of Q.. suy

at eq

r Sieeen g, .o The
facets of ¢ are the simplex (y,z,...., Z, -2y spanned by y. 2y, ..., 2, ., and the simplices
spanned by x. yand # —3 elements of the set {z,,...,z,_,}. Since (i c (', they are gli

contained in . As a consequence, ev ery simplex spanned by y. z and n — 3 clements of
the set {z;, ..., 5, -} is contained in U, too. Let z,_,. =, be the other vertices of 0,

Claim. = is contained in the edge -

n-l=a

Proof. Let {z\....,z,_ > denote the simplex spanned by the points = -

Tyl Z

We have z¢ (2. ...z, ) because otherwise # is contained in the facet of 2 which con dins

xand (... 5, ) hence £ < UL a contradiction. Similarly we also have

- ﬁ Al - -\

- el R T
This means that in the barycentric representation = = 4, oy + 2,5, the coellicients 7,
and 7, are positive. The claim amounts to the equations 4, =0 fori= 1. » -2,

As stated just above the claim, the simplex ¢(z.z,. ...z, (T e Iy s 08 con-
tained in U This means that every convex representation
L L e L L Rl (T = N

is a point of U If we choose the f strictly positive. then the segment [v. 2} contains an

interior point of Q. =<=z,.....2,>. Since w.ze (it follows that [ contains
point of Q. which is impossible. o

wmterior

I facets of 1

Now we continue the prool of Lemma 3.3.2. By the above cluim,
which contain y. 2, .z, also contain v.z, .-, Hence they lie on the facets of £ which
contain vz, .5, In particular, all (2 — 2)-dimensionat faces of & which coniain vand
2, -y are contained in L Since the faces (v o, = S and ¢- - are ilso con-

STyl D .

E
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 would be contained in P,\¢). Hence x is a vertex of 7. From this it follows
he n-simplex spanned by v and Q.. By the definition of Q.. this simplex has no
ttice points. So we obtain a contradiction. Hence degA £ 1.

otherwise
that Ti8 ¢
interiot la
Let ¢ be a height function on L, for I'. By choosing ¢ (x) m:a.r that (x, () is
¢ the hyperplane of " ™! containing the facet of (P, corresponding to ¢ but below
v - ", i M o 2y i ~T1
uco:(‘nm%_::mm containing the other facets of (F,), we obtain a height function ¢ on Lp.
—Ja.:‘.? P coincides with (P,), on all simplices of I' other than ¢. From this we can
M..ow.a_:\am mﬂ: A=A, Hence Als a regular triangulation of P.

Qc.mw”#hcw‘:,_.Oosmaa:rw?z :E:,m:_::o:o_,m.LEoS| :.m:.:E.wnom
induced by I. The :.,mwaszmam spanned by v and these (n — :,mi%:.oom conmpose a trian-
" _._w_:o: of the convex hull of P°P,. This triangulation together with I forms a lattice
guk .,

(riangulation A of P.

If A is not n-restricted on U, there exists an (1 — 1)-simplex « c‘_,b. w:ns, that e &
put dec U, Ifee [ then de < Un P Hence we have ¢ < .mﬂ. a ac.::.,::amg.. It _m,m ﬁ.w, ﬁm.:
¢ is spanned by x and an (1 — 2)-simplex of I on Q,. Since E_,, (n— -,.).::1 ex 0 .:.,_m
ontained in C. it lies on the boundary of Q.. .;nﬂm?:n.m __m.m on 4 facet of P whic
o ince v is an interior point of L', this facet of P is a facet of L Hence we have

contains x.
¢ U, a contradiction.

a lattice n-simplex 7 in P such that every fucet of 7 belongs

fdeg A =n + L. there | .
A ﬂ:mrﬂr has an interior Lattice point. Since deg \M i, T is not c.:_:,,:_,:,; n w, ,In:r.o
vis a vertex of 7. Let ¢ be the facet of 7 not containing x. H:m: fec Q. Henee e Q
.3 the n-restrictedness of {7 on Q. Since there is no lattice point inbetween v and Q. T
would have no interior luttice points, a contrudiction. Therefore, we huve degA S o

It remains to show that A is a regular triangulation of P. If we choose ¢ (x) small
. i 1 i ) 1 3 oo >
enough, the height function on L, which extends the height function of I" will keep (£),,.
e A inci ith I’ ‘rom ihis 1t £ s the =A,. The "of Lemma
Hence A, coincides with " on . From this it follows that A = A . The proof of
3.3.2 is now complete.

case of Lemma 3.3.2 s the case U= P

A spec

2t with # L,z 0 =3 Let X he u
ith degl <n

ﬂc:v:udw,w.w.\.E\v\:,:\:::c:I\S\.ﬂ_\:\%E
veriex of P osuch thai dimy P, =i and P, has « regudar full triang 1

i z / 3 Then P ) -yestricte < ;tull triangudation
which is n-restricted on CP o Poand QL Then Phas an i-restricic o regular fuill triang

A with deg A S .

t

We shall need the Tollowing lemma for the existence of a regular triangulation [7of

P_with the abave propertics

tained in U, the boundary of the (1 ~ 1)-simplex « 1. i D, oy yascontad

odin £ Henee
CVaZpoz, @ U by the nerestrictedness of T on Un P Similarly we cun alvo show
that 7= 0 oo, oo = O Fromothisic fo

Hence P=7 Th
s-restricted on U

sihatall facets of Ture con (el

implics 4 £, = n+ 2. contradiction. So we have proved that A

[ deg A = n -+ 1 there is a lattice n-simplex 1 in # such that SVeTY
to A and 7 has an intertor lettice potnt. Since deg I = s 7

not cont:

A

::>ﬁf.W:E|,,,,\:.7:\::.::

e s 1y
ol : 3]
iy the clostee
cleis neiesieieted on U

!

Lemma 3.3.4. Lot P ohe a lattice polviope in
ol P
iere {
MwihdegA S

I
fudie

cidor laitice poin.

complement of

asdes V= Henee

{

triangulation Aot/
> which s aerests

Proot. By Lem
only need
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We first consider the case in which {' contains no interior lattice point which s ,
vertex of P. Choose any regular triangulation A of P. If A is not n-restricted on U. there
existsan (1 — 1)-simplex e & U of A such that & < U Since U is homeomorphic to an 1y
dimensional ball, Ce divides ¢ P into two parts one of which is contained in U Thig part
has an interior lattice point of U which is & vertex of P, a contradiction.

Now assume that L’ contains an interior lattice point x which is a vertex of p. There
are two cases.

Case 1: dimP, =n—1. Then P,=Q_and itis a facet of P. Therefore, must he
the union of the fucets of P which contain x, and U¢= Q,. Choose any regular full triyp.
gulation A of P. If A is not n-restricted on U, there exists an (1 — 1)- simplex ¢ of A such
that ed U but de < U. Il ¢ is contained in Q,. then e c UnQ, = 2Q,. Since (i ::a mQ
are both homeomorphic to the (1 — 1)-dimensional sphere, we must have & Q
contradiction to the assumption that # L. = » + 1. If ¢ is not contained in [ y?.::pd
by x and an (n —2)-simplex of A on Q.. This (n—2)- -simplex of A s contyj
UnQ,=7Q,. Hence ¢ is a facet of L. a contradiction.

1ed 1n

C

se 20 dim P =i We distinguish two subcases.

Subcase 1. 4 Lp=n+2. Then the assumption # U2 + | tmplies that U by,

only one interior lattice point. numely x. We have $# Lp =n+ 1. Together with the us.
sumption dim P, = # this implies that P, is an n-simplex.
IF #Q, = n, let y be the vertex of £ not contained in Q.. Let = be the intersection

point of the segment [v.y] with Q.. Then = is not a vertex of Q. because otherwise vz (0
and all facets of P containing [x. 1] are facets of ', hence = would be an interior lattice
point of U. Connecting v and 1 we obtain a full triangulation A of £ cach of whose sim.
plices is spanned by x. v and a facet of Q. II' A is not n-restricted on (. there is an (i — 1
simplex ¢ of A such that ed U but e = (. Since L is homeomorphic 10 an (1 — 1,
dimensional ball. ¢ divides ¢P into two parts one of which is contained in €. 17 & is 4
face of P, we have (= and therefore # /.. = 2. a contradiction. So # is not a face of
P. The two lattice points of P which are not contained in & must lic on dilferent sides of
¢. One of these two points must be an interior point of £, hence it is v. From this it follow s
that @, = So we get Q€ A a contradiction. By choosing a sufficientls 4 i
function ¢ on L, with ¢ (x). ¢ (1) greater than the other values of M. we obtain A
Henee A s a regular triangulation of P which is n-restricted on (..

# Q. =n+1. choose any regu neulation A of P which contains the -
simplex P (The existence of such a triangulation is casy to show.) If A is not :.2,52&
on U. there is an (1 — D-simplex « of A such that e € but fe= (. Ay i
# O, = n.we can show that Q=2 From this it follows that # Q,

=1 CONtT 7:2::,.

s —————
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Case 1: #L.,=n+2 We will first show that there exists a vertex x of P such
that #Lp 2n+ 2.

If P is not an nr-simplex. then all 7 + 2 lattice points of (P are Fé:c.am of P. Thus
p is the union of n + 2 simplices g; each of which is spanned by n ~ 1 vertices of P. Let
y be an interior lattice point of w (which exists by hypothesis). Elementary arguments
show that there exists & such that v is not contained in the interior of 5. Now we choose
y to be the vertex not involved in g;.

If P is an n-simplex, let y be the remaining point of L., and 0 the .?cﬁ E, P e<.Eo:
contains ». Let x be the vertex of P not contained in ¢. Since P hus mterior lattice points,
P has a vertex not contained in ¢. Hence # L.p 2 n+2.

x

Let x be a vertex of P such that # L., = a4 2. If P_has interior luttice points, using
induction we may assume that P, has an #-restricted regular full triangulation I' with
degl . Then so does P by Corollury 3.3.3, Now assume that P_has no interior lattice
points. We put U= 0. Then U is a union of facets of P, which i» homeomorphic to an
(n — 1)-dimensional bull. Moreover, {¥= P~ P, Hence # ?,, ==L b I = n+ _.. By
Lemma 3.3.4 there is a regulur full triangulation I of £, with deg /"< n which is n-
restricted on Q. By Corollary 3.3.3, P has an a-restricted regular full triungulation A with
deg A < nif I is n-restricted on &P P, I the latter condition s not satisfied, there exists
.,S(E —1)-simplex ¢ of ["such thated CPA P but ce c PP Then we can tind a vertex
v of P on the other side of & than that of v. Since # L ,=n -2 v. 1 and the vertices
of ¢ fill out L-p. Therefore, there is no lattice point inbetween v and This implies
fe =70, Hence £c @, by the n-restrictedness of [ on Q. From this it follows that
&= Q.. which is impossible because (2, must contain interior lattice points of P.

Case 2: #L.,2n+3. Forany vertex x of P we have =/, 2n+ 2. If P, has
interior lattice points. using induction we may assume that £ has an a-restricted full
regular triangulation 7 with deg "< 0 Then so does £ by Corollury 333 Now assume
that there is no vertex v such that P has interior lattice points. Fiv any vertex v of P Put
U= Q.. Then U is aunion of facets of £ which is homeomorphie o an (n — H-dimen-
sional ball. Morcover, UV =0PA P Henee # Lo =# L, — 1 zn -2 By Lenima 3.3.4
there is a regular full triangulation I of P with deg I'<S s wl is erestricted on Q. By
Corollary 3.3.3. P has an w-restricted regular triangulation A with dee A Zn it ' 1s n-
restricted on &P P I the fatter condition is not satisfied. there exists an (1 — 1)-simplex
¢ of I such that e L but Ce = CP. Then we can find a verten 3 of £ on the other side
of ¢ relative to x. P, contains the convex hull of all fattice points ot E on the side of & that
contains x. But this convex hull contains Q. Since @, contains inierior kttice points of

P, P, has interior lattice points, a contradiction. The proof of Theerem 331 1y now com-
plete

Subcase 20 # Lpza+ 30 We have #1, 2042 Put Co=(L 1)
a union of fucets of P, which is homeomorphic to an (n — D)-dimensio
(L) = U Using induction we may assume that 2, has a regular full
deg "< n such that I is werestricted on £ By Lemma 2.3.2. 2 has

gulation A which is r-restricted on U, The prool of Lemma 3.3.4 s 1

wooomplete. O
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0. Introduction

ted by m
Let CH*(X. m) be the higher Chow group. as introduced in [B1]. of codimension &

| cycles on a smooth complex projective algebritic manitold X of dimension #, and set
CHY(X.m), = CH*(X.m) @ U. We introduce the subgroup of decomposables
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CHY(N. n) = Image of (£)5" @ CH*Y "X 0y —— CH> N, ).

where we use the identification C* = CH (X 1) ([B1]). [This defizition of decomposable
can be compared to the one given in (0.8) (i) below, and also the definitions given in [E-L]]
The corresponding group of indecomposables is defined to be

1O A

VCHMN X oy CHECY ! & 2

We recall CHM X my, = 1135 "(X. Q) ((B1] and {LEV]). wh (V. Gk s
totiviccohomotogy i e serse of TBET and for &€ = 1 subang containing . (he
regulator map n, /130 (X Qk)) - MK (N A )). where #9(V. (7)) is Deligne
cohomology. In the case 1 == 1. there is a number of results ainsed at establish ng conditions
forwhen [ CIF* (X, 1), CHEN . 1 @ 0 = 0([B-S]. [E-L]. {C-3T1. Mure recently. there are
results aimed at finding explicit examples of ¥ where
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