NORMAL SEMIGROUP RINGS

WINFRIED BRUNS

INTRODUCTION

The rings that from an algebraic point of view are classified as normal semigroup
rings are the coordinate rings of affine toric varieties, i.e. the algebras generated by
the semigroups D N Z" where D is a finitely generated rational cone in R”. Since
toric varieties are constructed by glueing affine toric varieties, the theory of normal
semigroup rings covers all the local properties of toric varieties. They also appear in
the global theory as the homogeneous coordinate rings of projective toric varieties.

A major result (see Section 3) on normal semigroup rings is Hochster’s theorem
saying that they are Cohen-Macaulay rings. We approach it by constructing a com-
plex ‘computing’ local cohomology; our construction is natural in the sense that it
uses the cell decomposition of a cross-section of the cone D. By local duality one can
then immediately derive Danilov’s and Stanley’s description of the canonical module
as the ideal generated by the monomials corresponding to interior points of D.

As a combinatorial application of commutative algebra we include the main the-
orem on the Ehrhart function E(P,n) of a rational convex polytope, including the
reciprocity law. For the study of E(P,n) one readily constructs a normal semigroup
E ring with Hilbert function E(P,n), so that results on E(P,n) are special cases of
theorems of Hilbert functions. In geometric language, if P is the polytope associ-

ated with a very ample line bundle L on a projective toric variety X, then R is the
canonical ring

R=& H(X,L").
n=0
For the reader’s convenience we briefly sketch the theory of graded rings in Section
1: it is basic for every algebraic approach to the subject. Section 2 contains an
outline of the main results on Hilbert functions and polynomials; they form the bridge

between commutative algebra and combinatorics. We refer to Bruns and Herzog [1]
for a detailed treatment.
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1. GRADED K -ALGEBRAS

Let I be a field, and R a finitely generated, positively graded K-algebra, i.e. R is

the direct sum .
R=P R

1=0
ol K-vector spaces, and the multiplication on R satisfies the rule R; R; C Ry ; fur-
thermore R = Klzy,...,,] for suitable elements z1,...,2, € U;jsq Ri. In particular
Ry = K, and R is a Noetherian ring. In order to have a compact terminology we
simply say that R is a graded K-algebra. If a graded K-algebra is generated by
elements of degree 1, then we call it a homogeneous K-algebra.

The elements of the i-th graded component R; are homogeneous of degree 1 or i-
forms, and similar conventions apply to the graded R-modules below. By m we
always denote the graded (or irrelevant) maximal ideal: m = @32, R;.

A graded R-module is an R-module that as a K-vector space is a direct sum
M = @,z M; satisfying the rule R;M; C M,y;. (It would be more precise to say
that a graded R-module is an R-module together with such a decomposition.) Note
that the elements of M may have negative degrees. If M is a Noetherian R-module,
then M; = 0 for + <« 0; if it is Artinian, then M; = 0 for 7 >> 0; in both cases one
has dimg M; < oo for all ¢. One can change the grading of M by a shift s € Z: one
sets M(s); = M;y,. In other words, the degree j homogeneous elements of M have
degree 7 — s in M(s).

A submodule U of M is graded if U = @, U N M;. If U is a graded submodule,
then M/U is a graded module with homogeneous components M;/(U N M;). The
annihilator of a graded module is a graded ideal. If a is a graded ideal in R, then
l{/a is a graded K-algebra in a natural way.

A homomorphism ¢: M — N of graded R-modules is called homogeneous if
@(M;) C N;for all © € Z, and M and N are isomorphic as graded modules if and
only if there exists a homogeneous isomorphism ¢: M — N. The graded modules
form an Abelian category whose morphisms are the homogeneous homomorphisms.

(raded Noether normalization. The existence of Noether normalizations of affine

algebras is a fact of fundamental importance. If R is a graded K-algebra, then the
Noether normalization can be chosen to be graded.

Theorem 1.1. Let K be a field and R a graded K-algebra. Then there exist homo-

grneous elements 1, ...,xq (necessarily d = dim R, the Krull dimension of R) such
that

(a) a1,...,2q are algebraically independent over K, and

(b) R is a finite K[z1,...,x4)-module.
If R is a homogeneous K -algebra and K is infinite, then z,...,zq can be chosen to

be of degree 1.
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If 2y,..., 2, satisfy the conditions (a) and (b), then we say that Klzy,...,zq] is a
Noether normalization of R, and x,,...,z4 is a homogeneous system of parameters.

Giraded resolutions. Suppose that M is a finitely generated graded R-module, and
choose a minimal homogeneous system zi, ..., z, of generators. Let Fy be the free
R-module of rank m over R; we grade it by setting deg e; = deg z; for the elements e;
of a basis or F'. The kernel of the homogeneous map ¢o: Fo — M, e; — z;, is again
a finitely generated graded module with a minimal homogeneous system yi,..., ¥y,

ol generators. Therefore we have a presentation [} L Fy 2% M — 0 in which all
the entries of a matrix representing ¢; are homogeneous elements in m. This implies
that M/mM = Fy/mFp. In particular the number m and the degrees of the elements
Z1y. .., 2z, are uniquely determined (up to a permutation): exactly dimg(M/mM);
among the z; have degree 1. Iterating this construction one finds a minimal graded
free resolution of M; it is uniquely determined up to an isomorphism of complexes of
graded R-modules.

The fundamental theorem about free resolutions of graded modules is Hilbert’s
syzyqy theorem.

Theorem 1.2. Let R = K[X1,...,X,], and M a finite graded R-module. Then M

has a minimal finite free resolution

0 — @R(—j)ﬁw — = PR(—j) =M —0
J J

with p = projdim M = projdim My, < n.

In the summands R(—j5)? we have collected all the summands R(—j) of Fj, in
other words, 3;; is the number of degree j elements in a minimal homogeneous system
of generators of Kery;_;. It follows by induction on ¢ that the i-th graded Betti
numbers 3;; are uniquely determined by M.

Since a graded R-module has a graded free resolution, it is projective in the cate-
gory of all R-modules if and only if it is so in the category of graded R-modules. The
situation for ‘injective’ is slightly more complicated. Nevertheless there exist enough
injectives: a graded R-module M has an injective resolution 0 — [® — [} — ... —

[ — -+ in the category of graded R-modules. This fact is important for graded
local cohomology.

(iraded Cohen—-Macaulay rings and modules. A fundamental notion of commutative
algebra is ‘depth’. We need it only for graded rings R and finitely generated modules
M. One says that z1,...,2, € R is an M-sequence if x; is a not a zero-divisor of
M/(xy,...,2;-1)M fori =1,..., s and if furthermore M # (z1,...,zs)M. The depth
of M is the length of a maximal M-sequence contained in m. One can show that all
the maximal M-sequences in m have the same length, that there exists a maximal
M-sequence consisting of homogeneous elements, and that depth M < dim M. (Here
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dim M = dim R/ Ann M is the Krull dimension of M.) The Auslander-Buchsbaum

equation connects depth and projective dimension:
depth M + projdim M = depth R if projdim M < oo.

If R itself is a finite S-module, then depthg M = depthy M.

One calls M a Cohen—Macaulay R-module if depth M = dim M, and M is a maxi-
mal Cohen—Macaulay module, if depth M = dim R. The Cohen—Macaulay property
has a down-to earth characterization in terms of a Noether normalization:

Proposition 1.3. Let R be a graded K-algebra, and M # 0 a finitely generated
graded R-module. Then the following are equivalent:

(a) M is Cohen—Macaulay;
(b) M is a free module over a Noether normalization of R/ Ann M.

In particular, R 1s Cohen-Macaulay if and only if it is a free module over any of its
Noether normalizations.

The elements zy,...,2; form a maximal M-sequence for a Cohen-Macaulay R-
module M if and only if their residue classes generate a Noether normalization of

K/ Ann M.

The canonical module of a graded Cohen-Macaulay K-algebra. We introduce the
canonical module via a Noether normalization. Therefore we must first define it for
the polynomial ring S = K[X},...,X,] where deg X; = a;: we set

ws = S(—— Za,)

(\\ good representative for wg is the principal ideal generated by X;--- X,; it is
isomorphic to wg as a graded module.) That this choice is very reasonable is indicated
by the following theorem.

Theorem 1.4. Let R be a Cohen—Macaulay graded K-algebra of dimension d and
S C R a Noether normalization.

(a) Then, with respect to its natural R-module structure, w = Homg(R,ws)
(1) is @ mazimal Cohen—-Macaulay R-module;
(i) it has finite injective dimension;
(iil) Exth(K,w); =0 if j#d orj #0, and Ext4(K,w)o = K;
(iv) Homg(Homp(M,w),w) = M for all (graded) mazimal Cohen—-Macaulay
R-modules, in particular Endg(w) = R;
(v) rankpw =1 if R is an integral domain.
(b) If a graded R-module C satisfies the conditions (i), (ii), and (iii), then C = w.
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Part (b) shows that w is independent of the choice of S, and therefore we may
call it the canonical module wg of R. For (ii) one should note that Exth(M, N) is a
graded R-module whenever M and N are graded and M is finitely generated; this
holds since M has a graded free resolution by finitely generated free modules.

If wr 1s a free R-module, then R is called a Gorenstein ring. In this case we
necessarily have wp = E(a). The number a will be identified below.

Local cohomology. What has been said above indicates that the theory of local rings
has a graded counterpart (which, in a sense, is even simpler). This analogy includes
local cohomology. For a (graded) R-module we set

I'm(M) ={z € M: m’z = 0 for some j}.

Note that I'n(M) is a (graded) submodule of M. Moreover, if f: M — N is an
F-linear map, then f(I'n(M)) C T'n(N), and therefore T'y, defines a covariant left
exact functor.

Definition 1.5. The i-the local cohomology Hi (_) is the i-th right derived functor
of I'm, i.e. if I* is a (graded) injective resolution of M, then H: (M) is the i-th
cohomology of I'y,(1*); especially T'n(M) = HL(M).

The preceding definitions make sense with and without the parentheses, and more-
over, if M is a graded R-module, then they yield the same result: it does not matter
whether local cohomology is computed from an injective resolution in the category of
graded R-modules or from one in the category of all R-modules, except that in the
first case we obtain a natural grading. We can even localize with respect to m: for
all (graded) R-modules one has

Hi(M) = Hp (My).

mRm

One can use this isomorphism in order to reduce assertions about graded local coho-
mology to ‘local” local cohomology, for example Grothendieck’s vanishing theorem.

Theorem 1.6. Let M be a finite graded R-module of depth t and dimension d. Then
(a) HL(M) =0 fori <t andi>d,
(b) Hy(M) # 0 and HE(M) # 0.
Since injective resolutions are very hard to grasp, it is difficult to understand local

cohomolegy from its definition. Therefore, in order to effectively use it for a specific

ring R, one must find a complex that, in addition to ‘computing’ local cohomology,
reflects the structure of R.

(iraded local duality. The importance of the canonical module rests to a large extent
on its role as the dualizing module in Grothendieck’s local duality theorem.

Theorerm 1.7. Let R be a Cohen-Macaulay graded K -algebra of dimension d. Then
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(a) wp X (H,ﬁi(R))V, and
(b) for all finite graded R-modules and all integers i there exist natural homoge-
neous tsomorphisms

(Hﬁ“i(M))V o Ext%(M,wR).

Here MY = @;cp Homg(M_;, K') denotes the graded K-dual of M; MY has a
natural R-module structure. Behind 1.7 there is the fact that R is the (graded)
injective hull of A" as an R-module.

2. HILBERT FUNCTIONS

Let R be a graded K-algebra as above, and M be a graded R-module. If all the
graded components M; are finite-dimensional vector spaces, then we can define the
Hilbert function and the Hilbert series of M; in particular this is possible if M is a
Noetherian or Artinian R-module:

Definition 2.1. Let M be a finite graded R-module. The function H(M,.): Z — Z
with H(M,n) = dimg M, for all n € Z is the Hilbert function of M, and the formal
power series Har(t) = 3,cz H(M,n)t" is the Hilbert series of M.

In the following we shall occasionally have to assume that K is an infinite field.
This is never a problem. The Hilbert function of M ®f L as a graded module over
I L coincides with that of M for all extension fields L of K. Furthermore the
homological properties of M are stable under such extensions; see [1].

Suppose that S is the polynomial ring K[Xy,..., X ] with a grading defined by
deg X; = a;. Then

1
(1 _tal)...(l __tad)'

This follows easily by induction on d.

Hs(t) =

Theorem 2.2. Let R be a graded K -algebra, and M # 0 «a finite graded R-module of
dimension d. Then there exist positive integers ay,...,aq, and Q(t) € Z[t,t71] such
that
Q)
Hy(t) = —7————
Hg:l(l - tal)

I'or the proof we choose a Noether normalization S C R/(Ann M). Then M is
a finite S-module in a natural way, and S = K[X;,...,Xy]. By Hilbert’s syzygy
theorem M has a graded free resolution F, with graded Betti numbers §;;. We
choose Q(t) = °1_, (—1)"(3; Bi;t’), and indeed Hy(t) = Q(t)Hs(t) by the additivity
of the Hilbert function. Since dim M = dim S, M has positive rank over S, and
(1) = rankg M by the additivity of rank.

with  Q(1) > 0.



NORMAL SEMIGROUP RINGS 7

Generating functions of the type occurring in Theorem 2.2 appear frequently in
combinatorics, and one can describe their associated numerical functions very pre-
cisely. A function P: Z — C is called a quasi-polynomial (of period g) if there exist
a positive integer g and polynomials P;, 1 =0,...,g — 1, such that for all n € Z one
has P(n) = P;(n) where n = mg + 1 with 0 <7 < g —1.

Theorem 2.3 (Serre). Let R be a graded K-algebra, and M # 0 a finite graded
l-module of dimension d. Then

(a) there exists a unique quasi-polynomial Py with H(M,n) = Py(n) for all
n > 0; the minimal period of PM divid_es ap---ag;
(b) H(M,n) — Py(n) = "L (1) dimy, Hi (M), for all n € Z;

(¢) one has

deg Hpar(t) =max{n: H(M,n) # Py(n)}
d
=max{n: »_(—1)"dimy HL(M), # 0}.

1=0
(Here deg Hpy(t) denotes the degree of the rational function Hp(t).)

Definition 2.4. (a) The quasi-polynomial Py is called the Hilbert quasi-polynomial
ol M.

(h) The degree a(R) of the rational function Hg(t) is called the a-invariant of the
graded K-algebra R.

By Theorem 2.3, we have a(R) < 0 if and only the equation Pr(n) = H(R,n) holds
[or all n > 0. At least in the Cohen~Macaulay case the a-invariant has a satisfactory
homological interpretation:

Proposition 2.5. Let R be a graded Cohen-Macaulay K -algebra of dimension d.
Then

a(R) = max{i: HL(R); # 0} = —min{i: (wgr): # 0}.
I particular, iof R is Gorenstein, then wr = R(a(R)) (and conversely).

Homogeneous K -algebras. The exponents a; in the denominator of Hps(t) are the de-
grees of the elements generating a Noether normalization of B/(Ann M). As pointed
out above, we may freely assume that K is infinite; by 1.1 we can then choose a
system of parameters among the 1-forms, if R is a homogeneous K -algebra.

Theorem 2.6. Let R be a homogeneous K -algebra, and M a finite graded R-module
of dimension d. Then there exists Qur(t) € Z[t,t™Y] such that
_ Qu()

Hy(t) = 00 with  Qap(1) > 0.
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In particular it follows that the Hilbert quasi-polynomial of M is a true polynomial
now, and therefore one uses the term Hilbert polynomial.

Theorem 2.7. Let R be a homogeneous K-algebra, and M # 0 a finite graded R-
module of dimension d > 0. Then the Hilbert polynomial of M can be written

e(M)
(d—1)

where e(M) > 0 is an integer, namely e(M) = Qp(1).

Py(n) = n=! 4 terms of lower degree.

The number e(M) = Qa(1) is the multiplicity of M. Note that Qp(1) = dimg M
i dim M = 0, and recall that, more generally, Qs(1) is the rank of M over a Noether
normalization of R/(Ann M) generated by 1-forms.

The Hilbert function of the canonical module. The duality between R and wp is also
expressed by the Hilbert function of wg.

Theorem 2.8 (Stanley). Let R be a d-dimensional Cohen-Macaulay graded K -al-
gebra. Then H,,(t) = (=1)*Hp(t™1).

The theorem follows quickly from the description wp = Homg(R,ws) for a Noether
normalization S of R. Since R is a direct sum of shifted copies of 9, it is in fact
sufficient to do the case B = S for which the equation boils down to the identity

fa1+ta B (=1)4

(1_ta1)...(1_tad) (1_t*a1)...(1_t—ad>.

3. NORMAL SEMIGROUP RINGS

Let D C R™ be a convex cone, i.e. a subset closed under the formation of linear
combinations with non-negative coeflicients. The elements z € C' = D N Z"™ form a
semigroup with respect to addition, and therefore

K[C]= K[X{* - X" (21,...,2,) € C] C K[XEY, ..., X3

i~ a well-defined K-algebra. In the following we write X* for X{' .- X, In gen-
eral K'[C] is not a finitely generated K-algebra, and one cannot say much about it.
However, suppose that the cone D is a finitely generated rational cone, i.e. there
exist €1, ....¢, € Q" such that D is the set of non-negative linear combinations of
Cly...y €. Then K[C] looks much more promising.

Theorem 3.1. Suppose that D is a finitely generated rational cone. Then K[C] is

a finitely generated K -algebra and a normal integral domain. One has dim K[C] =
dim D = rank C'.
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The rank of a semigroup C' C Z" is the rank of the subgroup ZC generated by
('. That K[C] is finitely generated is essentially Gordan’s lemma; it says that C is a
finitely generated semigroup if D is a finitely generated rational cone. In order to see
that A[C'] is normal, one uses a description of D that is equivalent to being finitely
generated: D is the intersection of finitely many vector half-spaces,

D=)H}, HY ={veV: {a,v) >0}
=1

here (_, - ) is the scalar product. If D is rational, then the a; can be chosen in Q", and
vice versa: a cone is rational and finitely generated if and only if it is the intersection
ol finitely many rational vector half-spaces H; . Let C; = H;' N Z™ Then it is not
hard to see that
C; = /A &N

as a semigroup. Thus K[C;] =& K[X{', ..., X*!  X"] is a normal ring, and K|[C],
the intersection of the K[C}], is also normal.

When (" C Z" is an arbitrary finitely generated semigroup, then K[C] is called an

affine semigroup ring. It turns out that the rings K[C] introduced above, are exactly
the normal ones among all affine semigroup rings.

Theorem 3.2. Let C be an affine semigroup. Then the following are equivalent:
(a) K[C] is a normal domain;
(b) C' is a normal semigroup, i.e. if mz € C for some z € ZC and m > 0, then
ze ('
() C'=DNOZ" as above.

I'aces and prime ideals. From now on it is tacitly understood that all the cones D
being considered are finitely generated and rational. By C we always denote the
semigroup [ N Z".

A combinatorial object accompanying D is its face lattice F(D): the faces of D
are the intersections

DmHgm---mHg, 7 =0,...,m,

where HP denotes the hyperplane {v € R": (a;,v) = 0} bordering H;". The faces
are partially ordered by inclusion; with this partial order they form a lattice. The
maximal face is D itself, the minimal face is H) N --- N HY.

Let A be the affine subspace of R™ generated by a face F' of D. Then the interior
of D with respect to the subspace topology on A is called the relative interior of F;
we denote it by relint F. To each face F' of D we associate an ideal of K[C] by setting

PBF)=(X":1z2¢ CNF).

%\@ ﬁé:or'm‘;’}? !

e

., 7_» 7 ( »

-
[
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Given an ideal a of K'[C], we say that ais C-graded if a is generated by the monomials
X* contained in a.

Theorem 3.3. (a) For all prime ideals p of K[C] the ideal generated by the mono-
mials in a is a C-graded prime ideal.
(b) The assignment F' — P(F) is a bijection between the set of non-empty faces
of D and the set of C'-graded prime ideals of K[C].

We want to apply the theory of graded rings as developed above to K[C]; this
makes only sense if the grading on K[C'] is compatible with the semigroup structure
of €. A decomposition

=P K[C

1EN
ol the K-vector space K[C] is an admissible grading if K[C] is a graded K-algebra
with respect to this decomposition, and furthermore each component K[C]; has a

basis consisting of finitely many monomials X?. It is not hard to see which K[C] can
he endowed with an admissible grading.

Proposition 3.4. The following are equivalent:

(a) if z€ C and —z € C, then z = 0;
(b) {0} is the minimal face of D (i.e. D has an apez);
(¢) there exists an embedding C — N™ of semigroups for some m > 0;
(d) K[C] has an admissible grading.

It is clear that we may replace C' by D in (a). If the conditions of 3.4 are satisfied,
then (C or D are called positive. Positive cones have cross-sections T

Proposition 3.5. Let D be a positive cone.

(a) Then for each x € R™ with —z ¢ D there exists an affine hyperplane A such
that t € A and T'= AN D is a bounded set generating the cone D.

(b) Such T is a convex polytope, and its faces (including §) correspond bijectively
to the faces of D.

In conjunction with 3.3 the previous proposition shows that the set of C-graded

prime ideals of K'[C] has the same combinatorial structure as the face lattice of a
polytope T.

Cell compleres. A (finite reqular) cell complex is a non-empty topological space X
together with a finite set I' of subsets of X such that the following conditions are
satisfied:

(]) ‘X — UeEF 6;

(11) the subsets e € I' are pairwise disjoint;
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(iii) for each e € T', € # 0 there exists a homeomorphism from a closed i-dimensio-
nal ball B' = {z € R: ||z|| < 1} onto the closure & of ¢ which maps the open
ball (/" = {z € R%: ||z]| < 1} onto e;
(iv) D eT.
By the invariance of dimension the number : in (iii) is uniquely determined by e, and
¢ is called an open i-cell; () is a (—1)-cell. By I'* we denote the set of the i-cells in T'.
The dimension of I is given by dimI' = max{:: I # 0}. It is finite since I' is finite.
One sets |I'| = X. A cell ¢ is a face of the cell ¢ # €' if ¢’ C €, and a subset ¥ of T’
1s a subcomplex if for each e € ¥ all the faces of e are contained in ¥.
The classical examples of cell complexes are convex polytopes P together with their

decomposition P = Uyez(p) relint f. For them the following property, which follows
from (i)-(iv), is an elementary theorem:

(vyif e € 'Fi and ¢ € T""% is a face of e, then there exist exactly two cells ey,
e; € "1 such that e; is a face of e and € is a face of e;.

Let us say that ¢ is an incidence function on T if the following conditions are

satisfied:

(a) to each pair (e, €e’) such that e € T and €' € I"~! for some ¢ > 0, ¢ assigns a
number e(e, €') € {0, +1};

(b) e(e,¢') £0 <= €' is a face of ¢;

(¢) (e, () = 1 for all 0-cells ¢;

(d) if e € I'" and €’ € "% is a face of e, then

e(e,e1)e(er, ') + e(e, ex)e(ez, €’) =0
where e; and ey are as in (v) above.
Lemma 3.6. Let I' be a cell complex. Then there exists an incidence function on .

For a proof see Massey [10] where the incidence numbers ¢(e, ¢') appear as topolog-
ical data determined by orientations of the cells. Let I' be a cell complex of dimension

d — 1, and ¢ an incidence function on I'. We define the augmented oriented chain
complex of I' to be the complex

CI):0 = Coy DChg—-—Co>C1—0

where '
Ci=PZe and )= > eleé)e forecT,
ecl™ efelri—1
1 =0....,d—1. That 9* = 0 follows from the definition of an incidence function and

property (v) of cell complexes. (The notation C(T') is justified since the dependence
of C(I') on ¢ is inessential.) For simplicity of notation we set [H;(I') = H;(C(T)).

The fundamental importance of C~(F) in algebraic topology relies on the fact that
it computes reduced singular homology:
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Theorem 3.7. Let T be a cell complex. Then Hy(T) = Hi(|T|) for all i > 0 (and
H_y (') =0y,

We use 3.7 via the following corollary:

Corollary 3.8. Let I' be a cell complex such that |I'| is homeomorphic to a closed
ball B™. Then H;(I') =0 for alli > —1.

Local cohomology. From now on D is a positive cone. By d we denote the rank of C.
Recall that d equals the Krull dimension of R = K|[(].

We choose an admissible grading on K[C]. Independently of this choice, the ideal
m in R = K[C] generated by the elements X°, ¢ € C'\ {0}, is the irrelevant maxi-
mal ideal. We want to construct a complex ‘computing’ H: (M) that resembles the
combinatorial structure of D as closely as possible.

Fix a cross-section T of D, and let F = F(T') be its face lattice, which we consider
as a cell complex. We denote a face of D and its intersection with T' by corresponding
capital and small letters. Let F' be a face of D. Then we set

RF = R{XZ: 2€CNF}

that is, we form the ring of fractions of R whose denominators are the monomials
i {X7: 2z € CNF} In particular, Rp = K[ZC] is the algebra generated by all
nionomials X* where z belongs to the group ZC generated by C. Let

L' = @ Rp, t=20,...,d,

feft—l
and define d: L'=! — L' by specifying its component
0 if /' ¢ F,
e(f, finat if F' C F;

here ¢ is an incidence function on F. It is clear that

6f/,f: Ry — RF to be {

0= S0 . 54 S 4
15 a complex. That L* is exactly what we want, is shown by the next theorem.

Theorem 3.9. For every K[C]-module M, and all i > 0,
HL(M)= H (L ® M).

The first step in proving the theorem is the verification of the equation H°(L° ®
M) = Hy(M). This amounts to the fact that the ideal generated by the monomials
N7 contained in the 1-faces of D (i.e. the extremal rays of D) generate an m-primary
ideal. This is true because their exponent vectors z generate the cone D.

Next we need that L* ® _ is an exact functor; this follows from the fact that L* is
a complex of flat R-modules.
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Finally we must show that H'(L* ® M) = 0 for all 7 if M is an injective K[C]-
module. It suffices to consider the indecomposable modules E(R/p) where p is a
prime ideal of R = K[C]. (Each injective K[C]-module is the direct sum of indecom-
posables, and each indecomposable injective module is the injective hull of a residue
class ring R/p.) Let G be the face of D such that PB(G) is the C-graded prime ideal
generated by all the monomials in p. Let G = F(g) denote the face lattice of the face
g = (NT of a cross-section 1" of D. The heart of the proof is that

L* ® E(R/p) = Homz (C(¢)(-1), E(R/p)).

(As for graded modules, —1 denotes a shift.) Since g is a convex polytope, it is
homeomorphic to a closed ball. So C(G) is an exact complex. Since C(G) is a complex
of free Z-modules, exactness is preserved in Homz(C(G)(—1), E(R/p)).

Cohen-Macaulay property and canonical module. The modules L* appearing in the
complex L* are direct sums
L'= (LY.,

z€Z™

(L;). being spanned by the copies of the monomial of X* appearing in the direct
summands Rr. The maps of L* respect this decomposition, and in order to compute
its cohomology we analyze each component (L*),. Given z € Z", the crucial point
is to determine those faces F' of D for which (Rp), # 0. As we shall see, this is the
case if and only if the face F' is not ‘visible’ from z.

Let P be a polyhedron in a R-vector space V. Let z, y € V. We say that y is
vistble from @ if y # ¢ and the line segment [z, y] does not contain a point y' € P,
y' # y. A subset S C V is visible if each v € S is visible.

Proposition 3.10. Let P be a polytope in R™ with face lattice F, and z € R™ a point
outside P. Set § = {F € F: F visible from z}. Then S is a subcomplex of F; its
underlying space S = Upes F' is the set of points y € P which are visible from z, and
is homeomorphic to a closed ball.

Lemma 3.11. (Rp). # 0 (and therefore (Rp)., = K) if and only if I is not visible
from z.

Now we can describe the cohomology of L*. In order to have a compact notation,
we set relintC' = C N relint D, and relint(—C) = Z™ N relint(—D). Then, with a
sclf-explaining notation, relint(—C') = —relint C.

Theorem 3.12. (a) If z € relint(—C), then (L*), is isomorphic to 0 — K — 0
with K in homological degree d. Consequently H'(L*), = 0 for 1 # d, and
HY L"), = K = (L"),.
(b) Suppose that z ¢ relint(—C'). Let T be a cross-section of D with face lattice
F,and S ={FNT: F e F(D) visible from z}. Then
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(i) (L*). = Homgz ((C(F)/C(S))(-1), K),
(it) Hi(F) = Hi(S) =0 for all i,
(iii) (H'(L*)). = 0 for all 5.

Part (a) is easy to see: for z € relint(—C) one has z € R if and only if F' = D.
T'he rest requires a careful discussion based on 3.10 and 3.11.

Theorem 3.13. (a) (Hochster) R = K[C] is a Cohen-Macaulay ring, and
(b) (Danilov, Stanley) the ideal I generated by the monomials X¢ with ¢ € relint C
is the graded canonical module of K[C] (with respect to any admissible grad-
ing).

In fact, we have H{(R) = 0 for ¢ = 0,...,d — 1 by 3.9 and 3.12. Therefore
depth R = d by 1.6, and it follows that R is Cohen—Macaulay. For (b) one first shows
that IV is isomorphic as an R-module to K[ZC]/U where the submodule(!) U is the
K -vector subspace spanned by all the monomials X?, z € ZC, z ¢ relint(—C). Thus
["= H:(R), and local duality implies I = wg. “
Corollary 3.14. K[C] is Gorenstein if and only if there exists ¢ € relintC' with f
relint ' = e+ C. < <& . ‘»*"\.\; ‘Q‘?‘? P

X
Combinatorial applications. One of the most beautiful combinatorial applications of
commutative algebra is the study of the Ehrhart function of a convex polytope. The
Ehrhart function counts the lattice points in a polytope and all its multiples, i.e. its
images under the maps z — ma, M € N.

Let P C R™ be a polytope of dimension d. Since P is bounded, we may define its
Ehrhart function by

E(P,m)=#{z€Z" = €P}, meN, m>0, and E(P,0)=1.
m

and its Ehrhart series by
Ep(t) =Y E(P,m)t™.
meN
[t is clear that E(P,m) = #{z € Z": z € mP} where mP = {mp: p € P}. Similarly
as above we set

EX(Pom) = #{z € Z": = € relint P} for m >0, E*(P,0) =0,
) m

and
Eb(t)= Y E*(P,m)t™.
meN
Note that Et(P,m) = #{z € Z": z € relintmP} for m > 0.
We define the cone D C R**' by D = R.{(p,1): p € P}. Then C = DNZ" " is
a subsemigroup of Z"*!. Therefore one may consider the k-algebra k[C]. Suppose
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P is a rational polytope, i.e. the convex hull of finitely many points with rational
coordinates. Then D is a finitely generated rational cone, and K[C] is a normal
semigroup ring. Let us fix a grading on k[C] by assigning to ¢ = (e1,...,cq41) the
degree cqy,. For this grading the Hilbert functions of £[C] and of the ideal I generated
by the monomials X¢, ¢ € relint C, are given by

H(k[C],m)= E(P,m) and H(I,m)= E*(P,m).

The grading under consideration is admissible for £[C], and therefore we may
apply our previous results. Part (b) of the following theorem is Ehrhart’s remarkable
reciprocity law for rational polytopes.

Theorem 3.15 (Ehrhart). Let P C R™ be a d-dimensional rational polytope, d > 0.
Then

(a)
(b)

Ep(t) is a rational function, and there exists a quasi-polynomial q with E( P, m)
= g(m) for all m > 0;
EX(t) = (=) Ep(17"), equivalently

ET(P,m) = (—=1)*E(P,—m) forall m>1
where E(P,—m) = q(—m) is the natural extension of E(P,_).

(a) Since Ep(t) is the Hilbert series of a positively graded Noetherian k-algebra,
it is a rational function. According to 2.3 we must show for the second statement in
(a) that Ep(¢) has negative degree, or, equivalently, that the a-invariant of k[C] is
negative. By 3.13 the ring k[C] is Cohen-Macaulay, and its graded canonical module
is generated by the elements X°, ¢ € relint C. These have positive degrees under the
grading of k[C], and hence a(k[C]) < 0.

(b) By what has just been said, E}(¢) is the Hilbert series of the canonical module
of k[C']. Furthermore, dim k[C'] = d 4+ 1. Thus the first equation is a special case of
2.8. The second equation results from 3,5, E(P,—m)t™ = —FEp(t™!).

The quasi-polynomial ¢ in 3.15 is called the Ehrhart quasi-polynomial of P.

Suppose that P is even an integral polytope, that is, a polytope whose vertex set
}" is contained in Z". Then, in addition to k[C], we may also consider its subalgebra

E[V]=k[X®Y: v V]

Obviously k[V] is a homogeneous k-algebra. Let ¢ € C; then there exist ¢, € Q4 such
that ¢ = 3>, cv quv. If we multiply this equation by a suitable common denominator
¢ and interpret the result in terms of monomials, then we see that (X°¢)¢ € k[V].
Thus k[C] is integral over k[V]. Since it is also a finitely generated k[V]-algebra,
it is even a finite k[V]-module. In particular the Ehrhart quasi-polynomial of P is
a polynomial and therefore called the Ehrhart polynomial. Furthermore k[C] has a
well-defined multiplicity.
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Theorem 3.16. Let P C R™ be an n-dimensional integral polytope, and let k[C] the
normal semigroup ring constructed above. Then

e(k[C]) = n! vol P.
Elementary arguments of measure theory show that the volume of P is

vol P = lim E(—P’ﬂ
m—+00 mm

Being the Hilbert polynomial of a (n + 1)-dimensional k[V]-module, E(P,m) has
degree n. Thus its leading coefficient is given by vol P. On the other hand, it is also
given by e(k[C])/n!.

The fact that K[C] is Cohen-Macaulay and contains its graded canonical module
implies restrictions for the coefficients of the numerator polynomial of the Ehrhart
series of P, the so-called h-vector; see Stanley [12] and Hibi [6].
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