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SEMIGROUP ALGEBRAS AND DISCRETE GEOMETRY

by

Winfried Bruns & Joseph Gubeladze

Abstract. — In these notes we study combinatorial and algebraic properties of affine
semigroups and their algebras: (1) the existence of unimodular Hilbert triangulations
and covers for normal affine semigroups, (2) the Cohen–Macaulay property and num-
ber of generators of divisorial ideals over normal semigroup algebras, and (3) graded
automorphisms, retractions and homomorphisms of polytopal semigroup algebras.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2. Affine and polytopal semigroup algebras . . . . . . . . . . . . . . . . . . . . . . . . 44
3. Covering and normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4. Divisorial linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5. From vector spaces to polytopal algebras . . . . . . . . . . . . . . . . . . . . . . 88
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

1. Introduction

These notes, composed for the Summer School on Toric Geometry at Grenoble,
June/July 2000, contain a major part of the joint work of the authors.
In Section 3 we study a problem that clearly belongs to the area of discrete ge-

ometry or, more precisely, to the combinatorics of finitely generated rational cones
and their Hilbert bases. Our motivation in taking up this problem was the attempt
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44 W. BRUNS & J. GUBELADZE

to understand the normality of affine semigroups (and their algebras). The counter-
example we have found shows that some natural conjectures on the structure of Hilbert
bases do not hold, and that there is no hope to explain normality in terms of formally
stronger properties. Nevertheless several questions remain open: for example, the
positive results end in dimension 3, while the counter-examples live in dimension 6.
Section 4 can be viewed as an intermediate position between discrete geometry

and semigroup algebras. Its objects are the sets T of solutions of linear diophantine
systems of inequalities relative to the set S of solutions of the corresponding homo-
geneous systems: S is a normal semigroup and T can be viewed as a module over
it. After linearization by coefficients from a field, the vector space KT represents a
divisorial ideal over the normal domain K[S] (at least under some assumptions on
the system of inequalities). While certain invariants, like number of generators, can
be understood combinatorially as well as algebraically, others, like depth, make sense
only in the richer algebraic category.
The last part of the notes, Section 5, lives completely in the area of semigroup

algebras. More precisely, its objects, namely the homomorphisms of polytopal semi-
group algebras, can only be defined after the passage from semigroups to algebras.
But there remains the question to what extent the homomorphisms can forget the
combinatorial genesis of their domains and targets. As we will see, the automorphism
groups of polytopal algebras have a perfect description in terms of combinatorial ob-
jects, and to some extent this is still true for retractions of polytopal algebras. We
conclude the section with a conjecture about the structure of all homomorphisms of
polytopal semigroup algebras.
Polytopal semigroup algebras are derived from lattice polytopes by a natural con-

struction. While normal semigroup algebras in general, or rather their spectra, con-
stitute the affine charts of toric varieties, the polytopal semigroup algebras arise as
homogeneous coordinate rings of projective toric varieties. Several of our algebraic
results can therefore easily be translated into geometric theorems about embedded
projective toric varieties. Most notably this is the case for the description of the
automorphism groups.

During the preparation of the final version of these notes the second author was
generously supported by a Mercator visiting professorship of the Deutsche Forschungs-
gemeinschaft.

2. Affine and polytopal semigroup algebras

2.1. Affine semigroup algebras. — We use the following notation: Z, Q, R are
the additive groups of integral, rational, and real numbers, respectively; Z+, Q+ and
R+ denote the corresponding additive subsemigroups of non-negative numbers, and
N = {1, 2, . . .}.
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Affine semigroups. — An affine semigroup is a semigroup (always containing a neu-
tral element) which is finitely generated and can be embedded in Zn for some n ∈ N.
Groups isomorphic to Zn are called lattices in the following.
We write gp(S) for the group of differences of S, i. e. gp(S) is the smallest group (up

to isomorphism) which contains S. Thus every element x ∈ gp(S) can be presented
as s− t for some s, t ∈ S.
If S is contained in the lattice L as a subsemigroup, then x ∈ L is integral over S

if cx ∈ S for some c ∈ N, and the set of all such x is the integral closure SL of S in
L. Obviously SL is again a semigroup. As we shall see in Proposition 2.1.1, it is even
an affine semigroup, and can be described in geometric terms.
By a cone in a real vector space V = Rn we mean a subset C such that C is

closed under linear combinations with non-negative real coefficients. It is well-known
that a cone is finitely generated if and only if it is the intersection of finitely many
vector halfspaces. (Sometimes a set of the form z + C will also be called a cone.) If
C is generated by vectors with rational or, equivalently, integral components, then C
is called rational . This is the case if and only if the halfspaces can be described by
homogeneous linear inequalities with rational (or integral) coefficients.
This applies especially to the cone C(S) generated by S in the real vector space

L⊗ R:

(∗) C(S) = {x ∈ L⊗ R : σi(x) � 0, i = 1, . . . , s}

where the σi are linear forms on L⊗ R with integral coefficients.
We consider a single halfspace

Hi = {x ∈ L⊗ R : σi(x) � 0}.

The semigroup L ∩Hi is isomorphic to Z+ ⊕ Zn−1 where n = rankL.
Note that the cone C(S) is essentially independent of L. The embedding S ⊂ L

induces an embedding gp(S) ⊂ L and next an embedding gp(S) ⊗ R ⊂ L ⊗ R.This
embedding induces an isomorphism of the cones C(S) formed with respect to gp(S)
and L.

Proposition 2.1.1

(a) (Gordan’s lemma) Let C ⊂ L ⊗ R be a finitely generated rational cone (i. e.
generated by finitely many vectors from L⊗Q). Then L∩C is an affine semigroup
and integrally closed in L.

(b) Let S be an affine subsemigroup of the lattice L. Then
(i) SL = L ∩ C(S);
(ii) there exist z1, . . . , zu ∈ SL such that SL =

⋃u
i=1 zi + S;

(iii) SL is an affine semigroup.

Proof. — (a) Note that C is generated by finitely many elements x1, . . . , xm ∈ L. Let
x ∈ L∩C. Then x = a1x1+ · · ·+ amxm with non-negative rational ai. Set bi = �ai�.
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46 W. BRUNS & J. GUBELADZE

Then

(∗) x = (b1x1 + · · ·+ bmxm) + (r1x1 + · · ·+ rmxm), 0 � ri < 1.

The second summand lies in the intersection of L with a bounded subset of C. Thus
there are only finitely many choices for it. These elements together with x1, . . . , xm
generate L ∩ C. That L ∩ C is integrally closed in L is evident.
(b) Set C = C(S), and choose a system x1, . . . , xm of generators of S. Then every

x ∈ L ∩ C has a representation (∗). Multiplication by a common denominator of
r1, . . . , rm shows that x ∈ SL. On the other hand, L∩C is integrally closed by (a) so
that SL = L ∩C.
The elements y1, . . . , yu can now be chosen as the vectors r1x1 + · · · + rmxm ap-

pearing in (∗). There number is finite since they are all integral and contained in a
bounded subset of L ⊗ R. Together with x1, . . . , xm they certainly generate SL as a
semigroup.

See Subsection 4.4 for further results on the finite generation of semigroups.
Proposition 2.1.1 shows that integrally closed affine semigroups can also be defined

by finitely generated rational cones C: the semigroup S(C) = L ∩ C is affine and
integrally closed in L.
We introduce special terminology in the case in which L = gp(S). Then the integral

closure S = Sgp(S) is called the normalization, and S is normal if S = S. Clearly
the semigroups S(C) are normal, and conversely, every normal affine semigroup S has
such a representation, since S = S(C(S)) (in gp(S)).
Suppose that L = gp(S) and that representation (∗) of C(S) is irredundant. Then

the linear forms σi describe exactly the support hyperplanes of C(S), and are therefore
uniquely determined up to a multiple by a non-negative factor. We can choose them
to have coprime integral coefficients (with respect to e1 ⊗ 1, . . . , er ⊗ 1 for some basis
e1, . . . , er of gp(S)), and then the σi are uniquely determined. We call them the
support forms of S, and write

supp(S) = {σ1, . . . , σs}.
The map

σ : S −→ Zs, σ(x) = (σ1(x), . . . , σs(x)),

is obviously a homomorphism that can be extended to gp(S). Obviously Ker(σ) ∩ S

is the subgroup of S formed by its invertible elements: x,−x ∈ C(S) if and only if
σi(x) = 0 for all i.
Let Si = {x ∈ S : σ1(x) + · · ·+ σs(x) = i}. Clearly S =

⋃∞
i=0 Si, Si + Sj ⊂ Si+j

(and S0 = Ker(σ)∩S). Thus σ induces a grading on S for which the Si are the graded
components. If we want to emphasize the graded structure on S, then we call σ(x)
the total degree of x.
We call a semigroup S positive if 0 is the only invertible element in S. It is easily

seen that S is positive as well and that positivity is equivalent to the fact that C(S)
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is a pointed cone with apex 0. Thus σ is an injective map, inducing an embedding
S → Zs+. We call it the standard embedding of S (or S).
One should note that a positive affine semigroup S can even be embedded into

Zr+, r = rank(S), such that the image generates Zr+ as a group. We can assume that
gp(S) = Zr , and the dual cone

C(S)∗ = {ϕ ∈ (Rr)∗ : ϕ(x) � 0 for all x ∈ S}

contains r integral linear forms ϕ1, . . . , ϕr forming a basis of (Zr)∗ (a much stronger
claim will be proved in Subsection 3.3). Then the automorphism Φ = (ϕ1, . . . , ϕr) of
Zr yields the desired embedding. (The result is taken from [Gu2]; this paper discusses
many aspects of affine semigroups and their algebras not covered by our notes).
If S is positive, then the graded components Si are obviously finite. Moreover,

every element of S can be written as the sum of irreducible elements, as follows by
induction on the total degree. Since S is finitely generated, the set of irreducible
elements is also finite. It constitutes the Hilbert basis Hilb(S) of S; clearly Hilb(S) is
the uniquely determined minimal system of generators of S. For a cone C the Hilbert
basis of S(C) is denoted by Hilb(C) and called the Hilbert basis of C.
Especially for normal S the assumption that S is positive is not a severe restriction.

In this case S0 (notation as above) is the subgroup of invertible elements of S, and
the normality of S forces S0 to be a direct summand of S. Then the image S′ of S
under the natural epimorphism gp(S) → gp(S)/S0 is a positive normal semigroup.
Thus we have a splitting

S = S0 ⊕ S′.

Semigroup algebras. — Now letK be a field. Then we can form the semigroup algebra
K[S]. Since S is finitely generated as a semigroup, K[S] is finitely generated as a K-
algebra. When an embedding S → Zn is given, it induces an embedding K[S] →
K[Zn], and upon the choice of a basis in Zn, the algebra K[Zn] can be identified with
the Laurent polynomial ring K[X±1

1 , . . . , X±1
n ]. Under this identification, K[S] has

the monomial basis Xa, a ∈ S ⊂ Zn (where we use the notation Xa = Xa11 · · ·Xan
n ).

If we identify S with the semigroup K-basis of K[S], then there is a conflict of
notation: addition in the semigroup turns into multiplication in the ring. The only
way out would be to avoid this identification and always use the exponential notation
as in the previous paragraph. However, this is often cumbersome. We can only ask
the reader to always pay attention to the context.
It is now clear that affine semigroup algebras are nothing but subalgebras of

K[X±1
1 , . . . , X±1

n ] generated by finitely many monomials. Nevertheless the abstract
point of view has many advantages. When we consider the elements of S as members
of K[S], we will usually call them monomials . Products as with a ∈ K and s ∈ S are
called terms .
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The Krull dimension dimK(S) of K[S] is given by rankS = rankgp(S), since
rankS is obviously the transcendence degree of the quotient field QF(K[S]) =
QF(K[gp(S)]) over K. (For standard notions of commutative algebra we refer the
reader to Bruns and Herzog [BH], Eisenbud [Ei] or Matsumura [Ma].)
The semigroup algebra K[S] is a special type of graded object. Therefore we

introduce some terminology concerning graded rings and modules. LetG be an abelian
group. A G-grading on a ring R is a decomposition R =

⊕
g∈GRg of abelian groups

such that RgRh ⊂ Rg+h for all g, h ∈ G, and R (together with the grading) is called a
G-graded ring. A G-grading on an R-module M is a decomposition M =

⊕
h∈GMh

such that RgMh ⊂ Mg+h for all g, h ∈ G. If H ⊂ G is a semigroup, then we may
say that R is H-graded if Rg = 0 for g /∈ H . A positively graded algebra R over a
field K is Z-graded with Ri = 0 for i < 0 and R0 = K. A grading (without further
qualification of G) is usually a Z-grading. A multigrading is a grading by a finitely
generated abelian group.
If S is positive, then Hilb(S) is a minimal set of generators for K[S]. Moreover,

the total degree on S induces a grading of K[S] that under the standard embedding
by σ = (σ1, . . . , σs) is just the grading inherited from the grading by total degree
on K[Zs+] = K[Y1, . . . , Ys]. The embedding K[S] ⊂ K[Y1, . . . , Ys] is also called the
standard embedding if S is positive. Note that K[S] is a positively graded K-algebra
for positive S and the total degree.
The reader should note that the usage of the terms “integral over”, “integral clo-

sure”, “normal”and“normalization”is consistent with its use in commutative algebra.
So K[SL] is the integral closure of K[S] in the quotient field QF(K[L]) of K[L]: it is
generated by elements integral over K[S], and it is integrally closed in QF(K[L]). In
fact, K[SL] is the intersection of the algebras

K[Hi ∩ L] ∼= K[Z+ ⊕ Zn−1] ∼= K[Y, Z±1
1 , . . . , Z±1

n−1].

Each of them is integrally closed in its field of fractions QF(K[L]).
If S is normal, then one has a splitting S = S0 ⊕ S′ as discussed above. It induces

an isomorphism

K[S] = K[S0]⊗K[S′].

Therefore K[S] is a Laurent polynomial extension of K[S′]. Since Laurent polyno-
mial extensions preserve essentially all ring-theoretic properties, it is in general no
restriction to assume that S is positive (if it is normal).

Monomial prime ideals. — The prime ideals inK[S] that are generated by monomials
can be easily described geometrically. Let F be a face of C(S), i. e. the intersection of
C(S) with some of its support hyperplanes. The ideal generated by all the monomials
x ∈ S that do not belong to F , has exactly these monomials as a K-basis. Thus there
is a natural sequence

K[F ∩ S] ιF−→ K[S] πF−−→ K[F ∩ S]

SÉMINAIRES & CONGRÈS 6
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where ιF is the embedding induced by F ∩S ⊂ S, and πF is the K-linear map sending
all elements in F ∩ S to themselves and all other elements of S to 0. Obviously πF is
a K-algebra homomorphism, and πF ◦ ιF is the identity on K[F ∩ S]. It follows that

pF = KerπF

is a prime ideal in K[S], and it is not hard to show that the pF are in fact the only
monomial prime ideals in K[S] (for example, see [BH, 6.1.7]).
Let R be a commutative noetherian ring. For a prime ideal p of R one sets

height p = dimRp, and for an ideal in general

height I = min{height p : p ⊃ I}.

If R is a domain finitely generated over a field, then height I = dimR − dimR/I for
all ideals I. This equation implies

height pF = rankS − dimF.

It follows from general principles in the theory of graded rings, that every minimal
prime overideal of a monomial ideal I ⊂ K[S] is itself generated by monomials, and
thus is one of the ideals pF .
If F is a facet (i. e. a face of dimension equal to rankS − 1), then pF is a height 1

prime ideal. If S is normal, then pF is a divisorial prime ideal, and we will also write
(especially in Section 5)

Div(F ) for pF .

Inversion of monomials. — Let us finally discuss the inversion of monomials. Let
S be an affine semigroup embedded into the lattice L = gp(S). Then K[S][x−1] is
again a semigroup algebra, namely K[S[−x]] where S[−x] is the subsemigroup of L
generated by S and −x.
The structure of S[−x] has an easy description if S is normal. Then

S[−x] = {y ∈ L : σi(y) � 0 if σi(x) = 0, i = 1, . . . , s}

where again supp(S) = {σ1 . . . , σs}. In fact, the inclusion ⊂ is evident, and for the
converse one observes that y +mx ∈ S for m� 0 whenever all the inequalities hold.
Namely, σi(y +mx) � 0 for all i and m� 0. It follows that S[−x] is again a normal
affine semigroup whose support hyperplanes are those support hyperplanes of S that
contain x.
We call x ∈ S an interior element (or monomial) if x lies in the interior of the cone

C(S); in other words: if σi(x) > 0 for all support forms σi of S. Then S[−x] is just
L, and K[S][x−1] is the Laurent polynomial ring K[L].
The inversion of an extreme element x ∈ S is further discussed in Subsection 3.5.

(Of course, an element of S is called extreme if it belongs to an extreme ray of C(S).)
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2.2. Polytopal semigroup algebras. — Let M be a subset of Rn. We set

LM =M ∩ Zn,

EM = {(x, 1): x ∈ LM} ⊂ Zn+1;

so LM is the set of lattice points in M , and EM is the image of LM under the embed-
ding Rn �→ Rn+1, x �→ (x, 1). Very frequently we will consider Rn as a hyperplane of
Rn+1 under this embedding; then we may identify LM and EM . By SM we denote
the subsemigroup of Zn+1 generated by EM .
Now suppose that P is a (finite convex) lattice polytope in Rn, where ‘lattice’ means

that all the vertices of P belong to the integral lattice Zn. The affine semigroups of
the type SP will be called polytopal semigroups. A lattice polytope P is normal if SP
is a normal semigroup. In order to simplify notation we set C(P ) = C(SP ).

P

C(P )

Figure 1. Vertical cross-section of a polytopal semigroup

Let K be a field. Then
K[P ] = K[SP ]

is called a polytopal semigroup algebra or simply a polytopal algebra. Since rankSP =
dim(P ) + 1 and dimK[P ] = rankSP as remarked above, we have

dimK[P ] = dim(P ) + 1.

Note that SP (or, more generally, SM ) is a graded semigroup, i. e. SP =
⋃∞
i=0(SP )i

such that (SP )i + (SP )j ⊂ (SP )i+j ; its i-th graded component (SP )i consists of all
the elements (x, i) ∈ SP . Therefore R = K[P ] is a graded K-algebra in a natural
way. Its i-th graded component Ri is the K-vector space generated by (SP )i. The
elements of EP = (SP )1 have degree 1, and therefore R is a homogeneous K-algebra
in the terminology of Bruns and Herzog [BH]. The defining relations of K[P ] are the
binomials representing the affine dependencies of the lattice points of P . Some easy
examples:

Examples 2.2.1
(a) P = conv(1, 4) ∈ R1. (By conv(M) we denote the convex hull of M .) Then

P contains the four lattice points 1, 2, 3, 4, and the relations of the corresponding
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generators of K[P ] are given by

X1X3 = X2
2 , X1X4 = X2X3, X2X4 = X2

3 .

(b) P = conv
(
(0, 0), (0, 1), (1, 0), (1, 1)

)
. The lattice points of P are exactly the 4

vertices, and the defining relation of K[P ] is X1X4 = X2X3.
(c) P = conv

(
(1, 0), (0, 1), (−1,−1)

)
. There is a fourth lattice point in P , namely

(0, 0), and the defining relation is X1X2X3 = Y 3 (in suitable notation).

Figure 2

Note that the polynomial ring K[X1, . . . , Xn] is a polytopal algebra, namely
K[∆n−1] where ∆n−1 denotes the (n− 1)-dimensional unit simplex.

Remark 2.2.2. — If P and P ′ are two lattice polytopes in Rn that are integral-affinely
equivalent, then SP ∼= SP ′ .

Integral-affine equivalence means that P is mapped onto P ′ by some affine transfor-
mation ψ ∈ Aff(Rn) carrying Zn onto Zn. The remark follows from the fact that such
an integral-affine transformation of Rn can be lifted to (a uniquely determined) linear
automorphism of Rn+1 given by a matrix α ∈ GLn+1(Z). (Of course, we understand
that Rn is embedded in Rn+1 by the assignment x �→ (x, 1)).
Next we describe the normalization of a semigroup algebra that is ‘almost’ a poly-

topal semigroup algebra.

Proposition 2.2.3. — Let M be a finite subset of Zn. Let CM ⊂ Rn+1 be the cone
generated by EM . Then the normalization of R = K[SM ] is the semigroup algebra
R = K[gp(SM )∩CM ]. Furthermore, with respect to the natural gradings of R and R,
one has R1 = R1 if and only if M = P ∩ Zn for some lattice polytope P .

Proof. — It is an elementary observation that G∩C is a normal semigroup for every
subgroup G of Rn+1 and that every element x ∈ gp(SM ) ∩ C satisfies the condition
cx ∈ SM for some c ∈ N.
Consider Rn as a hyperplane in Rn+1 as above. Then the degree 1 elements of

gp(SM ) ∩C are exactly those in the lattice polytope generated by gp(SM ) ∩C ∩Rn.
This implies the second assertion.

The class of polytopal semigroup algebras can now be characterized in purely ring-
theoretic terms.
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Proposition 2.2.4. — Let R be a domain. Then R is (isomorphic to) a polytopal semi-
group algebra if and only if it has a grading R =

⊕∞
i=0Ri such that

(i) K = R0 is a field, and R is a K-algebra generated by finitely many elements
x1, . . . , xm ∈ R1;

(ii) the kernel of the natural epimorphism ϕ : K[X1, . . . , Xm] → R, ϕ(Xi) = xi, is
generated by binomials Xa−Xb where Xa = Xa11 . . .Xam

m for a = (a1, . . . , am) ∈
Zm+ ;

(iii) R1 = R1 where R is the normalization of R (with the grading induced by that
of R).

Proof. — We have seen above that a polytopal semigroup algebra has properties (i)
and (iii). Let EM = {x1, . . . , xm}. Then the kernel IP of the natural projection
K[X1, . . . , Xm] �→ K[x1, . . . , xm], Xi �→ xi, is generated by binomials (see Gilmer
[Gi], §7).
Conversely, a ring with property (ii) is a semigroup algebra over K with semigroup

H equal to the quotient of Zm+ modulo the congruence relation defined by the pairs
(a,b) associated with the binomial generators of Kerϕ ([Gi], §7); in particular, H
is finitely generated. Since R is a graded domain, H is cancellative and torsion-
free, and 0 is its only invertible element. Thus it is a positive affine semigroup and
can be embedded in Zn+ for a suitable n by its standard embedding. Thus we may
consider x1, . . . , xm as points of Zn+. Set x

′
i = (xi, 1) ∈ Zn+1

+ and S equal to the
semigroup generated by the x′i. We claim that R is isomorphic to K[S]. In fact, let
ψ : K[X1, . . . , Xm] → K[S] be the epimorphism given by ψ(Xi) = x′i. We obviously
have Kerψ ⊂ Kerϕ, but the converse inclusion is also true: if Xa −Xb is one of the
generators of Kerϕ, then Xa and Xb have the same total degree, and therefore they
are in Kerψ, too.
Finally it remains to be shown that x′1, . . . , x

′
n are exactly the lattice points in

the polytope spanned by them. This, however, follows directly from (iii) and 2.2.3
above.

It is often useful to replace a polytope P by a multiple cP with c ∈ N. The lattice
points in cP can be identified with the lattice points of degree c in the cone C(SP ); in
fact, the latter are exactly of the form (x, c) where x ∈ LcP . We quote part of Bruns,
Gubeladze and Trung [BGT1, 1.3.3]:

Theorem 2.2.5. — Let P be a lattice polytope. Then cP is normal for c � dimP − 1.

Polytopal semigroup algebras appear as the coordinate rings of projective toric
varieties. We will discuss this connection in Subsection 5.5.
We will indicate in Subsection 3.1 that lattice polytopes of dimension � 2 are

always normal. In [BG2] the reader can find many concrete examples of normal and
non-normal polytopes of dimension 3.
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We have started the investigation of polytopal semigroup algebras in our joint paper
with Ngo Viet Trung [BGT1]. It contains several themes and results mentioned only
marginally or not at all in these notes, for example the Koszul property of polytopal
semigroup algebras or a detailed investigation of the multiples cP .

2.3. Divisor class groups. — An extremely useful tool in the exploration of a
normal domain R is its divisor class group Cl(R). For the general theory we refer the
reader to Fossum [Fo]. In the case of a normal semigroup algebra the computation of
the divisor class group is very easy, and the divisor class group carries a great deal of
combinatorial information.
Let R = K[S] be a normal affine semigroup algebra. Again we set supp(S) =

{σ1, . . . , σs}. Furthermore we let Fi denote the facet of C(S) corresponding to σi and
set pi = pFi . As we have seen in Subsection 2.1, the pi are exactly the monomial
height 1 prime ideals of R.

Theorem 2.3.1

(a) The divisor class group Cl(R) is generated by the classes of the prime ideals
p1, . . . , ps.

(b) Each divisorial ideal of R is isomorphic to an ideal p
(a1)
1 ∩ · · · ∩ p

(as)
s , ai ∈ Z,

i = 1, . . . , s.
(c) The support form σi extends to the discrete valuation of the quotient field of R

associated with the prime ideal pi.
(d) p

(a1)
1 ∩ · · · ∩ p

(as)
s has a K-basis by the monomials x ∈ L such that σi(x) � ai

for all i.
(e) p

(a1)
1 ∩ · · · ∩ p

(as)
s and p

(b1)
1 ∩ · · · ∩ p

(bs)
s are isomorphic R-modules if and only if

there exists z ∈ L with (b1, . . . , bs) = σ(z) + (a1, . . . , as).
(f)

Cl(R) = Zs/σ(L).

Proof. — (a) Let x be an interior monomial. As we have seen in Subsection 2.1,
the ring R[x−1] is just a Laurent polynomial ring over K and therefore factorial. By
Nagata’s theorem [Fo, 7.1] this implies

Cl(R) = Z[p1] + · · ·+ Z[ps].

since p1, . . . , ps are exactly the minimal prime ideals of x.
(b) is just a re-statement of (a), since two divisorial ideals belong to the same

divisor class if and only if they are isomorphic R-modules.
(c) Fix i and let f ∈ R be an arbitrary element. We write it as a K-linear

combination of monomials and let v(f) be the minimum over σi(x) for the monomials
x of f . It is then easy to check that v is a valuation. It obviously extends σi, and we
will write σi for v in the following.
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(d) follows immediately from (c) since p
(ai)
i is the ideal of all f ∈ R such that

σi(f) � ai.
(e) Two (fractional) monomial ideals I and J are isomorphic if and only if there

exists an element z ∈ gp(S) with J = zI.
(f) This follows immediately from (e).

The algebra R is the “linearization” (with coefficients in K) of the set of solutions
to the homogeneous system

σi(x) � 0
of linear diophantine inequalities: its monomial basis is given by the set of solutions.
The theorem shows that the divisorial ideals represent the “linearizations” of the
associated inhomogeneous systems. We will further pursue this theme in Section 4.

3. Covering and normality

3.1. Introduction. — In this section we will investigate the question whether the
normality of an positive affine semigroup can be characterized in terms of combina-
torial conditions on its Hilbert basis. A very natural sufficient condition is (UHC) or
unimodular Hilbert covering:

(UHC) S is the union (or covered by) the subsemigroups generated by the unimodular
subsets of Hilb(S).

Here a subset X of a lattice L is called unimodular if it is a basis of L. In (UHC)
L is gp(S). It is easy to see that (UHC) implies normality:

Proposition 3.1.1. — If S has (UHC), then it is normal. More generally, if S is the
union of normal subsemigroups Si such that gp(Si) = gp(S), then S is also normal.

This follows immediately from the definition of normality (one can also give a
relative version in terms of integral closure).
For polytopal semigroups (UHC) has a clear geometric interpretation. Let P ∈ Rn

be a lattice polytope whose lattice points generate Zn affinely (that is, for some (and
therefore every) x0 ∈ P ∩ Zn the differences x− x0, x ∈ P ∩ Zn, generate the lattice
Zn). This is no essential restriction, since we can shrink the lattice if necessary. Then
a subset X of Hilb(S) is unimodular if and only if the corresponding lattice points of
P generate Zn affinely, or, equivalently, the simplex spanned by them has the smallest
possible Euclidean volume 1/n!, or normalized volume 1. Such simplices are likewise
called unimodular .
Below we will frequently use the fact that any lattice polytope admits a triangu-

lation into empty lattice simplices: a lattice polytope P ⊂ Rn is empty, if P ∩ Zn

consists exactly of the vertices of P .

SÉMINAIRES & CONGRÈS 6
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Lattice polygons , i. e. lattice polytopes of dimension � 2 can even be triangulated
into unimodular lattice simplices, since a lattice simplex of dimension � 2 that con-
tains no lattice points other than its vertices is necessarily unimodular, as follows
from Pick’s theorem. Thus polytopes of dimension � 2 are automatically normal. A
natural question: If P is normal, is it covered by unimodular lattice simplices?

Figure 3. Triangulation of a lattice polygon

Since normal affine semigroups are exactly of the form S(C) for finitely generated
rational cones C, (UHC) has an interpretation in terms of discrete geometry also
in the general case, namely: Is a finitely generated rational cone C covered by the
unimodular simplicial subcones that are generated by subsets of Hilb(S(C))?
As a conjecture, (UHC) appears first in Sebö [Se, Conjecture B]. We will present

a 6-dimensional counterexample to Sebö’s conjecture in Subsection 3.6, in which we
also describe an algorithm deciding (UHC).
The major positive result supporting (UHC) had been shown by Sebö [Se] and,

independently, by Aguzzoli and Mundici [AM] and Bouvier and Gonzalez-Sprinberg
[BoGo]: every 3-dimensional rational cone admits a triangulation (or partition) into
unimodular simplicial subcones generated by elements of Hilb(C). We will discuss
this result in Subsection 3.3. (For the cones C(SP ), P a lattice polytope of dimension
� 2, this has been indicated above.) This is, of course, a much stronger property
than (UHC). However, [BoGo] also describes a 4-dimensional cone without such a
triangulation.
For algebraic geometry triangulations into simplicial subcones (whose one-dimen-

sional faces are not necessarily spanned by elements of Hilb(C)) are important for the
construction of equivariant desingularizations of toric varieties (see [Oda]).
Triangulations also provide the connection between discrete geometry and Gröbner

bases of the binomial ideal defining a semigroup algebra; see Sturmfels [Stu] for this
important and interesting theme.
Another positive result in the polytopal case has been proved in [BGT1, 1.3.1]

and is reproduced in Subsection 3.4: the homothetic multiple cP satisfies (UHC)
for c � 0, regardless of dimP . (It is even known that dP has a triangulation into
unimodular simplices for some d, but the question whether such a triangulation exists
for all sufficiently large d seems to be open; see Kempf, Knudsen, Mumford, and
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Saint–Donat [KKMS].) For elementary reasons one can take c = 1 in dimension 1
and 2, and it was communicated by Ziegler that c = 2 suffices in dimension 3; see
Kantor and Sarkaria [KS] where it shown that 4P has a unimodular triangulation for
all 3-dimensional lattice polytopes. However, in higher dimension no effective lower
bound for c seems to be known. (In contrast, cP is normal for c � dimP − 1; see
Theorem 2.2.5 .) Our counterexample to (UHC) is in fact a normal semigroup of
type SP where P is a 5-dimensional lattice polytope. Thus the question about the
unimodular covering of normal polytopes has a negative answer.
A natural variant of (UHC), and weaker than (UHC), is the existence of a free

Hilbert cover:

(FHC) S is the union (or covered by) the subsemigroups generated by the linearly
independent subsets of Hilb(S).

For (FHC) – in contrast to (UHC) – it is not evident that it implies the normality
of the semigroup. Nevertheless it does so, as we will see in Subsection 3.7. A formally
weaker – and certainly the most elementary – property is the integral Carathéodory
property:

(ICP) Every element of S has a representation x = a1s1+ · · ·+ amsm with ai ∈ Z+,
si ∈ Hilb(C), and m � rankS.

Here we have borrowed the well-motivated terminology of Firla and Ziegler [FZ]:
(ICP) is obviously a discrete variant of Carathéodory’s theorem for convex cones. It
was first asked in Cook, Fonlupt, and Schrijver [CFS] whether all cones have (ICP)
and then conjectured in [Se, Conjecture A] that the answer is ‘yes’.
In joint work with M. Henk, A. Martin and R. Weismantel it has been shown that

our counterexample to (UHC) also disproves (ICP) (see [BGHMW]). Thus none of
the covering properties above is necessary for the normality of affine semigroups.
Later on we will use the representation length

ρ(x) = min{m | x = a1s1 + · · ·+ amsm, ai ∈ Z+, si ∈ Hilb(S)}

for an element x of an affine semigroup S. If ρ(x) � m, we also say that x is m-
represented. In order to measure the deviation of S from (ICP), we introduce the
notion of Carathéodory rank of an affine semigroup S,

CR(S) = max{ρ(x) | x ∈ S}.

In [BG3] we treat some variants of this notion, called asymptotic and virtual Cara-
théodory rank. See also [BGT2], where algorithms for the computation of these
Carathéodory ranks (for arbitrary S) have been developed.
A short introduction to the theme of this section has been given in Bruns [Bru].
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3.2. An upper bound for Carathéodory rank. — Let p1, . . . , pn be different
prime numbers, and set qi =

∏
i�=j pi. Let S be the subsemigroup of Z+ generated

by q1, . . . , qn. Since gcd(q1, . . . , qn) = 1, there exists an m ∈ Z+ with u ∈ S for all
u � m. Choose u � m such that u is not divisible by pi, i = 1 . . . , n. Then all the
qi must be involved in the representation of u by elements of Hilb(S). This example
shows that there is no bound of CR(S) in terms of rankS without further conditions
on S.
For normal S there is a linear bound for CR(S) as given by Sebö [Se]:

Theorem 3.2.1. — Let S be a normal positive affine semigroup of rank � 2. Then
CR(S) � 2(rank(S)− 1).

For the proof we denote by C′(S) the convex hull of S � {0} (in gp(S)⊗R). Then
we define the bottom B(S) of C′(S) by

B(S) =
{
x ∈ C′(S) : [0, x] ∩ C′(S) = {x}

}
([0, x] = conv(0, x) is the line segment joining 0 and x). In other words, the bottom
is exactly the set of points of C′(S) that are visible from 0 (see Figure 4).

C′(S)

Figure 4. The bottom

Lemma 3.2.2

(a) Let H be a support hyperplane of C′(S). Then H ∩ C′(S) is compact if and
only if 0 /∈ H. The non-compact facets of C′(S) are the intersections C′(S)∩G
where G is a support hyperplane of C(S).

(b) Let F be a compact facet of C′(S). Then F = conv(Hilb(S)∩F ). In particular,
C′(S) has only finitely many (compact) facets.

(c) B(S) is the union of the compact facets of C′(S).
(d) B(S) ∩ S ⊂ Hilb(S).
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Proof. — (a) Set F = H ∩C′(S). Clearly ax ∈ C′(S) for every x ∈ C′(S) and a ∈ R,
a > 1. Therefore F cannot be compact if 0 ∈ H .
Conversely, suppose that 0 /∈ H . Then we choose a linear form γ with

H = {x : γ(x) = a} for some a ∈ R and γ(x) � a for x ∈ C′(S). By hypoth-
esis a �= 0, and it follows that a > 0. Every y ∈ F is a linear combination
y =

∑m
i=1 bizi with z1, . . . , zm ∈ S, a1, . . . , am � 0, and

∑m
i=1 bi = 1. It follows

immediately that z1, . . . , zm ∈ H , and furthermore that z1, . . . , zm ∈ Hilb(S). Thus
F = H ∩ conv(Hilb(S)) is compact.
Clearly if H is a support hyperplane intersecting C′(S) in a facet and containing

0, then it also a support hyperplane of C(S) intersecting C(S) in a facet.
(b) has just been proved, and (c) and (d) are now obvious.

Let H be a support hyperplane intersecting C′(S) in a compact facet. Then there
exists a unique primitive Z-linear form γ on gp(S) such that γ(x) = a > 0 for all
x ∈ H (after the extension of γ to gp(S)⊗R). Since Hilb(S)∩H �= ∅, one has a ∈ Z.
We call γ the basic grading of S associated with the facet H ∩ C′(S) of C′(S).

Proof of Theorem 3.2.1. — As we have seen above, the bottom of S is the union
of finitely many lattice polytopes F , all of whose lattice points belong to Hilb(S).
We now triangulate each F into empty lattice subsimplices. Choose x ∈ S, and
consider the line segment [0, x]. It intersects the bottom of S in a point y belonging
to some simplex σ appearing in the triangulation of a compact facet F of C′(S). Let
z1, . . . , zn ∈ Hilb(S), n = rank(S), be the vertices of σ. Then we have

x = (a1z1 + · · ·+ anzn) + (q1z1 + · · ·+ qnzn), ai ∈ Z+, qi ∈ Q, 0 � qi < 1,

as in the proof of Gordan’s lemma. Set x′ =
∑n
i=1 qizi, let γ be the basic grading

of S associated with F , and a = γ(y) for y ∈ F . Then γ(x′) < na, and at most
n − 1 elements of Hilb(S) can appear in a representation of x′. This shows that
CR(S) � 2n− 1.
However, this bound can be improved. Set x′′ = z1 + · · ·+ zn − x′. Then x′′ ∈ S,

and it even belongs to the cone generated by z1, . . . , zn. If γ(x′′) < a, one has x′′ = 0.
If γ(x′′) = a, then x′′ is a lattice point of σ. By the choice of the triangulation this
is only possible if x′′ = xi for some i, a contradiction. Therefore γ(x′′) > a, and so
γ(x′) < (n− 1)a. It follows that CR(S) � 2n− 2.

The symmetry argument on which the improvement by 1 is based is especially
useful in low dimensions, as we will see in the next subsection.
In view of Theorem 3.2.1 it makes sense to set

CR(n) = max
{
CR(S) : S is normal positive and rankS = n

}
.

With this notion we can reformulate Theorem 3.2.1 as CR(n) � 2(rank(S) − 1). On
the other hand, the counterexample S6 to (ICP) presented in Subsection 3.6 implies
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that

CR(n) �
⌊
7
6
n

⌋
.

In fact, rankS6 = 6 and CR(S6) = 7. Therefore suitable direct sums S6⊕· · ·⊕S6⊕Z
p
+

attain the lower bound just stated.
An improvement of both the upper and the lower bound for CR(n) would be very

interesting. It certainly requires a better understanding of Hilbert bases.

3.3. Dimensions 1,2,3. — Let x1, . . . , xn be linearly independent elements of Zn

and let C be the cone spanned by them. Then each y ∈ S = S(C) has a representation

y = (a1x1 + · · ·+ anxn) + (q1x1 + · · ·+ qnxn), ai ∈ Z+, qi ∈ Q, 0 � qi < 1.

Following Sebö we collect the second summands in the set

par(x1, . . . , xn) = Zn ∩ {q1x1 + · · ·+ qnxn : qi ∈ Q, 0 � qi < 1}.

The notation par is suggested by the fact that its elements are exactly the lattice
points in the semi-open parallelepiped spanned by x1, . . . , xn.

Lemma 3.3.1. — The set par(x1, . . . , xn) contains exactly one representative from
each residue class of Zn modulo U = Zx1 + · · ·+ Zxn. Therefore

#par(x1, . . . , xn) = #(Zn/U) = | det(x1, . . . , xn)|.

Proof. — The first statement is evident and it implies the first equation. The second
equation results from the elementary divisor theorem.

Remark 3.3.2. — Clearly Hilb(S) ⊂ {x1, . . . , xn}∪par(x1, . . . , xn) (with the notation
above). This is used in [BK] for an algorithm computing Hilbert bases. A cone
generated by elements y1, . . . , ym is first triangulated into simplicial subcones spanned
by linearly independent elements x1, . . . , xn ∈ {y1, . . . , ym}. For each of the subcones
the set par(x1, . . . , xn) is formed, and from their union and {y1, . . . , ym} the Hilbert
basis is selected by checking irreducibility.

A positive affine semigroup of rank 1, for which we can assume that gp(S) = Z, is
either contained in Z− or Z+. If it is normal, then it must contain −1 or 1, so that
S ∼= Z+ is free.
In dimension 2 the situation is still very simple:

Proposition 3.3.3. — Let S ⊂ Z2 = gp(S) be a positive affine semigroup of rank 2.
Then Hilb(S) = S ∩B(S), and C(S) has a (uniquely determined) unimodular Hilbert
triangulation.

Proof. — The bottom B(S) is a broken line. It has exactly one triangulation into
empty lattice line segments. It is enough to show that the endpoints x, y of each of the
line segments are a basis of Z2. By Lemma 3.3.1 this is equivalent to #par(x, y) = 1.
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Suppose that z ∈ par(x, y), z �= 0. Then z = ax + by with a, b ∈ Q, 0 < a, b < 1,
and x+ y− z ∈ par(x, y) as well. However, one of the points z or x+ y− z must lie in
the interior of the simplex conv(0, x, y) or the interior of the line segment [x, y]. This
is impossible since x and y span an empty line segment in the bottom of S.

Before we consider dimension 3, let us observe that it is always possible to triangu-
late a cone generated by finitely many vectors x ∈ Zn into simplicial subcones each of
which is spanned by a basis of Zn. Let y1, . . . , ym ∈ Zn generate the cone C. Then we
first triangulate C into simplicial subcones σ each of which is spanned by a linearly
independent subset {x1, . . . , xn} of {y1, . . . , ym}. If x1, . . . , xn is not a basis of Zn,
we choose an element z ∈ par(x1, . . . , xn), z �= 0, and replace σ by the union of the
subcones spanned by

Mi = {x1, . . . , xi−1, z, xi+1, . . . , xn}, qi �= 0, i = 1, . . . , n,

where z = q1x1 + · · ·+ qnxn. One has

| det(Mi)| = qi| det(x1, . . . , xn)| < | det(x1, . . . , xn)|

If qi = 0 for some i, then z may belong to another simplicial subcone σ′ �= σ. But σ′

can be subdivided by z as well so that the subdivisions coincide on σ ∩ σ′.
This subdivision procedure must stop after finitely many steps, since in each step

a simplicial subcone is replaced by the union of strictly “smaller” subcones. We set

sdiv(x1, . . . , xn) = par(x1, . . . , xn)� {0}.

In general one cannot achieve that all vectors z used in the subdivision algorithm
belong to Hilb(S), S = S(C). As mentioned already, there is a counterexample in
dimension 4 [BoGo].
However, in dimension 3 the elements of Hilb(S) suffice for the subdivision. We

first describe the Hilbert basis in dimension 3.

Proposition 3.3.4. — Let S be a positive normal affine semigroup and x ∈ S, x �= 0. If

γ(x) < 2min{γ(y) : y ∈ S}

for some basic grading γ of S, then x ∈ Hilb(S). If rank(S) � 3, this condition is
also necessary for x ∈ Hilb(S).

Proof. — The sufficiency of the condition is trivial. Suppose that rankS = 3 and
choose x ∈ S. The line segment [0, x] meets the bottom of S in one of its facets
F . We triangulate F into empty lattice subsimplices. Then [0, x] meets one of the
triangles σ, say σ = conv(x1, x2, x3), and x = a1x1 + a2x2 + a3x3 + x′ with ai ∈ Z+

and x′ ∈ par(x1, x2, x3).
Let γ be the basic grading associated with F . Then

γ(xi) = min{γ(y) : y ∈ S} = a
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Clearly γ(x′) < 3a. It is enough to show that x′ = 0 or γ(x′) < 2a. But this follows
from the symmetry argument applied for the proof of Theorem 3.2.1: If x′ �= 0 and
γ(x′) � 2a, then 0 < γ(x1+x2+x3−x′) � a. This would imply x′ ∈ conv(0, x1, x2, x3),
and the 4 vertices are the only lattice points in this tetrahedron.

The previous proof contains a very useful observation: for a rank 3 positive normal
semigroup S one has sdiv(x1, x2, x3) ⊂ Hilb(S) if conv(0, x1, x2, x3) is empty and
x1, x2, x3 belong to the same facet of the bottom of S.
Therefore there is no problem in the first subdivision step. However, in order to

really achieve a Hilbert triangulation of C = C(S), we must guarantee that the further
subdividing vectors also belong to Hilb(S).

Lemma 3.3.5. — Let x1, x2, x3 ∈ Z3 be linearly independent vectors that do not form
a basis of Z3 and suppose that conv(0, x1, x2, x3) is an empty tetrahedron. Then there
is y ∈ sdiv(x1, x2, x3) such that

sdiv(x1, x2, x3) = {y} ∪ sdiv(y, x2, x3) ∪ sdiv(x1, y, x3) ∪ sdiv(x1, x2, y)
and all the tetrahedra conv(0, y, x2, x3), conv(0, x1, y, x3), conv(0, x1, x2, y) are empty
and of dimension 3.

Together with our observation above this lemma completes the proof of Sebö’s

Theorem 3.3.6. — Let S be a positive normal semigroup of rank 3. Then C(S) has a
unimodular Hilbert triangulation.

Proof of Lemma 3.3.5. — Let C be the cone spanned by x1, x2, x3 and S = S(C).
For y ∈ sdiv(x1, x2, x3) let C1 be the cone generated by y, x2, x3, S1 = S(C1), and
define S2 and S3 analogously. By symmetry arguments y can not belong to any of
the facets of the cone spanned by the tetrahedron conv(0, x1, x2, x3) at its vertex 0.
In other words the cones C1, C2 and C3 are nondegenerate.
We have S = S1 ∪ S2 ∪ S3, and

Hilb(S) ⊂ Hilb(S1) ∪Hilb(S2) ∪Hilb(S3).
By the observation above,

Hilb(S) = {x1, x2, x3} ∪ sdiv(x1, x2, x3}
and it is also clear that Hilb(S1) ⊂ {y, x2, x3} ∪ sdiv(y, x2, x3) etc. Thus
(∗) Hilb(S) ⊂ {x1, x2, x3, y} ∪ sdiv(y, x2, x3) ∪ sdiv(x1, y, x3) ∪ sdiv(x1, x2, y).
We set δ = | det(x1, x2, x3)|, δ1 = | det(y, x2, x3)|, and define δ2 and δ3 accordingly.

By the next lemma we can choose y such that

δ1 + δ2 + δ3 = δ + 1.

Since # sdiv(x1, x2, x3) = δ − 1 etc. (by Lemma 3.3.1), Hilb(S) has δ + 2 elements,
whereas the set on the righthand side in (∗) can have at most δ + 2 elements. Thus
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the containment relation implies first that the sets are equal and, second, that the
sets on the right hand side are disjoint. Now

sdiv(x1, x2, x3) = {y} ∪ sdiv(y, x2, x3) ∪ sdiv(x1, y, x3) ∪ sdiv(x1, x2, y)
follows immediately.
The remaining claim is part of the next lemma.

Lemma 3.3.7. — Let x1, x2, x3 ∈ Z3 be linearly independent vectors that do not form
a basis of Z3 and suppose that conv(0, x1, x2, x3) is an empty tetrahedron. Then there
is y ∈ sdiv(x1, x2, x3) such that (with the notation of the previous proof)

δ1 + δ2 + δ3 = δ + 1,

and all the tetrahedra conv(0, y, x2, x3)), conv(0, x1, y, x3), conv(0, x1, x2, y) are empty
and non-degenerate.

Proof. — For y ∈ R3, y = q1x1 + q2x2 + q3x3, we set

s(y) = q1 + q2 + q3.

For y ∈ sdiv(x1, x2, x3) one then has δ1 + δ2 + δ3 = δs(y) and 1 < s(y) < 2 (since
conv(0, x1, x2, x3) is empty and by the symmetry argument). In particular, s(y) is
not an integer.
By Cramer’s rule each qi can be written as a quotient ai/δ, ai ∈ Z+. Therefore

δs(y) can only take one of the δ − 1 values
δ + 1, . . . , 2δ − 1.

Since sdiv(x1, x2, x3) contains exactly δ − 1 elements, it is enough to show that the
s(y), y ∈ sdiv(x1, x2, x3), are pairwise different.
Suppose that s(y) = s(y′) and set t = y − y′. Then s(t) = 0. There is a unique

representation t = a1x1 + a2x2 + a3x3 + t′ with ai ∈ Z and t′ ∈ par(x1, x2, x3).
Since s(t) ∈ Z, we also have s(t′) ∈ Z, excluding t′ ∈ sdiv(x1, x2, x3) (as observed
above), and so t′ = 0. This implies that y and y′ have the same residue class modulo
Zx1 + Zx2 + Zx3. This is impossible for y, y′ ∈ par(x1, x2, x3), unless y = y′.
To sum up: we can choose y such that δs(y) = δ+1. That conv(0, y, x2, x3) is empty

and non-degenerate, is now easily seen. In fact, y, x2, x3 are linearly independent,
and every point z in conv(0, y, x2, x3) has s(z) � s(y). But the only lattice points in
conv(0, x1, x2, x3, y) with this property are 0, x1, x2, x3, y.

The proof shows that the linear form α = δs has the following property: α(xi) = δ,
i = 1, 2, 3, and x ∈ Z3 belongs to U = Zx1 + Zx2 + Zx3 if and only if α(x) ≡ 0 (δ).
In particular, Z3/U is cyclic, and α separates the residue classes modulo U . This is
the crucial point.
From a more algebraic perspective it can also be shown as follows. Let H be the

vector subspace generated by x1 − x2, x1 − x3. Since the triangle conv(x1, x2, x3) is
empty, this holds as well for conv(0, x1 − x2, x1 − x3), and so x1 − x2, x1 − x3 is a

SÉMINAIRES & CONGRÈS 6
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basis of V = Z3 ∩H (compare the proof of Proposition 3.3.3). Clearly V is a direct
summand of Z3, and Z3/V ∼= Z. Since V ⊂ U , it follows that Z3/U is also cyclic and
that there is a unique primitive linear form α : Z3 → Z such that V = Kerα, and
α(x1) = α(x2) = α(x3) = δ. Then x ∈ U if and only if α(x) ≡ 0 (δ).

3.4. Unimodular covering of high multiples of polytopes. — The counterex-
ample discussed in Subsection 3.6 shows that a normal lattice polytope need not
be covered by its unimodular lattice subsimplices. However, this always holds for a
sufficiently high multiple of P [BGT1]:

Theorem 3.4.1. — For every lattice polytope P there exists c0 > 0 such that cP is
covered by its unimodular lattice subsimplices (and, hence, is normal by Proposition
3.1.1) for all c ∈ N, c > c0.

Proof. — We have observed in the previous section that any finitely generated ratio-
nal cone in Rn admits a finite subdivision into simplicial cones Ci each of which is
generated by a basis of Zn.
Now let P be a polytope of dimension n, and let v be an arbitrary vertex of P .

Since the properties of P we are dealing with are invariant under integral-affine trans-
formations, we can assume v = 0 ∈ Zn. Let C be the cone in Rn spanned by 0 as its
apex and P itself. Let C =

⋃
i Ci be a subdivision into simplicial cones Ci as above.

So the edges of Ci for each i are determined by the radial directions of some basis
{ei1, . . . , ein} of Zn. Denote by � i the parallelepiped in Rn spanned by the vectors
ei1, . . . , ein ⊂ Rn. Thus vol(� i) = 1 for all i. Equivalently, � i ∩ Zn coincides with
the vertex set of � i. Clearly, each of the Ci is covered by parallel translations of � i

(precisely as Rn+ is covered by parallel translations of the standard unit n-cube).
For each i and each c ∈ N let Qic be the union of the parallel translations of � i

inside Ci ∩ cP . Evidently, Qic is not convex in general. By c−1Qic we denote the
homothetic image of Qic centered at v = 0 with factor c−1. The detailed verification
of the following claim is left to the reader.

Claim. Let F op
v denote the union of all the facets of P not containing v (i. e. 0 in

our case). Then for any real ε > 0 there exists cε ∈ N such that

P � Uε(F op
v ) ⊂

⋃
i

c−1Qic

whenever c > cε (Uε(F op
v ) denotes the ε-neighbourhood of F op

v in Rn).
Let us just remark that the crucial point in showing this inclusion is that the cov-

ering of each Ci by parallel translations of the c−1� i becomes finer in the appropriate
sense when c tends to∞. (The finiteness of the collection {Ci} is of course essential).
For an arbitrary vertex w of P we define F op

w analogously.
Claim. There exists ε > 0 such that⋂

w

Uε(F op
w ) = ∅,
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where w runs over all vertices of P .
Indeed, first one easily observes that⋂

w

Uε(F op
w ) =

⋂
F

Uε(F ),

where on the right hand side F ranges over the set of facets of P , while Uε(F ) is
the ε-neighbourhood of F , and then one completes the proof as follows. Consider the
function

d : P −→ R+, d(x) = max(dist(x, F )),

where F ranges over the facets of P and dist(x, F ) stands for the (Euclidean) distance
from x to F . The function d is continuous and strictly positive. So, by the compact-
ness of P , it attains its minimal value at some x0 ∈ P . Now it is enough to choose
ε < d(x0).
Summing up the two claims, one is directly lead to the conclusion that, for c ∈ N

sufficiently large, cP is covered by lattice n-parallelepipeds which are integral-affinely
equivalent to the standard unit cube, i. e. they have volume 1. Now the proof of
our theorem is finished by the well-known fact that the standard unit cube has a
unimodular triangulation (this is well-known; see [BGT1] for a detailed treatment.)

The algebraic properties of the polytopal semigroup algebras K[cP ] have been
studied in [BGT1].

3.5. Tight cones. — In this subsection we introduce the class of tight cones and
semigroups and show that they play a crucial rôle for (UHC) and the other covering
properties.

Definition 3.5.1. — Let S be a normal affine semigroup, x ∈ Hilb(S), and S ′ the
semigroup generated by Hilb(S) � {x}. We say that x is non-destructive if S′ is
normal and gp(S′) is a direct summand of gp(S) (and therefore equal to gp(S) if
rank gp(S) = rank gp(S′)). Otherwise x is destructive. We say that S is tight if every
element of Hilb(S) is destructive. A cone C is tight if S(C) is tight.

x

C′

C

Figure 5. Tightening a cone
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It is clear that only extreme elements of Hilb(S) can be non-destructive. Suppose
that x is an extreme element of Hilb(S). Then S[−x] (the subsemigroup of gp(S)
generated by S and −x) splits into a product Zx ⊕ Sx where Sx is again a positive
normal affine semigroup (for example, see Gubeladze [Gu0, Theorem 1.8]). As a
consequence one has C(S)[−x] ∼= R ⊕ C(Sx).

Lemma 3.5.2. — Let S be a normal positive affine semigroup and x ∈ Hilb(S) a non-
destructive element. Let S′ be the semigroup generated by Hilb(S) � {x} and Sx the
quotient S[−x]/(Zx) introduced above.

(i) If S′ and Sx both satisfy (UHC), then so does S.
(ii) If S′ and Sx both satisfy (FHC), then so does S.
(iii) One has CR(S) = max(CR(S′),CR(Sx) + 1).

Proof. — Suppose S′ and Sx both satisfy (UHC). Since gp(S′) is a direct summand of
gp(S) and Hilb(S′) = Hilb(S)�{x} by the hypothesis on x, it is clear that all elements
of S′ are contained in subsemigroups of S generated by subsets Xi of Hilb(S) such
that Xi generates a direct summand of gp(S). If rankS′ = rankS, then the sets Xi
are unimodular with respect to S, and if rankS′ < rankS, then S = S′ ⊕ Z+x. In
proving that S satisfies (UHC), it is therefore enough to consider S � S′.
Let z ∈ S�S′. By hypothesis on Sx, the residue class of z in Sx has a representation

z = a1y1 + · · · + amym with ai ∈ Z+ and yi ∈ Hilb(Sx) for i = 1, . . . ,m such
that y1, . . . , ym span a direct summand of gp(Sx). Next observe that Hilb(S) is
mapped onto a system of generators of Sx by the residue class map. Therefore we
may assume that the preimages y1, . . . , ym belong to Hilb(S) � {x}. Furthermore,
z = a1y1 + · · ·+ amym + bx with b ∈ Z.
It only remains to show that b ∈ Z+. There is a representation of z as a Z+-linear

combination of the elements of Hilb(S) in which the coefficient of x is positive. Thus,
if b < 0, z has a Q+-linear representation by the elements of Hilb(S) � {x}. This
implies y ∈ C(S′), and hence y ∈ S′, a contradiction.
This proves (i), and (ii) and (iii) follow similarly.

We say that a semigroup S as in the lemma shrinks to the semigroup T if there is
a chain S = S0 ⊃ S1 ⊃ · · · ⊃ St = T of semigroups such that at each step Si+1 is
generated by Hilb(Si) � {x} where x is non-destructive. An analogous terminology
applies to cones.

Corollary 3.5.3. — A counterexample to (UHC) that is minimal with respect to first
dimension and then #Hilb(C) is tight. A similar statement holds for (FHC).

In fact, suppose that the cone C is a minimal counterexample to (UHC) with
respect to dimension, and that C shrinks to D. Then D is also a counterexample
to (UHC) according to Lemma 3.5.2. (For (FHC) the argument is the same.) It
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is therefore clear that one should search for counterexamples only among the tight
cones. We will discuss the algorithmic aspects of this strategy in Subsection 3.6.

Remark 3.5.4. — It is not hard to see that there are no tight cones of dimension � 2.
However, we cannot prove that all 3-dimensional cones C are non-tight; in general,
an extreme element of Hilb(C) can very well be destructive, even if dimC = 3. In
dimension 4 there exist tight cones but none of the examples we have found is of the
form CP with a 3-dimensional lattice polytope P . In dimension � 5 one can easily
describe a class of tight cones: let W be a cube whose lattice points are its vertices
and its barycenter; then the cone CW is tight if dimW � 4.

3.6. The counterexample. — Before we give the counterexample, we outline the
strategy of the search. It consists of 4 steps:

(G) the choice of the generators of the cone C to be tested;
(T) the shrinking of C to a tight cone;
(C) the computation of several covers of C by simplicial subcones;
(U) the verification that C has a unimodular cover or otherwise.

There is not much to say about step (G). Either the generators of C have been cho-
sen by a random procedure depending on some parameters, especially the dimension,
or they have been chosen systematically in order to exhaust a certain class.
Step (T) is carried out as follows. First the Hilbert basis of C is computed and

among its elements the set E of extreme ones. Then successively each element x of E
is tested for being non-destructive by checking whether (i) Hilb(C)� {x} is a Hilbert
basis of the cone C′ it generates and (ii) whether the group generated by Hilb(C)�{x}
is a direct summand of Zn. If so, C is replaced by C′. Otherwise the next element of
E is tested in the same way. The procedure stops with a tight cone (which often is
{0}).
For (T) we use the algorithm mentioned in Remark 3.3.2.
For each of the covers mentioned in step (C) we first compute a triangulation T

depending on the order in which Hilb(C) is given, and for the other covers this order
is permuted randomly. None of the simplicial subcones σ ∈ T contains an element of
Hilb(C) different from the extreme generators of σ. Many of the simplicial subcones
σ of T will be unimodular and others non-unimodular. We then try to improve the
situation as follows: for each non-unimodular σ we look at the cones σv generated by
σ and v +

∑
(w − v) where v is an extreme generator of σ and w runs through the

set R of the remaining extreme generators of σ. For each element y ∈ Hilb(C) ∩ σv
the cone σ is covered by the union of the n − 1 cones σ1, . . . , σn−1 generated by v,
y and n − 2 elements from R. We try to choose y in an ‘optimal’ way, replace σ by
σ1, . . . , σn−1, and iterate the procedure. Unfortunately the effect of this step depends
on the probability that a cone σi is unimodular. In dimension 6 (or higher) it does
usually not improve the situation.
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The quality Q(B) of each of the (say, 50) coverings B computed is measured as
follows: we sum the absolute values of the determinants of the non-unimodular sim-
plicial subcones of B. Among the coverings we choose the 3 best ones B1, B2, B3,
and they are the basis for the last step (U) (the number 3 can be varied). First a
list of all intersections γ = σ1 ∩ σ2 ∩ σ3 is formed where σi runs through the non-
unimodular simplicial subcones of Bi. Then each ‘critical subcone’ obtained in this
way is compared to the list L of unimodular simplicial subcones generated by elements
of Hilb(C). First, if γ is contained in one of the elements of L, then it is discarded.
Second, if the interior of γ is intersected by some σ ∈ L, one of the support hyper-
planes of σ splits γ into two subcones that are then checked recursively. Third, if no
unimodular simplicial subcone intersects the interior of γ, then we have found the de-
sired counterexample. The algorithm stops since the number of unimodular simplicial
subcones, and therefore the number of hyperplanes available for the splitting of the
critical subcones, is finite.
The output of our implementation of step (U) is a list of subcones δ such that the

relative interior of their union (with respect to C) is the complement of the union of
the unimodular subcones.
The basis of all computations involved is the dual cone algorithm (see Burger [Bur])

that for a given cone C ⊂ Rn computes a system of generators of the dual cone

C∗ = {ϕ ∈ (Rn)∗ | ϕ(x) � 0 for all x ∈ C}.

Note that the intersection C ∩D of cones C and D is the dual of the cone generated
by the union of C∗ and D∗.
Although we have an algorithm for general cones, we hoped to find a counterex-

ample within the class of the normal polytopal semigroups SP . We started our search
within the class of lattice parallelepipeds P which are automatically normal. The
counterexample finally emerged when we applied the shrinking process to cones over 5-
dimensional parallelepipeds. Even for generators with ‘small’ coefficients, the Hilbert
bases of these cones can be quite large. We have tried to select examples that are
not too ‘big’. Nevertheless the task is usually formidable, both in computing time
and memory requirements. A typical example: #Hilb(C) = 38, the minimal value of
Q(B) = 324, computing time about 24 hours, memory requirement > 100 MB.
Thus we were quite surprised by finding the following ‘small’ counterexample C6

to (UHC) whose Hilbert basis consists of the following 10 vectors:

z1 = (0, 1, 0, 0, 0, 0), z6 = (1, 0, 2, 1, 1, 2),

z2 = (0, 0, 1, 0, 0, 0), z7 = (1, 2, 0, 2, 1, 1),

z3 = (0, 0, 0, 1, 0, 0), z8 = (1, 1, 2, 0, 2, 1),

z4 = (0, 0, 0, 0, 1, 0), z9 = (1, 1, 1, 2, 0, 2),

z5 = (0, 0, 0, 0, 0, 1), z10 = (1, 2, 1, 1, 2, 0).
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The cone C6 and the semigroup S6 = S(C6) have several remarkable properties:

1. C6 has 27 facets, of which 5 are not simplicial.
2. The automorphism group Aut(S6) of S6 has order 20, and it operates transitively
on Hilb(S6). In particular this implies that z1, . . . , z10 are all extreme generators
of S6.

3. The embedding above has been chosen in order to make visible the subgroup U
of those automorphisms that map each of the sets {z1, . . . , z5} and {z6, . . . , z10}
to itself; U is isomorphic to the dihedral group of order 10. However, C6 can
even be realized as the cone over a 0-1-polytope in R5.

4. The vector of lowest degree disproving (UHC) is t1 = z1 + · · ·+ z10. Evidently
t1 is invariant for Aut(S6), and it can be shown that its multiples are the only
such elements.

5. The Hilbert basis is contained in the hyperplaneH given by the equation −5ζ1+
ζ2 + · · · + ζ6 = 1. Thus z1, . . . , z10 are the vertices of a normal 5-dimensional
lattice polytope P5 that is not covered by its unimodular lattice subsimplices
(and contains no other lattice points).

6. If one removes all the unimodular subcones generated by elements of Hilb(C6)
from C6, then there remains the interior of a convex cone N . While P5 has
normalized volume 25, the intersection of N and P5 has only normalized volume
1/1080.

7. The binomial ideal defining the semigroup algebra K[S6] over an arbitrary field
K is generated by 10 binomials of degree 3 and 5 binomials of degree 4 (the
latter correspond to the non-simplicial facets).

8. The h-vector of P5 is (1, 4, 10, 10) and the f -vector is (1, 10, 40, 80, 75, 27).
9. The vector

z1 + 3z2 + 5z4 + 2z5 + z8 + 5z9 + 3z10

can not be represented by 6 elements of Hilb(S) (and it is “smallest”with respect
to this property.) Moreover, one has CR(C6) = 7 (as can be seen from a
triangulation containing only two non-unimodular simplices).

In particular C6 is even a counterexample to (ICP). This has been shown in coop-
eration with Henk, Martin and Weismantel; see [BGHMW], which also gives more
detailed information on properties 2, 3, and 9.
Despite of more than two and a half years of computer time on a fast multi-CPU

machine, we have found only one more counterexample to (UHC) essentially different
from C6. It is also of dimension 6 and a polytopal semigroup, but its Hilbert basis
contains 12 elements. As Henk, Martin, and Weismantel have verified, it violates
(ICP), too. Thus the question whether there exist examples satisfying (ICP), but
violating (UHC), remains open.
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SEMIGROUP ALGEBRAS AND DISCRETE GEOMETRY 69

3.7. (ICP), (FHC), and normality. — In this subsection we show that (ICP)
implies normality and even (FHC).

Theorem 3.7.1. — Let S ⊂ Zn = gp(S) be a positive affine semigroup of rank n. If
every element of S can be represented by n elements of Hilb(S), then S is normal
and satisfies (FHC). Especially (ICP) and (FHC) are equivalent and they imply the
normality of S.

Proof. — We need the well-known fact (for instance, see Gubeladze [Gu2, Lemma
5.3]) that the conductor ideal c(S/S) = {x ∈ S | x + S ⊂ S} is not empty. This
implies that S � S is contained in finitely many hyperplanes parallel to the support
hyperplanes of S. Indeed, if x ∈ c(S/S), y ∈ S, and σi(y) � σi(x) for all support
forms σi of S, then y ∈ S, since y − x ∈ S.
Next we observe that the set of all x ∈ S that are not a non-negative linear

combination of linearly independent elements in Hilb(S) is “thin”. In fact, if x is the
linear combination of n elements of Hilb(S) that are not linearly independent, then it
is contained in the proper subspace generated by these elements, and there are only
finitely many such subspaces.
Choose y ∈ S and consider all linearly independent subsets Xi, i = 1, . . . , N ,

of Hilb(S) such that y is contained in the cone generated by Xi. In view of
Carathéodory’s theorem we have N � 1. Let Gi be the subgroup of Zn generated
by Xi.
In order to derive a contradiction suppose that y is not contained in one of the

subsemigroups of S generated by Xi. It is impossible that y ∈
⋃
i=1,...,N Gi. Namely,

if y ∈ Gi, it could be written as a Z-linear combination of Xi as well as a linear
combination with non-negative coefficients: these must coincide if Xi is linearly inde-
pendent.
Let E = y +

⋂
i=1,...,N Gi. Then

E ∩
⋃

i=1,...,N

Gi = ∅.

Furthermore E ∩ C(S) is contained in S. It is not hard to see that the affine space
generated by E ∩C(S) has dimension n. Therefore E ∩C(S) is not contained in the
union of finitely many proper affine subspaces. This however means that E ∩ C(S)
contains elements of S that can not be written as linear combination of linearly de-
pendent elements of Hilb(S). But neither can they be written as a linear combination
of linearly independent elements of Hilb(S) with non-negative coefficients since such
elements are always contained in one of the sets Xi.

Remark 3.7.2. — The proof of Theorem 3.7.1 suggests an algorithm deciding (FHC)
(or (ICP)) for a cone C. In addition to the steps (G)–(U) outlined in Subsection
3.6 one applies the following recursive procedure to each of the not unimodularly

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



70 W. BRUNS & J. GUBELADZE

covered subcones δ resulting from step (U): (i) Let Xi, i = 1, . . . , N , be the linearly
independent subsets of Hilb(C) such that δ is contained in the cone generated by Xi.
Then we check whether the union of subgroups Gi (notation as in the previous proof)
is Zn. If so, then δ is ‘freely’ covered and can be discarded. (ii) Otherwise, if there is
a simplicial subcone σ generated by elements of Hilb(C) intersecting δ in its interior,
then we split δ into two subcones along a suitable support hyperplane of σ. (iii) If
there is no such σ, then one has found a counterexample to (FHC).
It is crucial for this algorithm that the question whether Zn is the union of sub-

groups U1, . . . , Um can be decided algorithmically. For that one forms their intersec-
tion V and checks that for each residue class modulo V a representative is contained
in one of the Ui.
While the algorithm just described only decides whether (ICP) holds for S, one

can indeed compute CR(S) for an arbitrary affine semigroup S by suitable “covering
algorithms”; see [BGT2].

4. Divisorial linear algebra

4.1. Introduction. — We recall some facts from Subsection 2.1. A normal semi-
group S ⊂ Zn can be described as the set of lattice points in a finitely generated
rational cone. Equivalently, it is the set

(∗) S = {x ∈ Zn : σi(x) � 0, i = 1, . . . , s}

of lattice points satisfying a system of homogeneous inequalities given by linear forms
σi with integral (or rational) coefficients. For a fieldK theK-algebraK[S] is a normal
semigroup algebra. We always assume in Section 4 that S is positive, i.e. 0 is the only
invertible element in S.
Let a1, . . . , as be integers. Then the set

T = {x ∈ Zn : σi(x) � ai, i = 1, . . . , s}

satisfies the condition S + T ⊂ T , and therefore the K-vector space KT ⊂ K[Zn] is
an R-module in a natural way.
It is not hard to show that such an R-module is a (fractional) ideal of R if the

group gp(S) generated by S equals Zn. Moreover, if the presentation (∗) of S is
irredundant, then the R-modules KT are even divisorial ideals, as we have seen in
Subsection 2.3.1; in fact,

KT = p
(a1)
1 ∩ · · · ∩ p

(as)

where p1 . . . , ps are the divisorial prime ideals of R and pi is generated by all mono-
mials x with σi(x) � 1. These divisorial ideals represent the full divisor class group
Cl(R). Therefore an irredundant system of homogeneous linear inequalities is the
most interesting from the ring-theoretic point of view, and in these notes we restrict
ourselves to it. In [BG7] the general case has also been treated.
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We are mainly interested in two invariants of divisorial ideals D, namely their
number of generators µ(D) and their depth as R-modules, and in particular in the
Cohen–Macaulay property. Our main result, based on combinatorial arguments, is
that for each C ∈ Z+ there exist, up to isomorphism, only finitely many divisorial
ideals D such that µ(D) � C. It then follows by Serre’s numerical Cohen–Macaulay
criterion that only finitely many divisor classes represent Cohen–Macaulay modules.
The second main result concerns the growth of Hilbert functions of certain multi-

graded algebras and modules. Roughly speaking, it says that the Hilbert function
takes values � C only at finitely many graded components, provided this holds along
each arithmetic progression in the grading group. The theorem on Hilbert functions
can be applied to the minimal number of generators of divisorial ideals since R can be
embedded into a polynomial ring P over K such that P is a Cl(R)-graded R-algebra
in a natural way. This leads to a second proof of the result on number of generators
mentioned above.
Subsection 4.2.1 describes the connection between divisor classes and the standard

embedding and contains results on the depth of divisorial ideals. We first show that
a divisorial ideal whose class is a torsion element in Cl(R) is Cohen–Macaulay. (The
Cohen–Macaulay property and notions related to it are briefly introduced at the end
of this subsection.) This follows easily from Hochster’s theorem [Ho] that normal
semigroup algebras are Cohen–Macaulay. Then we give a combinatorial description
of the minimal depth of all divisorial ideals of R: it coincides with the minimal number
of facets F1, . . . , Fu of the cone generated by S such that F1 ∩ · · · ∩ Fu = {0}.
Subsection 4.3 contains our main result on number of generators. The crucial

point in its proof is that the convex polyhedron C(D) naturally associated with a
divisorial ideal D has a compact face of positive dimension if (and only if) the class
of D is non-torsion. One can show that µ(D) � Mλ where M is a positive constant
only depending on the semigroup S and λ is the maximal length of a compact 1-
dimensional face of C(D). Moreover, since the compact 1-dimensional faces are in
discrete positions and uniquely determine the divisor class, it follows that λ has to go
to infinity in each infinite family of divisor classes.
The observation on compact faces of positive dimension is also crucial for our second

approach to the number of generators via Hilbert functions. Their well-established
theory allows us to prove quite precise results about the asymptotic behaviour of µ
and depth along an arithmetic progression in the divisor class group.
Subsection 4.4 finally contains the theorem on the growth of Hilbert functions

outlined above. It is proved by an analysis of homomorphisms of affine semigroups
and their “modules”.
The divisorial ideals can be realized as modules of covariants for an action of a

diagonalizable group on the polynomial ring of the standard embedding; see [BG7].
The Cohen–Macaulay property of coset modules has been characterized by Stanley
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[St1, St3] in terms of local cohomology. Brion [Bri] has shown that the number
of isomorphism classes of Cohen–Macaulay modules of covariants is finite for certain
actions of linear algebraic groups; however, the hypotheses of his theorem exclude
groups with infinitely many characters. Therefore our result is to some extent com-
plementary to Brion’s.
We briefly explain some notions of commutative algebra (see [BH] for a detailed

account). For a finitely generated R-module M and an ideal I ⊂ R we denote the
length of a maximal M -sequence in I by grade(I,M), where x1, . . . , xm is an M -
sequence if (x1, . . . , xm)M �= M and xi is not a zero-divisor on M/(x1, . . . , xi−1)M
for i = 1, . . . , n. For grade(I, R) one uses the abbreviation grade I.
Suppose R is a local ring, i. e. has exactly one maximal ideal m. Then one sets

depthM = depthRM = grade(m, R). A Cohen–Macaulay R-module M is character-
ized by the equation depthM = dimR/Ann(M), where Ann(M) = {x ∈ R : xM =
0} is the annihilator ofM . One says that R is a Cohen–Macaulay ring if it is a Cohen–
Macaulay module over itself. A finitely generated module over a general noetherian
ring is Cohen–Macaulay if its localization Mp is Cohen–Macaulay over Rp for every
prime ideal p of R. For ideals in Cohen–Macaulay rings one has grade I = height I. A
prime ideal p is associated to M if depthMp = 0. It is an important fact that the set
Ass(M) of associated prime ideals of a finitely generated module over a noetherian
ring is finite and that the union of the associated prime ideals is the set of zero divisors
of M .
This notion depth is also used if R has a distinguished maximal ideal m, for ex-

ample if it is a positively Z-graded K-algebra with m =
⊕
i>0Ri, or a positive affine

semigroup algebra K[S] with m the maximal ideal generated by all monomials �= 1.
In these cases depthRM = depthRm

Mm. (See [BH, 1.5.15] for the proof in the case
of Z-graded rings and modules; moreover, note that a positive affine semigroup has
a grading as observed in Subsection 2.1.) Similarly a graded R-module is a Cohen–
Macaulay-module if and only if Mm is a Cohen–Macaulay Rm-module.

4.2. The standard embedding, divisor classes, and depth. — In Subsection
2.1 we have introduced the standard embedding of a positive affine semigroup S

into the lattice Zs given by the support forms σ1, . . . , σs and the induced standard
embedding of the algebraK[S] into a polynomial ring. This is the optimal tool for the
simultaneous study of all the divisor classes. With respect to the standard embedding
the divisor classes are realized as coset modules , as the proof of the following theorem
shows:

Theorem 4.2.1. — Let K be a field, S a positive normal affine semigroup, R = K[S],
and σ : R→ P = K[Y1, . . . , Ys] the standard embedding.

Then P decomposes as an R-module into a direct sum of rank 1 R-modules Mc,
c ∈ Cl(R), such that Mc is isomorphic to a divisorial ideal of class c.

SÉMINAIRES & CONGRÈS 6
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Proof. — To each divisorial ideal p(a1)1 ∩· · ·∩p
(as)
s , ai ∈ Z, we associate (a1, . . . , as) ∈

Zs. Under this assignment, the principal divisorial ideal generated by s ∈ gp(S) is
mapped to σ(s). As outlined in Theorem 2.3.1, this yields the isomorphism

Cl(R) ∼= Zs/σ(Zr).

For each c ∈ Zs/σ(Zr) we let Mc be the K-vector subspace of P generated by all
monomials whose exponent vector in Zs/σ(Zr) has residue class −c. Then Mc is
clearly an R-submodule of P . Moreover, by construction, P is the direct sum of these
R-modules.
It remains to show that Mc, c ∈ Cl(R), is isomorphic to a divisorial ideal of class c

(relative to the isomorphism above). We choose a representative a = (a1, . . . , as) of c.
Then a monomial s ∈ σ(Zr) belongs to p

(a1)
1 ∩ · · · ∩ p

(as)
s if and only if si � ai for all

i, and this is equivalent to si − ai ∈ Z+ for all i. Hence the assignment s �→ s− a, in
ring-theoretic terms: multiplication by the monomial Y −a, induces an R-isomorphism
Mc

∼= p
(a1)
1 ∩ · · · ∩ p

(as)
s .

Corollary 4.2.2. — Every divisorial ideal I of R whose class in Cl(R) is a torsion
element is a Cohen–Macaulay R-module.

Proof. — Let Ŝ be the integral closure of S in Zs. Since K[Ŝ] is a normal affine
semigroup, the ring K[Ŝ] is Cohen–Macaulay by Hochster’s theorem [Ho]. It decom-
poses into the direct sum of the finitely many and finitely generated R-modules Mc

where c is a torsion class in Cl(R). Since K[Ŝ] is a Cohen–Macaulay ring, it is a
Cohen–Macaulay K[S]-module, and so are its direct summands.

The corollary can be significantly generalized if one applies the idea of its proof to
all so-called pure embeddings of S ⊂ S̃ of S into normal affine semigroups S. One
then obtains the Cohen–Macaulay property for all divisorial ideals KT where T is
defined by some β ∈ gp(S)⊗ R via

T = {z ∈ gp(S) : σi(z) � σi(β) for i = 1, . . . , s}.

For evident reasons these divisorial ideals (and their classes) have been termed conic
in [BG7], to which we refer the reader for the details. We will see below that torsion
classes are conic, but the converse is wrong as soon as there exist non-torsion classes.
In general a normal semigroup algebra R may very well have Cohen–Macaulay

divisorial ideals whose classes are not torsion. This fact and several other aspects of
our discussion are illustrated by the following

Example 4.2.3. — Consider the Segre product

Rmn = K[XiYj : 1 � i � m, 1 � j � n] ⊂ P = K[X1, . . . , Xm, Y1, . . . , Yn]

of the polynomial rings K[X1, . . . , Xm], m � 2, and K[Y1, . . . , Yn], n � 2, with
its standard embedding. It has divisor class group isomorphic to Z, and the two
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generators of Cl(R) correspond to the coset modules M−1 = RX1 + · · · + RXm and
M1 = RY1 + · · ·+RYn. Therefore

µ(M−i) =
(
m+ i− 1
m− 1

)
, µ(Mi) =

(
n+ i− 1
n− 1

)
.

for all i � 0. The Cohen–Macaulay divisorial ideals are represented by
M−(n−1), . . . ,M0 = Rmn, . . . ,Mm−1

(see Bruns and Guerrieri [BGu]), and in particular, their number is finite. However,
the finiteness of the number of Cohen–Macaulay classes is not a peculiar property of
Rmn: it holds for all normal semigroup algebras, as we will see in Corollary 4.3.2.
Moreover, one has

inf
i�0
depthM−i = n, inf

i�0
depthMi = m,

and for i � 0 the minimal values are attained (see Bruns and Vetter [BV, (9.27)]).
Set p(i) = µ(Mi). It follows that the degree of the polynomial p and infi depthMi

add up to m+n−1 = dimR. This is another instance of a general fact (see Theorem
4.3.5).

That divisorial ideals I of non-torsion class are in general not Cohen-Macaulay,
follows already from the asymptotic behaviour of depth I described in the next theo-
rem.

Theorem 4.2.4. — Let K be a field, S a positive normal affine semigroup, R = K[S],
and σ : R → P = K[X1, . . . , Xs] the standard embedding. Furthermore let m be the
irrelevant maximal ideal of R generated by all non-unit monomials, and λ the maximal
length of a monomial R-sequence. Then

λ � grademP = min{depthMc : c ∈ Cl(R)}.

Proof. — For the inequality it is enough to show that a monomial R-sequence is also
a P -sequence. (It is irrelevant whether we consider P as an R-module or a P -module
if elements from R are concerned.) Let µ1, . . . , µu be monomials in R forming an
R-sequence. Then the subsets Ai = AssR(R/(µi)) are certainly pairwise disjoint. On
the other hand, Ai consists only of monomial prime ideals of height 1 in R, since
R is normal. So Ai = {pj : σj(µi) > 0}, and the sets of indeterminates of P that
divide σ(µi) in P , i = 1, . . . , u, are pairwise disjoint. It follows that µ1, . . . , µu form
a P -sequence.
In order to prove the equality we first extend the field K to an uncountable one.

This is harmless, since all data are preserved by base field extension. Then we can
form a maximal P -sequence in mP by elements from the K-vector subspace m. Such
a P -sequence of elements in R then has length equal to grademP and is clearly an
M -sequence for every R-direct summand M of P , and in particular for each of the
modules Mc representing the divisor classes. Thus depthMc � grademP .

SÉMINAIRES & CONGRÈS 6
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Whereas this argument needs only finite prime avoidance, we have to use countable
prime avoidance for the converse inequality. Suppose that u < min{depthMc : c ∈
Cl(R)} and that x1, . . . , xu is a P -sequence in m. Then the set

A =
⋃

c∈Cl(R)
Ass

(
Mc/(x1, . . . , xu)Mc

)
is a countable set of K-vector subspaces of m. Each prime ideal associated to
Mc/(x1, . . . , xu)Mc is a proper subspace of m because of u < depthMc. Hence A can-
not exhaust m, as follows from elementary arguments. So we can choose an element
xu+1 in m not contained in a prime ideal associated to any of theMc/(x1, . . . , xu)Mc.
So xu+1 extends x1, . . . , xu to an Mc-sequence simultaneously for all c ∈ Cl(R).

Both the numbers λ and grademP can be characterized combinatorially:

Proposition 4.2.5. — With the notation of the previous theorem, the following hold:

(a) grademP is the minimal number u of facets Fi1 , . . . , Fiu of C(S) such that
Fi1 ∩ · · · ∩ Fiu = {0}.

(b) λ is the maximal number D of subsets F1, . . . ,F! of F = {F1, . . . , Fs} with the
following properties:

(i) Fi ∩ Fj = ∅, (ii)
⋂

F∈F�Fi

F �= {0}

for all i, j such that i �= j.

Proof
(a) The ideal mP of P is generated by monomials. Therefore all its minimal prime

ideals are generated by indeterminates of P . The ideal generated by Xi1 , . . . , Xiu
contains mP if and only if for each monomial µ ∈ m there exists a σij such that
σij (µ) > 0. The monomials for which none such inequality holds are precisely those
in Fi1 ∩ · · · ∩ Fiu .
(b) Let µ1, . . . , µ! be a monomial R-sequence. Then the sets

Fi = {F : pF ∈ Ass(R/(µi))}

are pairwise disjoint, and moreover µi ∈
⋂
F∈F�Fi

F . Thus conditions (i) and (ii) are
both satisfied.
For the converse one chooses monomials µi ∈

⋂
F∈F�Fi

F . Then

{F : pF ∈ Ass(R/(µi))} ⊂ Fi,

and since the Fi are pairwise disjoint, the µi form even a P -sequence as observed
above.
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4.3. The number of generators. — In this subsection we first prove our main
result on the number of generators of divisorial ideals of normal semigroup algebras
R = K[S]. In its second part we then show that it can also be understood and proved
as an assertion about the growth of the Hilbert function of a certain Cl(R)-graded
K-algebra.

Theorem 4.3.1. — Let R be a positive normal semigroup algebra over the field K, and
m ∈ Z+. Then there exist only finitely many c ∈ Cl(R) such that a divisorial ideal D
of class c has µ(D) � m.

As a consequence of Theorem 4.3.1, the number of Cohen–Macaulay classes is also
finite:

Corollary 4.3.2. — There exist only finitely many c ∈ Cl(R) for which a divisorial
ideal of class c is a Cohen–Macaulay module.

Remark 4.3.3. — (a) One should note that µ(D) is a purely combinatorial invariant. If
S is the underlying semigroup and T is a monomial basis of a monomial representative
of D, then µ(D) is the smallest number g such that there exists x1, . . . , xg ∈ T with
T = (S+x1)∪· · ·∪ (S+xg). Therefore Theorem 4.3.1 can very well be interpreted as
a result on the generation of the sets of solutions to inhomogeneous linear diophantine
equations and congruences (with fixed associated homogeneous system).
(b) Both the theorem and the corollary hold for all normal affine semigroups S,

and not only for positive ones. We have observed in Subsection 2.1 that a normal
semigroup S splits into a direct summand of its largest subgroup S0 and a positive
normal semigroup S′. Thus one can writeR = K[S] as a Laurent polynomial extension
of the K-algebra R′ = K[S′]. Each divisor class of R has a representative D′ ⊗R′ R.
Furthermore µR′(D′) = µR(D′⊗R′ R) and the Cohen–Macaulay property is invariant
under Laurent polynomial extensions.

We first derive the corollary from the theorem. Let m be the irrelevant maximal
ideal of R. If Mc is a Cohen–Macaulay module, then (Mc)m is a Cohen–Macaulay
module (and conversely). Furthermore

e((Mc)m) � µ((Mc)m) = µ(Mc).

By Serre’s numerical Cohen–Macaulay criterion (for example, see [BH, 4.7.11]), the
rank 1 Rm-module (Mc)m is Cohen–Macaulay if and only if its multiplicity e((Mc)m)
coincides with e(Rm).

Proof of Theorem 4.3.1. — Let D be a monomial divisorial ideal of R. As pointed
out already, there exist integers a1, . . . , as such that the lattice points in the set

C(D) = {x ∈ Rr : σi(x) � ai, i = 1, . . . , s}
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give a K-basis of D (again s = #supp(S), and the σi are the support forms). The
polyhedron C(D) is uniquely determined by its extreme points since each of its facets
is parallel to one of the facets of C(S) and passes through such an extreme point.
(Otherwise C(D) would contain a full line, and this is impossible if S is positive.)
Moreover, D is of torsion class if and only if C(D) has a single extreme point. This

has been proved in Gubeladze [Gu2], but since it is the crucial point (sic!) we include
the argument.
Suppose first that D is of torsion class. Then there exists m ∈ Z+, m > 0,

such that D(m) is a principal ideal, D(m) = xR with a monomial x. It follows that
C(D(m)) = mC(D) has a single extreme point in (the lattice point corresponding to)
x, and therefore C(D) has a single extreme point. (An extreme point of a convex set
X is characterized by the property that x /∈ conv(X � {x}).)
Conversely, suppose that C(D) has a single extreme point. The extreme point

has rational coordinates. After multiplication with a suitable m ∈ Z+, m > 0, we
obtain that C(D(m)) = mC(D) has a single extreme point x which is even a lattice
point. All the facets of C(D(m)) are parallel to those of S and must pass through
the single extreme point. Therefore C(D(m)) has the same facets as C(S) +x. Hence
C(D(m)) = C(S)+x. This implies D(m) = Rx (in multiplicative notation), and so m
annihilates the divisor class of D.
Suppose that D is not of torsion class. We form the line complex L consisting of all

1-dimensional faces of the polyhedron C(D). Then L is connected, and each extreme
point is an endpoint of a 1-dimensional face. Since there are more than one extreme
points, all extreme points are endpoints of compact 1-dimensional faces, and the line
complex L(D) formed by the compact 1-dimensional faces is also connected. Since
each facet passes through an extreme point, D is uniquely determined by L(D) (as a
subset of Rs).
Let C be an infinite family of divisor classes and choose a divisorial ideal Dc of

class c for each c ∈ C. Assume that the minimal number of generators µ(Dc), c ∈ C,
is bounded above by a constant C. By Lemma 4.3.4 below the Euclidean length of
all the line segments D ∈ L(Dc), c ∈ C, is then bounded by a constant C′.
It is now crucial to observe that the endpoints of all the line segments under

consideration lie in an overlattice L = Zn[1/d] of Zn. In fact each such point is
the unique solution of a certain system of linear equations composed of equations
σi(x) = ai, and therefore can be solved over Z[1/d] where d ∈ Z is a suitable common
denominator. (Again we have denoted the support forms of S by σi.)
Let us consider two line segments D and D′ in Rn as equivalent if there exists z ∈ Zn

such that D′ = D+ z. Since the length of all the line segments under consideration is
bounded and their endpoints lie in Zn[1/d], there are only finitely many equivalence
classes of line segments D ∈ L(Dc), c ∈ C.
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Similarly we consider two line complexes L(D) and L(D′) as equivalent if L(D′) =
L(D) + z, z ∈ Zn. However, this equation holds if and only if C(D′) = C(D) + z, or,
in other words, the divisor classes of D and D′ coincide.
Since there are only finitely many equivalence classes of line segments and the num-

ber of lines that can appear in a complex L(D) is globally bounded (for example, by 2s
– recall that s is the number of facets of C(S)), one can only construct finitely many
connected line complexes that appear as L(D), up to equivalence of line complexes.
This contradicts the infinity of the family C.

Lemma 4.3.4. — Let S be a positive normal semigroup, K a field, D a monomial
divisorial ideal whose class is not torsion. Then there exists a constant M > 0, which
only depends on S, such that µ(D) � Mλ where λ is the maximal Euclidean length
of a compact 1-dimensional face of C(D).

Proof. — We assume that Zn = gp(S) so that the cone C(S) and the polyhedron
C(D) are subsets of Rn. Let D be a 1-dimensional compact face of C(D). Suppose D
is given by the inequalities

σi(x) � ai, i = 1, . . . , s
(
s = #supp(C(S))

)
.

There exists ε > 0 such that Uε(x)∩C(D) contains a lattice point for each x ∈ C(D).
(In fact, C(S) contains a unit cube, and x+C(S) ⊂ C(D) for x ∈ C(D).) Let x ∈ D.
We can assume that

σi(x)

{
= ai, i = 1, . . . ,m,

> ai, i > m.

Let τ = σ1 + · · · + σm. There exists C > 0 such that τ(y) < C for all y ∈ Rn with
|y| < ε.
Furthermore we have τ(z) > 0 for all z ∈ C(S), z �= 0. Otherwise the facets

F1, . . . , Fm would meet in a line contained in C(S), and this is impossible if D is
compact. In particular there are only finitely many lattice points z in S such that
τ(z) < C, and so there exists δ > 0 such that τ(z) < C for z ∈ S is only possible with
|z| < δ.
Now suppose that D is generated by x1, . . . , xq. For x ∈ D we choose a lattice point

p ∈ Uε(x) ∩ C(D). By assumption there exists z ∈ C(S) such that p = xi + z. Then

τ(z) = τ(p)− τ(xi) � τ(p) − τ(x) = τ(p− x) < C.

Thus |z| < δ, and therefore |x− xi| < δ + ε.
It follows that the Euclidean length of D is bounded by 2q(δ + ε). Of course δ

depends on τ , but there exist only finitely many choices for τ if one varies D.

As pointed out, the polyhedron C(D) contains a 1-dimensional compact face if D is
not of torsion class, but in general one cannot expect anything stronger. On the other
hand, there exist examples for which C(D) for every non-torsion D has a compact
face of arbitrarily high dimension; see Example 4.2.3.
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If C(D) has a d-dimensional face F , then the argument in the proof of Lemma
4.3.4 immediately yields that µ(D(j)) � Mjd for a constant M > 0: one has only to
replace the length of the line segment by the d-dimensional volume of F . We now
give another proof of a slightly more general statement. As we will see, it leads to a
quite different proof of Theorem 4.3.1.
Let S be a positive normal affine semigroup. Recall that the polynomial ring P of

the standard embedding σ : R → P decomposes into the direct sum of modules Mc,
c ∈ Cl(R). In the following C(Mc) stands for any of the congruent polyhedra C(D)
where D is a divisorial ideal of class c.

Theorem 4.3.5. — Let c, d ∈ Cl(R) and suppose that c is not a torsion element.

(a) Then limj→∞ µ(Mjc+d) =∞.
(b) More precisely, let m be the maximal dimension of the compact faces of C(Mc).

Then there exists e ∈ N such that

lim
j→∞

µ(M(ej+k)c+d)
m!
jm

is a positive natural number for each k = 0, . . . , e− 1.
(c) One has infj depthMjc = dimR−m and infj depthMcj+d � dimR−m.

Proof. — Let

D =
∞⊕
j=0

Mjc and M =
∞⊕
j=0

Mjc+d.

Then D is a finitely generated K-algebra. This follows for general reasons from
Theorem 4.4.1 below: D is the direct sum of graded components of the Cl(R)-graded
R-algebra P , taken over a finitely generated subsemigroup of Cl(R). Theorem 4.4.1
also shows thatM is a finitely generated D-module. However, these assertions will be
proved directly in the following. In particular we will see that D is a normal semigroup
algebra over K.
By definition D is a Z+-graded R-algebra with D0 =M0 = R, andM is a graded

D-module if we assign degree j to the elements of Mjc+d. There exists e > 0 such
that D is a finitely generated module over its R-subalgebra generated by elements of
degree e; for example, we can take e to be the least common multiple of the degrees
of the generators of D as an R-algebra. Let E be the eth Veronese subalgebra of D.
We decomposeM into the direct sum of its E-submodules

Mk =
∞⊕
j=0

M(ej+k)c+d, k = 0, . . . , e− 1.

In view of what has to be proved, we can replace D by E andM by Mk. Then we
have reached a situation in which D is a finitely generated module over the subalgebra
generated by its degree 1 elements.
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Note thatM is isomorphic to an ideal of D: multiplication by a monomial Xa such
that a has residue class −(d+ k) in Cl(R) ∼= Zs/σ(gp(S)) mapsM into D. SinceM
is not zero (and D is an integral domain), we see that SuppM = SpecD.
Let m be the irrelevant maximal ideal of R; it is generated by all elements x ∈ S,

x �= 1 (in multiplicative notation). Then clearlyM =M/mM is a finitely generated
D = D/mD-module. Note that D is a K-algebra with D0 = K in a natural way.
Furthermore it is a finitely generated module over its subalgebra D ′ generated by its
degree 1 elements. In particularM is a finitely generatedD ′-module. By construction
(and Nakayama’s lemma) we have

µ(M(ej+k)c+d) = dimKM(ej+k)c+d/mM(ej+k)c+d = H(M, j)

where H denotes the Hilbert function of M as a Z+-graded D- or D ′-module. For
j � 0 the Hilbert function is given by the Hilbert polynomial. It is a polynomial
of degree δ − 1 where δ is the Krull dimension ofM. Note that SuppM = SpecD,
since SuppM = SpecD; in particular one has dimM = dimD. Moreover the leading
coefficient of the Hilbert polynomial is e(M)/(δ − 1)! and so all the claims for M
follow if m+ 1 = δ > 1.
At this point we have to clarify the structure of D as a normal semigroup algebra

over K. For convenience we choose a divisorial ideal I ⊂ R of class c generated by
monomials. Then there exists an R-module isomorphismMc → I mapping monomials
to monomials, and such an isomorphism induces a K-algebra isomorphism from D to

R =
∞⊕
j=0

I(j)T j ⊂ R[T ] = K[S ⊕ Z+].

There exist a1, . . . , as � 0 such that I = p
(a1)
1 ∩· · ·∩p

(as)
s . The monomial correspond-

ing to (u, z) ∈ gp(S)⊕ Z belongs to R if and only if

z � 0, σi(u)− zai � 0, i = 1, . . . , s.

It follows immediately that R is a normal semigroup algebra over K. Let S be its
semigroup of monomials. One has gp(S) = gp(S) ⊕ Z, and the elements with last
component j give the monomials of I(j).
It is not hard to show that the faces of C(S) that are not contained in C(S) are

the closed envelopes of the R+-envelopes of the faces of C(I)′ = {(x, 1): x ∈ C(I)}.
Moreover, exactly those faces F that do not contain an element from m intersect

C(I)′ in a compact face. In fact, if F contains a monomial x ∈ m, then it contains
y+kx, k ∈ Z+, for each y ∈ F , and therefore an unbounded set. If F does not contain
an element of m, then the linear subspace spanned by the elements of S intersects F
in a single point, and thus each translate intersects F in a compact set.
Since the dimension of R/mR is just the maximal dimension of a face F of C(S)

not containing an element of m, we see that dimR/mR = m+ 1. In fact, the largest
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dimension of a compact face of C(I)′ is m, and such a face extends to an m + 1-
dimensional face of C(S).
Thus δ = m+ 1 and δ > 1, since C(I) has at least a 1-dimensional compact face:

by hypothesis I is not of torsion class.
For part (c) we note that heightmR = grademR = dimR−dimR/mR = dimR−m

since R is Cohen–Macaulay by Hochster’s theorem (and all the invariants involved
are stable under localization with respect to the maximal ideal of R generated by
monomials). Moreover grademR = infj depthMcj , as follows by arguments analogous
to those in the proof of Theorem 4.2.4.
By similar arguments the inequality for infj depthMcj+d results from heightmR =

dimR−m.

Remark 4.3.6. — The limits in Theorem 4.3.5(b) coincide if and only if the D ′-
modules Mk/mMk all have the same multiplicity. However, in general this is not
the case. As an example one can take the semigroup algebra

R = K[U2, UV, V 2, XW, YW,XZ, Y Z] ⊂ P = K[U, V,X, Y, Z,W ]

in its standard embedding. It has divisor class group Cl(R) = Z/(2) ⊕ Z. The
non-zero torsion class is represented by the coset module M(1,0) = RU + RV , and
M(0,1) = RX + RY represents a generator of the direct summand Z. Let c ∈ Cl(R)
be the class of M(1,1). As an R-module, Mjc, j odd, is generated by the monomials
Uµ, V µ where µ is a degree j monomial in X,Y , whereas for even j the monomials µ
form a generating system. The limits for k = 0 and k = 1 therefore differ by a factor
of 2 (d = 0, e = 2).

Second proof of Theorem 4.3.1. — Let P be the polynomial ring of the standard em-
bedding of R. Then P is a Cl(R)-graded R-algebra whose graded component Pc,
c ∈ Cl(R) is the module Mc. Passing to residue classes modulo m converts the asser-
tion of the theorem into a statement about the Hilbert function (with respect to K)
of the Cl(R)-graded K-algebra P/mP ; note that (P/mP )0 = R/m = K. By Theorem
4.3.5 the Hilbert function goes to infinity along each arithmetic progression in Cl(R).
Therefore we are in a position to apply Theorem 4.4.3 below. It says that there are
only finitely many c ∈ Cl(R) where µ(Mc) = H(P/mP, c) does not exceed a given
bound m.

This deduction of Theorem 4.3.1 uses the combinatorial hypotheses on R only at a
single point in the proof of Theorem 4.3.5, namely where we show that dimD/mD � 2.
Thus the whole argument can be transferred into a more general setting, provided an
analogous condition on dimension holds.

4.4. On the growth of Hilbert functions. — We introduce some terminology:
if S is a subsemigroup of an abelian group G, then T ⊂ G is an S-module if S+T ⊂ T

(the case T = ∅ is not excluded). If S is finitely generated and T is a finitely generated
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S-module, then every S-module T ′ ⊂ T is also finitely generated. For example, this
follows by “linearization”with coefficients in a field K: M = KT ⊂ K[G] is a finitely
generated module over the noetherian ring R = K[S], and so all its submodules are
finitely generated over R. For KT ′ this implies the finite generation of T ′ over S.
First we note a result on the finite generation of certain subalgebras of graded

algebras and submodules of graded modules. We do not know of a reference covering
it in the generality of Theorem 4.4.1.

Theorem 4.4.1. — Let G be a finitely generated abelian group, S a finitely generated
subsemigroup of G, and T ⊂ G a finitely generated S-module. Furthermore let R be
a noetherian G-graded ring and M a G-graded finitely generated R-module. Then the
following hold:

(a) R0 is noetherian ring, and each graded component Mg, g ∈ G, of M is a finitely
generated R0–module.

(b) A =
⊕
s∈S Rs is a finitely generated R0-algebra.

(c) N =
⊕
t∈T Mt is a finitely generated A-module.

Proof. — (a) One easily checks that M ′R ∩Mg = M ′ for each R0-submodule M ′ of
Mg. Therefore ascending chains of such submodules M ′ of Mg are stationery.
(b) First we do the case in which G is torsionfree, G = Zm, and S is an integrally

closed subsemigroup of Zm.
Let ϕ : Zm → Z be a non-zero linear form. It induces a Z-grading on R with

degZ(a) = ϕ(degZM (a)) for each non-zero Zm-homogeneous element of R. Let R′

denote R with this Z-grading. Set R′
− =

⊕
k�0 R

′
k and define R

′
+ analogously. By

[BH, 1.5.5] the R′
0-algebras R

′
+ and R

′
− are finitely generated R

′
0-algebras, and R

′
0 is

a noetherian ring (by (a)). On the other hand, R′
0 is a (Kerϕ)-graded ring in a natural

way, and by induction we can conclude that R′
0 is a finitely generated R0-algebra.

If S = Zm, then it follows immediately that R, the sum of R− and R+ as an
R0-algebra, is again a finitely generated R0-algebra.
Otherwise S = Zm ∩ C(S), and C(S) has at least one support hyperplane:

S = {s ∈ Zm : αi(s) � 0, i = 1, . . . , v}
with v � 1. We use induction on v, and the induction hypothesis applies to R′ =⊕
s∈S′ Rs,

S′ = {s ∈ Zm : αi(s) � 0, i = 1, . . . , v − 1}.
Applying the argument above with ϕ = αv, one concludes that A = R′

+ is a finitely
generated R0-algebra.
In the general case forG and S we set G′ = G/H whereH is the torsion subgroup of

G, and denote the natural surjection by π : G→ G′. Let R′ be R with the G′-grading
induced by π (its homogeneous components are the direct sums of the components
Rg where g is in a fixed fiber of π). Let S′ be the integral closure of π(S) in G′. Then
A′ =

⊕
s′∈S′ R′

s′ is a finitely generated algebra over the noetherian ring R
′
0, as we
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have already shown. But R′
0 is a finitely generated module over R0 by (a), and so A′

is a finitely generated R0-algebra. In particular, R itself is finitely generated over R0.
It is not hard to check that A′ is integral over A; in fact, each element s ∈ π−1(S′)

has a power sn ∈ S for suitable n ∈ N. Furthermore it is a finitely generated A-
algebra, and so a finitely generated A-module. But then a lemma of Artin and Tate
(see Eisenbud [Ei, p. 143]) implies that A is noetherian. As shown above, noetherian
G-graded rings are finitely generated R0-algebras.
(c) By hypothesis, T is the union of finitely many translates S + t. Therefore

we can assume that T = S + t. Passing to the shifted module M(−t) (given by
M(−t)g = Mg−t), we can even assume that S = T . Now the proof follows the same
pattern as that of (b). In order to deal with an integrally closed subsemigroup of a
free abelian group G = Zm, one notes thatM+ is a finitely generated module over R+

where M+ is the positive part of M with respect to a Z-grading (induced by a linear
form ϕ : Zm → Z). This is shown as follows: the extended module RM+ is finitely
generated over R , and every of its generating systems E ⊂M+ together with finitely
many components Mi, i � 0, generate M+ over R+; furthermore the Mi are finitely
generated over R0 by (a).
For the general situation we consider N ′ defined analogously as A′. It is a finitely

generated A′-module by the previous argument. Since A′ is a finitely generated A-
module, N ′ is finitely generated over A, and so is its submodule N .

We note a purely combinatorial consequence.

Corollary 4.4.2. — Let S and S ′ be affine subsemigroups of Zm, T ⊂ Zm a finitely
generated S-module, and T ′ ⊂ Zm a finitely generated S′-module. Then S ∩ S′ is an
affine semigroup, and T ∩ T ′ is a finitely generated S ∩ S′-module.

Proof. — We choose a field K of coefficients and set R = K[S′], M = KT ′. Then the
hypotheses of the theorem are satisfied, and it therefore implies the finite generation of

A =
⊕
s∈S

Rs = K[S ∩ S′], and N =
⊕
t∈T

Mt = K(T ∩ T ′).

as a K = R0-algebra and an A-module respectively. However, finite generation of the
“linearized” objects is equivalent to that of the combinatorial ones.

The next theorem is our main result on the growth of Hilbert functions. Note that
we do not assume that R0 = K; the graded components of R and M may even have
infinite K-dimension.

Theorem 4.4.3. — Let K be a field, G a finitely generated abelian group, R a noethe-
rian G-graded K-algebra for which R0 is a finitely generated K-algebra, and M a
finitely generated G-graded R-module. Consider a finitely generated subsemigroup S

of G containing the elements deg r, r ∈ R�{0} homogeneous, and a finitely generated
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S-submodule T of G containing the elements deg x, x ∈M � {0} homogeneous. Fur-
thermore let H be the G-graded Hilbert function, H(M, t) = dimKMt for all t ∈ G.

Suppose limk→∞H(M,kc+d) =∞ for all choices of c ∈ S, c not a torsion element
of G, and d ∈ T . Then

#{t ∈ T : H(M, t) � C} <∞

for all C ∈ Z+.

Note that R is a finitely generated R0-algebra by Theorem 4.4.1, and therefore
a finitely generated K-algebra. Let S′ be the subsemigroup of G generated by the
elements deg r, r ∈ R�{0} homogeneous, and T ′ be the S′-submodule of G generated
by the elements deg x, x ∈ M � {0} homogeneous. Then all the hypotheses are
satisfied with S′ in place of S and T ′ in place of T . However, for technical reasons the
hypothesis of the theorem has to be kept more general. (We are grateful to Robert
Koch for pointing out some inaccuracies in previous versions of the theorem and its
proof.)

Proof of Theorem 4.4.3. — We split G as a direct sum of a torsionfree subgroup L
and its torsion subgroup Gtor. Let R′ =

⊕
!∈LR!, and split M into the direct sum

M =
⊕
h∈Gtor

M ′
h, M ′

h =
⊕
!∈L

M(!,h).

By Theorem 4.4.1, R′ is a finitely generated R0-algebra andM ′
h is a finitely generated

L-graded R′-module for all h ∈ Gtor, and since the hypothesis on the Hilbert function
is inherited by M ′

h, it is enough to do the case G = L = Zm.
We use induction on m. In the case m = 1 it is not difficult to see (and well-

known) that T is the union of finitely many arithmetic progressions that appear in
the hypothesis of the theorem.
As a first step we want to improve the hypothesis on the Hilbert function from a

“1-dimensional ” condition to a “1-codimensional” condition by an application of the
induction hypothesis.
Let U be a proper subgroup of L and u ∈ L. Then U is finitely generated as a

subsemigroup. We set

R′ =
⊕
s∈U

Rs and M ′ =
⊕
t∈U+u

Mt.

Theorem 4.4.1 implies that R′ is a finitely generated K-algebra, and M ′ is a finitely
generated R′-module.
After fixing an origin in U + u we can identify it with U . Therefore we can apply

the induction hypothesis to R′ and M ′. It follows that

(∗) #{t ∈ T ∩ (U + u) : H(t,M) � C} <∞.
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By Theorem 4.4.1, R is a finitely generatedR0-algebra and thus a finitely generated
K-algebra. We represent R as the residue class ring of an L-graded polynomial ring
P over K in a natural way (in particular the monomials in P are homogeneous in the
L-grading). The hypothesis that R0 is a finitely generated K-algebra is inherited by
P since P0 is a (not necessarily positive) normal affine semigroup ring. Thus we may
assume that R itself is generated by finitely many algebraically independent elements
as a K-algebra.
Obviously M has a filtration

0 =M0 ⊂M1 ⊂ · · · ⊂Mn =M

where each successive quotient Mi+1/Mi is a cyclic L-graded R-module, that is

Mi+1/Mi
∼= (R/Ii+1)(−si)

with an L-graded ideal Ii+1 in R and a shift si ∈ L. As far as the Hilbert function
is concerned, we can replace M by the direct sum of these cyclic modules. After
the introduction of a term order we can replace R/(Ii+1)(−si) by R/(in(Ii+1))(−si)
where in(Ii+1) is the initial ideal (see [Ei, 15.26]). It is well known that R/ in(Ii+1)
has a filtration whose successive quotients are of the form R/p with a prime ideal p

generated by monomials, and therefore by indeterminates of R. (For example, see the
proof of [BH, 4.1.3], and use that associated prime ideals of multigraded modules are
generated by indeterminates if the multigrading is that induced by the semigroup of
all monomials in R.)
Altogether this reduces the problem to the case in which the K-vector space M

is isomorphic to the direct sum of vector spaces Pi(−si) where Pi is a polynomial
ring generated by indeterminates with degrees in L, and si ∈ L. Furthermore we can
use that the Hilbert function of M satisfies condition (∗). The Hilbert function now
counts the total number of monomials in each degree. Replacing the monomials by
their exponent vectors, we can deduce the theorem from the next one.

Theorem 4.4.4. — Let G be a finitely generated abelian group, S a finitely generated
subsemigroup of G, and T a finitely generated S-submodule of G. Consider maps

ψi : Ai −→ T, ψi(x) = ϕi(x) + ti for all x ∈ Ai

where Ai is an affine semigroup, ϕi : Ai → S is a homomorphism of semigroups, and
ti ∈ T , i = 1, . . . , v. Furthermore let

Ψ: A1 ∪ · · · ∪Av → T, Ψ|Ai = ψi,

be the map defined on the disjoint union of the Ai by all the ψi. For t ∈ G set

H(t) = #{x ∈ A1 ∪ · · · ∪Av : Ψ(x) = t}.
Suppose that limk→∞H(kc+ d) =∞ for all c ∈ S, c not a torsion element of G, and
all d ∈ T . Then

#{t ∈ T : H(t) � C} <∞
for all C ∈ Z+.
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Proof. — In step (a) we prove the theorem under the assumption that G = L = Zm

for some m and that

#{t ∈ T ∩ (U + u) : H(t) � C} <∞.

for all proper subgroups U of L. This is enough to complete the proof of Theorem
4.4.3. In step (b) we can then use Theorem 4.4.3.
(a) The first observation is that we can omit all the maps ψi that are injective. This

reduces the function H in each degree by at most v, and has therefore no influence
on the hypothesis or the desired conclusion.
The difficult case is C = 0, and we postpone it. So suppose that we have already

shown that the number of “gaps” (elements in T with no preimage at all) is finite.
Then we can restrict ourselves to ImΨ if we want to show that there are only finitely
many elements with at most C > 0 preimages.
It is enough to show that the elements in Imψi with at most C preimages are

contained in the union of finitely many sets of the form U + u where U is a proper
direct summand of L. Then we can use the hypothesis on the sets {x ∈ T ∩ (U + u) :
H(x) � C}. We can certainly assume that v = 1 and t1 = 0, and have only to
consider a non-injective, surjective homomorphism ϕ : A→ S.
For an ideal (i. e. S-submodule) I �= ∅ of S we have that S � I is contained in

finitely many sets U + u. In fact, S contains an ideal J �= ∅ of the normalization S
of S, namely the conductor ideal F = {s ∈ S : S + s ⊂ S}. (Compare the proof of
Theorem 3.7.1.) Therefore S contains a set S + s with s ∈ S, and so S + s + t ⊂ I

for t ∈ I. It follows that
(
S � I

)
⊂

(
S � (S + s+ t)

)
. The latter set is contained in

finitely many sets of type U + u. To sum up, it is enough to find an ideal I in S such
that each element of I has at least C + 1 preimages.
Now we go to A and choose a ∈ A such that A+ a ⊂ A where A is again the nor-

malization. The homomorphism ϕ has a unique extension to a group homomorphism
gp(A) → L, also denoted by ϕ. By assumption Kerϕ �= 0. A sufficiently large ball
B in gp(A) ⊗ R with center 0 therefore contains C + 1 elements of Kerϕ, and there
exists b ∈ A for which B+ b is contained in the cone R+A. Thus (B ∩Kerϕ)+ b ⊂ A.
It follows that each element in I = ϕ(A + a+ b) has at least C + 1 preimages. Since
A+ a+ b is an ideal in A and ϕ is surjective, I is an ideal in S.
(b) By linearization we now derive Theorem 4.4.4 from Theorem 4.4.3. Let K be a

field. Then we set Ri = K[Ai], and the homomorphism ϕi allows us to consider Ri as
a G-gradedK-algebra. Next we choose a polynomial ring Pi whose indeterminates are
mapped to a finite monomial system of generators of Ai, and so Pi is also G-graded.
Set

R = P1 ⊗K · · · ⊗K Pv and M = R1(−s1)⊕ · · · ⊕Rv(−sv)

Evidently R is a finitely generated G-graded K-algebra; in particular it is noetherian.
Moreover Ri is residue class ring of R in a natural way, and therefore Ri(−si) can
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be considered a G-graded R-module. Therefore M is a G-graded R-module whose
Hilbert function is the function H of the theorem.

It remains to do the case C = 0. For simplicity we only formulate it under the
special assumptions of step (a) in the proof of Theorem 4.4.4. We leave the general as
well as the commutative algebra version to the reader. The semigroups Ai of Theorem
4.4.4 can now be replaced by their images.

Proposition 4.4.5. — Let L = Zm, S an affine subsemigroup of L, T a finitely gen-
erated S-submodule of L. Consider subsemigroups A1, . . . , Av of L and elements
t1, . . . , tv ∈ T such that the set

G = T � ((A1 + t1) ∪ · · · ∪ (Av + tv))

of “gaps” satisfies the following condition: for each proper subgroup U of L and each
u ∈ L the intersection (U + u) ∩ G is finite. Then G is finite.

Proof. — Note that T is contained in finitely many residue classes modulo gp(S).
Therefore we can replace each Ai by Ai ∩ gp(S): the intersection of Ai + ti with a
residue class modulo gp(S) is a finitely generated Ai ∩ gp(S)-module by Corollary
4.4.2.
We order the Ai in such a way that A1, . . . , Aw have the same rank as S, and

Aw+1, . . . , Av have lower rank. Let W be the intersection of gp(Ai), i = 1, . . . , w.
Since gp(S)/W is a finite group, we can replace all the semigroups involved by their
intersections withW , split the modules into their intersection with the residue classes
modulo W , and consider every residue class separately. We have now reached a
situation where Ai ⊂ gp(S) for all i, and gp(Ai) = gp(S), unless rankAi < rankS.
Next one can replace the A1, . . . , Aw by their normalizations. In this way we fill

the gaps in only finitely many U + u (compare the argument in the proof of Theorem
4.4.4), and therefore we fill only finitely many gaps.
At this point we can assume that A1, . . . , Aw are integrally closed in L. Furthermore

we must have C(S) ⊂ C(A1)∪· · ·∪C(Aw) – otherwise an open subcone of C(S) would
remain uncovered, and this would remain so in T : the lower rank semigroups cannot
fill it, and neither can it be filled by finitely many translates U + u where U is a
proper subsemigroup of S. In fact, (Ai + ti)�Ai is contained in the union of finitely
many such translates, and the same holds for (C(S) ∩ L) � S. Since A1, . . . , Aw are
integrally closed, we have S ⊂ A1 ∪ · · · ∪Aw.
Now we choose a system of generators u1, . . . , uq of T over S. We have

T ⊂
⋃
i,j

Ai + uj.

But Ai+uj and Ai+ti only differ in finitely many translates of proper direct subgroups
of L parallel to the support hyperplanes of Ai. So in the last step we have filled only
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finitely many gaps. Since no gaps remain, their number must have been finite from
the beginning.

5. From vector spaces to polytopal algebras

5.1. Introduction. — The category Vect(K) of finite-dimensional vector spaces
over a field K has a natural extension that we call the polytopal K-linear cate-
gory Pol(K). The objects of Pol(K) are the polytopal algebras. That is, an object
A ∈ |Pol(K)| is (up to graded isomorphism) a standard graded K-algebra K[P ] as-
sociated with a lattice polytope P ⊂ Rn (see §2.2). The morphisms of Pol(K) are the
homogeneous K-algebra homomorphisms.
The category Pol(K) contains Vect(K) as a full subcategory. In fact, we can

identify a vector space with the degree 1 component of its symmetric algebra, which,
upon the choice of a basis, can be considered as a polynomial ringK[X1, . . . , Xn]. This
polynomial ring is isomorphic to the polytopal algebraK[∆n−1] defined by the (n−1)-
simplex ∆n−1. Vector space homomorphisms extend to homomorphisms of symmetric
algebras, and thus to homomorphisms of the corresponding polytopal algebras. In
order to have the zero space we have to admit ∅ as a lattice polytope whose algebra
is just K.
Our investigation of polytopal algebras is motivated by two closely related goals:

(1) to find the connections between the combinatorial structure of P and the algebraic
structure of K[P ], and (2) to extend theorems valid in Vect(K) to Pol(K).
It follows from Gubeladze [Gu3] that an algebra isomorphism of K[P ] and K[Q]

implies the isomorphism of P and Q as lattice polytopes. This result identifies the
objects of the category Pol of lattice polytopes with the objects of Pol(K), but there
remains the question to which extent the morphisms in Pol(K) are determined by
those in Pol, namely the Z-affine maps between lattice polytopes. Similarly one must
ask whether certain classes of morphisms in Pol(K) can be described in the same way
as the corresponding classes in Vect(K).
As we will see in Subsections 5.2 – 5.5, there is a total analogy with the linear situa-

tion for the automorphism groups in Pol(K) (called polytopal linear groups in [BG1]):
they are generated by elementary automorphisms (generalizing elementary matrices),
toric automorphisms (generalizing diagonal invertible matrices) and automorphisms
of the underlying polytope; moreover, there are normal forms for such representations
of arbitrary automorphisms.
We will apply the main theorem on automorphism groups of polytopal algebras in

order to describe the automorphism groups of projective toric varieties; see Subsection
5.5.
In [BG6] this analogy has been extended to automorphisms of so-called polyhedral

algebras. These algebras, associated with polyhedral complexes, are composed from
polytopal algebras, in the same way as Stanley-Reisner rings of simplicial complexes
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are composed from polynomial rings. However, the combinatorics becomes much more
difficult, and the results are not as complete as hoped for.
In Subsections 5.6 – 5.9 we study retractions of polytopal algebras, i. e. idempotent

homogeneous endomorphisms of polytopal algebras. Our results support the following
conjectures:

Conjecture A. — Retracts of polytopal algebras are again polytopal.

Conjecture B. — A codimension 1 retraction factors through either a facet retraction
or an affine lattice retraction of the underlying lattice polytope.

These conjectures generalize the standard facts that every finitely generated vector
space has a basis and that an idempotent matrix is conjugate to a sub-unit matrix
(ones and zeros on the main diagonal and zeros anywhere else). Conjecture B must be
restricted to codimension 1 since there exist counterexamples for higher codimension.
In Subsection 5.8 we discuss the class of segmentonomial ideals, that is, ideals

generated by polynomials f whose Newton polytope has dimension � 1.
Subsection 5.10 contains a conjecture on the structure of all morphisms in Pol(K)

according to which all morphisms can be obtained by 5 basic operations, namely free
extensions, Minkowski sums, homothetic blow-ups, restrictions to subpolytopes (or
polytope changes) and compositions. The theorems on automorphism groups and
retractions can be viewed as strong versions of this conjecture for special classes of
homomorphisms.
A result of [BG5] that belongs to the program of this section, but is not discussed

in these notes, is the triviality of the Picard group of Pol(K) for algebraically closedK.
(The Picard group is the group of covariant “algebraic” autoequivalences.)
Retracts of free modules are projective modules. Therefore the study of algebra

retracts can be considered as a non-linear variant of studying the group K0 of a ring.
The group K1 compares automorphisms of free modules to the elementary ones, as
does our theorem on the automorphisms in Pol(K). Therefore the latter is a non-
linear analogue of K1, and it is natural to push the analogy between Vect(K) and
Pol(K) further into higher K-theory. This will be done in [BG8] and [BG9].

5.2. Column structures on lattice polytopes. — Let P be a lattice polytope
as above.

Definition 5.2.1. — An element v ∈ Zn, v �= 0, is a column vector (for P ) if there is a
facet F ⊂ P such that x+ v ∈ P for every lattice point x ∈ P � F .
For such P and v the pair (P, v) is called a column structure. The corresponding

facet F is called its base facet and denoted by Pv.

One sees easily that for a column structure (P, v) the set of lattice points in P

is contained in the union of rays – columns – parallel to the vector −v and with
end-points in F . This is illustrated by Figure 6.
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v

Figure 6. A column structure

Moreover, as an affine space over Z, the group Zn is the direct sum of the two
subgroups generated by v and by the lattice points in Pv respectively. In particular, v
is a unimodular element of Zn. In the following we will identify a column vector v ∈ Zn

with the element (v, 0) ∈ Zn+1. The proof of the next lemma is straightforward. For
simplicity of notation we set C(P ) = C(SP ).

Lemma 5.2.2. — For a column structure (P, v) and any element x ∈ SP , such that
x /∈ C(Pv), one has x+ v ∈ SP (here C(Pv) denotes the facet of C(P ) corresponding
to Pv).

One can easily control column structures in such formations as homothetic images
and direct products of lattice polytopes. More precisely, let Pi be a lattice ni-polytope,
i = 1, 2, and let c be a natural number. Then cP1 is the homothetic image of P1
centered at the origin with factor c and P1 × P2 is the direct product of the two
polytopes, realized as a lattice polytope in Zn1+n2 in a natural way. Then one has
the following observations:

(∗) For any natural number c the two polytopes P1 and cP1 have the same column
vectors.

(∗∗) The system of column vectors of P1×P2 is the disjoint union of those of P1 and
P2 (embedded into Zn1+n2).

Actually, (∗) is a special case of a more general observation on the polytopes defining
the same normal fan. The normal fan N (P ) of a (lattice) polytope P ⊂ Rn is the
family of cones in the dual space (Rn)∗ given by

N (P ) =
(
{ϕ ∈ (Rn)∗ | MaxP (ϕ) = f}, f a face of P

)
;

here MaxP (ϕ) is the set of those points in P at which ϕ attains its maximal value
on P (for example, see Gelfand, Kapranov, and Zelevinsky [GKZ]).
For each facet F of P there exists a unique unimodular Z-linear form ϕF : Zn → Z

and a unique integer aF such that F = {x ∈ P | ϕF (x) = aF } and

P = {x ∈ Rn | ϕF (x) � aF for all facets F},

where we denote the natural extension of ϕF to an R-linear form on Rn by ϕF , too.
That v is a column vector for P with base facet F can now be described as follows:

one has ϕF (v) = −1 and ϕG(v) � 0 for all other facets G of P . The linear forms

SÉMINAIRES & CONGRÈS 6
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−ϕF generate the semigroups of lattice points in the rays (i. e. one-dimensional cones)
belonging toN (P ) so that the system of column vectors of P is completely determined
by N (P ):
(∗∗∗) Lattice n-polytopes P1 and P2 such that N (P1) = N (P2) have the same systems

of column vectors.

We have actually proved a slightly stronger result: if P and Q are lattice polytopes
such that N (Q) ⊂ N (P ), then Col(P ) ⊂ Col(Q).
We further illustrate the notion of column vector by Figure 7: the polytope P1 has

4 column vectors, whereas the polytope P2 has no column vector.

P1 P2

Figure 7. Two polytopes and their column structures

Let (P, v) be a column structure. Then for each element x ∈ SP we set htv(x) = m

where m is the largest non-negative integer for which x +mv ∈ SP . Thus htv(x) is
the ‘height’ of x above the facet of the cone C(SP ) corresponding to Pv in direction
−v.
More generally, for any facet F ⊂ P we define the linear form htF : Rn+1 → R

by htF (y) = ϕF (y1, . . . , yn) − aF yn+1 where ϕF and aF are chosen as above. For
x ∈ SP and, more generally, for x ∈ C(P ) ∩ Zn+1 the height htF (x) of X is a non-
negative integer. The kernel of htF is just the hyperplane supporting C(P ) in the
facet corresponding to F , and C(P ) is the cone defined by the support functions htF .
Clearly, for a column structure (P, v) and a lattice point x ∈ P we have htv(x) =

htPv (x), as follows immediately from Lemma 5.2.2.
In previous sections htF was denoted by σi for the facet F = Fi. Here we have

chosen the notion ht because of its geometric significance.

5.3. The structure of the automorphism group. — Let (P, v) be a column
structure and λ ∈ K. We identify the vector v, representing the difference of two
lattice points in P , with the degree 0 element (v, 0) ∈ Zn+1, and also with the cor-
responding monomial in K[Zn+1]. Then we define an injective mapping from SP to
QF(K[P ]), the quotient field of K[P ] by the assignment

x �→ (1 + λv)htv(x)x.

Since htv extends to a group homomorphism Zn+1 → Z our mapping is a homomor-
phism from SP to the multiplicative group of QF(K[P ]). Now it is immediate from
the definition of htv and Lemma 5.2.2 that the (isomorphic) image of SP lies actually
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in K[P ]. Hence this mapping gives rise to a graded K-algebra endomorphism eλv of
K[P ] preserving the degree of an element. By Hilbert function arguments eλv is an
automorphism.
Here is an alternative description of eλv . By a suitable integral change of coordinates

we may assume that v = (0,−1, 0, . . . , 0) and that Pv lies in the subspace Rn−1 (thus
P is in the upper halfspace). Now consider the standard unimodular n-simplex ∆n
with vertices at the origin and standard coordinate vectors. It is clear that there is a
sufficiently large natural number c, such that P is contained in a parallel translate of
c∆n by a vector from Zn−1. Let ∆ denote such a parallel translate. Then we have a
graded K-algebra embedding K[P ] ⊂ K[∆]. Moreover, K[∆] can be identified with
the c-th Veronese subring of the polynomial ring K[x0, . . . , xn] in such a way that
v = x0/x1. Now the automorphism of K[x0, . . . , xn] mapping x1 to x1 + λx0 and
leaving all the other variables invariant induces an automorphism α of the subalgebra
K[∆], and α in turn can be restricted to an automorphism of K[P ], which is nothing
else but eλv .
From now on we denote the graded automorphism group of K[P ] by

ΓK(P ).

It is clear from this description of eλv that it becomes an elementary matrix (e
λ
01

in our notation) in the special case when P = ∆n, after the identification ΓK(P ) =
GLn+1(K).
Therefore the automorphisms of type eλv will be called elementary.

Lemma 5.3.1. — Let v1, . . . , vs be pairwise different column vectors for P with the
same base facet F = Pvi , i = 1, . . . , s.

(a) Then the mapping

ϕ : AsK −→ ΓK(P ), (λ1, . . . , λs) �−→ eλ1
v1 ◦ · · · ◦ e

λs
vs
,

is an embedding of algebraic groups. In particular, eλi
vi

and eλj
vj commute for any

i, j ∈ {1, . . . , s} and the inverse of eλi
vi

is e−λi
vi

.
(b) For x ∈ LP with htv1(x) = 1 one has

eλ1
v1 ◦ · · · ◦ e

λs
vs
(x) = (1 + λ1v1 + · · ·+ λsvs)x.

(AsK denotes the additive group of the s-dimensional affine space.)

Proof. — We define a new K-algebra automorphism ϑ of K[P ] by first setting

ϑ(x) = (1 + λ1v1 + · · ·+ λsvs)htF (x)x,

for x ∈ SP and then extending ϑ linearly. Arguments very similar to those above
show that ϑ is a graded K-algebra automorphism of K[P ]. The lemma is proved once
we have verified that ϕ = ϑ.
Choose a lattice point x ∈ P such that htF (x) = 1. (The existence of such a

point follows from the definition of a column vector: there is of course a lattice point
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x ∈ P such that htF (x) > 0.) We know that gp(SP ) = Zn+1 is generated by x and
the lattice points in F . The lattice points in F are left unchanged by both ϑ and
ϕ, and elementary computations show that ϕ(x) = (1 + λ1v1 + · · · + λsvs)x; hence
ϕ(x) = ϑ(x).

The image of the embedding ϕ given by Lemma 5.3.1 is denoted by A(F ). Of
course, A(F ) may consist only of the identity map of K[P ], namely if there is no
column vector with base facet F . In the case in which P is the unit simplex and K[P ]
is the polynomial ring, A(F ) is the subgroup of all matrices in GLn(K) that differ
from the identity matrix only in the non-diagonal entries of a fixed column.
For the statement of the main result we have to introduce some subgroups of ΓK(P ).

First, the (n+ 1)-torus Tn+1 = (K∗)n+1 acts naturally on K[P ] by restriction of its
action on K[Zn+1] that is given by

(ξ1, . . . , ξn+1)(ei) = ξiei, i ∈ [1, n+ 1],

here ei is the i-th standard basis vector of Zn+1. This gives rise to an algebraic
embedding Tn+1 ⊂ ΓK(P ), and we will identify Tn+1 with its image. It consists
precisely of those automorphisms of K[P ] which multiply each monomial by a scalar
from K∗.
Second, the automorphism group Σ(P ) of the semigroup SP is in a natural way a

finite subgroup of ΓK(P ). It is the integral symmetry group of P , i. e. the group of
integral affine transformations mapping P onto itself. (In general this group is larger
than the group of symmetries with respect to the Euclidean metric.)
Third we have to consider a subgroup of Σ(P ) defined as follows. Assume v and

−v are both column vectors. Then for every point x ∈ P ∩ Zn there is a unique
y ∈ P ∩Zn such that htv(x) = ht−v(y) and x− y is parallel to v. The mapping x �→ y

gives rise to a semigroup automorphism of SP : it ‘inverts columns’ that are parallel
to v. It is easy to see that these automorphisms generate a normal subgroup of Σ(P ),
which we denote by Σ(P )inv.
Finally, Col(P ) is the set of column structures on P . Now the main result is

Theorem 5.3.2. — Let P be a convex lattice n-polytope and K a field.

(a) Every element γ ∈ ΓK(P ) has a (not uniquely determined) presentation

γ = α1 ◦ α2 ◦ · · · ◦ αr ◦ τ ◦ σ,

where σ ∈ Σ(P ), τ ∈ Tn+1, and αi ∈ A(Fi) such that the facets Fi are pairwise
different and #(Fi ∩ Zn) � #(Fi+1 ∩ Zn), i ∈ [1, r − 1].

(b) For an infinite field K the connected component of unity ΓK(P )0 ⊂ ΓK(P ) is
generated by the subgroups A(Fi) and Tn+1. It consists precisely of those graded
automorphisms of K[P ] which induce the identity map on the divisor class group
of the normalization of K[P ].

(c) dimΓK(P ) = #Col(P ) + n+ 1.
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(d) One has ΓK(P )0 ∩Σ(P ) = Σ(P )inv and ΓK(P )/ΓK(P )0 ∼= Σ(P )/Σ(P )inv. Fur-
thermore, if K is infinite, then Tn+1 is a maximal torus of ΓK(P ).

Remark 5.3.3
(a) Our theorem is a ‘polytopal generalization’ of the fact that any invertible matrix

with entries from a field is a product of elementary matrices, permutation matrices
and diagonal matrices. The normal form in its part (a) generalizes the fact that the
elementary transformations eλij , j fixed, can be carried out consecutively.
(b) Observe that we do not claim the existence of a normal form as in (a) for the

elements from ΓK(P )0 if we exclude elements of Σ(P )inv from the generating set.
(c) Let S ⊂ Zn+1 be a normal affine semigroup such that 0 is the only invertible

element in S. A priori S does not have a grading, but there always exists a grading
of S such that the number of elements of a given degree is finite, as observed in
Subsection 2.1.
One can treat graded automorphisms of such semigroups as follows. It is well

known that the cone C(S) spanned by S in Rn+1 is a finite rational strictly convex
cone. An element v ∈ Zn+1 of degree 0 is called a column vector for S if there is a
facet F of C(S) such that x+ v ∈ S for every x ∈ S � F .
The only disadvantage here is that the condition for column vectors involves an

infinite number of lattice points, while for polytopal algebras one only has to look at
lattice points in a finite polytope (due to Lemma 5.2.2).
Then one introduces analogously the notion of an elementary automorphism eλv

(λ ∈ K). The proof of Theorem 5.3.2 we present below is applicable to this more
general situation without any essential change, yielding a similar result for the group
of graded K-automorphisms of K[S].
(d) In an attempt to generalize the theorem in a different direction, one could

consider an arbitrary finite subset M of Zn (with gp(M) = Zn) and the semigroup
SM generated by the elements (x, 1) ∈ Zn+1, x ∈ M . However, examples show that
there is no suitable notion of column vector in this generality: one can only construct
the polytope P spanned by M , find the automorphism group of K[P ] and try to
determine ΓK(M) as the subgroup of those elements of ΓK(P ) that can be restricted
to K[SM ]. (This approach is possible because K[P ] is contained in the normalization
of K[SM ].)
(e) As a (possibly non-reduced) affine variety ΓK(P ) is already defined over the

prime field K0 of K since this is true for the affine variety SpecK[P ]. Let S be its
coordinate ring over K0. Then the dimension of ΓK(P ) is just the Krull dimension
of S or S ⊗K, and part (c) of the theorem must be understood accordingly.

As an application to rings and varieties outside the class of semigroup algebras and
toric varieties we determine the groups of graded automorphisms of the determinantal
rings, a result which goes back to Frobenius [Fr, p. 99] and has been re-proved many
times since then. See, for instance, [Wa] for a group-scheme theoretical approach for
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general commutative rings of coefficients, covering also the classes of generic symmet-
ric and alternating matrices. (The generic symmetric case can be done by the same
method as the generic one below.)
In plain terms, Corollary 5.3.4 answers the following question: let K be an infinite

field, ϕ : Kmn → Kmn a K-automorphism of the vector space Kmn of m×n matrices
over K, and r an integer, 1 � r < min(m,n); when is rankϕ(A) � r for all A ∈ Kmn

with rankA � r? This holds obviously for transformations ϕ(A) = SAT−1 with
S ∈ GLm(K) and T ∈ GLn(K), and for the transposition if m = n. Indeed, these are
the only such transformations:

Corollary 5.3.4. — Let K be a field, X an m × n matrix of indeterminates, and set
R = K[X ]/Ir+1(X) the residue class ring of the polynomial ring K[X ] in the entries
of X modulo the ideal generated by the (r + 1)-minors of X, 1 � r < min(m,n). Set
G = gr. autK(R).

(a) The connected component G0 of unity in G is the image of GLm(K)×GLn(K)
in GLmn(K) under the map above, and is isomorphic to GLm(K)×GLn(K)/K∗

where K∗ is embedded diagonally.
(b) If m �= n, the group G is connected, and if m = n, then G0 has index 2 in G

and G = G0 ∪ τG0 where τ is the transposition.

Proof. — The singular locus of SpecR is given by V (p) where p = Ir(X)/Ir+1(X);
p is a prime ideal in R (see Bruns and Vetter [BV, (2.6), (6.3)]). It follows that
every automorphism of R must map p onto itself. Thus a linear substitution on
K[X ] for which Ir+1(X) is stable also leaves Ir(X) invariant and therefore induces
an automorphism of K[X ]/Ir(X). This argument reduces the corollary to the case
r = 1.
For r = 1 one has the isomorphism

R→ K[YiZj : i = 1, . . . ,m, j = 1, . . . , n] ⊂ K[Y1, . . . , Ym, Z1, . . . , Zn]

induced by the assignment Xij �→ YiZj . Thus R is just the Segre product of
K[Y1, . . . , Ym] and K[Z1, . . . , Zn], or, equivalently, R ∼= K[P ] where P is the direct
product of the unit simplices ∆m−1 and ∆n−1. Part (a) follows now from an analysis
of the column structures of P (see observation (∗∗) above) and the torus actions.
For (b) one observes that Cl(R) ∼= Z; ideals representing the divisor classes 1 and

−1 are given by (Y1Z1, . . . , Y1Zn) and (Y1Z1, . . . , YmZ1) [BV, 8.4]. If m �= n, these
ideals have different numbers of generators; therefore every automorphism of R acts
trivially on the divisor class group. In the case m = n, the transposition induces
the map s �→ −s on Cl(R). Now the rest follows again from the theorem above.
(Instead of the divisorial arguments one could also discuss the symmetry group of
∆m−1 ×∆n−1.)
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5.4. The Gaussian algorithm for polytopes. — The Gaussian algorithm tells
us how to transform a matrix to a diagonal matrix. Theorem 5.3.2 claims that such a
diagonalization is possible for automorphisms of polytopal algebras, and we will carry
it out by a procedure generalizing the Gaussian algorithm.
Set SP = Zn+1 ∩ C(P ). Then SP is the normalization of the semigroup SP

and K[SP ] is the normalization of the domain K[P ]. Let ΓK(P ) denote the group of
gradedK-algebra automorphisms ofK[SP ]. Since any automorphism ofK[P ] extends
to a unique automorphism of K[SP ] we have a natural embedding ΓK(P ) ⊂ ΓK(P ).
On the other hand, K[SP ] and K[P ] have the same homogeneous components of
degree 1. Hence ΓK(P ) = ΓK(P ). Nevertheless we will use the notation ΓK(P ),
emphasizing the fact that we are dealing with automorphisms of K[SP ]; Σ(P ) and
Σ(P )inv will refer to their images in ΓK(P ). Furthermore, the extension of an elemen-
tary automorphism eλv is also denoted by e

λ
v ; it satisfies the rule e

λ
v (x) = (1+λv)

htv(x)x

for all x ∈ SP . (The equation ΓK(P ) = ΓK(P ) shows that the situation considered in
Remark 5.3.3(c) really generalizes Theorem 5.3.2; furthermore it explains the differ-
ence between polytopal algebras and arbitrary graded semigroup algebras generated
by their degree 1 elements.)
In the following it is sometimes necessary to distinguish elements x ∈ SP from

products ζz with ζ ∈ K and z ∈ SP . As introduced in Subsection 2.1, we call x a
monomial and ζz a term.
Suppose γ ∈ ΓK(P ) maps every monomial x to a term λxyx, yx ∈ SP . Then the

assignment x �→ yx is also a semigroup automorphism of SP . Denote it by σ. It
obviously belongs to Σ(P ). The mapping σ−1 ◦ γ is of the type x �→ ξxx, and clearly
τ = σ−1 ◦ γ ∈ Tn+1. Therefore, γ = σ ◦ τ .
Let int(C(P )) denote the interior of the cone C(P ) and let

ω = (int(C(P )) ∩ Zn+1)K[SP ]

be the corresponding monomial ideal. (It is known that ω is the canonical module of
K[SP ]: see Danilov [Da], Stanley [St1], or [BH, Chapter 6].)

Lemma 5.4.1

(a) Suppose γ ∈ ΓK(P ) leaves the ideal ω invariant. Then γ = σ ◦ τ with σ ∈ Σ(P )
and τ ∈ Tn+1.

(b) One has σ ◦ τ ◦ σ−1 ∈ Tn+1 for all σ ∈ Σ(P ), τ ∈ Tn+1.

Proof
(a) By the argument above it is enough that γ maps monomials to terms.
First consider a non-zero monomial x ∈ SP ∩ ω. We have γ(x) ∈ ω. Since x is an

‘interior’ monomial, K[SP ]x = K[Zn+1] (see the end of Subsection 2.1). On the other
hand K[Zn+1] ⊂ K[SP ]γ(x). Indeed, since gp(SP ) = Zn+1, it just suffices to observe
that for any monomial z ∈ SP there is a sufficiently large natural number c satisfying
the following condition:
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The parallel translate of the Newton polytopeN(γ(x)c) by the vector−z ∈ Rn+1

is inside the cone C(P ) (here we use additive notation).

(Observe that N(γ(x)c) is the homothetic image of N(γ(x)), centered at the origin
with factor c. Instead of Newton polytopes one could also use the minimal prime
ideals of z, which we will introduce below: they all contain γ(x).) Hence all monomials
become invertible in K[SP ]γ(x).
The crucial point is to compare the groups of units U(K[Zn+1]) = K∗⊕Zn+1 and

U(K[SP ]γ(x)). The mapping γ induces an isomorphism

Zn+1 ∼= U(K[SP ]γ(x))/K∗.

On the other hand we have seen that Zn+1 is embedded into U(K[SP ]γ(x))/K∗ so
that the elements from SP map to their classes in the quotient group.
Assume that γ(x) is not a term. Then none of the powers of γ(x) is a term. In

other words, none of the multiples of the class of γ(x) is in the image of Zn+1. This
shows that rank(U(K[SP ]γ(x))/K∗) > n+ 1, a contradiction.
Now let y ∈ SP be an arbitrary monomial, and z a monomial in ω. Then yz ∈ ω,

and since γ(yz) is a term as shown above, γ(y) must be also a term.
(b) follows immediately from the fact that σ ◦ τ ◦ σ−1 maps each monomial to a

multiple of itself.

In the light of Lemma 5.4.1(a) we see that for Theorem 5.3.2(a) it suffices to show
the following claim: for every γ ∈ ΓK(P ) there exist α1 ∈ A(F1), . . . , αr ∈ A(Fr) such
that

αr ◦ αr−1 ◦ · · · ◦ α1 ◦ γ(ω) = ω

and the Fi satisfy the side conditions of 5.3.2(a).
For a facet F ⊂ P we have constructed the group homomorphism htF : Zn+1 → Z.

Recall that

Div(F ) = {x ∈ SP | htF (x) > 0} ·K[SP ].
is the divisorial prime ideal of K[SP ] associated with the facet F . It is clear that
ω =

⋂r
1Div(Fi) where F1, . . . , Fr are the facets of P . This shows the importance of

the ideals Div(Fi) for our goals. In the following Theorem 2.3.1 is an important tool.
Before we prove the claim above (reformulated as Lemma 5.4.4) we collect some

auxiliary arguments.

Lemma 5.4.2. — Let v1, . . . , vs be column vectors with the common base facet F = Pvi ,
and λ1, . . . , λs ∈ K. Then

eλ1
v1 ◦ · · · ◦ e

λs
vs
(Div(F )) = (1 + λ1v1 + · · ·+ λsvs)Div(F )

and

eλ1
v1 ◦ · · · ◦ e

λs
vs
(Div(G)) = Div(G), G �= F.
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Proof. — Using the automorphism ϑ from the proof of Lemma 5.3.1 we see immedi-
ately that

eλ1
v1 ◦ · · · ◦ e

λs
vs
(Div(F )) ⊂ (1 + λ1v1 + · · ·+ λsvs)Div(F ).

The left hand side is a height 1 prime ideal (being an automorphic image of such)
and the right hand side is a proper divisorial ideal inside K[SP ]. Then, of course, the
inclusion is an equality.
For the second assertion it is enough to treat the case s = 1, v = v1, λ = λ1. One

has
eλv (x) = (1 + λv)htF (x)x,

and all the terms in the expansion of the right hand side belong to Div(G) since
htG(v) � 0. As above, the inclusion eλv (Div(G)) ⊂ Div(G) implies equality.

Lemma 5.4.3. — Let F ⊂ P be a facet, λ1, . . . , λs ∈ K � {0} and v1, . . . , vs ∈
Zn+1 be pairwise different non-zero elements of degree 0. Suppose (1 + λ1v1 + · · · +
λsvs)Div(F ) ⊂ K[SP ]. Then v1, . . . , vs are column vectors for P with the common
base facet F .

Proof. — If x ∈ P � F is a lattice point, then x ∈ Div(F ). Thus xvj is a degree 1
element of SP ; in additive notation this means x+ vj ∈ P .

The crucial step in the proof of our main result is the next lemma.

Lemma 5.4.4. — Let γ ∈ ΓK(P ), and enumerate the facets F1, . . . , Fr of P in such a
way that #(Fi∩Zn) � #(Fi+1∩Zn) for i ∈ [1, r−1]. Then there exists a permutation
π of [1, r] such that #(Fi ∩ Zn) = #(Fπ(i) ∩ Zn) for all i and

αr ◦ · · · ◦ α1 ◦ γ(Div(Fi)) = Div(Fπ(i))
with suitable αi ∈ A(Fπ(i)).

In fact, this lemma finishes the proof of Theorem 5.3.2(a): the resulting automor-
phism δ = αr ◦ · · · ◦ α1 ◦ γ permutes the minimal prime ideals of ω and therefore
preserves their intersection ω. By virtue of Lemma 5.4.1(a) we then have δ = σ ◦ τ
with σ ∈ Σ(P ) and τ ∈ Tn+1. Finally one just replaces each αi by its inverse and
each Fi by Fπ(i).

Proof of Lemma 5.4.4. — As mentioned above, the divisorial ideal γ(Div(F )) ⊂
K[SP ] is equivalent to some monomial divisorial ideal ∆, i. e. there is an element
κ ∈ QF(K[SP ]) such that

γ(Div(F )) = κ∆.

The inclusion κ ∈ (γ(Div(F )) : ∆) shows that κ is a K-linear combination of some
Laurent monomials corresponding to lattice points in Zn+1. We factor out one of the
terms of κ, say m, and rewrite the above equality as follows:

γ(Div(F )) = (m−1κ)(m∆).
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Then m−1κ is of the form 1+m1+ · · ·+ms for some Laurent terms m1, . . . ,ms /∈ K,
while m∆ is necessarily a divisorial monomial ideal of K[SP ] (since 1 belongs to the
supporting monomial set of m−1κ). Now γ is a graded automorphism. Hence

(1 +m1 + · · ·+ms)(m∆) ⊂ K[SP ]

is a graded ideal. This implies that the terms m1, . . . ,ms are of degree 0. Thus there
is always a presentation

γ(Div(F )) = (1 +m1 + · · ·+ms)∆,

where m1, . . . ,ms are Laurent terms of degree 0 and ∆ ⊂ K[SP ] is a monomial ideal
(we do not exclude the case s = 0). A representation of this type will be called
admissible.
In the following we will have to work with the number of degree 1 monomials in

a given monomial ideal I. Therefore we let IP denote the set of such monomials; in
other words, IP is the set of lattice points in P which are elements of I. Thus, we
have ( ⋂r

1Div(Fi)
(ai)

)
P
= {x ∈ P ∩ Zn | htFi(x) � ai, i ∈ [1, r]}

for all ai � 0. (Recall that htFi coincides on lattice points with the valuation of
QF(K[P ]) defined by Div(Fi).) Furthermore we set

ci = #(Div(Fi)P ).

Then ci = #(P ∩ Zn) −#(Fi ∩ Zn), and according to our enumeration of the facets
we have c1 � · · · � cr.
For γ ∈ ΓK(P ) consider an admissible representation

γ(Div(F1)) = (1 +m1 + · · ·+ms)∆.

Since γ is graded, #(∆P ) = c1: this is the dimension of the degree 1 homogeneous
components of the ideals. As mentioned above, there are integers ai � 0 such that

∆ =
r⋂
1

Div(Fi)(ai).

It follows easily that if
∑r

1 ai � 2 and ai0 �= 0 for i0 ∈ [1, r], then #(∆P ) < ci0 .
This observation along with the maximality of c1 shows that exactly one of the ai is
1 and all the others are 0. In other words, ∆ = Div(G1) for some G1 ∈ {F1, . . . , Fr}
containing precisely #(F1∩Zn) lattice points. By Lemmas 5.4.2 and 5.4.3 there exists
α1 ∈ A(G1) such that

α1 ◦ γ(Div(F1)) = Div(G1).

Now we proceed inductively. Let 1 � t < r. Assume there are facets G1, . . . , Gt of
P with #(Gi ∩ Zn) = #(Fi ∩ Zn) and α1 ∈ A(G1), . . . , αt ∈ A(Gt) such that

αt ◦ · · · ◦ α1 ◦ γ(Div(Fi)) = Div(Gi), i ∈ [1, t].
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(Observe that the Gi are automatically different.) In view of Lemma 5.4.2 we must
show there is a facet Gt+1 ⊂ P , different from G1, . . . , Gt and containing exactly
#(Ft+1 ∩ Zn) lattice points, and an element αt+1 ∈ A(Gt+1) such that

αt+1 ◦ αt ◦ · · · ◦ α1 ◦ γ(Div(Ft+1)) = Div(Gt+1).

For simplicity of notation we put γ′ = αt ◦ · · · ◦α1 ◦ γ. Again, consider an admissible
representation

γ′(Div(Ft+1)) = (1 +m1 + · · ·+ms)∆.

Rewriting this equality in the form

γ′(Div(Ft+1)) = (m−1
j (1 +m1 + · · ·+ms))(mj∆),

where j ∈ {0, . . . , s} and m0 = 1, we get another admissible representation. Assume
that by varying j we can obtain a monomial divisorial ideal mj∆, such that in the
primary decomposition

mj∆ =
r⋂
1

Div(Fi)(ai)

there appears a positive power of Div(G) for some facet G different from G1, . . . , Gt.
Then #((mj∆)P ) � ct+1 (due to our enumeration) and the inequality is strict when-
ever

∑r
1 ai � 2. On the other hand #(Div(Ft+1)P ) = ct+1. Thus we would have

mj∆ = Div(G) and we could proceed as for the ideal Div(F1)).
Assume to the contrary that in the primary decompositions of all the monomial

ideals mj∆ there only appear the prime ideals Div(G1), . . . ,Div(Gt). We have

(1 +m1 + · · ·+ms)∆ ⊂ ∆+m1∆+ · · ·+ms∆

and
[(1 +m1 + · · ·+ms)∆] = [∆] = [m1∆] = · · · = [ms∆]

in Cl(K[SP ]). Applying (γ′)−1 we arrive at the conclusion that Div(Ft+1) is contained
in a sum of monomial divisorial ideals Φ0, . . . ,Φs, such that the primary decomposi-
tion of each of them only involves Div(F1), . . . ,Div(Ft). (This follows from the fact
that (γ′)−1 maps Div(Gi) to the monomial ideal Div(Fi) for i = 1, . . . , t; thus inter-
sections of symbolic powers of Div(G1), . . . ,Div(Gt) are mapped to intersections of
symbolic powers of Div(F1), . . . ,Div(Ft), which are automatically monomial.) Fur-
thermore, Div(Ft+1) has the same divisor class as each of the Φi.
Now choose a monomialM ∈ Zn+1∩Div(Ft+1) such that htF1(M)+· · ·+htFt(M) is

minimal. Since the monomial ideal Div(Ft+1) is contained in the sum of the monomial
ideals Φ0, . . . ,Φs, each monomial in it must belong to one of the ideals Φi; so we may
assume thatM ∈ Φj . There is a monomial d with Div(Ft+1) = dΦj , owing to the fact
that Div(Ft+1) and Φj belong to the same divisor class. It is clear that htFi(d) � 0
for i ∈ [1, t] and htFi(d) < 0 for at least one i ∈ [1, t]. In fact,

htFi(d) = −ai for i = 1 . . . , t,
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where Φj =
⋂t

1Div(Fi)
(ai). If we had ai = 0 for i = 1, . . . , t, then Φj = K[SP ],

which is evidently impossible. By the choice of d the monomial N = dM belongs to
Div(Ft+1). But

htF1(N) + · · ·+ htFt(N) < htF1(M) + · · ·+ htFt(M),

a contradiction.

Proof of Theorem 5.3.2(b)–(d). — (b) Since Tn+1 and the A(Fi) are connected
groups they generate a connected subgroup U of ΓK(P ) (see Borel [Bor, Prop. 2.2]).
This subgroup acts trivially on Cl(K[SP ]) by Lemma 5.4.2 and the fact that the
classes of the Div(Fi) generate the divisor class group. Furthermore U has finite
index in ΓK(P ) bounded by #Σ(P ). Therefore U = ΓK(P )0.
Assume γ ∈ ΓK(P ) acts trivially on Cl(K[SP ]). We want to show that γ ∈ U . Let

E denote the connected subgroup of ΓK(P ), generated by the elementary automor-
phisms. Since any automorphism that maps monomials to terms and preserves the
divisorial ideals Div(Fi) is automatically a toric automorphism, by Lemma 5.4.1(a)
we only have to show that there is an element ε ∈ E, such that

(1) ε ◦ γ(Div(Fi)) = Div(Fi), i ∈ [1, r].

By Lemma 5.4.4 we know that there is ε1 ∈ E such that

(2) ε1 ◦ γ(Div(Fj)) = Div(Fij ), j ∈ [1, r],

where {i1, . . . , ir} = {1, . . . , r}. Since ε1 and γ both act trivially on Cl(K[SP ]), we
get

Div(Fij ) = mijDiv(Fj), j ∈ [1, r],
for some monomials mij of degree 0.
By Lemma 5.4.3 we conclude that if mij �= 1 (in additive notation, mij �= 0), then

both mij and −mij are column vectors with the base facets Fj and Fij respectively.
Observe that the automorphism

εij = e1mij
◦ e−1

−mij
◦ e1mij

∈ E

interchanges the ideals Div(Fj) and Div(Fij ), providedmij �= 1. Now we can complete
the proof by successively ‘correcting’ the equations (2).

(c) We have to compute the dimension of ΓK(P ). Without loss of generality we
may assume that K is algebraically closed, passing to the algebraic closure of K if
necessary (see Remark 5.3.3(e)). For every permutation ρ : {1, . . . , r} → {1, . . . , r} we
have the algebraic map

A(Fρ(1))× · · · × A(Fρ(r))× Tn+1 × Σ(P )→ ΓK(P ),

induced by composition. The left hand side has dimension #Col(P ) + n + 1. By
Theorem 5.3.2(a) we are given a finite system of constructible sets, covering ΓK(P ).
Hence dimΓK(P ) � #Col(P ) + n+ 1.
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To derive the opposite inequality we can additionally assume that P contains an
interior lattice point. Indeed, the observation (∗) in Subsection 5.2 and Theorem
5.3.2(a) show that the natural group homomorphism ΓK(P ) → ΓK(cP ), induced by
restriction to the c-th Veronese subring, is surjective for every c ∈ N (the surjection
for the ‘toric part’ follows from the fact that K is closed under taking roots). So we
can work with cP , which contains an interior point provided c is large.
Let x ∈ P be an interior lattice point and let v1, . . . , vs be different column vec-

tors. Then the supporting monomial set of eλi
vi
(x), λ ∈ K∗, is not contained in the

union of those of eλj
vj (x), j �= i (just look at the projections of x through vi into the

corresponding base facets). This shows that we have #Col(P ) linearly independent
tangent vectors of ΓK(P ) at 1 ∈ ΓK(P ). Since the tangent vectors corresponding to
the elements of Tn+1 clearly belong to a complementary subspace and ΓK(P ) is a
smooth variety, we are done.

(d) Assume v and −v both are column vectors. Then the element

ε = e1v ◦ e−1
−v ◦ e1v ∈ ΓK(P )0 (= ΓK(P )0)

maps monomials to terms; more precisely, ε ‘inverts up to scalars’ the columns parallel
to v so that any x ∈ SP is sent either to the appropriate y ∈ SP or to −y ∈ K[SP ].
Then it is clear that there is an element τ ∈ Tn+1 such that τ ◦ ε is a generator of
Σ(P )inv. Hence Σ(P )inv ⊂ ΓK(P )0.
Conversely, if σ ∈ Σ(P ) ∩ ΓK(P )0 then σ induces the identity map on Cl(K[SP ]).

Hence σ(Div(Fi)) = mijDiv(Fi) for some monomials mij , and the very same argu-
ments we have used in the proof of (b) show that σ ∈ Σ(P )inv. Thus ΓK(P )/ΓK(P )0
= Σ(P )/Σ(P )inv.
Finally, assume K is infinite and T′ ⊂ ΓK(P ) is a torus, strictly containing Tn+1.

Choose x ∈ SP and γ ∈ T′. Then τ−1 ◦ γ ◦ τ(x) = γ(x) for all τ ∈ Tn+1. Since K is
infinite, one easily verifies that this is only possible if γ(x) is a term. In particular,
γ maps monomials to terms. Then, as observed above Lemma 5.4.1, γ = σ ◦ τ with
Tn+1, and therefore σ ∈ Σ0 = T′ ∩ Σ. Lemma5.4.1(b) now implies that T′ is the
semidirect product Tn+1 	 Σ0. By the infinity of K we have Σ0 = 1.

5.5. Projective toric varieties and their groups. — Having determined the
automorphism group of a polytopal semigroup algebra, we show in this subsection
that our main result gives the description of the automorphism group of a projective
toric variety (over an arbitrary algebraically closed field) via the existence of ‘fully
symmetric’ polytopes.
The description of the automorphism group of a smooth complete toric C-variety

given by a fan F in terms of the roots of F is due to Demazure in his fundamental
work [De]. The analogous description of the automorphism group of quasi-smooth
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complete toric varieties (over C) has been obtained by Cox [Cox]. Buehler [Bue] gen-
eralized Cox’ results to arbitrary complete toric varieties. We must restrict ourselves
to projective toric varieties, but our method works in arbitrary characteristic.
We start with a brief review of some facts about projective toric varieties. Our ter-

minology follows the standard references (Danilov [Da], Fulton [Fu], Oda [Oda]). To
avoid technical complications we suppose from now on that the field K is algebraically
closed.
Let P ⊂ Rn be a polytope as above. Then Proj(K[SP ]) is a projective toric variety

(though K[SP ] needs not be generated by its degree 1 elements). In fact, it is the
toric variety defined by the normal fan N (P ), but it may be useful to describe it
additionally in terms of an affine covering.
For every vertex z ∈ P we consider the finite rational polyhedral n-cone spanned

by P at its corner z. The parallel translate of this cone by −z will be denoted by
C(z). Thus we obtain a system of the cones C(z), where z runs through the vertices
of P . It is not difficult to check that N (P ) is the fan in (Rn)∗ whose maximal cones
are the dual cones

C(z)∗ = {ϕ ∈ (Rn)∗ | ϕ(x) � 0 for all x ∈ C(z)}.

The affine open subschemes Spec(K[Zn ∩C(z)]) cover Proj(K[SP ]). The projectivity
of Proj(K[SP ]) follows from the observation that for all natural numbers c � 0 the
polytope cP is normal (see Subsection 3.4) and, hence, Proj(K[SP ]) = Proj(K[cP ]).
A lattice polytope P is called very ample if for every vertex z ∈ P the semigroup

C(z) ∩ Zn is generated by {x− z | x ∈ P ∩ Zn}.
It is clear from the discussion above that Proj(K[SP ]) = Proj(K[P ]) if and only if

P is very ample. In particular, normal polytopes are very ample, but not conversely:

Example 5.5.1. — Let Π be the simplicial complex associated with the minimal trian-
gulation of the real projective plane. It has 6 vertices which we label by the numbers
i ∈ [1, 6]. Then the 10 facets of Π have the following vertex sets (written as ascending
sequences):

(1, 2, 3), (1, 2, 4), (1, 3, 5), (1, 4, 6), (1, 5, 6)
(2, 3, 6), (2, 4, 5), (2, 5, 6), (3, 4, 5), (3, 4, 6).

Let P be the polytope spanned by the indicator vectors of the ten facets (the indicator
vector of (1, 2, 3) is (1, 1, 1, 0, 0, 0) etc.). All the vertices lie in an affine hyperplane
H ⊂ R6, and P has indeed dimension 5. Using H as the ‘grading’ hyperplane,
one realizes R = K[P ] as the K-subalgebra of K[X1, . . . , X6] generated by the 10
monomials µ1 = X1X2X3, µ2 = X1X2X4, . . .
Let R be the normalization of R. It can be checked by effective methods that

R is generated as a K-algebra by the 10 generators of R and the monomial ν =
X1X2X3X4X5X6; in particular R is not normal. Then one can easily compute by

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



104 W. BRUNS & J. GUBELADZE

hand that the products µiν and ν2 all lie inR. It follows thatR/R is a one-dimensional
vector space; therefore Proj(R) = Proj(R) is normal, and P is very ample.

For a very ample polytope P we have a projective embedding

Proj(K[P ]) ⊂ PNK , N = #(P ∩ Zn)− 1.

The corresponding very ample line bundle on Proj(K[P ]) will be denoted by LP .
It is known that any projective toric variety and any very ample equivariant line
bundle on it can be realized as Proj(K[P ]) and LP for some very ample polytope P .
Moreover, any line bundle is isomorphic to an equivariant line bundle, and if LQ is a
very ample equivariant line bundle on Proj(K[P ]) (for a very ample polytope Q) then
N (P ) = N (Q) (see [Oda, Ch. 2] or [Da]). Therefore P and Q have the same column
vectors (see observation (∗∗∗) in Subsection 5.2). Furthermore, LQ1 and LQ2 are
isomorphic line bundles if and only if Q1 and Q2 differ only by a parallel translation
(but they have different equivariant structures if Q1 �= Q2).
Let X be a projective toric variety and LP , LQ ∈ Pic(X) be two very ample

equivariant line bundles. Then one has the elegant formula LP ⊗LQ = LP+Q, where
P + Q is the Minkowski sum of P,Q ⊂ Rn (see Teissier [Te]). (Of course, very
ampleness is preserved by the tensor product, and therefore by Minkowski sums.)
In the dual space (Rn)∗ the column vectors v correspond to the integral affine

hyperplanes H intersecting exactly one of the rays in N (P ) (this is the condition
ϕG(v) � 0 for G �= F ) and such that there is no lattice point strictly between H and
the parallel of H through 0 (this is the condition ϕF (v) = −1). This shows that the
column vectors correspond to Demazure’s roots [De].
In Figure 8 the arrows represent the rays of the normal fans N (P1) and N (P2) and

the lines indicate the hyperplanes corresponding to the column vectors (P1 and P2
are chosen as in Figure 7).

0 0

Figure 8. The normal fans of the polytopes P1 and P2

Lemma 5.5.2. — If two lattice n-polytopes P1 and P2 have the same normal fans, then
the quotient groups ΓK(P1)0/K∗ and ΓK(P2)0/K∗ are naturally isomorphic.
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Proof. — As in Subsection 5.4 we will work with ΓK(Pi). Put

X = Proj(K[SP1 ]) = Proj(K[SP2 ])

and consider the canonical anti-homomorphisms ΓK(Pi)0 → AutK(X), i = 1, 2. Let
A(P1) and A(P2) denote the images. We choose a column vector v (for both polytopes)
and λ ∈ K. We claim that the elementary automorphisms eλv (Pi) ∈ ΓK(Pi)0, i = 1, 2,
have the same images in AutK(X). Denote the images by e1 and e2. For i = 1, 2
we can find a vertex zi of the base facet (Pi)v such that C(z1) = C(z2). Now it is
easy to see that e1 and e2 restrict to the same automorphism of the affine subvariety
Spec(K[C(z1) ∩ Zn]) ⊂ X , which is open in X . Therefore e1 = e2, as claimed.
It is also clear that for any τ ∈ Tn+1 the corresponding elements τi ∈ ΓK(Pi),

i = 1, 2, have the same images in AutK(X). By Theorem 5.3.2(b) we arrive at the
equality A(P1) = A(P2). It only remains to notice that K∗ = Ker(ΓK(Pi)0 → A(Pi)),
i = 1, 2.

Example 5.5.3. — Lemma 5.5.2 cannot be improved. For example, let P1 be the unit
1-simplex ∆1 and P2 = 2P1. Then C[SP1 ] = C[X1, X2], and C[SP2 ] = C[X2

1 , X1X2,

X2
2 ] is its second Veronese subring. Both polytopes have the same symmetries and
column vectors, and moreover the torus action on C[SP2 ] is induced by that on C[SP1 ].
Therefore the natural map ΓC(P1)→ ΓC(P2) is surjective; in fact, ΓC(P1) = GL2(C)
and ΓC(P2) = GL2(C)/{±1}. If there were an isomorphism between these groups,
then SL2(C) and SL2(C)/{±1} would also be isomorphic. This can be easily excluded
by inspecting the list of finite subgroups of SL2(C).

For a lattice polytope P we denote the group opposite to ΓK(P )0/K∗ by AK(P ),
the projective toric variety Proj(K[SP ]) by X(P ); the symmetry group of a fan F
is denoted by Σ(F). (Σ(F) is the subgroup of GLn(Z) that leaves F invariant.)
Furthermore we consider AK(P ) as a subgroup of AutK(X(P )) in a natural way.

Theorem 5.5.4. — For a lattice n-polytope P the group AutK(X(P )) is generated by
AK(P ) and Σ(N (P )). The connected component of unity of AutK(X(P )) is AK(P ).
Furthermore, dim(AK(P )) = #Col(P ) + n, and the embedded torus Tn = Tn+1/K

∗

is a maximal torus of AutK(X(P )).

Proof. — Assume for the moment that P is very ample and [LP ] ∈ Pic(X(P )) is
preserved by every element of AutK(X(P )). Then we are able to apply the classical
arguments for projective spaces as follows.
We have K[SP ] =

⊕
i�0H

0(X,LiP ). Since [LP ] is invariant under AutK(X),
arguments similar to those in Hartshorne [Ha, Example 7.1.1, p. 151] show that
giving an automorphism of X is equivalent to giving an element of ΓK(P ). In other
words, the natural anti-homomorphism ΓK(P ) → AutK(X(P )) is surjective. Now
Theorem 5.3.2 gives the desired result once we notice that Σ(P ) is mapped to Σ(F).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



106 W. BRUNS & J. GUBELADZE

Therefore, and in view of Lemma 5.5.2, the proof is completed once we show that
there is a very ample polytope Q having the same normal fan as P and such that [LQ]
is invariant under AutK(X).
The existence of such a ‘fully’ symmetric polytope is established as follows. First

we replace P by the normal polytope cP for some c � 0 so that we may assume
that P is normal. The K-vector space of global sections of a line bundle, which is an
image of LP with respect to some element of AutK(X(P )), has the same dimension
as the space of global sections of LP , which is given by #(P ∩ Zn). Easy inductive
arguments ensure that the number of polytopes Q such that #(Q∩Zn) = #(P ∩Zn)
and, in addition, N (Q) = N (P ) is finite. It follows that the set {[LQ1 ], . . . , [LQt ]} of
isomorphism classes of very ample equivariant line bundles to which [LP ] is mapped
by an automorphism of X(P ) is finite. Since every line bundle is isomorphic to an
equivariant one, any element α ∈ AutK(X(P )) must permute the classes [LQi ] ∈
Pic(X(P )). In particular, the element

[LQ1 ⊗ · · · ⊗ LQt ] ∈ Pic(X)

is invariant under AutK(X(P )). But LQ1 ⊗ · · · ⊗ LQt = LQ1+···+Qt and, hence,
Q1 + · · ·+Qt is the desired polytope.

Example 5.5.5. — In general the natural anti-homomorphism ΓK(P )→ AutK(X(P ))
is not surjective. For example consider the polytopes P and Q in Figure 9. Then

P Q

Figure 9

Proj(K[P ]) = Proj(K[Q]) = P1 × P1. However, the isomorphism corresponding to
the exchange of the two factors P1 cannot be realized in K[Q].

Above we have derived the automorphism group of a projective toric variety from
that of the homogeneous coordinate ring of a suitable embedding. This approach has
been generalized to arrangements of toric varieties in [BG6].

5.6. Retracts of dimension two. — A retract of a K-algebra A is an algebra B
such that there exist K-homomorphisms f : B → A and g : A → B with g ◦ f = 1B.
This is equivalent to saying that there is an endomorphism h : A → A such that
h2 = h and Im(h) ∼= B. We will call such g and h retractions and will frequently
make passages between the two equivalent definitions. Moreover, all the retractions
considered below are supposed to be graded. For a retraction h as above we put

codim(h) = dim(A)− dim(B).

The arguments used in the sequel need K to be algebraically closed.

SÉMINAIRES & CONGRÈS 6
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That polytopality of algebras is in general not an invariant property under scalar
extension/restriction is exhibited by the following

Example 5.6.1. — Consider the standard graded R-algebra

A = R[X,Y, Z]/(X2 + Y 2 + Z2).

Then A is a factorial non-polytopal algebra over R while C ⊗A is isomorphic to the
polytopal algebra C[2∆1] defined by a lattice segment 2∆1 of length 2.
The factoriality of A is proved in [Fo,§11]. But the only factorial polytopal alge-

bras (over any field) are polynomial algebras – an easy observation. Hence A is not
polytopal because it is singular at the irrelevant maximal ideal. But we have the
isomorphism

α : C[U2, UV, V 2] = C[2∆1]→ C⊗A

defined by U2 �→ X + iY , V 2 �→ X − iY , UV �→ iZ.

Conjecture A holds in Krull dimension � 2:

Theorem 5.6.2. — A retract B of a polytopal algebra A is polytopal if dimB � 2.

The crucial step in the proof is

Proposition 5.6.3. — Let K be an algebraically closed field and A a standard graded
K-algebra of dimension 2. If A is a normal domain and the class group Cl(A) is
finitely generated, then A is isomorphic to K[c∆1] as a graded K-algebra for some
c ∈ N (as usual, ∆1 is the unit segment).

Proof. — We have the projectively normal embedding of Proj(A) given by A. There-
fore, the projective curve Proj(A) is normal and thus smooth. Consider the exact
sequence

0 −→ Z −→ Cl(Proj(A)) −→ Cl(A) −→ 0.

of Weil divisors arising from viewing Spec(A) as a cone over Proj(A) ([Ha, Ex.
II.6.3(b)]). Since Cl(A) is finitely generated, so is Cl(Proj(A)). In particular the
Jacobian

J (Proj(A)) ∼= Cl0(Proj(A))
is trivial (Cl0 denotes degree zero divisor classes). Therefore the genus of Proj(A) is
0, or equivalently Proj(A) ∼= P1

K . Using the normality of A once again we get

A ∼=
∞⊕
i=0

H0(P1
K ,L⊗i)

for some very ample line bundle L on P1
K . But due to the equality Pic(P

1
K) = Z such

a line bundle is a positive multiple of O(1), and hence A is the Veronese subalgebra
of the polynomial algebra K[∆1] of some level c ∈ N.
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Proof of Theorem 5.6.2. — In case dim(B) = 1 it is easy to see that B ∼= K[X ].
Consider the case dim(B) = 2. We write A = K[P ] and denote the retraction

A → B ⊂ A by g. Consider the set (SP ∩ Ker(g)) ⊂ K[P ] of monomials. There is a
unique face F ⊂ P such that (SP ∩Ker(g)) = (SP � SF ) and K[P ]/(SP ∩Ker(g)) is
naturally isomorphic to K[F ]. Then g is a composite of the two retractions

K[P ] π−−→ K[F ]
ρ−−→ B

where ρ is the homomorphism induced by g. Observe that ρ is in fact a retraction as
it is split by π|B.
Therefore we can from the beginning assume that (SP ∩ Ker(g)) = 0. In this

situation g extends (uniquely) to the normalizations

(1) K[P ] = K[SP ]
g−−→ B.

This extension is given by

g(z) =
g(x)
g(y)

, z ∈ SP , x, y ∈ SP and z =
x

y
.

It is known that the semigroup SnP is normal for all natural numbers n � dim(P )−1
(see Subsection 3.4). Therefore, by restricting the retraction (1) to the nth Veronese
subalgebra for such a number n, we get the retraction

(2) K[nP ]
gn−−−→ B(n).

Let us show that Cl(B(n)) is finitely generated for n � dim(P ) − 1. We choose a
lattice point x of SnP that is in the interior of the cone C(SP ). By localization (2)
gives rise to the retraction

(3) (xgn(x))
−1K[nP ]→ (gn(x))

−1B(n).

Since (xgn(x))−1K[nP ] is a localization of the Laurent polynomial ring x−1K[nP ]
= K[gp(SnP )], it is a factorial ring. Then its retract (gn(x))

−1B(n) is factorial as well
(for example, see Costa [Cos]). By Nagata’s theorem [Fo, 7.1] Cl(B(n)) is generated
by the classes of the height 1 prime ideals of B(n) containing gn(x) – a finite set.
It is also clear from (2) that B(n) is generated in degree 1. Consequently, by

Proposition 5.6.3 for each n � dim(P ) − 1 there is a natural number cn and an
isomorphism

ϕn : B(n) → K[cn∆1].

We now fix such a number n. Restricting ϕn and ϕn+1 to the iterated Veronese
subalgebra B(n(n+1)) = (B(n))(n+1) = (B(n+1))(n) we obtain two isomorphisms of
B(n(n+1)) with K[cn(n+1)∆1]. It follows that there exists c ∈ N with cn = cn and
cn+1 = c(n + 1), and furthermore the restrictions of ϕn and ϕn+1 differ by an au-
tomorphism of K[cn(n+1)∆1]. However, each automorphism of K[cn(n+1)∆1] can be
lifted to an automorphism of K[∆1], and then restricted to all Veronese subrings of
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K[∆1]. (This follows from Theorem 5.3.2.) Therefore we can assume that the restric-
tions of ϕn and ϕn+1 coincide. Then they define an isomorphism of the subalgebra V
of B generated by the elements in degree n and n+ 1 to the corresponding subalge-
bra of K[∆1]; see Lemma 5.6.4 below. Taking normalizations yields an isomorphism
B ∼= K[c∆1]. But then B = K[c∆1] as well, because B and B coincide in degree 1
(being retracts of algebras with this property).

Lemma 5.6.4. — Let A and B be Z-graded rings. Suppose that B is reduced. If the
homogeneous homomorphisms ϕ : A(n) → B(n) and ψ : A(n+1) → B(n+1) coincide
on A(n(n+1)), then they have a common extension to a homogeneous homomorphism
χ : V → B, where V is the subalgebra of A generated by A(n) and A(n+1). If, in
addition, A is reduced and ϕ and ψ are injective, then χ is also injective.

Proof. — One checks easily that one only needs to verify the following: if uv = u′v′

for homogeneous elements u, u′ ∈ A(n), v, v′ ∈ A(n+1), then ϕ(u)ψ(v) = ϕ(u′)ψ(v′).
As B is reduced, it is enough that (ϕ(u)ψ(v) − ϕ(u′)ψ(v′))n(n+1) = 0. Since

up(u′)n(n+1)−p, vp(v′)n(n+1)−p ∈ A(n(n+1)), p ∈ [0, n(n+ 1)],

this follows immediately from the hypothesis that ϕ and ψ coincide on A(n(n+1)).
If A is reduced, then every non-zero homogeneous ideal in A intersects A(n(n+1))

non-trivially, and this implies the second assertion.

5.7. The structure of retractions. — Now we first consider Conjecture B in
detail and then observe that it does not admit a direct extension to codimension � 2.
Let P ⊂ Rn be a lattice polytope of dimension n and F ⊂ P a face. Then there is

a uniquely determined retraction

πF : K[P ]→ K[F ], πF (x) = 0 for x ∈ LP � F.

Retractions of this type will be called face retractions and facet retractions if F is a
facet or, equivalently, codim(πF ) = 1.
Now suppose there are an affine subspace H ⊂ Rn and a vector subspace W ⊂ Rn

with dimW + dimH = n, such that

LP ⊂
⋃

x∈LP∩H
(x+W ).

(Observe that dim(H ∩P ) = dimH .) The triple (P,H,W ) is called a lattice fibration
of codimension c = dimW , whose base polytope is P ∩H ; its fibers are the maximal
lattice subpolytopes of (x + W ) ∩ P , x ∈ LP ∩ H (the fibers may have smaller
dimension than W ). P itself serves as a total polytope of the fibration. If W = Rw is
a line, then we call the fibration segmental and write (P,H,w) for it. Note that the
column structures introduced in Section 5.2 give rise to lattice segmental fibrations
in a natural way.
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Hw

Figure 10. A lattice segmental fibration

For a lattice fibration (P,H,W ) let L ⊂ Zn denote the subgroup spanned by LP ,
and let H0 be the translate of H through the origin. Then one has the direct sum
decomposition

L = (L ∩W )⊕ (L ∩H0).

Equivalently,

gp(SP ) = L⊕ Z =
(
gp(SP ) ∩W1

)
⊕ gp(SP∩H1),

where W1 is the image of W under the embedding Rn → Rn+1, w �→ (w, 0), and H1

is the vector subspace of Rn+1 generated by all the vectors (h, 1), h ∈ H .
For a fibration (P,H,W ) one has the naturally associated retraction:

ρ(P,H,W ) : K[P ]→ K[P ∩H ];

it maps LP to LP∩H so that fibers are contracted to their intersection points with
the base polytope P ∩H .

Clearly, if f : K[P ]→ K[P ] is a retraction, then for any graded automorphism α of
K[P ] the composite map fα = α◦f ◦α−1 is again a retraction and Im(fα) = α(Im(f))
and Ker(fα) = α(Ker(f)). Now the exact formulation of Conjecture B is as follows.

Conjecture B. — For a codimension 1 retraction f : K[P ]→ K[P ] there is α ∈ ΓK(P )
such that fα = ι ◦ g for a retraction g of type either πF or ρ(P,H,w) and ι : Im(g) →
K[P ] a graded K-algebra embedding.

In other words this conjecture claims that any codimension 1 retraction can be
‘modified’ by an automorphism so that the corrected retraction factors through a
retraction preserving the monomial structure.
A necessary condition for Conjecture B is that any codimension 1 retraction f

can be modified by a graded automorphism α so that fα has either a homogeneous
binomial of degree 1 or a monomial of degree 1 in its kernel. A weaker condition is
that Ker(fα) contains a homogeneous binomial of degree � 1 (evidently this holds if
there is a monomial in Ker(fα)).
We remark that even an example of just an endomorphism in Pol(K), such that

Ker(fα) contains no (homogeneous) binomial for any α, is not readily found. However,
such exists, even in the class of codimension 2 retractions.
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The examples below are constructed from joins of polytopes. A polytope P ⊂ RnP

is called a join of two polytopes Q ⊂ RnQ and R ⊂ RnR if there are affine embeddings
ϕQ : RnQ → RnP and ϕR : RnR → RnP such that:

(1) Im(ϕQ) ∩ Im(ϕR) = ∅,
(2) the affine hull of Im(ϕQ)∪Im(ϕR) is an (nQ+nR+1)-dimensional affine subspace

of RnP ,
(3) P is the convex hull of ϕQ(Q) ∪ ϕR(R).

It is easy to see that joins are uniquely determined up to isomorphism.
The following lemma enables us to describe ΓK(R) for R = join(P,Q) under a mild

assumption on P and Q. We identify them with the corresponding faces of R.

Lemma 5.7.1. — Let P and Q be lattice polytopes, both having interior lattice points.
Then Col(join(P,Q)) = Col(P ) ∪ Col(Q).

Proof. — That each of the column vectors of the polytopes serves as a column vector
for join(P,Q) is clear.
Now let v ∈ Col(join(P,Q)). If v is parallel to either P or Q then either v ∈ Col(P )

or v ∈ Col(Q) since Ljoin(P,Q) = LP ∪LQ. So without loss of generality we can assume
that v is parallel neither to P nor to Q. Since P and Q span join(P,Q) they cannot
be contained simultaneously in the base facet of v. But then either p+ v ∈ join(P,Q)
or q + v ∈ join(P,Q) for suitable vertices p ∈ P and q ∈ Q. We get a contradiction
because one of the points r+ v or s+ v is outside join(P,Q) for interior lattice points
r ∈ P , s ∈ Q.

Example 5.7.2. — Let Q be the lattice triangle spanned by (0,−1), (−1, 0), and (1, 1).
Then Q contains only one more lattice point, namely (0, 0). Identifying U with (0, 0),
V with (0,−1), andW with (−1, 0) we see that the polynomial ringK[U, V,W ] can be
embedded into K[Q] such that the indeterminates correspond to lattice points. More-
over,K[gp(SQ)] is then just the Laurent polynomial ringK[Z3] = K[U±1, V ±1,W±1].
Let h′ : K[X,Y ] → K[U, V,W ] be defined by h′(X) = U + V , h′(Y ) = U +W .

Then h′ induces a retraction h of K[U, V,W,X, Y ], namely the retraction mapping X
and Y to h′(X) and h′(Y ) respectively and leaving U, V,W invariant. This retraction
extends in a natural way to retraction of K[U±1, V ±1,W±1, X, Y ], and can then be
restricted to

K[Q]⊗K[∆1] ⊂ K[U±1, V ±1,W±1, X, Y ]

where we identify K[X,Y ] with the polytopal algebra K[∆1] of the unit segment. It
can further be restricted to K[join(2Q, 2∆1)] which is embedded into K[Q]⊗K[∆1]
as the tensor product of the second Veronese subalgebras of the normal algebras K[Q]
and K[∆1].
We claim that the just constructed retraction h of K[P ], P = join(2Q, 2∆1),

dimP = 4, has no conjugate hα by an automorphism α ∈ ΓK(P ) such that the
kernel of hα contains a binomial.
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The polytope Q has no column structures, a property inherited by 2Q (see ob-
servation (∗) in Subsection 5.2). Moreover, both 2Q and 2∆1 have interior points.
Therefore the only column structures on P are those it gets from 2∆1 (see Lemma
5.7.1). Then every element α ∈ ΓK(P ) is of the form τ ◦β, where τ is a toric automor-
phism and β = 1⊗ β′ for some β′ ∈ ΓK(2∆1). Since τ does not affect the monomial
structure, we can assume τ = 1. Furthermore the graded automorphisms of K[2∆1]
are all restrictions of automorphisms of K[∆1] = K[X,Y ] so that we have to take
into account all automorphisms of K[P ] induced by a substitution

X �−→ a11X + a12Y, Y �−→ a21X + a22Y, U �−→ U, V �−→ V, W �−→W

with det(aij) �= 0. Then hα is induced by the substitution

a11X + a12Y �−→ U + V, a21X + a22Y �−→ U +W,

leaving U, V,W invariant. Also hα extends to a retraction of K[U±1, V ±1,W±1, X, Y ]
and then restricts to K[U, V,W,X, Y ]. This shows that the kernel of the extension
cannot contain a monomial; otherwise it would contain a monomial in X and Y ,
but hα is injective on K[X,Y ]. If the kernel contains a binomial b, we can assume
that b ∈ K[U, V,W,X, Y ]. In other words, there is a binomial in the ideal p of
K[U, V,W,X, Y ] generated by

a11X + a12Y − (U + V ), a21X + a22Y − (U +W ).

Since the prime ideal p contains no monomials, we can assume that the two terms of
b are coprime. But then b reduces to a monomial modulo one of the variables, and
since p reduces to an ideal generated by linear forms, it reduces to a prime ideal. The
reduction of p modulo any of the variables cannot contain another variable.

5.8. Segmentonomial ideals. — We will use the following theorem of Eisenbud
and Sturmfels [ES, 2.6] characterizing binomial prime ideals in affine semigroup alge-
bras over algebraically closed fields. (In [ES] the theorem is given only for polynomial
rings, but the generalization is immediate.)

Theorem 5.8.1. — Let K be an algebraically closed field. A binomial ideal I in an
affine semigroup algebra K[S] is prime if and only if the residue class ring K[S]/I
contains a (multiplicative) affine semigroup S′ such that K[S]/I = K[S′] and, more-
over, the natural epimorphism K[S] → K[S′] maps the monomials in K[S] to those
in K[S′].

For an affine semigroup S an element f ∈ K[S] will be called segmentonomial if
the Newton polytope N(f) ⊂ R ⊗ gp(S) has dimension � 1. (Clearly, monomials as
well as binomials are segmentonomials.) An ideal I ⊂ K[S] is called segmentonomial
if it is generated by a system of segmentonomials.
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It is proved in [ES] that every minimal prime ideal over a binomial ideal of
K[X1, . . . , Xn] (a polynomial ring) is again binomial. In this section we derive the
same result for segmentonomial ideals in arbitrary affine semigroup algebras.

Theorem 5.8.2. — Let S be an affine semigroup and I ⊂ K[S] be a segmentonomial
ideal.

(a) A minimal prime overideal I ⊂ p ⊂ K[S] is binomial, and K[S]/I is again an
affine semigroup algebra.

(b) Suppose that ht(I) = 1, f ∈ I, dim(N(f)) = 1, and p is as above. Then for
every system of pairwise distinct lattice points x1, . . . , xm ∈ LP , such that none
of the pairs (xi, xj), i �= j, spans a line in R⊗gp(S) parallel to N(f), the residue
classes x1, . . . , xm constitute a K-linearly independent subset of K[S]/p.

Proof. — We prove claim (a) by induction on r = rank(S). Claim (b) will follow
automatically from the description of p derived below.
For r = 0 there is nothing to show. Assume the theorem is proved for semigroups

of rank < r and choose a segmentonomial f ∈ I. Then p contains a minimal prime p0

over the principal ideal (f). Assume that p0 is a binomial ideal. By Theorem 5.8.1,
K[S]/p0 ∼= K[S1] for some affine semigroup S1 and such that monomials in K[S] go
to monomials in K[S1]. But then segmentonomials in K[S] are likewise mapped to
segmentonomials in K[S1]. This holds true because affinely independent monomials
lift to affinely independent monomials. By induction hypothesis the image of p in
K[S1] is binomial. Since binomials can be lifted to binomials in K[S], we conclude
that p is binomial.
The general situation thus reduces to the case in which I = (f) for some seg-

mentonomial f ∈ K[S] and ht(I) = ht(p) = 1.
If p contains a monomial, then p is a height 1 monomial prime ideal, and we are

done.
Otherwise S ∩ p = ∅. Consider the localization pK[gp(S)]. It is a height 1 prime

ideal in the Laurent polynomial ring K[gp(S)]. Therefore, pK[gp(S)] = f0K[gp(S)]
for some prime element f0 ∈ K[gp(S)].
Also f0 is segmentonomial. In fact, we have f = f0f1 for some f1 ∈ K[gp(S)]

implying the equality N(f) = N(f0)+N(f1) for the corresponding Newton polytopes.
Since dimN(f0) = 0 is excluded, dim(N(f0)) = 1. Multiplying f0 by a suitable term
from gp(S) we can achieve that the origin 0 ∈ R ⊗ gp(S) is one of the end-points of
N(f0).
Let D ⊂ R ⊗ gp(S) denote a rational line containing N(f0). In a suitable basis of

the free abelian group gp(S) the line D becomes a coordinate direction. Therefore, we
can assume that

K[gp(S)] = K[X1, X
−1
1 , . . . , Xn, X

−1
n ]
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and that f0 is a monic polynomial in X1. Since K is algebraically closed, if follows
that f0 = X1 − a for some a ∈ K. Since p does not contain a monomial, one has

p = pK[gp(S)] ∩K[S] = (X1 − a)K[X1, X
−1
1 , . . . , Xn, X

−1
n ] ∩K[S].

Thus p is the kernel of the composite homomorphism

K[S] ↪→ K[X1, X
−1
1 , . . . , Xn, X

−1
n ]

X1 
→a−−−−−→ K[X2, X
−1
2 , . . . , Xn, X

−1
n ]

This is a homomorphismmapping the elements of S to Laurent monomials inX2, X
−1
2 ,

. . . , Xn, X
−1
n , and therefore p is generated by binomials.

5.9. Based retractions. — Throughout this section we suppose that h : K[P ]→
K[P ] is a retraction and that A = Im(h). We also assume P ⊂ Rn, dim(P ) = n,
gp(SP ) = Zn+1 (and that K is algebraically closed.)

Lemma 5.9.1. — The following conditions are equivalent:

(a) there is a subset X ⊂ LP such that the restriction h : K[SX ] → A is an
isomorphism, where K[SX ] ⊂ K[P ] is the subalgebra generated by the semigroup
SX = 〈X〉 ⊂ SP ,

(b) there is a (dim(A)−1)-dimensional cross section Q of P by a linear subspace H
such that Q is a lattice polytope (i. e. the vertices of Q are lattice points) and

h|K[Q] : K[Q]→ A

is an isomorphism. In particular, A is a polytopal algebra.

Proof. — We only need to derive (b) from (a). Let H be the affine hull of X in Rn.
We have to show that Q = H ∩ P is a lattice polytope with LQ = X . Consider the
subsemigroup

S′
Q = {x ∈ S | x �= 0 and R+x ∩ P ⊂ H} ∪ {0}.

Then h(K[S′
Q]) = A as well. On the other hand

dimK[S′
Q] = dimH + 1 = dimK[SX ] = dimA.

Thus the restriction h : K[S′
Q]→ A is also an isomorphism. It follows that X = LQ,

and every element in S′
Q is a product of elements of X . Furthermore Q = conv(X)

since any rational point of the complement Q � conv(X) gives rise to elements in
S′
Q � SX .

A subpolytope Q ⊂ P as in Lemma 5.9.1(b) (if it exists) will be called a base of h
and h is a based retraction. Notice that a base is not necessarily uniquely determined.

Theorem 5.9.2. — Suppose a retraction h : K[P ]→ K[P ] has a base Q that intersects
the interior of P . Then hτ = ι ◦ ρ(P,H,W ) for some toric automorphism τ ∈ TK(P ),
a lattice fibration (P,H,W ) and a K-algebra embedding ι : K[H ∩ P ]→ K[P ].
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Proof. — It is not hard to check that there is no restriction in assuming that K[Q] =
Im(h).
Note that Ker(h) ∩ SP = ∅. In fact, if a monomial is mapped to 0 by h, then

Ker(h) contains a monomial prime ideal p of height 1. Since p in turn contains all
monomials in the interior of SP , it must also contain monomials from SQ, which is
impossible. Thus h can be extended to the normalization K[SP ]; on K[SQ] ⊂ K[SP ]
the extension is the identity.
Set L = Zn+1, and let U be the intersection of the Q-vector subspace of Qn+1

generated by SQ with L. Choose a basis v1, ..., vm of a complement of U in L. Since
SQ contains elements of degree 1 (given by the last coordinate), we can assume that
deg vi = 0 for i ∈ [1,m]. In sufficiently high degree we can find a lattice point x in
SQ such that xvi, xv−1

i ∈ SP . We have the relation (xvi)(xv−1
i ) = x2.

It follows that h(xvi) = aixi, equivalently h(x(a−1
i vi)) = xi, for some xi ∈ SQ and

ai ∈ K∗. After a toric ‘correction’ leaving K[SQ] fixed we can assume ai = 1 for all i.
After the inversion of the elements of SP , we can further extend the homomorphism

h to a map defined on the Laurent polynomial ring K[L]. Then we have

h(vixx−1
i ) = 1.

The vectors vi+x−xi are also a basis of a complement of U , and thus part of a basis
of L. Therefore the elements

vixx
−1
i − 1, i = [1,m],

generate a prime ideal of height m in K[L].
It is now clear that h (after the toric correction) is just the retraction ρ(P,H,W )

where H is the affine hull of Q in Rn and W is the sublattice of Zn generated by
the vectors vi + x − xi upon the identification of Zn with the degree 0 sublattice of
Zn+1.

Example 5.7.2 shows that even a based retraction h of K[P ] need not satisfy Con-
jecture B if the base does not intersect the interior of P and h has codimension � 2.
However, in codimension 1 Conjecture B holds for all based retractions, as follows
from Theorem 5.9.2 and

Theorem 5.9.3. — Suppose the codimension 1 retraction h : K[P ]→ K[P ] has a base
F not intersecting the interior of P . Then F is a facet of P and hε = ι ◦πF for some
ε ∈ A(F ) and a K-algebra embedding ι : K[F ]→ K[P ].

See Theorem 5.3.2 for the definition of A(F ). In the proof we will use a general
fact on pyramids. Recall that a pyramid Π ⊂ Rn is a polytope which is spanned by a
point v and a polytope B such that the affine hull of B does not contain v. In this
situation v is called an apex and B is called a base of Π.
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Lemma 5.9.4. — Let Π ⊂ Rn be a pyramid and Π = Π1 + Π2 be a Minkowski sum
representation by polytopes Π1,Π2 ⊂ Rn. Then both Π1 and Π2 are homothetic images
of Π (with respect to appropriate centers and non-negative factors).

Proof. — The case dim(Π) = 2 is an easy exercise.
Now we use induction on dim(Π). Assume dim(Π) = n and assume the claim has

been shown for pyramids of dimension dim(Π)− 1. Consider any (n− 1)-dimensional
subspace Λ ⊂ Rn perpendicular to the base B ⊂ Π. For a polytope R ⊂ Rn let RΛ

denote the image of R in Λ under the orthogonal projection Rn → Λ. Then ΠΛ is an
(n− 1)-dimensional pyramid and we have the Minkowski sum representation

ΠΛ = (Π1)Λ + (Π2)Λ.

By induction hypothesis there are homothetic transformations of Λ transforming ΠΛ

into (Π1)Λ and (Π2)Λ respectively. Considering all the possible subspaces Λ ⊂ Rn we
conclude that

(i) both Π1 and Π2 are n-pyramids (provided none of them is just a point – in this
situation the lemma is obvious) such that the cones they span at corresponding
vertices are parallel shifts of the cone spanned by Π at its apex v,

(ii) the corresponding bases of Π1 and Π2 are parallel to B.

That is exactly what we wanted to show.

Proof of Theorem 5.9.3. — As in the proof of 7.2 we can assume K[F ] = Im(h),
and, furthermore, SP ∩ Ker(h) = ∅, for otherwise h itself passes through a facet
retraction. Thus h can be extended to the Laurent polynomial ring K[L], L = Zn+1,
and in particular to a retraction of K[SP ] with image K[SQ]. The latter restricts to
retractions K[iP ]→ K[iQ] for all i. The kernel of the extension h′ is a height 1 prime
ideal and thus principal; Ker(h′) = ϕK[L] and Ker(h) = (ϕK[L]) ∩ K[P ] for some
element ϕ ∈ K[L].
Since F is a base of h, Ker(h) contains the elements x− D, x ∈ LP � F , D = h(x),

and D is a linear form on the points of LF . Then N(ϕ) is a Minkowski summand of
the pyramid N(x− D) with vertex at x. One can shift N(ϕ) by an integer vector into
N(x− h(x)) ⊂ P such that the image R satisfies

(∗∗) R ⊂ P and R ∩ F �= ∅.

Evidently R is the Newton polytope of yϕ for some y ∈ Zn+1. Replacing ϕ by yϕ, we
can assume that N(ϕ) satisfies (∗∗).
By Lemma 5.9.4 N(ϕ) is homothetic to N(x − D). Clearly, F ∩ N(ϕ) is a base of

N(ϕ). The corresponding apex of N(ϕ) is some z ∈ LP � F .
Consider the valuation

vF : Zn+1 −→ Z

determined by the conditions:

Im(vF ) = Z, vF (LF ) = 0, vF (LP ) � 0
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We claim: vF (z) = 1 and y + b− z ∈ P for any b ∈ LF∩N(ϕ) and y ∈ LP � F .
In fact, for i ∈ N big enough there is an element z′ ∈ LiP such that vF (z′) = 1.

Since iF is a base of the induced retraction hi : K[iP ] → K[iP ] there exists a linear
form D′ on LiF such that z′ − D′ ∈ Ker(h). Thus N(ϕ) is a Minkowski summand
of N(z′ − D′). Because of the condition (∗∗) we conclude vF (z) � vF (z′). Hence
vF (z) = 1.
Now choose y ∈ LP � F . Since F is a base of h, we can write y − D′′ ∈ Ker(h) for

some linear form D′′ on the points of LF . Therefore, the pyramid N(ϕ) is a Minkowski
summand of the pyramid N(y−D′′) which has its apex at y. By Lemma 5.9.4 the cones
spanned by these pyramids at their vertices are the same modulo a parallel shift. This
observation in conjunction with the already established equality vF (z) = 1 makes the
claim clear.
We have shown that the vectors b − z ∈ Zn, b ∈ LF∩N(ϕ), are column vectors for

P . Now, by Lemma 5.3.1(b) there exists ε ∈ A(F )) such that ε(ϕ) = cz for some
c ∈ K∗. Therefore, Ker(hε) is the monomial prime ideal (LP � F )K[P ] ⊂ K[P ], and
this finishes the proof of Theorem 5.9.3.

The next theorem shows that one has a clear picture of all retractions if P is of
dimension 2.

Theorem 5.9.5. — Let P be a lattice polygon, i. e. a lattice polytope of dimension 2.
Then every codimension 1 retraction h : K[P ]→ K[P ] is based and, therefore, either
hτ = ι ◦ ρ(P,H,w) for some lattice segmental fibration (P,H,w), τ ∈ TK(P ) and a
K-embedding ι : K[H ∩ P ]→ K[P ], or hε = ι◦πF for a facet F ⊂ P , ε ∈ EK(P ) and
a K-embedding ι : K[F ]→ K[P ].

By Theorems 5.9.2 and 5.9.3 it is enough to find a base for h. The first step in its
construction is given by

Proposition 5.9.6. — A multiple c∆1, c ∈ N, of the unit segment ∆1 can be embedded
as a lattice polytope into a lattice polytope P if and only if there is a K-algebra
embedding of K[c∆1] into K[P ].

Proof. — Clearly, without loss of generality we can assume c � 2.
Let ε : K[c∆1]→ K[P ] be an embedding. We write

Lc∆1 = {x0, x1, . . . , xc}.

Thus we have the equations ε(xi−1)ε(xi+1) = ε(xi)2 for i ∈ [1, c− 1]. Put

ϕ =
ε(x1)
ε(x0)

=
ε(x2)
ε(x1)

= · · · .

In the quotient field of K[P ] = K[Z3] we can write ϕ = ϕ1/ϕ2 with coprime ϕ1, ϕ2 ∈
K[P ]. The equality ϕc2ε(xc) = ϕc1ε(x0) (and the factoriality of K[Z

3]) imply that ϕc1
divides ε(xc) and ϕc2 divides ε(x0).
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Case (a). Both ϕ1 and ϕ2 are monomials in K[Z3]. In this situation the Newton
polygon N(ε(xc)) is the parallel shift of N(ε(x0)) by the c-th multiple of the vector
representing the support term of the monomial ϕ. But then the existence of the
desired embedding c∆1 → conv(N(ε(x0)),N(ε(xc)) ⊂ P is obvious.

Case (b). At least one of ϕ1 and ϕ2, say ϕ1, is not a monomial. Then c∆1 can be
embedded in any of the edges of the polygon N(ϕc1) = cN(ϕ1). Since ε(xc) = ψϕc1 for
some ψ ∈ K[Z3], we get

N(ε(xc)) = N(ψ) + N(ϕc1)

and the existence of an embedding c∆1 → N(ε(xc)) ⊂ P is evident.

Remark 5.9.7. — We expect that Proposition 5.9.6 holds without any restrictions: for
lattice polytopes P and Q a K-algebra embedding K[Q]→ K[P ] should only exist if
Q can be embedded into P (as a lattice subpolytope).

One cannot exclude a priori that the retraction h acts injectively on the embedded
K[c∆1], and it takes some steps to overcome this difficulty. For the details we refer
the reader to [BG4].

5.10. Tame homomorphisms. — Assume we are given two lattice polytopes
P,Q ⊂ Rd and a homomorphism f : K[P ] → K[Q] in Pol(K). Under certain condi-
tions there are several standard ways to derive new homomorphisms from it.
First assume we are given a subpolytope P ′ ⊂ P and a polytope Q′ ⊂ Rn, d � n,

such that f(K[P ′]) ⊂ K[Q′]. Then f gives rise to a homomorphism f ′ : K[P ′] →
K[Q′] in a natural way. (Notice that we may have Q ⊂ Q′.) Also if P ∼= P̃ and Q ∼= Q̃

are lattice polytope isomorphisms, then f induces a homomorphism f̃ : K[P̃ ]→ K[Q̃].
We call these types of formation of new homomorphisms polytope changes.
Now consider the situation when Ker(f) ∩ SP = ∅. Then f extends uniquely to a

homomorphism f : K[SP ]→ K[SQ] of the normalizations. Here SP = {x ∈ gp(SP ) |
xm ∈ SP for some m ∈ N} and similarly for SQ. This extension is given by

f(x) =
f(y)
f(z)

, x ∈ SP , x =
y

z
, y ∈ SP , z ∈ SQ.

For every natural number c the subalgebra of K[SP ] generated by the homogeneous
component of degree c is naturally isomorphic to the polytopal algebra K[cP ], and
similarly for K[SQ]. Therefore, the restriction of f gives rise to a homomorphism
f (c) : K[cP ] → K[cQ]. We call the homomorphisms f (c) homothetic blow-ups of f .
(Note that K[cP ] is often a proper overring of the cth Veronese subalgebra of K[P ].)
One more process of deriving new homomorphisms is as follows. Assume that

homomorphisms f, g : K[P ]→ K[Q] are given such that

N(f(x)) + N(g(x)) ⊂ Q for all x ∈ LP ;
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here N(−) denotes the Newton polytope, and + is the Minkowski sum in Rd. Then
we have z−1f(x)g(x) ∈ K[Q] where z = (0, . . . , 0, 1) ∈ SQ. Clearly, the assignment

x �−→ z−1f(x)g(x), x ∈ LP ,

extends to a Pol(K)-homomorphism K[P ] → K[Q], which we denote by f N g. We
call this process Minkowski sum of homomorphisms. (By convention, N(0) = ∅, and
P +∅ = ∅.)
All the three mentioned recipes have a common feature: the new homomorphisms

are defined on polytopal algebras of dimension at most the dimension of the sources of
the old homomorphisms. As a result we are not able to really create a non-trivial class
of homomorphisms using only these three procedures. This possibility is provided by
the fourth (and last in our list) process.
Suppose P is a pyramid with vertex v and basis P0 such that LP = {v}∪LP0 , that

is P = join(v, P0). Then K[P ] is a polynomial extension K[P0][v]. In particular, if
f0 : K[P0]→ K[Q] is an arbitrary homomorphism and q ∈ K[Q] is any element, then
f0 extends to a homomorphism f : K[P ] → K[Q] with f(v) = q. We call f a free
extension of f0.

Conjecture 5.10.1. — Every homomorphism in Pol(K) is obtained by a sequence of
taking free extensions, Minkowski sums, homothetic blow-ups, polytope changes and
compositions, starting from the identity mapping K → K. Moreover, there are normal
forms of such sequences for idempotent endomorphisms.

Observe that for general homomorphisms we do not mean that the constructions
mentioned in the conjecture are to be applied in certain order so that we get nor-
mal forms: we may have to repeat a procedure of the same type at different steps.
However, the description of the automorphism group of a polytopal semigroup al-
gebra in Theorem 5.3.2 and Theorem 5.10.3 below show that for special classes of
homomorphisms such normal forms are possible.
We could call the homomorphisms obtained in the way described by Conjecture

5.10.1 just tame. Then we have the tame subcategory Pol(K)tame (with the same
objects), and the conjecture asserts that actually Pol(K)tame = Pol(K).

Remark 5.10.2
(a) The correctness of Conjecture 5.10.1 may depend on whether or not K is

algebraically closed. For instance, some of the arguments we have used in the analysis
of retractions go through only for algebraically closed fields.
(b) Theorems 5.3.2, 5.9.2, 5.9.3, and 5.9.5 can be viewed as substantial refinements

of the conjecture above for the corresponding classes of homomorphisms. Observe
that the tameness of elementary automorphisms follows from their alternative de-
scription in Subsection 5.3. We also need the tameness of the following classes of
homomorphisms: automorphisms that map monomials to monomials, retractions of
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the type ρ(P,H,w) and πF and the splitting embeddings ι as in Theorem 5.9.5. This
follows from Theorem 5.10.3 and Corollary 5.10.4 below.

The next result shows that certain basic classes of morphisms in Pol(K) are tame.

Theorem 5.10.3. — Let K be a field (not necessarily algebraically closed), and c ∈ N.
Then

(a) every homomorphism from K[c∆n], n ∈ N, is tame,
(d) if ι : K[c∆n]→ K[P ] splits ρ(P,H,W ) for some lattice fibration (P,H,W ) or πE

for some face E ⊂ P then there is a normal form for representing ι in terms of
certain basic tame homomorphisms.

Corollary 5.10.4. — For every field K the homomorphisms in Pol(K) that respect
monomial structures are tame.

Proof. — Assume f : K[P ] → K[Q] is a homomorphism respecting the monomial
structures and such that Ker(f) ∩ SP = ∅. By a polytope change we can assume
P ⊂ c∆n for a sufficiently big natural number c, where n = dimP and ∆n is taken
in the lattice ZLP . In this situation there is a bigger lattice polytope Q′ ⊃ Q and
a unique homomorphism g : K[c∆n] → K[Q′] for which g|LP = f |LP . By Theorem
5.10.3 f is tame.
Consider the situation when the ideal I = (Ker(f) ∩ SP )K[P ] is a nonzero prime

monomial ideal and there is a face P0 ⊂ P such that Ker(f)∩LP0 = ∅ and f factors
through the face retraction π : K[P ] → K[P0], that is π(x) = x for x ∈ LP0 and
π(x) = 0 for x ∈ LP � LP0 . In view of the previous case we are done once the
tameness of face retractions has been established.
A face retraction is a composite of facet retractions. Therefore we can assume that

P0 is a facet of P . Let (RP )+ ⊂ RP denote the halfspace that is bounded by the
affine hull of P0 and contains P . There exists a unimodular (with respect to ZLP )
lattice simplex ∆ ⊂ (RP )+ such that dim∆ = dimP , the affine hull of P0 intersects
∆ in one of its facets and P ⊂ c∆ for some c ∈ N. But then π is a restriction of
the corresponding facet retraction of K[c∆], the latter being a homothetic blow-up of
the corresponding facet retraction of the polynomial ring K[∆n] – obviously a tame
homomorphism.

Proof of Theorem 5.10.3. — We will use the notation {x0, . . . , xn} = L∆n . Every
lattice point x ∈ c∆n has a unique representation x = a0x0 + · · · + anxn where the
ai are nonnegative integer numbers satisfying the condition a0 + · · · + an = c. The
numbers ai are the barycentric coordinates of x in the xi.
Let f : K[c∆n]→ K[P ] be an arbitrary homomorphism.
First consider the case when one of the points from Lc∆n is mapped to 0 ∈ K. In

this situation f is a composite of facet retractions and a homomorphism from K[c∆m]
with m < n. As observed in the proof of Corollary 5.10.4 facet retractions are tame.
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Therefore we can assume that none of the xi is mapped to 0. By a polytope change
we can also assume LP ⊂ {Xa11 · · ·Xar

r Y bZ | ai, b � 0}, r = dimP − 1.
Consider the polynomials ϕx = Z−1f(x) ∈ K[X1, . . . , Xr, Y ], x ∈ Lc∆n. Then

the ϕx are subject to the same binomial relations as the x. One the other hand the
multiplicative semigroupK[X1, . . . , Xr, Y ]�{0}/K∗ is a free commutative semigroup
and, as such, is an inductive limit of free commutative semigroups of finite rank.
Therefore, by Lemma 5.10.5 below there exist polynomials ψ, ηi ∈ K[X1, . . . , Xr, Y ],
i ∈ [0, n], and scalars tx ∈ K∗, x ∈ Lc∆n, such that ϕx = txψη

a0
0 · · · ηan

n where the
ai are the barycentric coordinates of x. Clearly, tx are subject to the same binomial
relations as the x ∈ Lc∆n. Therefore, after the normalizations ηi �→ txiηi (i ∈ [0, n])
we get ϕx = ψηa00 · · · ηan

n . But the latter equality can be read as follows: f is obtained
by a polytope change applied to Ψ NΘ(c), where

(i) Ψ : K[c∆n]→ K[Q], Ψ(x) = ψZ, x ∈ Lc∆n,
(ii) Θ : K[∆n]→ K[Q], Θ(xi) = ηiZ, i ∈ [0, n],
and Q is a sufficiently large lattice polytope so that it contains all the relevant lattice
polytopes. Now Ψ is tame because it can be represented as the composite map

K[c∆n]
Lc∆n→t−−−−−→ K[t]

t
→ψZ−−−−→ K[Q]

(the first map is the cth homothetic blow-up of K[∆n]→ K[t], xi �→ t for all i ∈ [0, c])
and Θ is just a free extension of the identity embedding K → K[Q].
(b) First consider the case of lattice segmental fibrations.
Consider the rectangular prism Π = (c∆n)×(m∆1). By a polytope change (assum-

ingm is sufficiently large) we can assume that P ⊂ Π so thatH is parallel to c∆n: The

m∆1

c∆n

Π

H

Figure 11

lattice point (x, b) ∈ Π will be identified with the monomialXa11 · · ·Xan
n Y bZ whenever

we view it as a monomial in K[Π], where the ai are the corresponding barycentric co-
ordinates of x (see the proof of (a) above). (In other words, the monomialXa11 · · ·Xan

n

is identified with the point x = (c− a1 − · · · − an)x0 + a1x1 + · · ·+ anxn ∈ c∆n.)
Assume A : K[c∆n] → K[m′∆1] is a homomorphism of the type A(xi) = aZ, i ∈

[0, c] for some a ∈ K[Y ] satisfying the condition a(1) = 1. Consider a homomorphism
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B : K[∆n]→ K[Π′], Π′ = ∆n×(m′∆1) that splits the projection ρ′ : K[Π′]→ K[∆n],
ρ′(ZY b) = Z and ρ′(XiY bZ) = XiZ for i ∈ [1, n], b ∈ [0,m′]. The description of such
homomorphisms is clear – they are exactly the homomorphisms B for which

B(x0) = B0 ∈ Z + (Y − 1)(ZK[Y ] +X1ZK[Y ] + · · ·+XnZK[Y ]),

B(xi) = Bi ∈ XiZ + (Y − 1)(ZK[Y ] +X1ZK[Y ] + · · ·+XnZK[Y ]), i ∈ [1, n],
degY Bi � m′ for all i ∈ [0, n].

Clearly, all such B are tame.
In case m � max{m′ + c degY Bi}ni=0 we have the homomorphism A N B(c) :

K[c∆n]→ K[Π] which obviously splits the projection ρ : K[Π]→ K[c∆n] defined by

ρ(Xa11 · · ·Xan
n Y bZ) = Xa11 · · ·Xan

n Z.

Assume ι splits ρ(P,H,w). The standard facts on Newton polytopes imply the following:
the polynomials ψ and ηi, mentioned in the proof of (a), that correspond to ι, satisfy
the conditions: ψ ∈ K[Y ] and ηi ∈ K[Y ]+X1K[Y ]+· · ·+XnK[Y ]. Is is also clear that
upon evaluation at Y = 1 we get ψ(1), ηi(X1, . . . , Xn, 1) ∈ K∗, i ∈ [0, n]. Therefore,
after the normalizations ψ �→ ψ−1(1)ψ, ηi �→ ηi(X1, . . .Xn, 1)−1ηi we conclude that ι
is obtained by a polytope change applied to ANB(c) as above (with respect to a = ψ,
B0 = ηiZ, i ∈ [0, n]).
For a lattice fibration (P,H,W ) of higher codimension similar arguments show that

ι is obtained by a polytope change applied to A N B(c), where

B is a splitting of a projection of the type ρ(P ′,H′,W ′) such that the base polytope
P ′ ∩H ′ is a unit simplex and

A is a homomorphism defined by a single polynomial whose Newton polytope
is parallel to W ′.

We skip the details for splittings of face retractions and only remark that similar
arguments based on Newton polytopes imply the following: all such splittings are
obtained by polytope changes applied to A N B(c) where B is a splitting of a face
retraction onto a polynomial ring and A is again defined by a single polynomial.

Lemma 5.10.5. — Assume we are given an integral affine mapping α : c∆n → Rd+ for
some natural numbers c, n and d. Then there exists an element v ∈ Zd+ and a integral
affine mapping β : ∆n → Rd+ such that α = v + cβ.

Proof. — Assume α(cxi) = (ai1, . . . , aid), i ∈ [0, n] (the xi as above). Consider the
vector

v =
(
min{ai1}ni=0, . . . ,min{aid}ni=0

)
.

It suffices to show that all the vectors α(cxi)− v are cth multiples of integral vectors.
But for every index l ∈ [1, d] the lth component of either α(cxi)− v or α(cxj)− v for
some j �= i is zero. In the first case there is nothing to prove and in the second case
the desired divisibility follows from the fact that α(cxi) − α(cxj) = (α(cxi) − v) −
(α(cxj)− v) is a cth multiple of an integral vector (because α is integral affine).
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Index

A (F ), 93, 101, 117
A s

K , 92
admissible representation, 99
affine semigroup, 45
Ass, 72, 75

associated prime ideal, 72, 75
asymptotic Carathéodory rank, 56

B(S), 57, 59
barycentric coordinates, 120
base

facet, 89, 92, 97, 98
of retraction, 114, 115

based retraction, 114, 117

basic grading, 58
binomial, 50, 52
binomial ideal, 112, 113
bottom of a normal semigroup, 57, 61

C(D), 71, 76–78
C(P ), 50, 90
C(S), 45, 77
canonical module, 96
Carathéodory rank, 56

Carathéodory’s theorem, 56, 69
Cl(R), 53, 71, 73, 76, 79, 81
Cohen–Macaulay

module, 71–73, 76
ring, 72

Col(P ), 93
column

structure, 89, 111

vector, 89
compact face, 71, 79
cone, 45
conic divisorial ideal, 73
conv, 50
coset module, 72, 81
CR(n), 58
CR(S), 56, 58, 65, 70

∆n−1, 51, 88, 95

depth, 71, 72, 74, 81
destructive element, 64, 66
determinantal ring, 94
diagonalizable group, 71
dim, 48, 49
Div(F ), 49, 97, 99
divisor

class, 71

class group, 53, 70
divisorial

ideal, 53, 70–72, 76
prime ideal, 49, 53, 70, 97

dual cone, 47, 67, 103

elementary automorphism, 88, 92

elementary matrix, 88, 94
empty lattice polytope, 54

extreme

element, 49

point, 77

ray, 49

face, 48, 109
retraction, 109, 120

facet, 49, 71, 98, 99

retraction, 89, 109, 120

(FHC), 56, 65, 69

free
extension of a homomorphism, 89, 119

Hilbert cover, 56

f 
 g, 119

G-grading, 48

ΓK(P ), 92
Gordan’s lemma, 45, 58

gp(S), 45, 54

grade of an ideal, 72, 75, 81

graded

component, 46
module, 48, 82

ring, 48, 82, 83

grading

on ring or module, 48

on semigroup, 46
Gröbner basis, 55

group of differences, 45

height of an ideal, 49

Hilb(C), 47, 55

Hilb(S), 47, 54, 57, 59, 60, 64, 69

Hilbert
basis, 47

function, 71, 84

polynomial, 80

Hochster’s theorem, 71, 73

homothetic blow-up of a homomorphism, 89,
118

htF , 91, 92

htv, 91, 93

(ICP), 56, 68, 69

int(C), 96

integral
affine mapping, 122

Carathéodory property, 56

closure, 45

element, 45
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integral-affine equivalence, 51

interior element, 49

join of two polytopes, 111

Krull dimension, 48

lattice, 45

fibration, 109, 114, 120
polygon, 55, 117
polytope, 50, 88

segmental fibration, 109, 117

M -sequence, 72
Minkowski sum of homomorphisms, 89, 119
Minkowski sum of polytopes, 104, 116

module of covariants, 71
monomial, 47, 96

prime ideal, 48

structure, 120
µ(D), 71, 76

multigrading of a ring or module, 48
multiple of a polytope, 52, 63

(n + 1)-torus, 93
Newton polytope, 89, 113
N (P ), 90, 103, 104

non-destructive element, 64
normal

fan, 90, 103, 104
polytope, 50, 52, 63, 68
semigroup, 46, 54, 57, 69, 70

semigroup algebra, 70, 76
normalization of a semigroup, 46
normalized volume, 54

number of generators, 71

ω, 97

par(x1, . . . , xn), 59, 60

Pic, 104, 105
Pick’s theorem, 55

Pol, 88
Pol(K), 88, 120
polyhedral algebra, 88

polytopal
algebra, 50, 88, 107
linear group, 88

semigroup, 50
polytope change, 89, 118
positive semigroup, 46

positively graded algebra, 48
pF , 49

Proj(K[P ]), 103, 104
projective toric variety, 88, 102
projectively normal embedding, 107

pure embedding, 73
pyramid, 115, 116

QF(R), 48

R-sequence, 72
rank(S), 47

rational cone, 45, 70
representation length, 56
restriction to subpolytope, 89
retract, 106, 107
retraction, 89, 106, 110, 117
ρ(x), 56
root of a fan, 104

S(C), 46
S-module, 81, 83–85, 87
Sebö’s

conjecture, 55, 56
theorem, 61

segmentonomial ideal, 89, 112, 113
Segre product, 73

semigroup algebra, 47
shrinking a semigroup or cone, 65
Σ(F), 105
Σ(P ), 93
Σ(P )inv, 93
simplicial complex, 88
SP , 50

standard embedding, 47, 48, 71, 72, 74
Stanley-Reisner ring, 88
sdiv(x1, . . . , xn), 60
supp(S), 46
support

form of a semigroup, 46
hyperplanes, 46

symmetry group of a fan, 105

symmetry group of a polytope, 93

tame homomorphism, 118–120
term, 47, 96
tight

cone, 64, 66
semigroup, 64

toric automorphism, 88, 114
total polytope of a fibration, 109
triangulation of a polytope, 54
Tn+1, 93

UHC, 54–56, 65, 67
unimodular

covering, 63
Hilbert covering, 54
Hilbert triangulation, 55, 59, 61
lattice simplex, 54
simplicial cone, 55
subset, 54

Vect(K), 88

Veronese subalgebra, 79, 105, 108
very ample lattice polytope, 103, 104, 106
virtual Carathéodory rank, 56
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SEMIGROUP ALGEBRAS AND DISCRETE GEOMETRY 125

References

[AM] S. Aguzzoli and D. Mundici, An algorithmic desingularization of 3-dimensional
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