Chapter 6

B. w:ogoﬂmoq

Grobner Bases: An Algorithmic Method in Polynomial Ideal Theory

6.1. INTRODUCTION

Problems connected with ideals generated by finite sets F of multivariate
polynomials occur, as mathematical subproblems, in various branches of
mv\mﬁmﬂm theory, see, for example, [6.1]. The method of Grébner bases is a
technique that provides algorithmic solutions to a variety of such
vqoc_o:.a, for instance, exact solutions of F viewed as a system of
m_mocama e€quations, computations in the residue class ring modulo the
ideal generated by F, decision about various properties of the ideal
generated by F, polynomial solution of the linear homogeneous equation
E::. coefficients in F, word problems modulo ideals and in commutative
semigroups (reversible Petri nets), bijective enumeration of all poly-
nomial ideals over a given coefficient domain etc.

. ﬂon. many years, the work of G. Hermann [6.2] was the only algo-
rithmic ngoa for tackling problems in polynomial ideal theory. Still,
her Paper is a rich source. However, as pointed out in [6.3] and [6.4], the
solution of her main problem “is a multivariate polynomial fin the ideal
m.o:onzoa by F?” does not yet give a feasible solution to the “*simplifica-
tion problem modulo an ideal” (i.e. the problem of finding unique
representatives in the residue classes modulo the ideal) and to the
.Eoc_@_: of effectively computing in the residue class ring modulo an
ideal.

. j:.w method of Grébner bases, as its central objective, solves the
m_Ev_._mom:.o: problem for polynomial ideals and. on this basis, gives easy
solutions to a large number of other algorithmic problems including
Hermann'’s original membership problem. Also, when compared with
Io.l.:m::,m algorithms, our algorithm that constructs Grébner bases is of
striking simplicity and, depending on the example considered, may get
through with intermediate computations using polynomials of relatively
low ammﬂno‘ On the other hand, as shown in [6.5] and [6.6], the decision of
polynomial ideal congruence intrinsically is a complex problem. In the
worst case, therefore, also the method of Grébner bases may lead to
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exploding computations. Much work is going on to analyze and predict
these phenomena and to extend the applicability of the method.

The method of Grobner bases was introduced 1965 by this author in
[6.7], [6.8] and, starting from 1976, was further refined, generalized,
applied and analyzed in a number of papers [6.9}-{6.35]. The basic idea of
the method is the transformation of the given set of polynomials Finto a
certain standard form G, for which in [6.9] the author introduced the
name ‘Grobner bases’, because Prof. W. Grébner, the thesis advisor of
[6.7] stimulated the research on the subject by asking how a multipli-
cation table for the associative algebra, which is formed by the residue
ring modulo a polynomial ideal, can be constructed algorithimically and
by presenting a first sketch of an algorithm: He proposed to ‘complete’
the basis F by adjoining the differences of different representations of
power products (modulo the ideal). This, however, is no finite procedure.
It was the author’s main contribution to see and prove in [6.7], [6.8] that it
suffices to adjoin the differences of (the reduced forms of) certain ‘critical
pairs’ (or, equivalently, the reduced form of the ‘S-polynomials’ [6.7]),
which are finite in number.

In retrospect, it seems that the concept of ‘Grébner bases’ under the
name ‘‘standard bases’ appeared already one year earlier (1964) in
Hironaka’s famous paper [6.36]. However, Hironaka only gave an in-
constructive existence proof for these bases, whereas in [6.7], together
with the concept of such bases, we also presented an algorithm for
constructing the bases and only this algorithm allows an algorithmic
solution to the various problems shortly mentioned above. An incon-
structive existence proof for Grobner bases may also be found in [6.37].
Hilbert’s basis theorem, then, follows as a corollary.

Later (1967) the two basic ideas of our method, critical pairs and
completion, where also proposed by Knuth and Bendix [6.38] in the more
general context of equations between first order terms. The Knuth-
Bendix algorithm now plays an important role in various branches of
computer science (abstract data type transformations, equational
theorem proving and applications in automated program verification).
Recently, the Knuth-Bendix algorithm and the author’s own algorithm
for constructing Grobner bases were brought together under a common
algorithm structure by R. Llopis de Trias [6.32] and, independently, by P.
Le Chenadec [6.39]; see also [6.3] for a general introduction to the
““critical-pair completion” algorithm type. On the other hand, the
improvements of the author’s algorithm were carried over to the Knuth-
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Bendix algorithm, see [6.40]. A lot of challenging questions remain to be
treated, which, in the near future, might also affect systems theory (for
example, decision methods for boolean algebra based on the critical-pair/
completion approach, see [6.41].)

In the present paper, a survey on the method of Grobner bases is given.
In Section 6.2, the concept of Grébner bases is defined and., in Section
6.3, the basic form of the algorithm for constructing Grébner bases is
described. In Section 6.4 an improved version of the algorithm is pre-
sented. The improvements are important for the practical feasibility of
the mosvcﬂm:o:m. In Section 6.5, the algorithm is applied to the simpli-
mnm:.o: problem, the congruence problem and related problems in poly-
nomial ideal theory. In Section 6.6, the algorithm is applied to the exact
solution of systems of algebraic equations and related problems. In
Section 6.7, it is demonstrated that the S-polynomials have also a signi-
ficance as the generators of the module of solutions for linear homo-
geneous equations with polynomial coefficients and an algorithm for a
systematic solution of such equations is presented. Grébner bases for
polynomial ideals with integer coefficients are treated in Section 6.8.
moS.m other applications are summarized in Section 6.9, Finally, in
Section 6.10, some remarks about specializations, generalizations, imple-
mentations and the computational complexity of the algorithm are made.

The emphasis of this paper is on explicit formulation of algorithms (in
an easy notation) and on examples. With the exception of some sketches,
no proofs of the underlying theorems can be given. However, complete
references to the original publications are provided.

6.2. GROBNER BASES

Notation

K a field.

Klx,, .. .. x,] ringof n-variate polynomials over K.

The following typed variables will be used:

f & h k p, g polynomialsin Klx,. .. x]

F,.G finite subsets of K[x,, . . ., x,].

S0t ou power products of the form x!t . . . xin,

a, b, c, d elements in K.

L j L m natural numbers.

Let F = {f,. .. . £.}. By ‘Ideal(F)’ we will denote “the ideal generated
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by F”’ (i.e. the set

{ Y h - flheKlx, .. x])(@=1,..., m}.
Isism
Furthermore, we will write ‘f =, ¢’ for ““f is congruent to g modulo

Ideal(F)" (i.e. f-geldeal(F)).
Before one can define the notion of Grébner bases the notion of

‘reduction’ must be introduced. For this it is necessary to fix a total
odering <, of the power products x . . . x'», for example, the ‘total
degree ordering’ (whichis 1 <, x <,y <,x® <;xy <;y* <, < ;x% <,
xy? <, y* <, ... in the case of two variables) or the ‘purely lexico-
graphical ordering’ (whichis 1 <,x <, x* <, x*<,. ..y <,xy <,;x¥y <,
. <7 y* <pxy® <;...in the case of two variables). In fact, any total
ordering is suitable, which at least has the following two properties:

(T1) 1 <;t forall =1,
(T2) ifs<;t then su<,tu.

A total ordering satisfying (T1) and (T2) will be called ‘admissible’. For
the sequel, assume that an arbitrary <, has been fixed. With respect to
the chosen <, we use the following notation.

Notation

Coefficient(g, 1) the coefficient of rin g.

LeadingPowerProduct(f) the maximal power product (w.r.t. <,)
occurring with non-zero coefficient in f.

LeadingCoefficient(f) the coefficient of the LeadingPower-
Product(f).

DEFINITION 6.1[6.7],[6.8].
g — h (read: ‘g reduces to h modulo F) iff there exists feF, b and u such

that
%lv‘\.vt N:Q }”%]U:.\

g —1 s . (read: ‘g is reducible using f, b, wu’) iff Coefficient(g, u -
LeadingPowerProduct(f)) # 0, b = Coefficient(g, u - LeadingPower-
Product(f))/LeadingCoefficient(f) .
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Hence, roughly, g reduces to h modulo F iff a monomial in g can be
ao_oﬁ.na by the subtraction of an appropriate multiple b - u - f of a poly-
nomial fin Fyielding h. Thus, the reduction may be viewed as one step in
a generalized division.

EXAMPLE®.1. Consider F: = {f,, f,, f,}, where
fi:
£y

fio = Xy + xfy + 38 + 22

3xty + 2xy + y + 9x? + 5x — 3,

2ty — xy —y + 6x% — 2x% — 3x + 3,

The U.o:\:oamm._m fi+ £, f; are ordered according to the purely lexico-
.mBE:om_ ordering. The leading power products are x2y, x*y, x%y. respect-
tvely, and the leading coefficients are 3, 2, and 1. Consider

g = 5y* + 2x%y + 5/2xy + 3/2y + 8x% + 3/2x — 9/2.
Modulo F, g reduces, for example, to

h: = 5y* + 7/6xy + 5/6y + 2x2 — 11/6x — 5/2.
Namely,

8§, for fi=f, b: = 2/3, u: =1

coom_.._mm Coefficient(g, 1 - x?y) = 2 # Oand b = Coefficient(g, 1 - x*y)/
LeadingCoefficient(f,),
and

h=g—(23) 1-f,.

DEFINITION 6.2,

hisin normal form (or reduced form) modulo Fiff there is no A’ such that

h—.h'.

his a normal form of g modulo Fiff there is a sequence of reductions
8=ky=pk =k, >, >k, =h

and A is in normal form modulo F.
W: mhmo:::: S is called a normal form algorithm (or simplifier) iff for all
and g:

S(F, g)is a normal form of g modulo F.
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LEMMA 6.1[6.7]{6.9].
The following algorithm is a normal form algorithm:

ALGORITHM 6.1 (h: = NormalForm(F, g)).
h:=g \ﬂ
while exist feF, b, u such that h —; , , do choose feR, b, u such
that h —,, , and u - LeadingPowerProduct(f) is maximal

(w.r.t.<,)
h:=h—-b-u-f L

The correctness of this algorithm should be clear. For the correctness, the
selection of the maximal product u - LeadingPowerProduct(f) is not
mandatory. However, this choice is of crucial importance for efficiency.
The termination of the algorithm is guaranteed by the following lemma.

LEMMA 6.2[6.7], [6.9]. For all F: —,is a noetherian relation (i.e. there is
no infinite sequence k, =, k, =, k, =, . . .).

EXAMPLE 6.2. hin the Example 6.1 is in normal form modulo F: no power
product occurring in h is a multiple of the leading power product of one of
the polynomials in F. Thus, no reduction is possible. Another example:

xly = = 23x*y — 1/3xy — 3x* = 5/3x* + x = 1,
g, can be further reduced:
8 =, 1/9xy +2/9y — 3x* + 1/3x* + 19/9x — 2/3 = :g;.

g\ is in normal form modulo F. g}, hence, is a normal form of x*y modulo
F. Actually, g| may be the result of applying the algorithm ‘NormalForm’
to x*y (depending on how the instruction ‘choose feF, such that . . " in
the algorithm is implemented). In this example, a second reduction is
possible:

xty = 12xy + 12y — 3x" + x* + 3/2x = 3/2 = :g,.

g, 1s already in normal form modulo F.

From the example one sees that, in general, it is possible that, modulo
F, g, and g, are normal forms of a polynomial g, but g, # g,. Those sets F,
for which such a situation does not occur, play the crucial role for our
approach to an algorithmic solution of problems in polynomial ideal

theory:
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DEFINITION 6.3[6.7],[6.9]. Fis called a Grobner basis (or Grébner set) iff
forallg, h,, h,:

if h and A, are normal forms of g modulo F then h, = h,. °
It is the central theme of this paper to show that

(a) for those sets F that are Grobner bases. a number of important
algorithmic problems (that are formulated in terms of Ideal(F)) can be
solved elegantly and

(b) those sets F., which are not Grobner bases, can be transformed into
sets G, that are Grébner bases and generate the same ideal.

Most of the algorithmic applications of Grobner bases are based on the
following fundamental property of Grobner bases.

THEOREM 6.1(6.7],[6.9], [6.22] (Characterization Theorem for Grébner

bases). Let S be an arbitrary normal form algorithm. The following

properties are equivalent;:

(GB1) Fis a Grobner basis.

(GB2) For allf, g f=rg iff S(F f)=S(F g). .
(GB1) is also equivalent to:

(GB3) —, has the ‘Church-Rosser’ property.

(GB3) links Grébner bases with analogous concepts for equations of first

order terms and the Knuth-Bendix algorithm. For details see [6.3].

(GB3) is not needed in this paper. The following lemma is helpful in

establishing this link.

LEMMA 6.3 [6.22], [6.30] (Connection between reduction and con-
gruence): Forall F, f, g:

f=rg iff foig
(Here, <>} is the reflexive, symmetric, transitive closure of —, i.e.

fef g iff there exists a sequence
f=kyork i opk, o0 ok, =g,
where

ferg iff (f—=rg or g—,f). i

(GB2) immediately shows that, for Grébner bases F, the decision

Eo..c_oa 'f =r g is algorithmically decidable (uniformly in F). For

Onoc.:on bases, other computability problems will have similarly easy
solutions: see Sections 5-9.
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6.3. ALGORITHMIC CONSTRUCTION OF GROBNER BASES

Before we give the algorithmic applications of Grébner bases we show
how it may be decided whether a given set F is a Grobner basis and how
Grobner bases may be constructed. For this the notion of an ‘S-poly-
nomial’ is fundamental:

DEFINITION 6.4 [6.7], [6.8], [6.9].

The ‘S-polynomial corresponding to f,, f,” is
SPolynomial(f,, f,): = u, - f, = (c,/c;) - u, * f,,

where ¢, = LeadingCoefficient(f),

u, is such that s, - 4, = the least common multiple of s,, s, and

s; = LeadingPowerProduct(f)) (i=1,2).

EXAMPLE 6.3. For f, f, as in Example 6.1, the SPolynomial(f,, f,) is
2x%y + 5/2xy + 3/2y + 8x* + 3/2x — 9/2. .

Note that the least common multiple of s, and s, is the minimal power
product that is reducible both modulo f, and modulo f,. The algorithmic
criterion for Grobner bases is formulated in the following theorem, which
forms the core of the method:

THEOREM 6.2 (Buchberger [6.7], [6.8], [6.9], [6.22]; Algorithmic
Characterization of Grébner bases). Let S be an arbitrary normal form
algorithm. The following properties are equivalent:
(GB1) Fis a Grobner basis.
(GB4) Forall f,, f,eF: S(F, SPolynomial(f,, f,)) = 0. .
(GB4), indeed, is a decision algorithm for the property ‘Fis a Grobner
basis’: one only has to consider the finitely many pairs f,, f, of poly-
nomials in F, compute the corresponding S-polynomials and see whether
they reduce to zero by application of the normal form algorithm S. In
addition, Theorem 6.2 is the basis for the central Algorithm 6.2 of this
paper for solving the following problem.

PROBLEM 6.1.
Given F.
Find G, such that Ideal(F) = Ideal(G) and G is a Grobner basis.
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ALGORITHM 6.2 (Buchberger [6.7], [6.8]) for Problem 6. 1.
G:=F
B:={f. W f.eG. f # [t
while B + () do

{f,. .} = apairin B
B =B - {{f,. L1
h = SPolynomial(f,. f,)
h' = NormalForm(G, h)
if h" # 0 then
B: = BU{g. h'llgeG}
G: = GU/{n'}. .

The partial correctness of this algorithm, essentially. relies on
Theorem 6.2. The termination can be shown in two ways. see [6.8],
[6.17]. (Sketch of the first method [6.17]: One considers the sequence of
ideals Ideal(P,) C Ideal(P,) C . . . , where P, is the set of leading power
products of polynomials in G, and G, is the value of G after G has been
extended for the i-th time. It is easy to see, that the inclusions in this
sequence are proper. Hence, by Hilbert's theorem on ascending chains of
ideals in K[x, . . ., x,], see [6.42], the sequence must be finite. Sketch of
the second method [6.8]: One uses Dickson’s lemma [6.43), which,
applied to the present situation, shows that a sequence . t,, . . . of power
products with the property that. for all j. 1, is not a multiple of any of its
predecessors. must be finite. Actually, if 1, is the leading power product of
the i-th polynomial adjoined to G in the course of the algorithm (i = 1,2,
.. .). then the sequence 1, t,, . . . has this property and, hence. must be
finite. This is the way, the termination of the algorithm was first proven in
[6.8], where Dickson’s lemma was reinvented. Hilbert's basis theorem
can be obtained as a corollary in this approach, see [6.37].)

EXAMPLE 6.4. Starting from the set F of Example 6.1, we first choose, for
instance, the pair f,, f, and calculate

SPolynomial(f,, f.,) =
2x%y + 5/2xy + 32y + 8x% + 3/2x — 9/2.
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Reduction of this polynomial to a reduced form yields
7/6xy + 5/6y + 2x* — 11/6x — 5/2.

We adjoin this polynomial to G in the form
fii=xy +5/Ty + 12/7x* - 11/7x — 15/7,

where we normalized the leading coefficient to 1. (This normalization is
not mandatory. However, as a matter of computational experience, it
may result in drastic savings in computations over the rationals.
Theoretically, this phenomenon is not yet well understood. Investiga-
tions of the kind done for Euclid’s algorithm should be worthwhile, see
[6.44] for a survey on these questions.)

Now we choose, for example, the pair f, and f,:

SPolynomial(f,, f) =1-f, = 3/1) - x- f, =
~17xy + y — 36/7x* + 96/7x* + 80/7x — 3.

Reduction of this polynomial, by subtraction of —(1/7) - f, (and normal-
ization), yields the new polynomial.

fii =y — 14/3x% + 38/3x* + 61/6x — 3.

Furthermore, SPolynomial(f,, f.) = 1 - f, — (1/1) - x - f,. By subtract-
ing (5/7) - f, and normalization we obtain

fo = xt = 20 — 15/4x* — 5/4x.

Finally, the reduction of SPolynomial(f,, f,) = x - f, — (3/1) - 1 - f,
leads to

foo=x* = 5/2x* — 5/2x.

The reduction of the S-polynomials of all the remaining pairs yields
zero and, hence, no further polynomials need to be adjoined to the basis.

For example,
SPolynomial(f,, f,) = 1/2x* — S/4x* — 5/4x
reduces to zero by subtraction of 1/2 f,. Hence, a Grébner basis corres-

ponding to Fis

G ={f,..... [

DEFINITION 6.5 [6.10]. F is a reduced Grobner basis iff F is a Grobner
basis and for all feF: f is in normal form modulo F - {f} and
LeadingCoefficient(f) = 1.
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EXAMPLE 6.5. G in Example 6.4 is not a reduced Grobner basis: For
example. f, reduces to zeromodulo {f,, . . ., f,}. By successively reducing
all polynomials of a Grébner basis modulo all the other polynomials in
the basis and normalizing the leading coefficients to 1, one always can
transform a Grobner basis into a reduced Grébner basis for the same
ideal. We do not give a formal description of this procedure, because it
will be automatically included in the improved version of the algorithm
below. In the example, also f,. f,, f,, and f, reduced to zero and f, reduces
to

=y +x*—3/2x - 3.
Hence, the reduced Grébner basis corresponding to Fis
G:={fi, b ={ +x* = 32x — 3, x* — 5/2x* — 5/2x}.

THEOREM 6.3 (Buchberger [6.10]: Uniqueness of reduced Grobner
bases). If Ideal(F) = Ideal(F') and F and F' are both reduced Grébner
bases then F = F'.

DEFINITION 6.6. Let G B be the function that associates with every Fa G
such that Ideal(F) = Ideal(G) and G is a reduced Grébner basis. °

By what was formulated in Theorems 6.2, 6.3, Algorithm 6.2 and the
remarks in Example 6.5 we, finally, obtain the following main theorem,
which summarizes the basic algorithmic knowledge about Grobner bases.

MAIN THEOREM 6.4 (Buchberger 1965, 1970, 1976).

G B is an algorithmic function that satisfies for all F, G:
(SGB1) Ideal(F) = Ideal(GB(F)).

(SGB2) if Ideal(F) = Ideal(G) then GB(F) = GB(G),
(SGB3) GB(F)is a reduced Grébner basis.

6.4. AN IMPROVED VERSION OF THE ALGORITHM

For the tractability of practical examples it is crucial to improve the
algorithm. There are three main possibilities for achieving a compu-
tational speed-up:

(1) The order of selection of pairs {f,. f,} for which the S-polynomials
are formed, though logically insignificant. has a crucial influence on the

|
|
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complexity of the algorithm. As a general rule, pairs whose least common
multiple of the leading power products is minimal with respect to the
ordering <, should be treated first. This, in connection with (2), may
drastically reduce the computation time.

(2) Each time a new polynomial is adjoined to the basis, all the other
polynomials may be reduced using also the new polynomial. Thereby,
many polynomials in G may be deleted again. Such reductions- may
initiate a whole cascade of reductions and cancellations. Also, if this
procedure is carried out systematically in the course of the algorithm, the
final result of the algorithm automatically is a reduced Grobner basis. The
reduction of the polynomials modulo the other polynomials in the basis
should also be performed at the beginning of the algorithm.

(3) Whereas (1) and (2) are strategies that need no new theoretical
foundation, the following approach is based on a refined theoretical
result [6.19], which has proven useful also in the general context of
‘critical-pair/completion’ algorithms, in particular for the Knuth-Bendix
algorithm: The most expensive operations in the algorithm are the reduc-
tions of the 4" modulo G in the while-loop. We developed a ‘criterion’
that, roughly, allows to detect that certain S-polynomials 4 can be
reduced to zero, without actually carrying out the reduction. This can
result in drastic savings. Using this criterion, in favourable situations,
only 0(/) S-polynomials must be considered instead of 0(/2), where / is the
number of polynomials in the basis. (Of course, in general, [ is dynamic-
ally changing and, therefore, the effect of the criterion is very hard to
assess, theoretically).

Strategy 1. was already used in [6.7], [6.8]. Also, the correctness of the
reduction and cancellation technique sketched in (2) was already shown
in [6.7], [6.8]. The criterion described in (3) was introduced and proven
correct in [6.19], details of the correctness proof may be found in [6.20)].

Before we give the details of the improved version of the algorithm
based on (1)~(3) we present a rough sketch:

In addition to GG and B, we use two sets R and P. R contains poly-
nomials of G5, which can be reduced modulo the other polynomials of G.
As long as R is non-empty, we reduce the polynomials in R and store the
resulting reduced polynomials in £. Only when R is empty, we adjoin the
reduced polynomials in P to G and determine the new pairs in B for which
the S-polynomials have to be considered. If an S-polynomial for a pair in
B is reduced with a non-zero result 4', h' is put into P and. again,
polynomials in G are sought that are reducible with respect to &', Such
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polynomials are put into R and we continue with the systematic reduction
of R. We now give the details.

PROBLEM 6.2,

Given: F.

Find: G. such that Ideal(F) = ldeal(G) and G is a reduced Grébner
basis.

ALGORITHM 6.3 (Buchberger [6.19]) for Problem 6.2,
R=FP =0.G:=0.B: =0
Reduce All (R, P, G, B); New Basis (P. G. B)
while B + ¢ do
{f.. fo}: = apairin Bwhose LCM(LP(f,). LP(f,)) is minimal
w.r.t <y
B: = B - {{f,. £}}
if (not Criterionl(f,, f,, G. B) and
not Criterion2(f,, f,)) then
h: = NormalForm(G, SPolynomial(f,, f,))
if h # 0 then
G, = {geGILP(h) < ,LP(g)}
R:=G,; P =1{h};G =G -G,
B: = B — {{f,, ,,Ilf.eG, or f[f,eG,}
ReduceAll(R, P, G, B); NewBasis(P, G, B).

Il

Subalgorithm Reduce All (transient . R, P, G, B):
while R + 0 do
h: = anelementinR; R: = R — {h};
h: = NormalForm(G U P, h)
if h # Othen
G, = {geGILP(h) =,, LP(g)}
P,: = {pePILP(h) <,, LP(p)}

!
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G:=G -G,
P:=P-P,
R:=RUG,UP,
B : =B —{{f,. f,}eB|feG, or f,eG}
P :=PuU({h.
Subalgorithm New Basis (transient : P, G, B):
G:=GUP
B: = B U {{g, p}lgeG, peP.g + p}
H =G, K:=9

while H + § do
h: = anelementin H, H: = H — {h}
k: = NormalForm(G — {h}, h); K: = K U {k}
G: =K.
Subalgorithm Criterion1(f,, f,, G, B): & there exists a peG such that
L#Fpop*f
LP(P) <, LCM(LP(f), LP(f,)).
{f,, p}notin B and {p, f,} notin B.
Subalgorithm Criterion2(f,, f,): ©
LCM(LP(f)), LP(f,)) = LP(f)) - LP(f,).

Abbreviations

LP(g) the leading power product of g,

LCM(s, t) the least common multiple of s and ¢,

DR tis a multiple of s. .
The correctness of this improved version of the algorithm is based on

the following lemma and theorem.

LEMMA 6.4[6.7],[6.8]. For arbitrary F. f,. f.:

If LP(f,) - LP(f,) = LCM(LP(f,), LP(f,)), then SPolynomial (f,, f,)
can always be reduced to zero modulo F.
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THEOREM 6.5 (Buchberger 1979 [6.19]; detection of unnecessary reduc-
tions of S-polynomials). Let S be an arbitrary normal form algorithm.
The following properties are equivalent:

(GB1) Fisa Grobner basis.

(GBS5) Forall f, geF there exist b, h,, . . ., h,eFsuch that
f=hy, g = hy
LCM(LP(h,), ..., LP(h) <, LCM(LP(f), LP(g)),
S(F, SPolynomial(h,, A, , )) = O(forl =i < k). °

Lemma 6.4 guarantees that we need not consider the S-polynomial of
two polynomials f, and f,, whose leading power products satisfy the
condition stated in the lemma (Criterion2). The iteration of Criterion] in
Algorithm 6.3 guarantees that, upon termination of the algorithm, con-
dition (GBS3) is satisfied for G and, hence, G is a Grobner basis.

EXAMPLE 6.6. Let F: = {f,, f,, f,}, where
fio =Xyt —xz8,  fy=xytz - xyz, fpo=ahy -2

The total degree ordering of power products is used in this example: first
order by total degree and, within a given degree, order lexicographically.
We took an example with a particularly simple structure of the poly-
nomials in order to make the reduction process simple and to emphasize
the crucial point: the difference of the crude version of the algorithm and
the improved version, which is reflected in the pairs of polynomials
{f,, f.}. for which the S-polynomials have to be considered.

A trace of the crude form of the algorithm could be as follows (if the
selection strategy 1. for pairs of polynomials is used: in the trace, we write
fi» f, — fi for indicating that the reduction of the S-polynomial of f, and f,
leads to the polynomial f,):

\f \“w - \& = kukm -z

\_ \« - \\..m = xz' — xz%
foi £y = fo = et = 2
fa fi = 0.

foofe—= foo= - xit

o o g
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fo fi =0,
[ fi =0,
fe f: =0,
i i = for = X2 — xz?,
feo fu — 0.

The S-polynomials of all the other pairs are reduced to zero. All
together one has to reduce (9.8)/2 = 36 S-polynomials.

In the improved algorithm, first, by ReduceAll, f,, f,, f, are reduced
with respect to each other. In this example, this reduction process leaves
the original basis unchanged. Then, by NewBasis, f,, f,, f, are putinto G.
Simultaneously the set of pairs B for which the S-polynomial have to be
considered is generated. The first pair, again, is

fo fs = o
In this phase, again a call to ReduceAll is made. It is detected that,
modulo {f,, f,, f;}, f, can be reduced to f;, hence, f, can be deleted from G
and, correspondingly, the pairs {f,, f,} and {f,, f,} can be deleted from B.
By NewBasis, f, and f; are adjoined to G and B is updated. The consider-
ation of the next pair in B yields

\,N, \,,_ l\a.

ReduceAll has no effect in this case. Thus, f, 1s adjoined to the basis
immediately and B is updated. The consideration of the next pair {f,, f,}
in B can be skipped by application of Criterionl: LP(f,) = xy*z divides
LCM(LP(f,), LP(f,)) = x*y*z and {f,. f,} and {f,, f,} are not in B any
more, because they already were considered. The consideration of the
next pairs in B yields

\..w, \s:lv.\.\:
fo o= S

with the corresponding updating of G and B (no reductions and cancel-
lations of polynomials in G are possible!). The S-polynomials of the next
pairs reduce to zero

foo f; = 0,
fof, =0
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The criterion does not detect this fact a priori! However, the consider-
ation of the next pair {f,, f,} can, again, be skipped by application of
Criterionl: f; is a suitable p in the criterion. Then, the following pairs are
considered:

,\”J; ,\,I - LA
fo L — 0,
fi fu = 0.

The next pair {f;, f,} may, again, be skipped by application of Criterion].
Finally,

fis fs — 0.

From now on, the application of Criteriont detects a priori, without
actually carrying out the reductions, that all the remaining pairs may be
skipped. Hence, instead of 36 reductions, only 11 have to be carried out
with the improved algorithm. The pair {f,, f,} is an example of a pair, for
which Criterion2 is successful. The gain by using the criteria, in particular
Criterionl, becomes more drastic as the complexity of the examples, in
terms of the number of variables, the degrees of polynomials and the
number of polynomials, increases.

6.5. APPLICATION: CANONICAL SIMPLIFICATION, DECISION OF
IDEAL CONGRUENCE AND MEMBERSHIP, COMPUTATION IN
RESIDUE CLASS RINGS

In this section, it is shown how our algorithm for constructing Grobner
bases may be applied for algorithmic solutions to the canonical simpli-
fication problem modulo polynomial ideals, the decision problems ‘f = £
and ‘feldeal(F)’, and the problem of effectively computing in the associ-
ative algebra K[x,, . . ., x,J/Ideal(F). Actually, the three problems are
intimately connected with each other. This connection is summarized in
the following definitions and lemmas whose proof may be found in {6.3].
The concepts involved in these lemmas have been developed and refined
in various papers by B. Caviness, J. Moses, D. Musser, H. Lausch and W.
No6bauer, R. Loos. M. Lauer, and the author: see [6.3] for a detailed
reference to the literature.

Let T'be an arbitrary (decidable) set (for example, T: = K[x,,. . ..x,])
and ~ an equivalence relation on T (for example, ~ = =,).

ORI ——
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DEFINITION 6.7. An algorithm C with inputs and outputs in 7 is called a
‘canonical simplifier’ (or ‘ample function’) for ~ (on 7T)
iff for all objects f, gin T

(SE) C(f) ~ fand
(8C) iff~g then C(f) = C(g),

(1.e. Csingles out a unique representative in each equivalence class. ch
is called a canonical form of f).

LEMMA 6.5. ~ is decidable if there exists a canonical simplifier C for ~.

Proof. By (SE) and (SC): f ~ g iff C(f) = C(g). The converse of the
lemma is true, also. However, the simplification algorithm constructed in
the proof of the converse is of no practical value, see [6.3], [6.4].

LEMMA 6.6. Let R be a computable (binary) operation on T, such that ~
is a congruence relation with respect to R. Assume we have a canonical
simplifier C for ~. Define;

Rep(T): = {feTIC(f) = f}(set of ‘canonical representatives’,
ample set),
R'(f, 8): = C(R(f, g)) (for all f, geRep(T)).

Then, (Rep(T), R’) is isomorphic to (T/~, R/~), Rep(T) is decidable,
and R’ is computable. (Here, R/~([f], [g]): = [R(f, g)], where [f] s the
congruence class of f with respect to ~). °

Lemma 6.6 shows that, having a canonical simplifier for an equivalence
relation that is a congruence with respect to a computable operation, one
can algorithmically master the factor structure. The theorem is proven by
realizing that i(f): = [f] (feRep(T)) defines an isomorphism between the
two structures and by checking the computability properties. Applying
these general concepts and facts to the case of polynomial ideals we first
note:

COROLLARY 6.1 (to Theorem 6.1). Let S be an arbitrary normal form
algorithm in the sense of Definition 6.2 and F a Grébner basis. Then
C: = M. S(F, f), i.e. the algorithm, that takes the fixed F and a variable f
as input and computes S(F, f), is a canonical simplifier for = .

Proof. (SE) is fulfilled because, clearly, f=,g if f-— g (see Definition
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6.1). By iteration, f = S(F, f). (SC), in case of =, is just the content of
Theorem6.1. .
In addition, one can prove the following lemma.

LEMMA 6.7 [6.7], [6.8]. Let F be a Grébner basis. Then B: = {[ullu is a
power product that is not a multiple of the leading power product of any of
the polynomials in G} is a linearly independent vector space basis for the
vector space Klx,, ..., x,)/Ideal(F) (the residue class ring modulo

Ideal(F)).

Proof. Assume that there is a linear dependence
o lud+e-(wl+. . +c¢ [ul=0
for some u, in B. Then
fi=c u +c - u+ ...+ ¢ - ueldeal(F).

‘Hence, by Theorem 6.1, f must be reducible to 0 modulo F. However, fis
already in normal form because, by definition of B, non of the u, can be
reduced modulo F. Thus, f = 0,i.e.c, = ... =¢ = 0. .

Based on the above lemmata, the following problems can be solved by
the following methods (for S use the normal form algorithm NormalForm
described in Algorithm 6.1):

PROBLEM 6.3.
Given F.
Find a canonical simplifier C for the congruence =, modulo Ideal(F).

METHOD 6.1 [6.12}], [6.9].
Compute G: = GB(F).
Then the normal form algorithm S(G, f) is a canonical simplifier for

=,
PROBLEM 6.4,
Given F, f, g.

Decide, whether f =g,

METHOD 6.2 [6.9].
Compute G: = GB(F).
Then: [ =,g i S(G. /) = S(G, g).
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PROBLEM 6.5.
Given E, a finite set of equations between generators of a commutative
semigroup and two words f, g.

Decide whether the equality f = g is derivable from E.

METHOD 6.3[6.19]{6.23].
Letx,, . . ., x, be the finitely many generators of the commutative semi-
group. Conceive every equation p = g in E as a polynomial p — g in
Qlx,, ..., x,]
Compute G: = GB(E).

Then: f = gis derivable from E iff S(G, f) = S(G, g).

PROBLEM 6.6.
Given F, f.
Decide whether feldeal(F).

METHOD 6.4 [6.9].
Compute G: = GB(F).
Then: feldeal(F) iff S(G, f) = 0.

PROBLEM 6.7.
Given F|, F,:
Decide whether Ideal (F|) C 1deal(F,).

METHOD 6.5[6.9], [6.10].
Compute G,: = GB(F),).
Then: Ideal(F,) C Ideal(F,) iff for all fe F,: S(G,. f) = 0.

PROBLEM 6.8,
Given F.

Find a linearly independent basis B for the vector space K[x,, . . .. x,J/
Ideal(F) (the residue class ring modulo Ideal(F)) and,
for any two basis elements {u] and [v] in B find a linear representation of
[u] - [v] in terms of the basis elements in B (i.e. find the ‘multiplication
table’ for K[x , . . ., x,)/Ideal(F)).
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METHOD 6.6 [6.7],[6.8].
Compute G: = GB(F).

Take B: = {{u]juis a power product that is not a multiple of the leading
power product of any of the polynomials in G}.

S(G. u - v)yields a linear representation of [u] - [v].

PROBLEM 6.9.
Given F, f. h (where K[x,, .. ., x,]/1deal(F) is assumed to be finite-
dimensional as a vector space).

Find g, such that f - g =4 (if such a g exists).

METHOD 6.7.
Compute G: = GB(F).

Represent f and & as a linear combination of the elements in B (see
Method 6.6) and represent g as a linear combination with unknown
coefficients. Thus, one gets a linear system of equations for the unknown
coefficients, which is solvable iff a solution g exists. °

Note, that all the above methods are "uniform’ in the sense that Fis a
free parameter in the respective algorithms. Thus, for example, Method
6.3 is a solution to the uniform word problem for finitely generated
commutative semigroups (which is equivalent, for example, to the reach-
ability problem for reversible Petri nets). It has been proven [6.5], [6.6]
that the uniform word problem for finitely generated commutative semi-
groups and, also, the uniform congruence problem for polynomial ideals
in Q[x,, . .., x,] is exponentially space complete, i.e. is an intrinsically
hard problem. Method 6.2 shows that this problem can be ‘easily’
reduced to the problem of constructing Grébner bases. Hence, the
problem of constructing Grébner bases must be an intrinsically hard
problem. For practice, this means that the worst case behavior of the
Algorithm 6.2 and 6.3 may be extremely bad. However, this does not
mean that it is useless to construct Grobner bases, because in the par-
ticular cases at hand, the algorithm may perform well (for example, if the
input F is ‘nearly’ a Grobner basis). Also, if for a given F the Grébner
basis G has been constructed, an infinite number of particular algorithmic
problems of the kind ‘feldeal(F)?’, ‘compute a representation of {u] - [v]’
etc. can be solved extremely easily.
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EXAMPLE 6.7. For Fasin Example 6.1, f: = xyisnotin Ideal(F), because

S(GB(F), xy) = —x* + 1/2x # 0.
=8 = ¥y + 3/2xy + 12y + 3x* + 3/2x — 3/2,
because S(GB(F), g)is also —x* + 1/2x.

EXAMPLE 6.8. The following reversible Petri net
&

s

is a Petri net with places a, b, ¢, f, s and three transitions that may be
described by the rules

as — cs,
bs — cs
s — f,
where it is implicitly assumed that the ‘reverse’ rules
c*s — as
etc. are also available. Let
F = {as — %, bs — cs, s — f}.

Then: a configuration v is reachable from configuration w iff v =w. For
example, a’bc’f*s* is reachable from ab?c?s® iff a®bc*fs* =, a*bcs*. In
order to answer such questions, we first compute (w.r.t the total degree
ordering)

G. = GB(F) = {s — f. cf — bf, b*f — af}.

a’bc?ffs* is reachable from a*bc?s®, because the normal forms of both
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markings are a’f> (with respect to G), whereas cs* is not reachable from
¢*s, because their respective normal forms are distinct, namely bf* and af.

EXAMPLE 6.9. For F of Example 6.1,
B = {[1], [x], [x*]}

is a linearly independent vector basis for K[x, y}/ldeal(F), see the corres-
ponding reduced Grobner basis G in Example 6.5.

[x] - [x2] = 5/2[x*]) + 5/2[x],
because
S(GB(F), x*) = 5/2x* + 5/2x.

EXAMPLE 6.10. As an application of the construction of _:<o$om. in
polynomial residue class rings, we take the simplification oﬁ. radical
expressions. For the formulation of the problem see [6.45]. Consider, for
example, the problem of rationalizing the denominator of

1
This problem may be solved by considering the given expression as an
element in Q(x)[2"%, 3*#], which is isomorphic to QQVC_, v,/
Ideal(y®> — 2, y} — 3),i.e. the polynomial ring in the two indeterminates
y,, , over the rational function field Q(x) modulo Eo ideal mo:o::o.a by
the polynomials y> — 2 and y} — 3. The application of the algorithm

yields the equivalent Groebner-basis
Gi = {yt — 2. 5% - 3.
i.e. it is shown by the application of the algorithm that the given basis is

already a Groebner-basis. (In fact, in this simple case. this can be shown
by Criterion2 in Algorithm 6.3.) The residue classes of

I N A U U S 0

form a vector space basis for Q(x)[y,. y,}/1deal(y; — 2. yi — 3). Inorder
to obtain the iverse of x + 2'¥ + 3** we merely have to solve the

equation
(r + vy + i)

; 2 vl
a, +oay, Foay, tayy, tayi s ayyi) =1
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By using the reductions y? — 2, y3 —; 3 this yields a linear system of
equations in the unknowns a,, . . ., a, (by comparison of coefficients at
the power products 1, y,, . . ., y,y?), whose solution is

a, = (X — 4x* + 9x* + 4x + 18)/d,
a, = (—x* + 4x? + 18x — 4)/d,
(3x* + 18x + 27)/d,

(=9x* - 6)/d,

(—x* = 9x + 4)/d,

(2x* — 4x — 9)/d,

whered = x% — 6x* + 18x% + 12x? + 108x + 73.

8 o o
B .
o

R
I

6.6. APPLICATION: SOLVABILITY AND EXACT SOLUTION OF
SYSTEMS OF ALGEBRAIC EQUATIONS

In this section, it is shown how the algorithm for constructing Grébner
bases may be used for the exact solution of systems of algebraic equations
and questions about the solvability of such systems. The significance of
Grobner bases for problems in this category stems from the fact that, for
Grobner bases, the explicit construction of all the elimination ideals is
extremely simple. This is particularly true for Grobner bases with respect
to the purely lexicographical ordering of power products. It is not so easy
for Grobner bases with respect to other orderings, for example, the total
degree ordering. Still, it is also reasonable to construct Grobner bases
with respect to the total degree ordering for solving algebraic systems
because, in extensive computational experiments, it turned out recently
(6.46] that the complexity of the algorithm for constructing Grébner
bases is extremely sensitive to a permutation of variables when the purely
lexicographical ordering is used, whereas it is nearly stable, when the
total degree ordering is used. Furthermore, the complexity with respect
to the total degree ordering is approximately in the same range as the
complexity with respect to the purely lexicographical ordering, when the
most favorable permutation of variables is used. Since, for a given
example, there is no a priori method to predict which permutation of the
variables will give the best computation times, it, therefore, is also a good
method to compute the Grobner basis with respect to the total degree
ordering and then accept the disadvantage that the computation of the
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elimination ideals is not so easy as in the case of the purely lexicographical
ordering. In the sequel, we present the method with respect to both
orderings of power products.

LEMMA 6.8 [6.15]. Let F be a Grobner basis with respect io the purely
lexicographical ordering of power products. Without loss of generality let
usassumex, <,;x,<,...<;x, Then

Ideal(F) N K[x,, .. .. x] = Ideal(F N K[x,. . ... x])

(for i = 1, ..., n), where the ideal on the right-hand side is formed in
Klx,, ..., x] .

This lemma shows that the ‘i-th elimination ideal’ of F is generated by
just those polynomials in F that depend only on the variablesx, . . ., x,.

Proof. If feldeal(F) N K[x,, . . ., x], then f can be reduced to 0
modulo F (use Theorem 6.1). With respect to the purely lexicographical
ordering determined by x, <, x, <;. .. <;x,, this means that f can be
reduced to zero by subtraction of appropriate multiples b, - u, - f, (f€F)
such that LP(f) contains only indeterminates from the set {x,, . . ., x;}
and, hence, all power products occurring in f contain only indeterminates
in this set. Also u; can contain only indeterminates in this set. Adding all
these b, - u, - f,, one gets a representation of f of the form

f=2a uf
which shows that fis in Ideal(F N K[x,, . . ., x]). o
PROBLEM 6.10.
Given F.
Decide, whether F has a solution (i.e. whether thereexista,, . . ., a,in
an algebraic extension of K such that for all fin F: f(a,, . . ., a,) = 0.)

METHOD 6.8[6.7], [6.8].
Compute G: = GB(F).
Then: Fis unsolvable iff 1eG.

Proof. It is well known that F has a solution iff 1¢ldeal(F), see, for
example, [6.47]. Now, Ideal(F) = Ideal(G) and leldeal(G) iff 1 is
reducible w.r.t. G (by Theorem 6.1). The latter is true iff 1eG.
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PROBLEM 6.11.
Given F.
Decide, whether F has finitely oder infinitely many solutions.

METHOD 6.9 [6.7], [6.8].

Compute G: = GB(F).

Then: F has finitely many solutions iff for all i (1< i < n): a power product
of the form x!i occurs among the leading power products of the polynomials
inG.

Proof. It is well known that F has finitely many solutions iff the vector
space K[x,, . . ., x,}/1deal(F) has finite vector space dimension, see, for
example, [6.47]. Because of Lemma 6.7 this is true iff the set B considered
in Lemma 6.7 is finite. It is easy to see from the definition of B that B is
finite iff the condition stated in Method 6.9 is satisfied.

About the exact dimension of polynomial ideals, one can say more than
is expressed above by using Grébner bases for computing the Hilbert
function of polynomial ideals. Many details are given in [6.33], [6.34].

PROBLEM 6.12.
Given F (solvable, with finitely many solutions).
Find all the solutions of the system F.

METHOD 6.10[6.15].
Compute G: = GB(F) with respect to the purely lexicographical order-
ing of power products.

The polynomials in G, then, have there variables “separated” in the
precise sense of Lemma 6.8 (G is ‘triangularized’). G contains exactly one
polynomial of K[x,] (actually, it is the polynomial in Ideal(G) N Kl[x,]
with smallest degree).

The successive elimination can, then, be carried out by the following
process:

p the polynomialin G N Kx,]
X2 = {(a)lp(a) = 0}

fori: =1tn - ldo
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forall(a,, ..., a)eX do
H: = Wﬁm_, cees Ay Xy _v_
geG N K(x,, .. ., x;. ] — Klx,,....x]}

p: = greatest common divisor of the polynomials in H

(Actually, {p} = GB(H); in the case of univariate
polynomials the algorithm G B specializes to Euclid’s

algorithm!)

X, =X,,Ula, ... a, a)pla) =0}
Upon termination, X, will contain all the solutions. (Note that some of
the p may be 1, i.e. the corresponding partial solution (a,, . . ., a;) can
not be continued.) )

Of course, for the univariate polynomials p occurring in the algorithm,
the ‘exact’ determination of all their zeros may not be possible effectively.
However, of course, this is not a deficiency of the particular method but
an intrinsic limitation of algorithmic solvability of polynomial equations.
Still, Method 6.10 is an algorithmic method (using only arithmetic in K)
for completely reducing the multivariate problem to the univariate one.

Before we can give a method for Problem 6.11 that is based on Grobner
bases with respect to arbitrary orderings of power products we must solve
the following problem,

PROBLEM 6.13.
Given a Grobner basis G, such that G, as a system of equations, has only
finitely many solutions.

Find the peldeal(G) N K{x,] with minimal degree.

METHOD 6.11[6.8].
(In case the purely lexicographical ordering withx, <, x, <, . . . <, x, is
used, the solution of the problem is easy, see Method 6.10. In the other
cases proceed by the following method.)

Determine d,, . . ., dPby the following process. which involves the
solution of systems of lin ._,_ﬂ equations in every step:
=0 ‘n
repeatp;: — S(G. x') )

=141
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until there exists (d,, . . .,d,_,) # (0, . . ., O)suchthatd, - p, + .. . +
d_, p_,=0
LL=i-1

Then,p=d,- 1 +d,-x, +...+d - x|

METHOD 6.12 [6.8] for solving Problem 6.12.
Compute G: = GB(F).
The successive elimination can, then, be carried out by the following
process:
p: = the polynomial in Ideal(G) N K[x,} of minimal degree
(see Method 6.11)
X.: = {(a)lp(a) = 0}
fori: =1lwon — 1do
\4. + _” = S
forall(a,, .. ., a)eX, do
H:={gla,, .. ,a,x%x,, ... x,)geG}
H: = GB(H)
p: = the polynomial in Ideal(H) N K[x;, ] of
minimal degree
X, :=X.,U{a,...a, @) =0}

!

Upon termination, X, will contain all the solutions. (Note, again, that
some of the p may be one, i.e. the corresponding partial solution (a,, . . .,
a;) can not be continued. Also, of course, one will store the Grébner basis
H corresponding to a particular partial solution (a,, . . ., a;) and use it
instead of G for construction of H correspondingto (a,, . . ., a,, a).)

EXAMPLE 6.11. The system F of Example 6.1 is solvable, because
G = GB(F) does not contain the polynomial 1 (see Example 6.5).
The system

Fr={xty —x* & =X + y,xy* —xy + 2}
1s unsolvable. Let us use the total degree ordering in this example.
SPolynomal(x*y — x*, x* — x* + y) = x*yv — x' — y*—,

3 2 4 2 2
g R Sl Tl D Sl ST A S &
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Thus, we have to adjoin y* — y to the basis.
SPolynomial(xy? — xy + 2. y* — y) = 2,

which can not be reduced further. Hence, we have to adjoin 1 to the basis.
This is the signal that Fis unsolvable.

EXAMPLE 6.12. F of Example 6.1 has only finitely many solutions,
because x* and y appear as leading power products in GB(F).

Fr={dy —y* = x*+y x* -y}

has infinitely many solutions. Actually, Fis already a Grébner basis (with
respect to the total degree ordering of power products): check by apply-
ing Algorithm 6.3 which, in this case, does not adjoin any new polynomial
to F. No power products of the form y’ occurs among the leading power
products. Hence, F has infinitely many solutions.

EXAMPLE 6.13. For Fof Example 6.1,
GB(F) = {xX* — 5/2x* = 5/2x, y + x* — 3/2x — 3}.

The solutions a of the first (univariate!) polynomial are 0, (5 + \/65)/4,
(5 — V/65)/4. Each of these solutions can be continued to a solution (a, b)
of F by solving the second polynomial in the form y + 4* — 3/2a — 3 for
y. This yields (0, 3), ((5 + V65)/4, —(3 + V65)/4), ((5 — \/65)/4,
(=3 + V/65)/4) as the three solutions of the system.

EXAMPLE 6.14. The same example can also be treated by Method 6.12.
With respect to the total degree ordering, G: = GB(F) = {g,, &, &}
where

g =x+y—32x -3,
g =xy—y+x+3,
gy = ¥yt — 512y — 4x — 372

We now compute the normal forms of 1, x, £, . .
S(G, 1) = 1,
d, - 1 = 0 has no non-trivial solution.
S(G, x) = x,

d, - 1 + d, - x = 0hasno non-trivial solution.

w
|
|
!
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S(G, x*) = — y + 3/2x + 3,
d, 1+ d, -x+d, x*=0hasnonon-trivial solution.
S(G, x*) = = 5/2y + 25/4x + 15/2,
dy-1+d, - x+d, x*+d, - x*=0leads to the following
linear system of equations:
- 5/2d, - d, =0,
25/4d, + 3/2d, + d, =0,
15/2d, + 3d, +d, =0,
which has (after normalization d, = 1) the unique solution 4, = 1,
d, = —5/2,d, = =5/2,d, = 0. This means that
pr=xt = 5/2x* — 5/2x
is the polynomial in Ideal(G) N K[x]with minimal degree (in accordance

to what we already have seen in Example 6.13). p has the three solutions
a, = 0,a, = (5 + V65)/4,a, = (5 — V65)/4. Substitution of a, yields

g(a) =y -3,
8:(a) =~y + 3,
gi(a,) = y* — 52y — 3/2.
The Grobner basis corresponding to these three polynomials is
G ={y -3}
By computing the normal forms 1, y, y*, . . . and looking at the corres-

ponding systems of linear equations as above one detects that
p:=y-3

is the polynomial in Ideal(G’) N K[y] of minimal degree. Of course, in

this particularly simple example, this can be seen immediately from the

Grébner basis. Hence, (a,, b,) with b,: = 3 is the first solution of the
system. Similarly, substitution of a, yields

g.(a) =y + (3 +V65)/4,
g.(a,) = (1 + \V/65)/4y + (17 + V65)/4.

g.(a,) = v* — 52y — (13 + \/65)/2.
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The Grobner basis corresponding to these three polynomials is
G'":={y+ (3 +V65/4} and p'": =y + (3 + V654

is the polynomial in Ideal(G'') N K{y] of minimal degree. Hence, (a,, b,)
with b,: = —(3 + \/65)/4 is the second solution of the system.

Finally, substitution of a, yields, again, three polynomials in K[y]
whose Grobner basis consists of the polynomial y + (3 — \/65)/4.
Hence, the third solution is (a,, b,) with b,: = (=3 + \/65)/4.

EXAMPLE 6.15. Given F consisting of
4x* + xy? — 7 + 1/4,
2x + y*z + 1/2,
Xtz — 1/2x — y?,

the corresponding Grébner basis G (with respect to the purely lexico-
graphical ordering, where z <, y <, x) consists of

7= 1/22° 4+ 1/162° + 13/4z* + 75/162" + 171/8z% +
+ 133/8z — 15/4,

y* — 19188/497z% + 318/4977° — 4197/19887* —
— 251555/19887" — 481837/1988z* +
+ 1407741/1988z — 297833/994,

x + 4638/497z5% — 75/4977% + 2111/39767* +
+ 61031/1988z" + 232833/39767% — 85042/4977 +
+ 144407/1988.

Applying Method 6.10 for solving G, one first had to find all the solutions
of the first polynomial, which is univariate. Each of these solution a,, can
be continued to two solutions (a,, a,) of the second polynomial and each
of these (a,, a,) can be continued to a solution (a,, 4, a,) of the third
polynomial. The solutions of the first polynomial can be determined
systematically with any guaranteed precision, see [6.48]. It has not yet
been studied systematically how, numerically, the precision of the
solutions of the first equation must be fixed in order to guarantee a given
precision for all the solutions of the last equation. This is a near-at-hand
important problem for future study.
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EXAMPLE 6.16. Sometimes, it is necessary to solve systems of algebraic
equations with ‘symbolic’ coefficients. For example consider F consisting

of

fii=x,+ (b= 4d),

foo=mx,+x, +x,+x, + (—a—c—d),
fit = xpx, + xx, + xx, + (—ad — ac — cd),
foo = xxx, + (—acd),

where x, <,x, <;x, <,x, are the polynomial indeterminatesand g, b, ¢, d
are ‘symbolic’ coefficients. One might like to solve this system for x,, x,,
X;, x,. This is nothing else then saying that one conceives the polynomials
aselementsin Q(a, b, ¢, d)[x,, . . ., x,], where Q(a, b, c, d) is the field of
rational functions over Q. Our algorithm works over arbitrary fields and,
hence, in particular also over Q(a, b, ¢, d). Some steps of Algorithm 6.3
are:

Reduction of f, modulo f, (by subtraction of f, from f, and normalizing
the coefficient of the leading power product to 1) yields

fii=x,+x,+x + (= a— b - c)(f may be canceled).

Reduction of f, modulo f* yields

[y = x, + (b — d) (f, may be canceled).

Reduction of f, modulo the other polynomials (starting with the subtrac-
tion of x, - f} and, then executing several other reduction steps) yields

foo=xi+2xx, —(@a+2b+c—-d)yx, + 3 -
—{a+b+c)yx, + (ab+ ac + b* + bc — bd)
(f, may be canceled).
Reduction of f, yields
fo=xx, +xi—(a+b+c)x, — acd/(b — d)(cancelf,).

(Note here that division in Q(a, b, ¢, d) has to be performed. f, can now
be further reduced (using f') yielding f,
iExy (@2t -d)x, -x+@a+b+co)x +
+ (ab* + abc  abd + acd + b* + bic —
= 2b%d ~ bed + bd®)/(b — d).
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Cancel f. No further reduction is possible. Therefore, we consider
SPolynomial(f;", f\) = x, - fi' — x, - f',.
Reduction of this polynomial yields
fii = x, + (b* = 2bd + d*)/(acd) x* +
+ (abc + abd — ad*® + bed — cd®)/(acd) x, + (=b + d).
Now, again, a number of reductions are possible yielding, finally,
g =x, + (=b* + 2bd — d*)/(acd) x* +
+ (- abc + abd + acd + ad* — bed + cd®)/(acd) x, +
+(—a—c-d)),
g, =x,+ (b—4d),
g = x4+ (ac + ad + cd)/(b — d) X} +
+ (a*cd + ac*d + acd®)/(b* — 2bd + d*) x, +
+ (a*cd?)/(b* — 3b*d + 3bd* + &),
g = x, + (b* — 2bd + d*)/(acd) X} +
+ (abc + abd — ad? + bed — cd*)/(acd) x, + (= b+ d).
By Criterionl, the reduction of the S-polynomials of these polynomial
may be skipped. Hence, G: = {g,, . . ., g,} is the reduced Grébner basis.
By Methods 6.8 and 6.9 it can be seen that the system has finitely many
solutions. The system must contain a univariate polynomial in Q(a, b, c,
d)[x,]: g,. A particular solution of g, is
a,: = (—ad)/(b — d),
which can be extended to a solution (a,, a,, a,. a,) of the entire system,
where
a, = (ab + b* — bd)/(b — d),
a, = c,
a;: = —bh +d.
Dividing g, by (x, — a,) one gets a quadratic polynomial whose solutions

can be extended to solutions of the entire system in the same way as
before.
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6.7. APPLICATION: SOLUTION OF LINEAR HOMOGENEOUS
EQUATIONS WITH POLYNOMIAL COEFFICIENTS

In this section, it is shown how the algorithm for constructing Grébner
bases may be used for determining a finite set of generators for all the
polynomial solutions of a linear homogeneous equation with polynomial
coefficients. Before the method can be described, it must be shown how
one can find a linear representation of the polynomials in'a basis £ in
terms of the polynomials in its corresponding Grébner basis G and vice
versa,

PROBLEM 6. 14.
Given a Grobner basis G = {g, . . ., g} and some f.

Findh,, ... h,suchthatf = h, - g + ...+h, g, (and LP(h - g)
< LP(fyfori=1,... m).

METHOD 6.13.

Roughly, reduce f to zero modulo G and collect the multiples of the g,
necessary in the reduction. In more detail: take Algorithm 6.1 (the
normal form algorithm) and insert instructions that collect the multiples
of the g; used in the reduction.

hy=...:=h:=0

while f # 0do
choose i, b, usuch that f —
is maximal w.r.t. <r

fi=f-b u-g
h:=h+b-u

andu - LP(g)

8 b, u

PROBLEM 6.15.
Given F = {f,,.. ..fland G = {g,,. . .. g, }suchthat G = GB(F).

Find Y such that Y is a matrix of polynomials with m rows m:a\d\N
columns and

\MH\M@%::o:.n_,;:‘
METHOD 6.14.

The j-th column of Y consists of A,, . . ., h,, that are obtained by the
Method 6.13 for the representationof f, (j = 1. . . ., [).



218 Chapter 6

PROBLEM 6.16.
Given: F = {f.. . . .. fi}.

Find G = {g,. . . ., g, and X such that G = GB(F), X is a matrix of
polynomials with / rows and m columns and

g = Y f-Xx, (fori=1...m).
I< s

METHOD 6.15.

Augment Algorithm 6.2 or Algorithm 6.3 by instructions that keep track
of the multiples of f, that are used in the reduction of those polynomials
whose normal form is adjoined to the basis G (compare Method 6.13)

PROBLEM 6.17.
Given areduced Grobner basis G = {g,. . . ., g,

Find a matrix R with m columns such that the finitely many rows of R
constitute a set of generators for the linear homogeneous equation

ho~g, +.. . +h, g, =0, .. h,eKx. ..x].
i.e. Rshould consist of m-tupels (k, ... .. &, ). (koo o, k, )
of polynomials such that

k, ,cg +...+k ,g,=0(orj=1._...7)

and forall (h,, . . .. h,,) for which

horg, + ... +h, g, =0
there exist polynomials p,. . . .. p,such that

(h,,....h,) =

=p, (koo ko) ko k).

METHOD 6.16[6.14], [6.18].[6.21]. [6.28].[6.33].[6.34].
R: = empty matrix

pty )
forallpairs (i, It =1 <) = \%

Consider h: = SPolynomial(g,. g) = u, - g — (c/c) - u, - g, wherec,
is the leading coefficients of g, «, is such thats, - w18 the LCM(s . s5,). 5,18
the leading power productof g (1 = 1.2)

Reduce h to zero modulo ¢ and store the multiples of theg,. . . .. g
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necessary for this reduction. This gives a representation of i of the form
h=k g +...+k -g/(compare Method 6.131).

Add (.. ..o —(efe) o) =k k) as last row in R
1 1

position position j

PROBLEM 6.18.
Given F = {f,, . . .. farbitrary.

Find a matrix Q with [ columns such that the finitely many rows of 0
constitute a set of generators for the linear homogeneous equation

hoofi+ .. +h o fi=0(h, . heKx. ... x].
METHOD 6.17[6.18].

By Method 6.15, compute G = GB(F)
with / rows and m columns such that

g = M f- X, (fori
tsjs i

By Method 6.14, compute a matrix Y with m rows and / columns such that

1

{g,. . . ., 8.t and a matrix X

1, ..., m).

fi= X &Y., (forj=1...0D

I<ism

By Method 6.16 compute a matrix R with m columns such that the r rows
of R constitute a set of generators for the linear homogeneous equations

h g+ ...+h, g,=0
Then,

Q=) (a block matrix)

(1 is the unit matrix with / rows and columns, X"is the transposed of X).

EXAMPLE 6.17.
Let F: = {f,, f,. f,}. where

fo=x*y — xy. fo= xy* = X,

Ji 2

foo=xy —xy +x* - x%
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We use the total degree ordering. First, G: = GB(F) has to be computed
with simultaneous determination of the matrix X. We start with a reduc-
tion of f,:
\, - k.\_ =x'-xt= fi
The representation
\._.\w H (—x) .\_ +0 .\N + 1 \*
must be stored. Then we reduce the S-polynomial of f, and 1o
h: = SPolynomial(f,. f,) =y - f, — x - f,. ,
\N.T\Nl\wﬂcﬂu\f ;

If f, was not zero, the following representation of f, in terms of f,.f,andf,
could be obtained from this reduction: i

\LH.V\.\_I\«.\N.f\NI\u.TH‘\_H
v +x L+ (=x+1 f+ (=D f
This example of a reduction should suffice to demonstrate how the linear ;
representations of the new polynomials in G in terms of the polynomials
in F can be obtained in general. Since, however, f, is zero, nothing has to
be adjoined to G in this stage of the algorithm. The S-polynomial of f, and
/i and also the S-polynomial of £, and f;, reduce to zero. Hence, ;
G: =g 82 84
where |

Il

2

g =f. 8 = for 80 = X — %,
is the reduced Gréobner basis corresponding to F and :
1 0 —-X

X-=l0o 1 0 !
0 0 1 ‘

is the transformation matrix.

The matrix Y for the reverse transformation (i.e. the linear repre-
sentation of the ¢lements of £in terms of the elements in () is obtained
by Method 6.14:

/, reduces to zero modulo G by subtraction of g,

/., reduces to zero modulo (; by subtraction ot g

f; reduces to zero modulo G by subtraction of x - g, and g,
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Hence,
1 0 X
Y:={0 1 0
0 0 1

For getting R, we have to reduce the S-polynomials of the pairs (g, g):

h, ,; = SPolynomial(g,, g,) = y - 8 — X8,

h, +8 —g =0.

h, ;. = SPolynomial(g,. g,) = x - g, — y - g,
h,, =0.

h, ;. = SPolynomial(g,, g,) = x* - g, — y* - g,.

hyy, —y- g +x-g —g +g, =0.
From the first reduction:
Y & X &t g g =
0 g+ (=x+1)-g +(-1) g =0
Hence, the first row in R is the solution (the ‘syzygy’)
b, —x+ 1, =1).
The other rows of R are obtained analogously:

) (=x+1) (=D
R =|(x) (0) (=)
(=»)  (*-1 (=y*+x+1)

Finally, the computation of Q requires only some matrix multiplications:
First, we note that Y- X" = /in this particular example. Hence,

- v x
Q=1|.............. =

.\ R X/

{0)] () (0)

(0) (0) (0)

(0) (0) (0

(v + x) (—x + 1) (=1

(x + xv) (0) (=y)

{(xy* — x* =y ~ x) xt = 1) (v +x + 1)
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Of course, the first three rows can be canceled in this particular example,
the last three rows constitute a complete set of generators for the
solutions (k. h,. h.) to the equation h, - f, + h, - f, + h - f, = 0. .

For K[x,. .. .. x,}-modules, as for cxample the module of all the
solutions to the above linear equation, a notion of *Grabner bases” and
‘reduced Grobner bases’ can be introduced. see [6.28], [6.33]. [6.34].
Then the matrices (O can be reduced to a minimal set of generators and
the construction can be carried over to obtain the whole ‘chain of
syzygies' or the 'frce resolution” of a polynomial ideal.

6.8. GROBNER BASES FOR POLYNOMIAL IDFEALS OVER THE
INTEGERS

The concept of Grobner bases, the essential properties of Grobner bases
and the algorithm for constructing Grobner bases as reflected by
Definitions 6.2, 6.3, 6.5, 6.6, Lemmata 6.1, 6.2, 6.3, Theorems 6.1, 6.2,
6.3, 6.4, Algorithms 6.1, 6.2, 6.3 and most of the applications in Sections
6.5and 6.7 can be carried over to polynomial ideals in Z{x,, . . .. x,]and,
in fact, to ideals in certain other rings. see [6.30]). However, a subtie
analysis of the notion of reduction and. more essentially, of the notion of
‘S-polynomial” must be carried out for this purpose. We can not go into
the details of the theoretical foundations of the algorithm for integer
polynomials. Rather, we explain the steps of the generalized algorithm in
the style of the preceding sections.

The problem of deciding ideal membership forideals in Z[x,. . . ., x,].
the simplification problem for these ideals and related problems have a
long and interesting history. For some of the details of the history, see
[6.49]. The first general solution of both the simplification and (hence,)
the membership problem, was given by Lauer [6.11] based on the
Grobner bases approach but needing two different types of *S-poly-
nomials’. Other solutions based on the Grobner bases approach. but
destroying the simple structure of the algorithm, were given in [6.15],
[6.18],[6.21]. The first general solution based on a different approach was
given only in [6.49]. Our own solution [6.30], which will be presented
here, seems to be much more concise than the solutions given so far and
leaves the simple structure of the algorithm untouched.

In addition to some ordering of the power products, in the case of
Zlx,, .. . x,]. one also must fix some ordering of the integers, for
example, 0 < -1 <1< -2<2< -3<3<... (An axiomatic
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characterization of the admissible orderings is possible but will not be
used in this paper). The crucial difference. then, to the case of poly-
nomials with field coefficients is that, in the definition of ‘reduction’
(Definition 6.1) it is not possible to totally cancel Coefficient(g, 1), where
t = u - LeadingPowerProduct(f). because the element Coefficient(g, 1)/
LeadingCoefficient(f). in general. will not be in Z. In the following, the
typed variablesa, b, ¢, d will be used for integers instead of field elements,
/. & h. k. p. g will be used for polynomialsin Z[x,. . . .. x,]. and F, G for
finite setsin Z[x,. . . ., x,].

DEFINITION 6.8[6.30].
g —, h (read: *g reduces to h modulo F7) iff there exists feF. b and u such
that

8= n, and h=g~b u-f
g = » . (read: ‘gisreducible using f, b, u’) iff

a#+0 and a-b ¢ <a,
where,

a = Coefficient(g, u - LeadingPowerProduct(f)), and
¢ = LeadingCoefficient(f)

EXAMPLE 6.18. The b in Definition 6.8 can be determined by the follow-
ing algorithm M(a, c), for example:

M(a, ¢): = ifaand c have the same sign
then if a — ¢ < a then M(a — ¢, ¢) + |

else 0
else ifa + ¢ < athen Ma+ c c) — 1
else 0
In practice. M may be realized by a modified integer division. .

The definitions, theorems, algorithms and lemmata of Section 2 can
now be carried over without any change: In particular, we have again the
algorithm NormalForm that produces a normal form for every poly-
nomial, we have the notion of a Grébner basis, the characterizations
(GB2) and (GB3) of Grobner bases and the connection between reduc-
tion and ideal congruence stated in Lemma 6.3. For the formulation of
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the algorithm that constructs Grébner bases, however, we need some
additional preparation,

DEFINITION 6.9[6.30].
The least common reducible of c,, c, is defined as follows:

LCR(c,, ¢,): = max(L(c,). L(c,)) (max taken w.r.t. <),
where

L(c) . = abs(c)/2, if cis even

— (abs(c) + 1)/2, if cis odd.

DEFINITION 6.10[6.30}].
p, and p, constitute the critical pair corresponding to f, and f, iff

p,=a - U- M@, c):u - f, where

U= LCM(s,,s,),

a= LCR(c, c,).

s, = LeadingPowerProduct(f)),

¢; = LeadingCoefficient(f),

u;issuch thatu, - 5, = U (i=1,2). °

The difference of the two components of a critical pair is the analogue
to the S-polynomial in the case of field coefficients. We formulate the
algorithm for critical pairs instead of S-polynomials, because, at present,
we do not have a formal proof that, in fact, the algorithm below is correct
with S-polynomials instead of critical pairs, although it is very likely.
Also, we would like to introduce the concept of a critical pair to the
reader, because this concept may be applied to domains without any
operation of subtraction also. See [6.3] for an introduction to ‘critical-
pair/completion’ algorithms.

EXAMPLE 6.19.

0,—-1,1,-2,2, -3,3, —4, 4 are the values of L for the arguments 0, 1. 2,

3,4,5,6,7, 8, respectively, and LCR(3. 1) = -2, LCR(7, 8) = 4. Note

that L(c) = L(-c). ]
The main theorem of Section 3, which gives an algorithmic character-

1zation of Grobner bases, and the main algorithm for the main problem

can now be carried over in the following form:
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THEOREM 6.6 (Buchberger [6.30]).
Let § be an arbitrary normal form algorithm. The following properties
are equivalent:

(GB1) Fis a Grobner basis.

(GB3) Forallf,, f,eF.p,. p,:
if p, and p, constitute the critical pair corresponding to f,, f,,
then S(F, f,) = S(F, f,).

PROBLEM 6.19.
Given F,
Find G, such that Ideal(F) = Ideal(G) and G is a Grébner basis.
ALGORITHM 6.4 (Buchberger [6.30]) for solving Problem 6.19.
G =F
B: = q_, \NI\_. mev
while B # § do

{fi., f.} : = apairinB
(p,, p,): = thecritical pair corresponding tof|, f,
(P, py): = (S(G, p,), S(G, p,))
h i=pi-p
if h' # Othen
B: = B U {{g, h'}igeG}
G:=GU{r} o

Also the various improvements of the algorithm, the notion of reduced
Grobner bases and the theorem on the uniqueness of the reduced
Grobner bases (Section 3) can be carried over. We do not explicitly state
the details.

EXAMPLE 6.20. Take F as in Example 6.1. Note that the leading coeffi-
cients of the polynomials in F can not be simply set to 1 by dividing the whole
polynomial: the ideal would change! We fix the "purely lexicographical’
ordering for the bivariate power products with the ordering x <, y of the
two indeterminates. In order to ‘complete’ Fby Algorithm 6.4, one has to
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consider the ‘critical pairs’ of polynomials in F. We start with Lo fi
LC(f,) = 2. LC(f) = 1, LCR(2, 1) = 1. LCM(LP(f,). LP(f,) = x'y.
Thus, x'y is the monomial that has to be reduced in one step .an:_o.\;
and f, in order to get the critical pair corresponding to f,- f,. The Uc_wu
nomial x'y may be reduced by f, in the following way: h

Xly—=, =Xy +xy+y - 6x' + 20 + 3x — 3= p.

p may be further reduced modulo f;:

P, Xy +xy +y =30 +4x +3x ~ 3 = ip'.

'

p" is irreducible with respect to F. The polynomial x'y may also be
reduced by f,: .

xly—, = x'y = 3xf - 2 = g

Also g is irreducible with respect to F. p' + q and, hence,
fii=p —q =2 +xy+y+6x+ 3x -3

must be adjoined to the basis.

Similarly, one now has to consider the next critical pair, for example,
the one corresponding to f,, f,: — 2x%y is the "least common reducible’ of
f, and f,. which has to be reduced in one step modulo f, and f,, yielding

i

pr=x*y + 2xy + v + 9x* + Sx — 3 and
g:

respectively. Reduction to normal forms yields

il

Xy + v+ 6x* + 3x — 3,

’

P = —x*y + xy + 3x* + 2x (using f,) and

’

q:

Thus. the difference of these two polynomials must be adjoined to the
basis:

xy +y + 6x* + 3x — 3,

\.,.,.,Hl.«,.w,\\<\wx..|\«+w.

Similarly. the consideration of the critical pair of f, and f, leads to
foo = —xy +y — x = 3.

The consideration of the critical pair of f. and f, leads to

\,.H HN.Y.+N\«u|.ﬁ.«.?®.
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Finally, the consideration of the critical pair of f, and f; leads to
fuo = 23" = 5x* — 5x.

The consideration of all the other critical pairs leads to identical normai
forms. Hence, G: = {f,, . . ., f.} is a Grobner basis corresponding to F.
Actually, the consideration of most of these critical pairs can be avoided a
prior by the improved version of the algorithm. Furthermore, some of the
polynomials in the basis can also be canceled in the course of the
algorithm. Reduction of all the f, modulo G — {f} leaves us with the
reduced Grobner basis G': = {fy, f;, f.}. where

fir=—xy—y— 2 + 2x + 3.

Note that the reduced Gribner bases corresponding to F are different
depending on whether we work in Q[x,, . . ., x,Jorin Z[x, .. ., x|

6.9. OTHER APPLICATIONS

A number of other applications of Grobner bases have been reported in
the literature: decision, whether a given polynomial ideal is principal
[6.8], Hilbert functions of polynomial ideals [6.7], [6.28], [6.33], [6.34],
Lasker-Noether decomposition of polynomial ideals [6.13], free resolu-
tions of polynomial ideals and syzygies (a generalization of the above
linear equation problem with polynomial coefficients) [6.28], [6. 34],
multidimensional integration [6.50] and bijective enumeration of poly-
nomial ideals. The latter problem asks for an algorithm that enumerates

bases for ideals in R[x,, ..., x,] (R a ring) such that every ideal is
represented exactly once in the enumeration. By Theorem 6.4, it is clear
that a bijective enumeration of all ideals in K[x,, . . .,x,Jand Z[x,, . . .,

x,] can be achieved by bijectively enumerating all Grébner bases in these
polynomial rings, which is easily possible (see [6.37]). The applicability of
Grobner bases to other problems is investigated, for example, to the
construction of Hensel codes for rational functions [6.51].

6.10. SPECIALIZATIONS. GENERALIZATIONS. IMPLEMENTATIONS.
COMPLEXITY

The algorithm for constructing Grébner bases specializes to GauBy’
algorithm in case F consists only of linear polynomials, it specializes to
Euclid’s algorithm in case F consists only of univariate polynomials, it
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specializes to an algorithm for the word problem for finitely generated
commutative semigroups in case F consists only of polynomials of the
form u — v (differences of power products) [6.19].[6.23]. The algorithm
for Z[x,,. . ., x, ] specializes to Euclid’s algonithmin Zincase n = 0,[6.30].

The algorithm has been generalized for polynomials over various rings,
in particular, over Z [6.11], [6.15], [6.18], [6.21]. [6.30], and for associ-
ative algebras [6.17]. The Knuth-Bendix generalization [6.38] was
already discussed in the introduction. Recently. an interesting generaliz-
ation was also undertaken by G. Bauer [6.24], who gives an axiomatic
definition of the concept of ‘substitution’ and is able to define the notion
of ‘critical pair’ in this general context.

The algorithm has been implemented various times, [6.7], [6.13],
[6.16], [6.21]. [6.16] is an implementation in SAC-1. R. Gebauer and H.
Kredel [6.46], Univ. of Heidelberg, F.R.G., work on the implementation
of the algorithm in SAC-2, which will be included in the next release of
SAC-2 (announced for December 1983). SAC-2 is a large software
system for symbolic computation in algebraic domains, in particular in
polynomial domains. It is written in the ALDES language, whose com-
piler is written in FORTRAN. Thus, SAC-2 is installed easily whenever
FORTRAN is available. G. E. Collins (University of Wisconsin-
Madison, Departments of Computer Science) and R. Loos (Universitit
Karlisruhe, Institut fiir Informatik I) are the authors of the SAC-2 system.
The implementation of our algorithm in SAC-2 by R. Gebauer and H.
Kredel gives the user the choice to use various orderings of power
products, to work over various coefficient domains (including the field of
rational functions over Q) and to communicate in convenient input and
output format with the computer.

Various analyses of the complexity of the algorithm have been carried
out: [6.7].[6.19].[6.29].[6.6].[6.31]. Summarizing. these analyses show
that the degrees of the polynomials in the reduced Grobner bases. with
probability 1. stay below d, + . . . + d, — n + 1. where the d are the
degrees of the input polynomials. In exceptional cases. this bound does
not hold. Many theoretical questions remain open. 1 yptcal runming times
in SAC-2 on an IBM 370/168: several seconds for F with 3 polynomials of
degree 3 in 3 variables. 20 sec for the example in [6.15] with 6 polynomials
of degree 3 in 6 variables. However. this computing time may drastically
change it a different permutation of the variables and purely lexico-
graphical ordering 15 used. For the worst permutation. the computation
was as high as 10 000 sce. whereas in the total degree ordering the
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computation time for the same example was always in the range 20-30 sec
independent of the permutation of variables. See Section 6 for the con-

sequences of these obsevations.
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Chapter 7

J. P. Guiver
The Equation Ax = b over the Ring C[z. w|

7.1. INTRODUCTION

In Chapter 3 we saw that a strictly causal MIMO system D, 'N,; was
stabilizable by a causal compensator X, Y if and only if

det (D, Y, + N, X )eR [z, wl.

D, Y, + N, X, represented in some sense the ‘denominator” of the
feedback system (see (3.92) to (3.95)). It is therefore of interest (see also
Emre [7.1]) to study the equation D,Y, + N, X, = ® where ® is a
polynomial matrix and we look for a polynomial solution Y,. X.

This equation can be written

AZ =&

where
A =[D,N,]

and
= = Yy

Xy
Inturn. AZ = & can be studied as m equations of the form

A¢ = o,

where ¢, is the ™" column of ® and ® has m columns.

T2 5UFFICIENT CONDITION FOR SOLUTION

[et

and
beC” * Yz, w]. (7.

233

N. K. Bose (ed.). Muludimensional Systems Theory, 233-244
CI9RS by D Reidel Publishing Company



