Geometric Problems in Molecular Biology and Robotics

David Parsons and John Canny *
571 Evans Hall
University of California
Berkeley, CA 94720

Abstract

Some of the geometric problems of interest to molec-
ular biologists have macroscopic analogues in the field
of robotics. Two examples of such analogies are
those between protein docking and model-based per-
ception, and between ring closure and inverse kinemat-
ics. Molecular dynamics simulation, too, has much in
common with the study of robot dynamics. In this
paper we give a brief survey of recent work on these
and related problems.
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Introduction

Structural biology is that branch of biology which
studies the properties and functions of proteins and
other macromolecules based on analyses of their phys-
ical conformations in space. Robotics is an interdisci-
plinary science concerned with the synthesis of certain
aspects of human function and ability to interact with
the environment. On the surface, these two fields seem
to have little in common. However, below the level of
their application domains lies a common denomina-
tor: three-dimensional geometry. The central tenet of
structural biology is that much of the chemical and bi-
ological function of biomolecules can be explained as
a function of their geometric conformations. The syn-
thesis of robots and robotic algorithms is also tightly
bound with geometric analysis.

With this simple observation in mind, we have been
engaged in reviewing the progress made in various ge-
ometric problems in the two fields, with an eye to find-
ing similarities in problem structures. Our hope is that
the algorithmic tools and techniques which have proven
useful in one field may serve as useful suggestions to
researchers in the other. This paper summarizes the
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current state of this comparison effort. It is not in-
tended to be an exhaustive survey of these problems;
rather, we merely hope to provide some pointers into
the literature by which others may find papers of in-
terest to their own research.

The specific analogies discussed here are between
protein docking problems and model-based perception;
between certain structure prediction problems and ma-
nipulator kinematics; and between dynamics simula-
tions of molecules and of robot systems. In some
of these comparisons we find exactly analogous situ-
ations; in others, either the problems or the central
bottlenecks in their solutions are less similar.

Geometric Matching

In a geometric matching problem we are given two
three-dimensional objects and we wish to compare or
align them in some way. The comparison is made based
on a fixed set of geometric primitives, or features, of
the objects. The goal of the comparison is to deter-
mine whether some subset of the features of one of the
objects bears a geometric similarity with a subset of
features of the other. This problem arises in robotics in
the context of interpreting sensory data, and in molec-
ular biology it appears as the protein docking problem.

Protein Docking

In the protein docking problem, also called molecular
recognition, the objects to be matched are molecules.
One of them is generally a protein (the “receptor”),
and the other may be another protein, a DNA se-
quence, or a smaller molecule such as an enzyme
inhibitor (the “ligand”). The goal is to determine
whether the two can associate, and if so, to predict the
geometric structure of their combined complex (Cher-
fils & Janin 1993). A good solution to this problem
would have important applications in the field of ratio-
nal drug design (Kuntz 1992), (Navia & Murcko 1992).

Protein docking in full generality is a very complex
problem, because each molecule may have many thou-



sands of internal degrees of freedom. To overcome this,
researchers usually simplify the problem by treating
the molecules as rigid bodies, thereby reducing the di-
mension of the search space to 6 (Shoichet & Kuntz
1991). When X-ray crystallographic data is available,
this approximation can be justified by comparing the
experimental structures of bound complexes with those
of their free components (Janin & Chothia 1990); most
known associating proteins (but not all) are observed
to behave as rigid bodies.

There are two problems which a docking algorithm
must address. The first is the geometric problem
of computing “reasonable” relative configurations be-
tween the receptor and the ligand, and the second is
the chemical problem of evaluating the free energies
of tentative matches. Our concern in this paper is
the first problem, although the second is also far from
solved; current theoretical models of energy evaluation
are sufficiently inaccurate that they cannot in general
distinguish between known complexes and geometri-

cally reasonable “false positives” (Shoichet & Kuntz
1991).

Various different types of features have been used in
the matching process. In (Kuhl, Crippen, & Friesen
1984), the features of the ligand are the atoms on its
surface, considered as point masses, while the receptor
features are “site points”, which may be thought of as
the centers of pockets in the molecular surface of the
receptor into which ligand atoms may be placed. The
set of site points constitutes a negative image of the
active regions of the receptor surface. Recently, (Lin
et al. 1994) proposed a representation which supple-
ments such point information with surface normals for
better discrimination. In another approach ((Kuntz
et al. 1982), (Shoichet & Kuntz 1991)), the features
used are spheres. This algorithm generates one set of
spheres which fill the “ridges” on the surface of the
ligand and another set which fill the “grooves” on the
receptor surface. (That is, ligand spheres lie on the in-
side of the ligand, while the receptor’s spheres lie on its
outside.) Proteins have also been modelled with sets
of cubes for docking purposes (Jiang & Kim 1991).

Applying direct search methods in the six-
dimensional conformational space SE(3) is usually
considered computationally infeasible. Instead, most
of the docking algorithms reviewed here employ a
combinatorial approach, based on pairwise matchings
between individual features from the two molecules.
(Kuhl, Crippen, & Friesen 1984) defines the dock-
ing problem as that of finding a relative configura-
tion which maximizes the number of pairwise contacts
made, where a ligand atom and a receptor site point
are considered to be in contact in a given configura-

tion if the distance between them is less than some
small fixed tolerance. They point out that there is
a straightforward brute-force method for finding such
maximal matchings which works by trying all possible
matchings and which runs in time O(m3n3 min(m, n)),
where m is the number of atoms in the ligand and n
is the number of receptor site points. This proves
that polynomial-time algorithms are possible, but the
brute force method is much too slow in practice for
problems of reasonable size. They propose instead an-
other algorithm which works by creating a combinato-
rial graph (the “docking graph”) based on internal (in-
tramolecular) pairwise distances. The docking graph
has a node for each of the mn possible pairwise feature
matches and an edge between two pairs wherever both
matches can be simultaneously made. Finding a maxi-
mal matching reduces to searching for maximal cliques
in this graph. Although clique-finding is known to be
an NP-hard problem (Garey & Johnson 1979), the au-
thors argue that their approach is efficient in practice
due to the geometric nature of the constraints imposed
by the distances.

The DOCK algorithm described in (Kuntz et ol
1982) also tries to maximize the number of features
matched, although it does not guarantee the global
maximum. The algorithm is as follows: first, sys-
tematically pair each ligand sphere with each recep-
tor sphere. For each such pairing, choose a second
pair which maximizes the number of further matches
which could still be made without violating a simple
intramolecular distance constraint. Then pick a third
pair of spheres which maximizes the remaining possible
matches, and continue in this manner until no further
matches can be made. Whenever at least 4 matches
are made, an orientation is uniquely defined and the
match is retained as a candidate for energy evaluation
(assuming it passes a handedness test and some other
simple geometric filters).

The last algorithm we consider is the “soft docking”
procedure of (Jiang & Kim 1991). They do a form
of exhaustive search in the six-dimensional conforma-
tional space. The set SO(3) of rotations is discretized,
and for each discrete rotation a set of translations
which cause the cube sets representing the molecules
to come into contact is computed. As in the previous
two algorithms, the relative configurations which get
output from the geometric phase of the algorithm are
those which maximize the number of features (cubes
in this case) matched.

Extensive tests on real data of these last two algo-
rithms described have been reported in their respec-
tive papers ((Kuntz et al. 1982) and (Shoichet &
Kuntz 1991) for DOCK, (Jiang & Kim 1991) for soft



docking). For the purposes of evaluation, these tests
were performed on pairs of molecules for which high-
resolution X-ray crystallography data is available for
the docked complexes, such as trypsin with bovine
pancreatic trypsin inhibitor. In all reported cases,
the algorithms found the correct conformations to a
high degree of accuracy within 24 hours of computing
time. In some cases, this was true even when the rigid
molecule models were taken from their unbound X-ray
crystal conformations, which lends further credence to
the rigid body approximation. Both algorithms, how-
ever, also found many false positive conformations, es-
pecially when using the unbound molecules as start-
ing points. This limitation reduces the applicability of
docking algorithms in drug design and other contexts
in which the conformation of the complex is not known
a priori. More accurate energy models could eventually
solve this.

The primary limitation of the geometric algorithms
for molecular recognition developed so far is their com-
putational complexity. For example, we know of no al-
gorithm which runs fast enough to successfully dock
two proteins together in any reasonable amount of
computing time. One possible source of inspiration
for more efficient docking algorithms is the work done
in robotics on model-based perception tasks. We give
an overview of this work in the next section.

Model-based Object Recognition and
Localization

Geometric matching problems related to protein dock-
ing arise in the robotics domain of model-based object
recognition. The context of this problem is the in-
terpretation of sensory data, which may come from a
camera, a range-finding device, tactile sensors, etc. A
general statement of the basic problem is: given one
or more object models and a scene possibly containing
images of one or more of those objects, determine if
any of the objects occur in the scene (object recogni-
tion) and if so, where (object localization). The piece
of this problem which we focus on here is the localiza-
tion question; we further restrict our attention to those
problem domains in which the scene data are three-
dimensional, such as range data, tactile sensor data,
or data derived stereooptically from two cameras.
Suppose we are given a data image consisting of a
finite set of points in three dimensions, some of which
may lie on the surface of an object. The goal is to
compute a rigid body transformation which aligns as
much of the data as possible onto one of the object
models known to the program. The object model may
be thought of as the ligand, and the scene corresponds
to the negative image of the receptor (the site points).

The seminal paper in this area is (Grimson & Lozano-
Pérez 1984). They introduce the interpretation tree,
which is a way of organizing the set of possible inter-
pretations of the data. An interpretation of an image
with respect to one of the object models is a set of
matchings of the form (s;, f;), where s; is one of the m
sensed points and f; is a feature of the object model.
(Because they deal with polyhedral models, a feature
may be aface, an edge, or a vertex; in docking it would
be an atom of the ligand.) An interpretation is repre-
sented as a path from the root to a leaf in the interpre-
tation tree. Each edge along the path corresponds to
one datum-to-feature matching of the interpretation.

The usefulness of this data structure is that it fa-
cilitates eliminating large sections of the search space
by the application of geometric constraints. Useful
constraints on which pairs of matchings are simul-
taneously feasible derive from the rigid body con-
straint of the object. For example, the partial inter-
pretation {(s;, fj), (s, fi)}, where f; and f; are model
vertices, is feasible only if ||d(si, sx) — d(fj, fi)ll < ¢,
where d(-, -) denotes Euclidean distance. The constant
term € is a way of accounting for errors in sensing
or modeling. (Similar constraints can be derived for
other feature types; angle constraints involving triples
of matchings are also possible.) Note that the graph G
of the distance constraints between matchings is ex-
actly the complement of the docking graph defined
in (Kuhl, Crippen, & Friesen 1984); therefore, a max-
imal independent set of vertices in G corresponds to a
maximal clique in the docking graph, and hence to an
interpretation with the maximum possible number of
matches.

The algorithm constructs an interpretation tree in
a systematic way by matching each image data point
in turn to a feature of the model. The ith level of
the tree contains attempted matchings of the ith data
point. From a given node N, the subtree corresponding
to a new matching (s;, f;) is only generated if (s;, f;)
is compatible with all of the matchings already made
on the path from the root of the tree to N. This
tree-building process continues down for as many lev-
els as there are data points. Although the size of the
tree could grow exponentially with the number of data
points, in practice the geometry imposes sufficiently
many constraints that the tree remains quite small.

In the special case that all the object features are
vertices, building the entire tree is not necessary. Since
three independent matchings completely determine,
up to a reflection, a rigid body transformation, three
levels of the tree suffice. At a leaf of the three-
level tree, the remaining m — 3 data points can be
checked by computing and applying the two possible



transformations. This is, in fact, ezxactly the same
as the O(m®n3min(m, n)) brute-force algorithm for
protein docking mentioned above (Kuhl, Crippen, &
Friesen 1984)! The second docking algorithm from that
paper corresponds here to finding maximal interpreta-
tions, i.e. deepest leaves in the full interpretation tree.
The degree of similarity in the work described in these
two papers is striking. That they were both published
in the same year suggests that the authors might have
found an opportunity to share ideas very useful.

The interpretation tree idea has been applied to
many different variations on the theme of object recog-
nition and localization in robotics (for a discussion,
see (Faugeras 1993)). Another successful paradigm is
called geometric hashing (Lamdan & Wolfson 1988).
The idea is to invert the natural “imaging” mapping
from the set of possible interpretations of the data to
the set of sensor readings. The inversion is made pos-
sible by a hash table data structure. Conceptually, the
sensor data is used as an index to the table, and inter-
pretations are stored at each entry. To make such ta-
ble lookups possible, the method uses transformation-
wmvariant representations of objects. If one chooses
a fixed, minimum-sized tuple of object features which
can uniquely determine a basis for a coordinate sys-
tem for the object, all the other features can be de-
scribed with respect to that basis. The size of a min-
imal basis depends on both the dimension of the ob-
ject space and the type of transformation implied by
the imaging process. For example, for point features
in three dimensions with rigid body transformations,
three non-collinear points are necessary and sufficient.
In geometric hashing, the hash table is filled with one
entry for every feature coordinate value, appropriately
quantized, arising from every possible basis tuple. In
the entry for a coordinate is stored the basis tuple
which gave rise to that coordinate value (as well as
the model, in the case that there are more than one).
The recognition step, then, given an image, picks a
tuple of tmage basis points, computes the coordinates
of all the other image points with respect to that ba-
sis, and looks in the table under each, tallying “votes”
for the favorite basis among those retrieved from the
table. Given such a candidate object basis, the trans-
formation which maps the image basis to it is unique
and easily computed. This transformation is verified
against the remaining scene data; if the verification
fails, the process repeats using other tuples of image
points.

If no clear favorite emerges from one image basis tu-
ple, others are used and cumulative votes are tallied.
Given the image basis points and the elected overall
favorite object basis, an interpretation (i.e. a transfor-

mation) is uniquely determined.

One advantage of this approach is that the hash ta-
ble for a set of possible models can be computed off-
line, and can then be reused on many different im-
ages. In a typical industrial manufacturing application
there are only a small number of possible objects, so
this ability to pre-process the models is very desirable.
(Note that an interpretation tree cannot be precom-
puted, since its branching topology depends on both
the model and a particular image.) During the on-line
recognition step, in the worst case all possible image
basis tuples may have to be tried; in this case the pre-
computation saves nothing. But if many of the points
in the image arise from just one of the modeled objects,
the first few tuples tried are very likely to yield a good
match right away and recognition will be efficient.

The general technique of geometric hashing has
found numerous applications in robotics, and often
yields efficient and robust algorithms (see for exam-
ple (Wallack, Canny, & Manocha 1993)). It is also
a natural candidate for application to matching prob-
lems in molecular biology, as first suggested in (Nussi-
nov & Wolfson 1991). That paper describes a geomet-
ric hashing algorithm for detecting structural motifs in
proteins. The same approach has also yielded interest-
ing results for the docking problem (Norel et al. 1994);
a straightforward extension to the technique also solves
a generalization of the docking problem, in which the
ligand may have up to 3 internal rotational degrees of
freedom, centered on a designated “hinge” atom of the
ligand (Sandak, Nussinov, & Wolfson 1994).

Structure Prediction

We use the term structure prediction to refer to a
broad class of problems in the conformational anal-
ysis of molecules. The goal of this type of problem
is to compute one or more three-dimensional shapes
which a molecule may adopt, given a description of
the molecule in terms of some lower-level information
such as a covalent structural formula or an amino acid
sequence. Acceptable 3D structures must not only be
viable in a geometric sense (e.g. not have overlapping
atoms), but in most applications they must also sat-
isfy some secondary criteria such as minimizing a free-
energy function.

Structure prediction can be described as a search
problem. The search space is the space of “all possi-
ble” three-dimensional structures. Such a conforma-
tional space may be parameterized in various different
ways. The simplest way is to describe molecular con-
formations by giving three Cartesian coordinate val-
ues for each of the atoms in the molecule. Another
parametrization uses “internal variables,” such as the ¢



and 1 dihedral angles along the backbone in the case of
a peptide chain. Yet another description of molecular
conformation gives the set of pairwise distances among
the atoms of the molecule.

The choice of parametrization of a space sets limits
on the range of what are considered possible structures.
For example, the dihedral angle model holds the bond
angles and lengths at fixed values, while the Cartesian
model allows them to vary. This extra flexibility comes
at a price, however, since the parametrization also af-
fects the efficiency of various search strategies. The
dimension of the space for the chosen parametrization,
in particular, is an important factor in the difficulty of
solving any given problem. It has been recommended
that searches for low-energy conformationsrun initially
using a model with as few parameters as possible, and
then continue if necessary in a larger search space as a
means of refinement (Go & Scheraga 1970).

A good survey of conformational search techniques
is (Howard & Kollman 1988). The easiest exhaustive
searching technique to describe is called grid search.
The idea is to break the search space into a finite par-
tition by trying each of a small set of discrete values
for each parameter of the space. For example, with
a dihedral-angle parametrization of a chain molecule,
a grid search simply varies systematically each dihe-
dral angle by some fixed increment, and examines each
conformation thereby obtained. It has been suggested
that a dihedral angle step size of 60° is sufficient for
hydrocarbon compounds (Lipton & Still 1988), and it
may prove to be possible to use even coarser grids.
However, unadorned grid search methods which tra-
verse the entire tree of possibilities inevitably run into
a combinatorial brick wall, since the number of confor-
mations which they consider is an exponential function
of the number of degrees of freedom of the molecular
model. Using a coarser grid only reduces the base of
the exponent.

Ultimately, any approach which attempts to exam-
ine all geometrically possible conformations must fail
for larger molecules. The number of such conforma-
tions has been estimated at (1.7)” for a polypeptide
backbone, where n is the number of degrees of free-
dom, or (1.4)" if only compact conformations are con-
sidered (Dill 1985). One simple approach which aban-
dons the goal of examining all possible conformations
is the “build-up” procedure (Gibson & Scheraga 1987).
In this approach, systematic search is applied to short
segments of the molecule, and the molecule is built up
by combining only the lowest-energy conformations of
these segments.

Two examples of structure prediction problems are
the protein folding and ring closure problems. The

long-term goal of protein folding is to predict native
protein structures using only knowledge of the amino
acid sequence. This ambitious goal has sparked much
attention and research (see overview in (Dill 1993));
the best algorithms, however, still run too slowly on
large proteins by factors of at least 10® for comput-
ing a complete and accurate folding. The ring closure
problem asks for conformations of cyclic molecules in
which the cyclic covalent structure of the molecule is
maintained; these molecules are much more modest in
size than proteins. Although these two problems are
conceptually very similar, they differ in the dimension
of the search space by several orders of magnitude, and
are therefore amenable to differing approaches. In par-
ticular, exhaustive search quickly becomes intractible
for the larger problems, and heuristic techniques are
necessary.

Ring Closure and Inverse Kinematics

Simply stated, the ring closure problem is to compute
conformations of a molecule with a cyclic structure in
which the constraints imposed by the bond lengths
and angles are respected. Because these are consid-
ered fixed quantities, the molecule is parametrized by
its dihedral angles.

The seminal paper in this area is (Go & Scheraga
1970). Its authors were interested in finding valid con-
formations of a single-loop molecule with n of its di-
hedral angles considered free (any others are consid-
ered parts of a rigid chain). They prove that such a
molecule has n — 6 degrees of freedom. Thus if the
values of all but 6 of the angles are held fixed, the re-
maining 6 are no longer free but instead are needed to
enforce closure of the chain. The paper derives a sys-
tem of six algebraic equations in six unknowns which
describes the chain closure constraint, and proposes
an algorithm based on trying different sets of values
for different subsets of size n — 6 of the free angles,
solving the constraint equations for each such partial
conformation. They then show how these solutions can
be obtained for certain specializations of the problem,
such as the special case in which all of the dihedral an-
gles are considered variable (i.e. consecutive angle axes
intersect), and the special case of chains with Pauling-
Corey geometry. A method for the general case is not
developed, and the question of the number of possible
solutions of the six equations is not addressed, except
in noting that there may be multiple solutions. Using
this approach combined with powerful filters to trim
the conformation space, (Moult & James 1986) success-
fully performed exhaustive searches for cyclic molecule
models with up to 10 degrees of freedom.

An exact analogy exists between the ring closure



problem and a particular inverse kinematics problem
in robotics. Consider a robot arm which consists of
seven rigid links connected in series, with a single ro-
tational degree of freedom at each connection (this is
the “6 R manipulator of general geometry”). The link
at one end of this kinematic chain is fixed in space (the
base), and the other end is connected to a gripper or
tool of some kind (the end effector). Given the angle
of each of the six joints of such a robot, the position
and orientation of the end effector relative to the base
is clearly uniquely determined. The inverse kinematics
question asks: For a given desired position and orienta-
tion of the end effector, what set(s) of angle values for
the joints will achieve this goal? The analogy with ring
closure is clear if we replace each link of the robot by
a section of a molecular chain with fixed dihedral an-
gles and each joint with a variable dihedral angle. The
chain closure condition on this molecule is then just a
special case of inverse kinematics, in which the desired
pose (position and orientation) of the end effector is
the same as that of the base.

The history of work on the 6R inverse kinematics
problem is about as recent as that of the ring closure
problem. Whereas the attention of molecular biologists
turned toward higher-dimensional problems and hence
away from the algebraic approach initiated by (Go &
Scheraga 1970), robotics researchers pursued algebraic
techniques to a quite satisfactory solution. The next
two paragraphs sketch the history of this effort.

The earliest published work on 6 R inverse kinemat-
ics 1s that reported by Donald Pieper in his Ph.D. the-
sis (Pieper 1968). He developed closed-form solutions
for certain special geometries, such as when any three
consecutive joint axes intersect in a common point.
(Partly because this condition simplifies the analysis of
the system so much, many common industrial robots
are designed to be in this class; see e.g. (Craig 1989).)
Pieper also formulates the general 6 R problem with a
single polynomial in one variable. Solving this poly-
nomial by numerical methods is not possible in prac-
tice, since its degree is around 64,000. Subsequently,
a non-constructive proof of an upper bound of 32 on
the number of possible solutions was given in (Roth,
Rastegar, & Scheinman 1974), and (Duffy & Crane
1980) gives a 32"¢ degree polynomial in the tangent of
one of the half-angles, which a numerical method could
in principle use to solve for the joint angles. A different
constructive approach was reported in (Tsai & Morgan
1985). There the problem is cast as a system of eight
second-degree polynomialsin eight variables, and a ho-
motopy method (also called a polynomial continuation
method) is used to solve this system. (Primrose 1986)
later showed that 16 of the solutions to the 32°¢ de-

gree polynomial of (Duffy & Crane 1980) must have
non-zero imaginary parts, proving an upper bound
of 16 on the number of real solutions. Subsequently
a 16*h degree “input-output” polynomial was derived
in (Raghavan & Roth 1989). Examples of general 6R
manipulators and end-effector poses which have 16 dis-
tinct real solutions are known (Manseur & Doty 1989);
in this sense, 16 is a tight upper bound. (Wampler
& Morgan 1991) uses this bound to develop a poly-
nomial continuation method which tracks exactly 16
paths which are guaranteed to converge to all 16 so-
lutions; they report success on an extensive suite of
test problems, with most running times around 6 to 8
seconds on an IBM 370 (the slowest took 20 seconds).

Recently, a much more efficient algorithm was pre-
sented in (Manocha & Canny 1992). They start with
a system of 14 equations presented in (Raghavan &
Roth 1989), and simplify it through a series of sym-
bolic precomputations. Then given the parameters
(link lengths, twist angles, etc.) of a particular 6R
manipulator, their algorithm uses matrix operations
and numerical elimination to transform the problem
to one of computing the eigenvalues and eigenvectors
of a 24 by 24 matrix. This latter problem has been well
studied, and efficient and numerically stable solutions
are available (e.g. in the package LAPACK, described
in (Anderson et al. 1992)). The running times re-
ported on some of the same test cases used in (Wampler
& Morgan 1991) are 11 milliseconds on average (the
slowest was 25 milliseconds). In most cases, ordinary
double floating-point arithmetic was sufficient to com-
pute the answers to a very high degree of accuracy,
making less efficient variable-precision arithmetic un-
necessary.

The case of kinematic chains with 6 degrees of free-
dom is important in robotics, since this is the minimum
number necessary for the robot to span a full-rank sub-
set of position-orientation space (SE(3)). Indeed, the
general 6 R case was once dubbed the “Mount Everest”
of inverse kinematic problems (Freudenstein 1973)! Al-
though kinematic chains with 7 degrees of freedom
have been considered (Waldron & Reidy 1986), the
complexity of controlling such robots makes them im-
practical, and hence higher-dimensional inverse kine-
matics has not received as much attention. In con-
trast, in molecular biology there is no such intrinsic
reason to stop at 6 degrees of freedom. On the con-
trary, the ability to compute closed-ring conformations
for larger rings would be very useful. One obvious ap-
proach to this is to apply the original proceedure of (Go
& Scheraga 1970), but using the fast inverse kinemat-
ics procedure of (Manocha & Canny 1992) to close
the loop. For example, to generate conformations of



a cyclic molecule with 8 free dihedral angles, one could
choose 2 of them as basis variables and apply (Manocha
& Canny 1992) to solve for the other 6 for each point
on a two dimensional grid. But a more interesting
direction to pursue is to apply more purely algebraic
techniques to compute the (n — 6)-dimensional variety
corresponding to ring closure. The recently developed
algorithms for computing solutions to sparse systems
of polynomial equations reported in (Emiris & Canny
1993) and (Emiris 1993) may prove useful in this en-
deavor.

Protein Folding

The protein folding problem is to predict what three-
dimensional structure a protein, described by its amino
acid sequence, will take. Most proteins of any interest
have far too many conformational degrees of freedom
for even considering exhaustive search methods, which
have exponential running times. However, this may
not be such a bad thing. Folded proteins are very com-
pact structures, with mainly hydrophilic side chains
on the exterior and clusters of hydrophobic ones in-
side (McCammon & Harvey 1987). Therefore, search-
ing in those regions of conformational space in which
the protein doesn’t have these characteristics is des-
tined to be fruitless. Also, proteins in nature have
a remarkable ability to fold relatively quickly to their
unique thermodynamically minimal conformations; re-
cent evidence suggests that many of the important sec-
ondary structural elements of proteins form within the
first few milliseconds during folding (Dyson & Wright
1993). This “existence proof” of a fast algorithm
strongly suggests that exhaustive search is overkill.

Some protein folding methods attempt to imitate
the success of nature directly. One such approach re-
lies on searching a database of known molecular con-
formations for similar protein fragments. In the ear-
liest form of this approach, a sequence of amino acid
residues comprising an unknown protein fragment is
given, a matching algorithm compares it to fragments
of the proteins in the database, and the geometry of
the best matches is used in predicting the structure
of the unknown fragment (perhaps as a starting point
for further refinement). The matching problem for se-
quences (i.e. strings over an alphabet of 20 symbols) is
quite straightforward and yields easily to dynamic pro-
gramming methods (see (Taylor & Orengo 1989) and
references therein). However, in a sense this solves the
wrong problem, since there are examples of pairs of
structurally similar proteins which have very different
sequences. Since classical sequence alignment methods
need at least 26—30% sequence identity to detect ho-
mology, a recent trend is towards “sequence-structure”

alignment ideas, in which a sequence and a structure
are compared directly by using potential energy func-
tions informed by a library of known protein struc-
tures; see (Wodak & Rooman 1993) for a review. Such
approaches effectively restrict the search of conforma-
tional space to certain subsets which contain known
motifs; the challenge is to obtain subsets small enough
to be tractably searched, and large enough to contain
the right answer.

A general approach which holds great promise for
the protein folding problem is molecular dynamics sim-
ulation. We defer its discussion to the next section,
since it is a technique of very broad applicability, not
only for molecular simulations but in robotics as well.

Dynamics Simulation

Dynamics simulation is the general approach of pre-
dicting the dynamic behavior of physical systems by
simulation, based on a mathematical model of the sys-
tem and its dynamics. It is sufficiently general that
it could in principle be used to solve all of the biol-
ogy problems discussed in this paper so far; it also
has a wide range of applications in robotics and com-
puter graphics. The basic algorithm repeatedly makes
changes to the system over a sequence of discrete time
steps. If the time step chosen is small relative to the
period of the highest-frequency motion in the system,
such simulations can remain highly accurate even after
many steps (assuming the mathematical model of the
physics of the system is correct).

For simulations of macroscopic rigid multibody sys-
tems (such as robots), the appropriate model is de-
scribed by classical Newtonian dynamics, which yields
a system of equations of motion for the rigid bodies in
the physical system. These equations, together with
the constraints implied by the topological and kine-
matic structure of the system, can be used in deriv-
ing algorithms both for simulation, which is an impor-
tant component of off-line robot programming systems,
and for controlling actual robots. A good recent text
which gives a modern treatment of the mathematical
foundations of robot dynamics is (Murray, Li, & Sas-
try 1994). It turns out that classical dynamics is also
sufficient to describe many of the types of processes
of functional interest in biomolecular systems as well.
(Higher-frequency motions, such as bond stretching,
should properly be simulated by quantum dynamics;
this topic is beyond the scope of this paper.) An ex-
cellent introduction to both the theoretical and algo-
rithmic aspects of molecular dynamics is (McCammon
& Harvey 1987).

Because biological applications of dynamics simula-
tions generally involve minimization of an energy func-



tion, potential functions are often used in deriving the
force terms of the equations of motion. The most
common type of potential function used in molecular
dynamics studies is the “molecular mechanics” type.
Such a function expresses the potential energy as a
sum of terms deriving from the mechanics of simpler
systems, such as springs. There are bonded terms con-
tributed by the bonds and angles of the covalent struc-
ture, and nonbonded terms modelling pairwise inter-
actions between atoms not directly bonded. For ex-
ample, a typical term for a bond length or angle is
a Hooke’s law spring term, which is a reasonable ap-
proximation to bond fluctuations at normal biological
temperatures. The energy contribution of changes in
dihedral angles can be modelled as a periodic function.
The nonbonded terms are especially important in pro-
tein folding studies because of the high packing density
of proteins.

The number of the bonded terms in the energy func-
tion is linear in the number of atoms. There are, how-
ever, a quadratic number of nonbonded pairwise inter-
actions between atoms. For reasons of efficiency it is
necessary to avoid computing terms for all of these.
Since at large distances the nonbonded contributions
to total energy asymptotically approach zero, it is cus-
tomary to truncate beyond a certain distance. (Tasaki,
McDonald, & Brady 1993) discusses ways to do this
truncation gracefully, as well as the tradeoff between
the cutoff distance and the accuracy of the simulation.
Most MD systems maintain for each atom a list of the
atoms considered close enough to contribute a non-
bonded term; this list may or may not get updated
periodically, depending on the time scale of the simu-
lation. The naive way to do the update is to reconsider
all possible pairs of atoms, which takes time quadratic
in the number of atoms. Yet under a certain reasonable
“space-filling” assumption about the atoms, the num-
ber of immediate neighbors within any fixed radius of
an atom is constant (with respect to the total num-
ber of atoms). Because of this, a data structure from
computational geometry called the “fat” space parti-
tion (Overmars 1992) could potentially be employed to
reduce the update time to linear.

Given a potential function describing the energy of a
system as a function of its state parameters, dynamics
sirnulations proceed in three steps, each of which is
applied to each rigid body in the system at every time
step:

1. compute the net force and moment acting on the
body;

2. compute the linear and angular acceleration of the
body due to these forces; and

3. compute the new position of the body for the next
time step.

When a potential function is used, the force acting on
a point is computed as the negative gradient of the po-
tential energy with respect to the coordinates of that
point. The second step above is an application of New-
ton’s and Euler’s equations of motion, and the third
involves applying a numerical integration technique.

Under the molecular mechanics potential function
model, representing a molecule by its atomic coordi-
nates is a natural choice. It makes evaluating the po-
tential function at any given conformation very simple.
Also, because this form is explicitly differentiable, the
force computation is straightforward. This choice of
parametrization is not without problems, however. An
interesting point about molecular dynamics is that the
highest frequency motions are the small bond length
and angle oscillations. This means that the very fac-
tor which most limits the size of the time step which
can be taken (and hence the total simulation time pos-
sible) is also the factor which contributes the least to
the dynamic behavior which is generally of interest.
This effect can be reduced by imposing constraints
on the distances and applying an iterative constraint-
satisfaction procedure after each time step (this is the
essence of the SHAKE algorithm described in (Ryck-
aert, Ciccotti, & Berendsen 1977)); however, the com-
putational problems of this approach make it imprac-
tical for large molecules.

A promising alternative approach is that of (Jain,
Vaidehi, & Rodriguez 1993), which parametrizes the
molecule with generalized internal variables (e.g. dihe-
dral angles), thus allowing bond lengths and angles to
be constrained directly. The algorithm works not only
for chain molecules, but for more general tree-topology
molecules as well. They derive a system of equations
of motion for the molecule using a Newton-Euler ap-
proach, and give an algorithm for its solution which
runs in time linear in the number of degrees of free-
dom. This algorithm is based on a body of previous
work by the same authors on the dynamics of robotic
systems; see e.g. (Rodriguez, Jain, & Kreutz-Delgado
1992).

Conclusions

In this paper, we have discussed similarities between
various problems in molecular biology and robotics. In
two of these areas, namely geometric matching and dy-
namics simulation, interdisciplinary research efforts are
already yielding promising results for structural biol-
ogy (Norel et al. 1994), (Jain, Vaidehi, & Rodriguez
1993). We have also discussed the highly analogous sit-
uation between the problems of molecular ring closure



and the inverse kinematics of serial manipulators. The
methods developed for the latter problem (Manocha
& Canny 1992) may well find useful application to the
former. Other analogies are not hard to envision; for
example, the “distance geometry” problem (Crippen &
Havel 1988), which arises in the context of interpreting
NMR data, bears a certain resemblance to the forward
kinematics problem for parallel manipulators such as
the Stewart platform (Murray, Li, & Sastry 1994). It
is unclear whether such analogies will ultimately prove
to be useful; but if nothing else, looking at one of these
problems in one field from the perspective of the other
should help to suggest new avenues of research to ex-
plore.
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