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Abstract. This article defines input perturbations so that an algorithm designed under certain restrictions
on the input can execute on arbitrary instances. A syntactic definition of perturbations is proposed and certain
properties specified under which an algorithm executed on perturbed input produces an output from which the
exact answer can be recovered. A general framework is adopted for linear perturbations, which are efficient from
the point of view of worst-case asymptotic complexity. The deterministic scheme of Emiris and Canny [1] was the
first efficient scheme and is extended, in a consistent manner, to cover a wide class of geometric algorithms. We
introduce a variant scheme, applicable to a restricted class of algorithms, which is almost optimal in terms of the
algebraic as well as the bit complexity. Neither scheme requires any symbolic computation and both are simple to

use as illustrated by our implementation of a Convex Hull algorithm in arbitrary dimension; empirical results are
reported.
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1 Introduction

Algorithms in computational geometry typically make certain assumptions about the input. The treat-
ment of cases violating these assumptions is tedious and intricate, thus seldom included in the theoretical
discussion, yet it remains a nontrivial matter for implementors. For instance, in constructing convex hulls
in d dimensions, certain algorithms suppose that no d+ 1 points lie on the same hyperplane. A sweep-line
algorithm in the plane may even require that no two points are covertical. This article describes a general
approach to eliminate the need of explicitly dealing with some of these special cases.

The first contribution of this article is a formalization of perturbations based on their syntactic
definition as curves rooted at input instances. A limiting process is employed to define perturbations,
thus conforming to the intuitive notion of infinitesimal change. We also discuss how to recover the answer
to the original problem from the output on perturbed input, either directly or after some case-specific
postprocessing. Lastly, some general techniques for designing and evaluating efficient perturbations for a
wide class of geometric primitives are suggested.

The main drawback of previous approaches [2, 3] is that they increase the worst-case asymptotic
complexity by an exponential factor in the space dimension, which makes them unattractive for algorithms
in general dimension. The deterministic perturbation of Emiris and Canny [1] was the first efficient
scheme in the sense that the algebraic complexity overhead is at most logarithmic in the dimension.
The second contribution of this article is the design and application of specific efficient schemes to a
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family of primitives. We extend the previous scheme so that it applies to four basic primitives, most
notably InSphere, and propose a new variant for Orientation, Transversality and Ordering that reduces
the bit-complexity overhead also to a logarithmic factor in the dimension. In addition to their efficiency,
our schemes require no symbolic computation. For rational inputs, almost all arithmetic can be carried
out over a finite field and all intermediate quantities computed grow in a quasi-linear fashion with the
dimension.

Furthermore, these schemes are simple to implement; to illustrate this claim, our third contribution
is an implementation of the Beneath-Beyond algorithm [4] that uses the second scheme to construct
the facet structure of convex hulls in arbitrary dimension and to compute their volume. The issue of
postprocessing is closely examined in this context and experimental results are reported. Convex hull
computation in general dimension is a fundamental geometric problem with a wide variety of applications,
such as visibility and illumination in modeling and graphics [5, 6], collision detection in robotics and
animation [7], material identification in geology [8], molecular docking in drug fabrication [9] as well as
in solving systems of nonlinear equations, particularly in modeling, robotics and vision (10, 11].

This article is organized as follows. The next section defines the computational model, the problem
at hand, the notion of perturbations and how they are implemented and examines some positive and
negative consequences of applying them. Section 3 is a comparative study of previous work on handling
degeneracies. Linear perturbations are discussed in Section 4 where sufficient conditions for establish-
ing the validity of particular schemes are explored. Section 5 discusses general methods for evaluating
primitives on perturbed input as well as more efficient techniques for specific classes of primitives. The
two perturbation schemes of interest are shown to be valid with respect to four important primitives
in Section 6, where the complexity claims are demonstrated. Section 7 presents our implementation of

the Beneath-Beyond algorithm. The conclusion summarizes the main results and suggests some open
questions.

2 Definitions

2.1 Computational model

Our model is the real Random Access Machine (RAM) of [12]. The input is organized as a set of n
vectors in R?, where n > d > 0 and the i-th vector is z; = (2i1,...,¢iq) for 1 <i<n,1<j<d The
four basic operations {+,—, X, /} are assumed to be exact between real numbers, where the operands
are constants, input quantities or have been computed previously. Branching occurs at tests against zero
of an input or computed quantity and is three-way, depending on the sign of the tested value. The set
of arithmetic operations computing a branch expression together with the corresponding test is referred
to as a primitive. A typical primitive, called Ordering, is the comparison of coordinates with branch
polynomial f = z;; — 2; for 1 <4 # k < n. Another is the Orientation primitive; for the planar Convex
Hull problem the branch polynomial is the determinant of
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where z;,,z;,,z;, are distinct input points; this test decides on which side of the line (z;,,z;,) point z;,
lies. More primitives, including InSphere, are discussed below. The real RAM produces a unique output
for any given input instance. We refer to a program, which is a sequence of instructions that implements
a specific algorithm, and to an ezecution path in the program or algorithm, which is the sequence of
instructions executed on a particular input instance.

We make use of two complexity measures. Under the algebraic model the total cost of a program
equals the number of instructions in the longest execution path. More realistically, we must keep track



of the operands’ bit size: Under the bit model only the input, output and branching instructions are
assigned unit cost. For integers of size O(b), addition and subtraction, multiplication and division and,
lastly, the Greatest Common Divisor (GCD) operation require respectively O(b), O(blogbloglog b) and
O(blog? bloglog b) bit operations [13]. We shall use M (b) = O(blog?bloglogb) as an upper bound on the
bit complexity of any arithmetic or GCD operation between any two rational numbers with numerator
and denominator of size O(b). Then the total bit complexity of a real RAM program equals the sum of
the costs of every instruction on an execution path, maximized over all paths.

2.2 Perturbations

Geometric problems are defined in terms of maps associating any given input instance to a unique output
instance,.

Definition 1 A problem mapping is a mapping Il : X — Y between topological spaces. The input space
X = R™ has the standard euclidean topology. The output space Y is, generally, the product D X R

of a finite space D with the discrete topology and the direct union R of real spaces with the euclidean
topology.

A running example will be the Convex Hull Volume (CHV) problem, which maps point sets to the real
number expressing the volume of their convex hull. The output space is R with the euclidean topology
and the mapping is continuous.

Computational geometry is concerned with the effective computation of problem mappings. Often,
however, the implementation of algorithms is impeded by certain conditions imposed by the algorithm
designer on the input. Typically, “special” cases such as those where the mapping is discontinuous are
assumed not to occur. To illustrate, consider the planar Convex Hull Face-Structure (CHF) problem
where, given a point-set, the sequence of hull edges must be constructed. The output topology is the
direct union of real euclidean topologies, each corresponding to a distinct combinatorial structure of
the polygon. A variety of algorithms, including Beneath-Beyond, assume that three points are never
collinear. This configuration represents a discontinuity in this map because it is arbitrarily close to
two input instances which give rise to outputs in disjoint components and, hence, at infinite distance.
Perturbations supply a mechanism to allow programs to run and produce meaningful output even if they
cannot handle these special configurations.

Definition 2 For any input z € X, a perturbed instance of z is a curve z() rooted at z, i.e. the image of
a continuous function z() : R>o — X such that z(0) = z. A perturbation scheme Q defines a perturbed
instance for every element of X.

For the sake of simplicity, we do not explicitly show the dependence of z() on the choice of Q. The
intuitive notion of perturbations as very small changes to the input is formalized in

Definition 3 Given a problem mapping Il : X — Y and a perturbation scheme @, the perturbed problem
mapping 11 is a mapping from X to Y such that

T(z) = lim T(s(e)),
e—0t
assuming that every such limit exists.

Again, Ln explicit indication of the dependence of the derived mapping on the perturbation scheme is
foregone. ‘

The goal is that the new problem mapping be defined and continuous on a proper superset of the
original domain, thus incorporating some or all of the special instances. We also hope that implementing



an algorithm for II will be easier than explicitly handling all special cases for which some given algorithm
for 11 is undefined. In short, we shall solve II instead of II and then argue that the output of II can
yield enough information to recover the output of II at the same input. The latter constitutes the
postprocessing phase, which is in general nontrivial. However, there is a restricted yet important case in
which postprocessing is superfluous:

Proposition 4 For any perturbation scheme, if mapping II is continuous at 2 € X then II(z) = II(z).

This is the case with CHV, discussed in detail in Section 7. Things are less favorable for the pla-
nar CHF problem: Given a point set containing subsets of more than two collinear points on the hull
boundary, the output polygon on perturbed input will contain edges split into more than one segments.
Postprocessing then has to merge these segments by eliminating points in the interior of polygon edges.
This process is analyzed for the general CHF problem in Section 7. Postprocessing for the problem of
polytope intersection is examined in [14].

2.3 Computing with Perturbations

Given a program & that implements II, the question is how to obtain another real RAM program @
that implements II. First, all arithmetic operations in ® are transformed in order to handle perturbation
curves. Memory locations in @ hold univariate functions in € and a postprocessing stage eliminates €
from the output. Lastly, every branching operation of ® is transformed to a branching operation that
tests the limit of the sign of some e-function, namely

lm, sign ((¢))

if f is the respective function tested by ®; sign() is a piecewise constant function with values in {—,0, +}.
Problematic instances always include those where II is discontinuous. In addition to these, a program
may be undefined on other instances, for example two covertical points in the case of a planar CHF solved
by a sweep-line algorithm. All inputs not dealt with by a program can be modeled by the vanishing of
some polynomial in the input. Conforming to the standard viewpoint in the literature {2, 3, 1] we have

Definition 5 An input instance is degenerate with respect to some program, if and only if it causes some
numerator or denominator polynomial f at a branch to vanish, where f is not identically zero. Alterna-
tively, an input instance is generic with respect to this program if there is no such branch polynomial.

Some authors distinguish between problem-dependent degeneracies i.e. those where II is discontinuous,
and algorithm-induced degeneracies, such as the covertical points for the sweep-line algorithm.

Definition 6 A perturbation scheme @ is valid with respect to a function f if and only if, for every
input & € X, the limit

lim, signf(2(¢))

exists and is nonzero. Perturbation @ is valid with respect to a set of functions if and only if it is valid
with respect to every function in this set. @ is valid with respect to a given real RAM program if and
only if it is valid with respect to the set of all branch polynomials in the program.

Clearly, under a valid perturbation no degenerate inputs arise, which implies that the zero branches in a
program can be ignored:

Theorem 7 Assume that @ is a valid perturbation scheme for a real RAM program ® computing
mapping I and that ® is obtained by the transformation at the beginning of this section. Then [)
computes the perturbed mapping II and, for ¢ € X such that II is continuous, ® yields II(z). The
statement holds if some, or all, of the zero branches of ® are removed.



Proof By validity all limits exist, hence the map II is well-defined and computed by ®. Proposition 4

establishes the second assertion. Since, by validity, no zero branches are taken in &, these branches might
as well be pruned away. O

From this theorem, it is clear that the action of perturbations can be thought of as concentrated at
the branches. The main advantage of the perturbation method is that some or all of the zero branches do
not need to be implemented. This brings us to the original problem stated at the beginning of Section 2.2.
We now see how algorithms designed under the hypothesis of non-degeneracy can be used for solving the
perturbed problem mapping, from which postprocessing can produce the output of II.

It must be underlined that whenever a given program ® is transformed to ® to reflect the application
of some perturbation, all instructions should be changed according to the chosen scheme. It leads to severe
Inconsistencies to allow some instructions to be executed as if the perturbation were not implemented
and, similarly, it is a grave error to try to use more than one scheme at a time. Imagine, for example,
that in the planar CHF problem coordinate comparisons are not transformed under the perturbation,
but the Orientation primitive is transformed. Then three covertical points may be detected to be so by
coordinate comparisons, though for the Orientation test they are not even collinear.

So far we have formalized the notion of valid perturbations as a tool for coping with degenerate inputs
but no concrete guidelines have been presented for their implementation. In later sections we examine
practical ways for establishing validity, propose valid schemes covering some common geometric primitives
and study the issue of efficiently executing a transformed program.

3 Previous work

The simplest approach in coping with degeneracies is to handle each special case separately, which is
tedious for implementors and unattractive for theoreticians, though some recent work re-examines this
common belief [14, 15].

Dantzig’s [16] symmetry breaking rules in Linear Programming are regarded as the precursor of
current systematic perturbations. The principal idea is to perturb the right-hand side of every constraint
equation by an infinitesimal quantity that depends on the index of this equation. The i-th constraint
then becomes N

Z Q%5 + Tpys = b,‘(e) =b; + €,

7=1
where z,...,2, are the original variables, each z; for ¢ > n is a slack variable and the a;; and b; are
constants.

Edelsbrunner and Miicke generalize in [2] a technique called Simulation of Simplicity (So$ for short),
already presented in [17], which refines the above method. Every input coordinate z; ; is perturbed into

zij(e) = zij+ 7,

where 6 > d and d is the dimension. The perturbation is infinitesimal due to symbolic variable €; it is also
conceptual in the sense that the computation remains numeric. Raising € to such a high power intuitively
distinguishes between any two coordinates which allows SoS to be applied to a wide range of geometric
primitives, including the determinantal ones examined in this paper. One exception is an inconsistency
in the case of the InSphere primitive discussed in Section 6.3. Its main drawback is that it incurs an
overhead to the algebraic complexity of the algorithm which is exponential in d in the worst case: deciding
the sign of a d x d perturbed determinant, although rather fast on the average, requires the calculation
of £2(2%) minors in the worst case. To prove the latter bound for the case of the Orientation primitive
it suffices to count all vectors (vy,...,v4-2) such that d is the order of the matrix, v; € {1,...,d} and
i < j = v; < v;. In [2] every such vector is associated with a minor that may have to be evaluated.



Yap in [3] deals with the more general setting in which branching occurs at arbitrary rational ex-
pressions and proposes a method which is equivalent to an infinitesimal perturbation, as proven in [18].
Recently, it has been extended to analytic test functions [19]. For input variables x = (zy,...,2x), the
scheme considers a total ordering on all power products of the form

N
w = Ha:f‘, e; > 0.

=1

This ordering, denoted by <4, is admissible if, for all power products w, w’, w”,
1<4w and w <4 v = ww”’ <4 w'w".

If wy,wq,... is an admissible ordering of power products larger than one, then each polynomial f(x) at
the numerator or denominator of a branch expression is associated with the infinite list

S(f) = (fvfwlafun"")

where f,, is the partial derivative of f with respect to wg. The sign of f is taken to be the sign of
the first polynomial in S(f) with a non-zero value, which can always be found after a finite number
of evaluations. The worst-case complexity to evaluate this new test is exponential in N, although the
average-case complexity is significantly lower. Consider sparse N-variate polynomials with degree in each
variable bounded by m. If all variables are of the same maximum degree then f has at least m" partial
derivatives, and if all of them must be evaluated then the algebraic complexity is £2(m!).

Dobrindt, Mehlhorn and Yvinec proposed an efficient scheme specifically for coping with degenerate
intersections between a convex and a general polyhedron in three dimensions [14]. It is noteworthy that
the vertices of the convex polyhedron are guaranteed to be perturbed in a specific direction with respect
to the given facets. Another merit of this work is that it discusses postprocessing in detail in order to
recover the exact solution.

A structural perturbation for a motion-planning algorithm, in which the input objects are the semi-
algebraic sets describing the obstacles, is given by Canny in [20]. He uses towers of infinitesimals to
eliminate degeneracies while preserving essential properties of the sets, namely emptiness and number of
connected components.

Emiris and Canny presented in [1] an infinitesimal perturbation that constitutes the first efficient
scheme, inspired by the SoS method. For geometric algorithms, every coordinate x; ; is deterministically
perturbed into ‘

x;j(€) =z + €7, (1)
where ¢ is a symbolic infinitesimal. The perturbation applies to the Orientation and Transversality
primitives with worst-case complexity overheads O(logd) and O(d'**) under the algebraic and bit models
respectively and requires no symbolic computation; « is an arbitrarily small positive constant. Notice
that all perturbations relevant to geometric algorithms satisfy the validity conditions set in Definition 6.

For a wider class of algorithms with branching at arbitrary rational expressions randomization is
traded for efficiency and the i-th perturbed point is

zi(€) = z; + ery, 1<:<N,

where r; is a random integer uniformly chosen from a sufficiently large interval R C Z. Let D denote
the maximum degree in the input variables of any polynomial in the program, ¢(n,s) the program’s bit
complexity and s an upper bound on the size of the input coordinates. Then the probability that the
scheme fails to eliminate some degeneracy is bounded by D7 /r, where r is the length of R and 7 < ¢(n, s)
is the number of branch polynomials. The approach here is of the Last Vegas variety because the fact
that some degeneracy is not removed can be detected deterministically in which case the program is
restarted. The algebraic complexity overhead is O(D*%) and the worst-case bit complexity overhead is

O(¢**(n, 5)).



4 Linear Perturbations

The efficiency of scheme (1) is essentially due to the linearity of the e-factor. This section weakens the

requirements on validity for linear perturbations and provides a powerful validity criterion for a specific
class of linear schemes.

Linear perturbations are of the following type:

zi(e) = z; + €b;, 1<i<n, (2)
where z; = (2;1,....%iq) and b; = (bi1,...,b:4) € R? are the 4-th input and perturbation vectors
respectively and multiplication is scalar. Let f(z1,...,z,) be any polynomial in n vector variables; its

initial form is a homogeneous polynomial Z( f) in the same variables, equal to the sum of all terms in f of
maximum total degree. For homogeneous polynomials, as is typically the case in geometric algorithms,

f=I(f).

Theorem 8 Let g(z1,...,2,) = Z(f) be the initial form of f. For a linear perturbation (2) to be valid
with respect to polynomial f, it suffices that g(by,...,b,) # 0.

Proof Consider f(z(¢)) as a univariate polynomial in €. From Definition 6, it is required that f(¢) never
vanishes on perturbed input. If at least one coefficient is never zero, the polynomial is not identically zero
and its zero set does not include all real numbers. The highest-order coefficient in f(e) is g(by,...,b,) # 0,
therefore the zero set of f(¢) is not fully dimensional which implies that f(€) has a finite number of roots.
It suffices now to assume that € takes real values smaller than the minimum positive root of f(e). O

The significance of this theorem is twofold. First, the validity requirement has to be tested only against
the initial form of the branch polynomial. More importantly, the problem of designing an efficient
perturbation scheme is reduced to finding a single set of input vectors by,...,b, on which the branch
polynomials do not vanish. In practice, one may use known point sets such as points on the moment
curve, employed by scheme (1), or those defined by the rows of a Cauchy matrix, which would provide an
alternative to scheme (1). In general, though, defining perturbation vectors by,...,b, is a hard problem,

a stronger version, in fact, of the zero avoidance problem [21]. This theorem can be readily generalized
to nonlinear perturbations.

4.1 A Validity Criterion

This criterion was motivated by the application of scheme (1) to the InSphere primitive which decides,
given points ;,,...,Ti,,, € R¢, whether Zi,,, lies in the interior of the hypersphere defined by the first
d + 1 points. This primitive is shown in Section 6.3 to reduce to testing the sign of a (d + 2) x (d + 2)
determinant which implies that validity rests, by Theorem 8, upon the nonsingularity of matrix
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The proof requires Descartes’ rule of sign which we state here for completeness. Given a univariate
polynomial in canonical form, the number of sign variations of its nonzero coefficients u4,...,un is the
number of consecutive pairs (ug, ug+1), 1 < k < N, such that the product uxur4; is negative.

Proposition 9 (Descartes’ Rule of Sign) [22] The number of sign variations of a polynomial’s
nonzero coefficients exceeds the number of positive zeros, multiplicities counted, by an even non-negative
integer.



Proposition 10 Matrix Wy, is non-singular for distinct positive ¢;, 1 < j < d + 2.

Proof If Wy, is singular there is a nonzero vector (g1,...,¢q44+2) in the kernel of the matrix, therefore
the y-polynomial Z?:o G+1Y° + qd+2 Z?:l y% has at least d+2 distinct positive zeros, namely iy,. .., i44s.
The polynomial has also at most d + 1 sign variations, which contradicts Descartes’ rule. O

Here we generalize the discussion to include potentially more primitives in addition to InSphere. The
perturbation is restricted to the form:

zijle)=mij+ef, 1<i<n1<j<d, (3)

with v = (71,...,74) € Z¢ fixed and b; = (87*,...,7) as the i-th perturbation vector, where §; € R
for 1 <7 < n. For a general polynomial f(wy,...,w;), the support of f, denoted supp(f), is the set of
integer exponent vectors that correspond to nonzero coefficients:

A= supp(f)CZ' < f= Ecaw“,
a€A

where, for exponent vector a = (ay,...,a;) € Z*, we write w® = |§ wg*. Consider ¢ polynomials
fi(z:) = fi(zig,...,2i4), where t < n, 1 <i,j <t. Let A; = supp(f;) C Z%, let the union of all singleton
supports be U = [y Aj=1 A;, where # denotes cardinality, and define

B; =A;\U c4; 1<j<t
Let the set of inner products of exponent vectors for each B; with a fixed vector y = (y1,...,74) € Z% be
Ci={(y,a)€Z|la€ B;}, 1<j<t

Each C; has a minimum and maximum element denoted minC; and maxC; respectively. We restrict
attention to primitives expressed as determinants of order ¢, with (k, j)-th entry equal to f;(bg).

Theorem 11 Suppose that §; is positive and distinct for every 1 < 7 < n in the perturbation scheme (3).
Moreover each polynomial f; has coefficients of the same sign and, possibly after re-indexing, the non-
empty sets C; are ordered so that, for every j > 1, maxCj_y < min C; < maxC; < min Cj;;. Then the
t x t matrix with (¢, j)-th entry f;(b;) is non-singular.

Technical Lemma 12 If ¢y, ..., ¢ are any real values, y is a real variable, v € Z¢ is fixed and polyno-
mials f; satisfy the hypothesis of Theorem 11, then polynomial F(y) = Z;‘=1 g; f;(y™,...,y"¢) has fewer
than ¢ positive real roots.

Proof By expanding f;(y™,...,y") = Paca, Cj,ay(‘y'“), the univariate polynomial F(y) can be written

t i
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The expression relies on the fact that the supports A; are non-empty and are partitioned between non-
singletons in the first summand and singletons in the second.

Now partition the first summand into sums of monomials whose exponents belong in a certain Cj.
Since all B; are distinct and by hypothesis the C; are ordered, the coefficient of y<’Y'“> is a single product



4j¢jq- Furthermore, there is no sign variation among the coefficients of each sum because all c;, for a
fixed j have the same sign. Hence, in the first summand the number of distinct coefficients is at most the
number of nonempty B;. In the second summand, the total number of coefficients is at most equal to the
number of singleton supports. Therefore, there exist at most ¢ distinct coefficient signs in F(y), hence
the number of sign variations is at most ¢ — 1. An application of Descartes’ rule completes the proof. O

Proof of Theorem 11 If the matrix is singular, then there must exist a nonzero real vector (g1,---,4qt)
in the kernel of the linear transformation of the matrix, therefore the univariate polynomial F(y) from

Lemma 12 has a distinct positive root §; for all 1 < ¢ < ¢. The existence of # distinct positive roots
contradicts Lemma 12. O

For the InSphere primitive and matrix Wyyq, t = d+ 2, f; = 1, fi(bg) = zfc for2<j<d+1and
fara(bp) =4, i2! where 1 < k < d + 2. Then Proposition 10 follows as a corollary.

5 Evaluation of Branch Expressions

Some algebraic techniques are presented for the efficient evaluation of primitives in perturbed programs.
An important consequence of these techniques is that no computation in the derived program need involve
the infinitesimal variable. Thus, although the perturbation is symbolic, all arithmetic is numeric.

We first discuss interpolation as a general method for computing univariate polynomials in ¢ from
their values. The only assumption here is that the total degree of each polynomial is known, call it §. The
first step is to obtain a sequence of interpolation pairs, in other words pairs of € specializations, usually
at distinct primes, and the respective values of the polynomial. If § + 1 interpolation pairs are available,
dense interpolation can be used to compute the coefficients in O(6log? §) arithmetic operations [13].

If, furthermore, there is an a priori bound T on the number of non-zero terms that is significantly
lower than the maximum number 6+ 1, then sparse interpolation is preferable. There exists a probabilistic
algorithm with algebraic complexity O(67**) that requires O(67) interpolation pairs, where 7 < T is
the actual number of non-zero terms in the polynomial and « is any positive constant. A deterministic
algorithm has complexity O(7?**logé) and requires 2T interpolation pairs, where o again accounts for
the polylogarithmic factor. Both algorithms are surveyed in [21].

Traditionally, the cost of evaluating the unknown polynomial is of minor concern in the context of the
interpolation problem, yet here this cost must be assessed. In general, computing the interpolation pairs
takes time proportional to the number of pairs times the complexity of evaluating the polynomial. For the
important case of determinantal tests discussed in this article, i.e. tests expressed as determinants, the
complexity of the evaluation phase dominates the overall complexity. The rest of this section concentrates
on determinantal tests of order ¢ and develops more efficient ways for the combined problem of evaluation
and sign determination.

Let MM(t) = O(t*37) [23] be the algebraic complexity of multiplying two ¢ x ¢ matrices and I
(/:) the identity matrix (of order t). Dense interpolation costs O(6 MM(t)), where § > t. An improved
technique for interpolating determinants whose entries are higher-degree polynomials in several variables
appears in [24]. Here, following 1], we generalize a near-optimal technique for the case when the entries
are univariate polynomials.

Given t x t matrix A(e) with polynomial entries in €, we can express it as a matrix polynomial

Ale) = A€ + Ar1€ ™ 4o 4 Are+ Ag
where 7 is the maximum degree in ¢ of any matrix entry. If A, is non-singular, we have

ATYA() = € + AT A7V AT A + AT A



and the determinant of the right-hand side equals [25] the characteristic polynomial of

0 I, 0 .- 0
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If A, is singular there exist rt X rt matrices P and @ such that det(A(¢)) = det(Pe + Q). Moreover, [24]
demonstrates a series of transformations that produces matrices P’ and Q' of smaller order, such that
the original problem is reduced to computing det(P’e + Q'); the worst-case complexity of this method is
O(rtMM (rt)log(rt)). The primitives of this article always fall within the first case. Furthermore, r is
typically a small constant, therefore this approach is almost optimal in the sense that it incurs only a
polylogarithmic overhead on the asymptotic complexity.

Theorem 13 Let A(¢€) be a matrix of order ¢, whose entries are linear univariate polynomials in €; then
A(e) = Aje + Ag, where Ag and A; are numeric matrices. If A; is non-singular, determining the sign of

det(A(e)) can be reduced to computing determinant det A; and the characteristic polynomial of matrix
— A7 A,.

A discussion of modular arithmetic is in order here because, in addition to being a common method
for conducting arithmetic on computers, it is also the fastest with respect to bit complexity for evaluating
the perturbed tests. Besides the classical application to integer arithmetic [13], modular methods and the
Chinese Remainder Theorem can be used with rational data with the same asymptotic complexity [26].

The basic approach is as follows. First the given quantities are mapped to their residues modulo a
set of primes, then the required computation is performed within each finite field defined by every one
of these primes and, lastly, the true answer is computed by the results in each finite field. This last step
relies on the Chinese Remainder Theorem. In order for the entire process to be deterministic, a bound
on the value of the final answer must be known, which is used to calculate the number of different finite
fields used.

Let k& denote the number of finite fields Z,, for distinct primes p, necessary to carry out a particular
computation, where k depends on the bit size of the final answer. The first stage of mapping each given
quantity to its respective k residues, as well as the third stage of calculating the answer from its k residues,
have each bit complexity O(M (k)logk). The middle stage is the actual computation within each Z, and
its bit complexity is k times the algebraic complexity of this computation. We have made the implicit
assumption that each prime p has constant bit size and that choosing such a prime, from an existing and
sufficiently long list, is a constant-time operation.

Corollary 14 The algebraic complexity of computing det(Aje + Ag) is O(MM(t)logt), where ¢ is the
order of matrices Ap and A;. Let s be the maximum bit size of any entry in A; and Ag. Then the bit
complexity of computing the above determinant is O((¢ts)!** +tsMM (t) logt), for some arbitrarily small
positive constant a.

Proof The operations required are a matrix inversion, a matrix multiplication, calculation of a deter-
minant and computation of the coefficients of a characteristic polynomial. Each takes O(MM(t)) time,
except from the last step which takes O(MM (t)logt) time, for arbitrary matrices, due to an algorithm
by Keller-Gehrig [27]. To establish the bit complexity bound, the transformation of Theorem 13 is used.
The bit size of the coefficients of the e-polynomial representing the determinant is O(ts) since the original

matrix entries have size s and its order is . Hence modular arithmetic may be used over k = O(ts) fields.
O
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6 Some Common Primitives

This section deals with specific perturbation schemes for certain common determinantal primitives,
namely with extending the application of

:I),',j(c) =x; + Gij, (1)

to Ordering and InSphere and with a more efficient variant that optimizes the bit size of the perturbation
quantities:

zij(6) =zi; +€(# modq), 1<i<n,1<j<d, (4)

where € denotes the symbolic infinitesimal and ¢ is the smallest prime that exceeds n. The bit size of
the perturbation quantities is bounded by logn, which is optimal, since there must be at least n distinct
such quantities. It is reasonable to suppose that at least a constant fraction of the n input vectors are
distinct. Hence, if s denotes an upper bound on the bit size of the input data, s > log n.

In practice, the emphasis is on designing efficient valid perturbations from a computational complexity
point of view. The comparison is carried out between worst-case complexities of programs and their
perturbed counterparts; this encourages the design of schemes efficient for the almost-generic cases, as
opposed to very special cases. The reason is that the overhead incurred by perturbing is not output-
sensitive. For instance, given n coincident points as input to an algorithm solving the CHF problem, the
exact output is a single point whereas the perturbed output is a polytope with nl%/2l facets. See [15] for
a discussion of limitations of this approach.

For avoiding very degenerate cases like this and for ensuring the lower bound on s a preprocessing

phase can be used to detect and eliminate duplicates without affecting the asymptotic complexity of most
algorithms.

6.1 Ordering

This primitive decides the order of two quantities expressing the k-th coordinate of the 7;-th and i,-th
input points. On input perturbed with (1) the primitive decides the sign of

wil,k(G) — :I)iQ,k(G) =Tkt Eillc — Tipk — Gig.
For degenerate inputs the factors of the infinitesimal must be compared, which comes down to comparing
i1 against 7. Notice that this is the lexicographic ordering. Since all indices are distinct, the perturbation
is valid by Theorem 8. Perturbation (4), for k = 1, is valid too.
The evaluation requires in the worst case, an extra constant-time check. Under the bit model, the
extra comparison adds a O(logn) factor, which is upper bounded by the original bit complexity because
each z; ; is £2(logn) bits long.

Theorem 15 Perturbation (1) is valid with respect to the Ordering primitive and does not change the
asymptotic running-time complexity of this primitive in the algebraic as well as the bit model. The same
holds for perturbation (4) for comparisons along the first coordinate.

Unfortunately, if we compare along some general k-th coordinate, validity may not hold for the second
scheme.

6.2 Orientation and Transversality

Given a query point z,, +: and a hyperplane in R? spanned by points Tiy, ... Ti,, Orientation decides in
which one of the two halfspaces defined by this hyperplane the query point lies. A degeneracy occurs
exactly when z;, , lies on the hyperplane. The primitive is formulated as a test of a determinant sign;
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the relevant matrix is A441 below. Transversality determines the orientation of d points in R%~! given by
their homogeneous coordinates and is expressed as the sign of det(Ag):

L oz Tio e Tid ZTip1l T2 e Tigd

L x4y Tipz e Tigd Tizl Tiy2 - Tipd
Ad-l-l = . . . . 3 Ad = .

L Tigpad Tigyr2 - Tigd Tigdl Tig2 - Tigd

Matrix Ay also comes up in a dual context, when the input objects are hyperplanes in (d —1)-dimensional
space and Transversality decides on which side of the first hyperplane lies the intersection of the other
d — 1 hyperplanes as in [28], for example, where d = 3.

For completeness we state the following proposition which relies on Theorem 8, the properties of
Vandermonde matrices and Corollary 14.

Proposition 16 [1] Perturbation (1) is valid with respect to algorithms that branch on determinants
of Asy1 and Ag, for 6 < d, where d is the space dimension. The perturbation increases the asymptotic
running-time complexity of evaluating the primitive, under the algebraic model, by O(log d). Under the
bit model, the worst-case complexity is increased by a factor of O(d'*®), where « is an arbitrarily small
positive constant.

Now consider scheme (4). By Theorem 8 the non-singularity of Ag41(€) is obtained by using the closed
form expression of a Vandermonde determinant.

1 4 modgq ... i¢modg
1 4d,modg ... ¢modg d
det Vg4 = det | . 2 = H (fk—u)#0 (mod q).
: : : k>1>1
1 igy1modg ... ij_H mod ¢

Validity in the case of Transversality follows similarly. The crucial property for both schemes is that
they define n vectors, every d of which are linearly independent.

The sign of detAji1(€) and detAgyq(e€) is the sign of the least significant term in the respective
polynomial. One way to compute it, adopted by SoS, is to calculate directly all terms, starting with the
one of least degree, until finding one that does not vanish. Fortunately, our scheme lends itself to the
more efficient technique of Theorem 13. Both perturbed matrices satisfy the theorem’s hypothesis; for
Agi1(€) to do so, the first column is multiplied by ¢, which does not affect the determinant sign.

Theorem 17 Perturbation (4) is valid with respect to Orientation and Transversality. It increases the
worst-case algebraic and bit complexities of the Orientation and Transversality primitives by a O(log d)
factor.

Proof Validity follows from Theorem 8. The original algebraic complexity is ©(MM(d)) [29]. From
Corollary 14, the complexity on perturbed input is O(MM(d)logd). The original worst-case bit com-
plexity depends on the size of the answer which is @(ds). Typically modular arithmetic is used, requiring
©(ds) different finite fields, while on perturbed input the number of finite fields is O(d(s + logn)), The
assumption that s > logn finishes the proof. O

An important feature for implementors is that the growth of any computed quantity is quasi-linear

in the dimension. For instance, in a 3-dimensional problem with input quantities of absolute magnitude
less than 10°, any computed quantity fits in a computer word.
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6.3 InSphere

We apply (1) to this primitive test which decides, given d + 2 points, whether the (d 4+ 2)-nd point lies
in the interior of the higher-dimensional sphere defined by the first d + 1 points in R?. It can be reduced
to testing the sign of a determinant as follows. First, lift all points to the surface of a paraboloid in
R by adding a (d + 1)-st coordinate equal to the sum of the squares of the d coordinates defining each
point. The original space is a d-dimensional hyperplane which the paraboloid touches at the origin. Let
Tiys Tiys - - -, Tiy,, be the points defining the sphere, their lifted images define a hyperplane H in Ré+1,
The query point z;,,, lies within the sphere if and only if its lifted image lies below H, in other words to
the same side of H as the original points. A degeneracy occurs exactly when x; 442 lies on the sphere or,
equivalently, on H, which happens exactly at the singularities of

) d 9 _

Ty 1 :1:,'1’2 e :I),'l’d é'_:l zil,j
R . R 2
1 Tir1 Tip,2 s Tiyd z_j:l xi21j
Pap2 = | : : :
. . , d 2
1 m1d+1»1 $1d+172 ttt x1d+1yd z]=1 mid...l,j
1 =z x; z; E‘i z2
i td42,1 td42,2 v td42,d J=1%ig442,5

Eliminating degeneracies for the particular matrix could be achieved by the “cheap trick” of [2] which
perturbs the points on the higher-dimensional paraboloid, by perturbing the sum of squares as if it were
an additional coordinate. However, this may lead to inconsistencies in some special configurations, if the
same algorithm also uses another primitive such as Ag41. Consider, for instance, deciding the relative
position of a line and a circle which touch at two coincident points z; and z,, by using the Orientation
primitive on the line and 2, and the InSphere primitive on the circle and zs.

Validity reduces by Theorem 8 to proving the nonsingularity of the Vandermonde-resembling matrix

. .d d .27
O R £ G=11
. .d d 27
PR L DY) A
Wd+2 = . . ’
- -d d 27
1 tgye oo 2G4, G=1 g0

which follows from Proposition 10 or Theorem 11. Unfortunately, the hypothesis of the theorem is not

readily satisfied by the second perturbation (4). A similar scheme, with residues taken mod ¢, with

q= Q(nd_l), has been recently shown [30] to be valid, offering a slight improvement on complexity.
The perturbed determinant expands to the sum

1 xilyl(e) s zil,d(€) ¢ Zd=1 ifj + €(2 Zd=l Ly ,ji{ - iclH-z)
J v
detlgya(€) =1 ¢ : : : +
d .27 d X .d+2
1 wid+2y1(€) s xid-{.z,d(e) ¢ 2_7':1 ld.-71-2 + €(2 zj=l .’1:,'d+2,_7'l"71+2 - ldi2)
L ozipa(e) ... zi4(e) ?=1 xz?m' + ei‘l“'z
+ : z :
d 42
1 xid+2,1(€) v xid+2,d(€) Ej:l xz?d”,j + €'di2

Computing each of the two determinants can be reduced to a characteristic polynomial computation by
Theorem 13. For the first determinant, it suffices to move an € factor from the last to the first column,
while for the second determinant the first column must be multiplied by e.
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Theorem 18 Perturbation (1) is valid with respect to the InSphere primitive and increases its algebraic

complexity by a O(logd) factor. Under the bit model, the worst-case complexity increases by a O(d'*%)
factor, where « is any positive constant.

Proof Validity is already established, based on Theorem 11. The original algebraic complexity is
O(MM(d)) and, by Corollary 14, the new complexity is O(MM(d)logd). In the worst case, the deter-
minant has size ©(ds). With modular arithmetic the original bit complexity is then

O(d*(ds)'** + dsMM(d)),

where a denotes the smallest of several positive constants.

For the perturbed primitive modular arithmetic is used and the number of finite fields is O(ds +
d?logn) since this is the coefficient size in each of the two characteristic polynomials that must be
computed. This bound follows from the fact that each coefficient is the sum of certain minors of a matrix
of order d + 2, whose entries have bit size bounded by the maximum of s, for the input data, and dlogn
for the perturbation quantities. Hence the bit complexity of evaluating the primitive is

O(d*(ds + d*log n)!** + (ds + d?logn) MM (d)logd).

The overhead now follows from s > logn. O

6.4 Other Primitives

Our techniques directly apply to several other primitives including those presented in [2]. Primitives that
decide on the relative position of derived objects may pose a limitation to our method. Consider, for
instance, the two-dimensional ham-sandwich algorithm in [31] with lines on the plane being the input
objects and their intersection points being the derived objects. The three primitives of the algorithm are:
Deciding whether a point lies above or below a line; comparing the first coordinate of two points; and
comparing the distances of two points from a line.

Applying scheme (1) to the points removes all degeneracies but it is not clear that this does not create
some inconsistent configuration. Applied to the input lines, SoS successfully perturbs them into general

position; however, perturbation (1) fails for the second test. We considered a scheme using the first n
primes, denoted as qq,...,¢y,:

zij(€) = 2ij + e(g))- (5)
The bit complexity of the perturbation quantities is then O(dlogn). Applied to the ham-sandwich

algorithm, perturbation (5) is valid for the second but not for the third test. One should keep in mind
that consistency requires that exactly one scheme is applied to all primitives of a specific algorithm.

7 Computing Convex Hulls

This section discusses our implementation of the Beneath-Beyond algorithm [4] which solves the Convex
Hull Volume (CHV) problem for finite input sets of integral points in arbitrary dimension, and reports
on the running-time performance. The implementation produces approximate solutions to the Convex
Hull Face-Structure (CHF) problem, in a sense specified later. We examine the issue of postprocessing
that arises when we wish to recover the exact facet structure from the output.

The algorithm is designed under the assumption of non-degeneracy; perturbation (4) is applied in order
to allow arbitrary inputs, since the only two primitive tests needed are Ordering on the first coordinate
and Orientation. The exact volume of the convex hull is possible to obtain without any postprocessing
because, by Proposition 4, the problem mapping

CHV:Z%" - @
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Table 1: Performance of the Convex Hull Volume implementation.

user CPU running time

d n p ~ 1 (random) I p~.5 | p = 0 (coincident)
4 54 4s 24s
4 100 8s 40s 1lm 6s
4 200 19s | 1m 11s 2m 8s
4 500 53s 7m 39s
3 100 0Os 11s
4 100 8s 40s 1m 6s
5 100 43s | 4m 7s 5m 19s
6 100 4m 18s 45m 15s
7 100 29m 1s

is continuous everywhere. The algorithm sorts all points on their first coordinate and then proceeds
incrementally by adding each new point to the convex hull of all previous points. Due to the perturbation,
each region between the new point and the existing hull can be partitioned into d-simplices, each defined
by the new point and one of the existing facets. Then, it is straightforward to compute the exact volume
by summing all simplex volumes whose expression as an e-polynomial has a non-zero constant term. Note
that extension to rational inputs is possible without affecting the asymptotic complexity; for the case of
modular arithmetic see [26].

‘The extreme points of a given point-set are those that strictly maximize the inner product with some
d-vector, i.e. they are not expressible as a convex combination of the other points; these are exactly the
vertices of the convex hull. Perturbation (4) guarantees that the output polytope is simplicial; its vertex
set is a superset of the extreme points because it may contain some points that are not extreme but
simply eztremal, i.e. they maximize the inner product with a certain vector. Hence the output vertex set
is not always of minimum cardinality. Also, the number of facets may not be minimum because of the
extremal points reported as vertices and because all facets are triangulated.

If a specific application required that the output polytope had the minimum number of facets re-
gardless of whether they are simplices or not, then certain adjacent facets would have to be merged.
This can be accomplished by comparing the normals of every two facets adjacent to a ridge, for every
ridge. The normal of a facet can be computed in O(MM (d)) and there are d tests per facet, hence this
postprocessing does not affect the worst-case complexity of the program.

The implementation has benefited from code written by H. Rosenberger, E. Miicke and D. Manocha.
The current version is in C and free for distribution. It includes about 1000 lines for the main combi-
natorial part, 600 lines for the perturbation part and 1400 lines for the modular and big-integer exact
arithmetic package. The performance of the program on certain input instances is reported on Table 7, for
experiments on a SparcStation 10 computer with one 40 MHz processor. Each Orientation test comprises
of a heuristic calculation of det Agyq; only if this vanishes the reduction to a characteristic polynomial
is undertaken. As before, d and n stand for the dimension and the number of input points respectively
and all coordinates are integers in (—100,100). The output of the program is the rational volume and a
list of facets, each described by the defining input points; no postprocessing was implemented. The user
CPU running times are rounded down to an integer number of seconds.

For fixed d and n we have experimented on inputs of various degrees of degeneracy. The last three
columns are headed by the approximate fraction p of Orientation tests whose evaluation is nonzero
on the original input; these tests are carried out as determinant calculations. Thus, the first column
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corresponds to random inputs with practically all tests being generic. The other extreme has inputs with
coincident points, constructed to test the program’s performance when all Orientation tests reduce to
a characteristic polynomial. The middle column corresponds to point sets comprised of random points,
generated as above, and coincident points, at an appropriate ratio.

In analyzing these results it must be remembered that the program’s complexity depends on the
number of facets in the partial convex hulls. In the worst case, the hull of n points in d dimensions
has O(n!9/2]) facets. However, the expected number of facets for points selected randomly as above is
proportional to log?~!n [32]; this is verified by our experimental results.

8 Conclusion

We have defined the notion of input perturbation and have concentrated on linear schemes, which are
amenable to efficient computation techniques. In particular, we have proposed two such schemes that
are valid for certain important geometric primitives. The merit of these schemes is twofold. First, their
simplicity makes them attractive for practical use and, second, they are the most efficient to date.

A research direction is to develop schemes applicable to a wide class of primitives, including InSphere,
while optimizing complexity. It is also interesting to examine whether it is possible, in general, to control
the direction at which the input points are perturbed; this would simplify postprocessing.

The basic existential question on the perturbation method is still open. After the flurry of papers
proposing different perturbation schemes, some objections have recently been voiced against the general
applicability of this method {14, 15] motivated by the observation that the difficulty and complexity of
postprocessing might dominate that of the entire program.
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