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Abstract

This report describes an implementation, now in progress, of a toolkit for polynomial algebra.
The toolkit is being written in C, and it can solve systems of equations over the complex numbers,
and inequalities over the reals. There are many applications of such a toolkit, since problems
from many branches of science and engineering can be formulated using systems of polynomial
equations and inequalities. By several well-known theorems, in particular Tarski’s on the decid-
ability of the theory of the reals, it is possible to solve such problems in principle. But the worst
case bounds are exponential or doubly-exponential in the number of variables, and no practical
system has appeared that can deal with large problems. On the other hand, systems of polyno-
mials may have a special structure, a kind of sparseness, that implies a complexity (measured by
the algebraic degree) much lower than the worst case. Indeed, most of the applications we have
studied are of this type. Very recently, algorithms have been developed by the author and others
that can exploit this structure. This realization is a strong motivation for developing the toolkit
at this time. In addition, there have been improvements in algorithms for sign determination
and symbolic-numeric computation, and we feel that these methods are now advanced enough to
warrant implementation.

1 Introduction

In this report, we describe a collection of techniques which improve the efficiency of solving systems
of polynomial equations and inequalities. Together, these techniques are being implemented in an
algebraic-geometric toolkit, written in C. The system computes all the solutions, and provides either
a symbolic description of them, or numerical approximations to real or complex solutions. The
impetus for the development of the toolkit was the realization that (a) Many practical algebraic
problems that seem hard are in fact easy, i.e. have low effective degree (b) Algebraic algorithms
have improved over the last few years to the point where we can achieve an overall complexity which

is low-order polynomial in this effective degree.
The equation-solving problems we are most interested in come from robotics, computer vision,
and geometric modeling. The equations are often polynomial because they arise from:

¢ Representing orientation of objects in 3D. Both quaternions and rotation matrix coefficients

are polynomial descriptions.

¢ The most popular descriptions of smooth shapes are as tensor product surfaces, or as CSG

models, both of which are algebraic surfaces.



¢ Geometric constraints, like contact, colinearity, distance, and lower pairs, are algebraic.

The theory we use to exploit the low effective degree of polynomial systems is called sparse
elimination theory. In the late 1980’s, Gel’fand and his colleagues began the study of discriminants
and resultants of sparse polynomial systems. Sparseness leads to a lowering of effective degree, and
the sparse theory provides a simple direct method for proving bounds on the number of solutions.
Sparseness can also be exploited to speedup equation solving and elimination of variables. Algorithms
to do this have appeared in the last year. An efficient homotopy algorithm for sparse systems was
described in [HS92]. The first efficient algorithms for the sparse resultant were described by the
author and a collaborator in [CE93], [EC93].

Development in symbolic computation on polynomials has a longer history. Since the work of
Collins in 1975, and Schwartz and Sharir and Grigor’ev et al., in the early 1980s, there has been
steadily increasing interest in algorithms for the first-order theory of the reals. Formulae in this
language have real quantified variables, and predicates which are boolean functions of polynomial
inequalities. Of particular interest to us are formulae with existential quantification only. Some
readers may have seen the term constraint satisfaction applied to this family of problems. The theory
of the reals is very powerful because it allows declarative description of an object via constraints,
and leaves it to the decision algorithm to find an instance of the object.

Much recent work [HRS90], [Ren92] [GV92] has focussed on improving the asymptotic complexity
bounds for the theory of the reals, but unfortunately, most of it ignores the complexity in practice.
The work of the author [Can88a], [Can91b], [Can91a], [Can93b], [Can93a)] on the other hand, has been
specifically directed at practical algorithms. The collection of techniques developed in those papers
permits symbolic calculation (i.e. exact calculation, even with singular inputs) whose complexity
is polynomial in the effective degree mentioned earlier. The main ideas of those techniques will
be described in this report. In addition, we describe a new technique for performing arithmetic
operations on very large integers with expected constant cost.

The report is arranged as follows: The theory of sparse systems is at the heart of both the
symbolic and numerical toolkits. So we begin in section 2 with a short introduction to this theory.
Then in section 3 we give an overview of the numerical kit. The symbolic kit, which is considerably

larger, occupies the bulk of the paper in section 4. Finally, in section 5 we describe some future
projects.

2 Sparse Systems

In a moment we will be able to say precisely what we mean by a sparse polynomial system. But
even before that, we should answer the question: Why study sparse systems? For us, the reason is
that sparse systems are ubiquitous in robotics, vision and modeling. This is not a theorem that we
can prove, but our experience shows that almost all the systems that arise there are sparse. We can
exploit this sparseness in two ways: (i) To prove tight or tighter bounds for the number of solutions
and (ii) To compute those solutions in a time that depends on the sparse bounds, not on the classical
degree bound (Bezout’s bound) which is usually much larger.

Typical examples of sparse systems are those that describe the inverse kinematics for a 6R
robot [MC92b], forward kinematics for the Stewart platform [Mer92], camera motion from point
matches [FM90], and geometric constraints describing two- or three-dimensional objects [Owe91].
As the dimension of the problem increases, the difference between the sparse and non-sparse bounds



increases dramatically. Very few algebraic problems with more than 4 variables can be solved with
classical resultant methods, which ignore sparseness, but many practical problems which are much
larger can be solved fast using a custom elimination formula.

As an example, we can take the 6R inverse kinematics problem from robotics. Given a robot
with 6 rotational joints, and a placement of the gripper, this problem asks to find the six joint angles
61,...,0¢ that place the gripper in the wanted pose. The problem can be stated in terms of 4 X 4
matrices, which can represent any rigid transformation in 3D. We get

T1(61) - Te(bs) = Te

where each T represents the transformation between links caused by rotation of joint ¢, and T is
the transformation of the gripper. It is better to use a parametrization in terms of ¢; = tan(6;/2)
rather than 6; directly. Both sine and cosine are rational functions of ¢;, and the matrix Tj(¢;) then
contains only rational functions of ¢;. A little algebra shows that the inverse T:"(¢;) also contains
only rational entries.

Now we have Ty(t1)---Ts(te) = Te. The RHS matrix has 16 entries, so we have a system of
16 equations to be satisfied. But there are only 6 variables, and only 6 of the equations can be
independent. Suppose we choose such an independent set. The matrix entries have degree 2 in the

t;’s so the total degree of each equation is 12. We can reduce this degree by moving some of the
joint transformations to the RHS:

Tiy(t1)T2(t2)Ta(ts) = TTg (t6)T5 ' (t5)Ti (1) (1)

From this we can choose 6 equations of degree 6. By Bezout’s theorem, the number of solutions
of such a system is 66 = 46656. That is, we might have 46,000 tuples of angles (6y,...,6¢) which
satisfy the gripper pose constraint. This would be a very difficult problem to solve, if there really
were this many solutions. But it has been shown that there are only 16, and [LL88] and [RR89] gave
constructive proofs. A real-time solver based on [RR89] is described in [MC92b].

A large gap between the Bezout bound and the actual number of solutions is not unusual for
geometric problems, although it is not always as dramatic as for inverse kinematics. Bezout’s theorem
gives an exact count of the number of solutions in projective space, so most of these solutions are at
infinity. The problem with trying to solve a system like this is that most methods have a complexity
that depends on the Bezout bound. The Bezout bound is exact if all the coefficients of a polynomial
system of some given degree are generic. Genericity is the requirement that the coefficients do not
satisfy a set of algebraic relations. For example, random coefficients would be generic with high
probability. But systems that arise in inverse kinematics and other geometric problems are not
generic, even if the robot design parameters were. For inverse kinematics, it is easy to see why.
The long series of matrix multiplications leads to many common subexpressions. Each T; matrix is
determined by 4 parameters (called Denavit-Hartenberg parameters [SV89]), and with 6 joints, the
whole robot is described by 24 parameters. The gripper has 6 degrees of freedom, so the T, matrix
depends on 6 parameters. Each inverse kinematics system is determined by 24+ 6 = 30 parameters.
But the 6 x 6 system of equations that we actually solve has hundreds of coefficients, all determined
by those 30 parameters. Clearly the coefficients are strongly dependent.

The methods in this report exploit the relation between solution count and sparseness of the
equations. A polynomial is sparse if many of its coefficients, compared to a generic polynomial of
that degree, are zero. A bound derived from the set of non-zero coefficients is called a Bernstein



bound. Bernstein showed that his bound is exact if all the coefficients of the polynomial system
are generic [Ber75]. In fact they are exact under much weaker assumptions: Only the coefficients
of terms that lie at the vertices of the Newton polytopes (defined later in this section) need to be
generic for the bounds to be exact [CR91]. So if we can write down a system in a form where these
coefficients are independent, we know how to correctly count the solutions. Using sparse homotopy
and resultant methods, we know also how to compute the solutions in a running time that depends
on their number.

In contrast with sparse methods, which have appeared in the last year, most equation-solving
approaches do not exploit the paucity of solutions, and instead have a complexity that depends on
the Bezout bound. This has been true both of homotopy methods [TM85] and general homogenous
resultants [Mac02]. Some progress has been made in homotopy methods in the last few years, [MS87]
and [VC92]. These methods take advantage of some but not all forms of sparseness. Grobner basis
algorithms have a complexity that depends on the effective degree, and so they work well on systems
with few roots. This is one reason they have been considered seriously as a practical equation-solving
tool. But they also have high overhead, require arbitrary precision integer arithmetic to work over
R or C, and are difficult to parallelize. When their complexity is measured as a function of the
number of solutions, their performance is poor. This has been clear for specific systems for which a
sparse resultant was already known. An example is the Dixon resultant [Dix08] for tensor product
surface implicitization [MC92a]. The solution using resultants can be computed in 1/100 the time
of a Grébner solution [Hof90].

The value of the special purpose resultants like Dixon’s has been clear for some time. Certainly,
one would like an analogue for polynomials with any given structure (the set of exponents appearing
in the polynomials). These general resultants were defined first by Gel’fond et al., as a special case of
an A-discriminant [GKZ90]. We will term them sparse resultants. A Poisson formula for the sparse
resultant was given in [PS91]. The Poisson formula expresses the resultant in terms of symmetric
functions, and makes it easy to find a sparse resultant’s degree.

The most convenient description of a resultant is using a Sylvester formula. The Sylvester
formula expresses the resultant as the determinant of a matrix whose elements are the polynomial
coefficients or zero. Sylvester formulae were given for a class of multi-homogeneous systems in
[SZ93]. In general, sparse resultants cannot be computed via a Sylvester formula, but they all have a
determinantal formula, which expresses them as a factor of a matrix determinant. The determinantal
formula is important for several reasons. Firstly, it is efficient. The matrix size is small and under
reasonable assumptions, polynomial in the sparse resultant degree. Secondly, as we describe in
section 3, it allows us to solve non-linear equations using linear algebra tools, such as eigenvalue and
characteristic polynomial routines. Thirdly, linear algebra algorithms are easily parallelizable, and
we inherit this property when we transform from non-linear to linear with a determinantal formula.
The first determinantal formulae for the sparse resultant were given by the author and a collaborator
in [CE93] and [EC93]. We will refer to those later in this section.

Sparse equation solving is still a developing field, and sparse methods are not the full answer
to exploiting low solution count. For systems with non-generic coefficients, the Bernstein bounds
may still be poor. Returning to the inverse kinematics problem, recall that the matrix product
gives us 6 equations of degree 6. These polynomials have only 53 non-zero coefficients, whereas a
general polynomial of degree 6 in 6 variables would have 1716 coefficients. The Bernstein bound
for the kinematics system written in this form is 2,304. Much less than Bezout at 46,000 but still



excessive. But the Bernstein bound drops rapidly if we rewrite the equations in a form where there
are fewer dependencies. For example, using some of the equations of [RR89] gives a Bernstein bound
of 384. When the coefficient relations come from common subexpressions, there is a systematic way
to remove them by introducing new variables. An example of this is given later in section 5.1. Since
the kinematics equations do contain many common subexpressions, this method should give us a
system with Bernstein bound close to 16. We expect to put a lot of future effort into dealing with
coeflicient dependencies, and some preliminary ideas are given in section 5.1.

2.0.1 Definitions

Suppose we are given m polynomials fi,..., f,, in 21,...,z, with complex coefficients. We use z¢
to denote the monomial z{'-..z&", where e = (ey,...,e,) € Z" is a multi-exponent. Let A; =
{ai1,...,8im,} CZ" denote the set of exponents occurring in f;, then
m;
fi:Zcijm“‘i , fori=1,...,m, (2)
j=1

and we suppose c;; # 0 so that A; is uniquely defined given f;. We term the study of such systems
sparse elimination theory because we consider the actual set of exponents .A; occuring in f; rather
than just the degree of f;.

One unusual aspect of the theory of sparse systems is that we specifically discount solutions having
a coordinate z; = 0. That is, we count only solutions z = ¢ with £ € (C*)", where C* = C — {0}.
This point often causes confusion to readers seeing it for the first time. There are two natural
questions to ask: (i) Why not count all the affine solutions rather than those in (C*)*? (ii) Some
genuine solutions having some & = 0 will be missed, how can they be recoved?

In answer to the first question: The most natural space to consider for the solutions of a polyno-
mial system is the projective space PC™, in which Bezout’s theorem holds exactly. This space has
coordinates (2o, ...,Z,) with scalar multiples identified, so # = Az for all A € C*. The affine space
C", which is the one we are interested in in most applications of algebraic geometry, is obtained
from PC™ by removing the plane at infinity o = 0. But this is not a “natural” space and Bezout’s
theorem appears only in a very weakened form. But if we remove all the coordinate planes z; = 0
from PC", we obtain again a space with an exact degree theorem, this time Bernstein’s theorem,
which we state later in this section. Because of the removal of zero from the solution space, we
can consider the more general case of f;’s which are polynomials in the z; and their reciprocals, the
Laurent polynomials Clzy,z7!,. .., z,, 27 1].

The second question was how to recover the missing solutions having z; = 0. This is a straight-
forward extension. We simply set z; = 0 in the system of polynomials f, giving us a new system
flz;=0, and apply Bernstein’s theorem to this system. We can do this for each i = 1,...,n. Let the
total number of roots found this way be N;. There is a possibility of counting the same root twice,
so we must also count roots where both z; = 0 and z; = 0 for each pair ¢,j. Let this number of
roots be Ny. N; is defined similarly by considering all i-tuples of polynomials. Finally, let Ny be the
number of roots of f = 0. Then applying the inclusion/exclusion principle, if NV is the total number
of roots of the system assuming generic coefficients,

N =No+ Ny~ Ny+ Nzg+---



Note that the dimension of the Newton polytopes is at most n — 1 when we set 2; = 0. Because
of this, unless one of the f;’s is zero after the specialization (meaning that it was divisible by z;), the
specialized system f|,,—o will be overconstrained. So unless some f; is divisible by z;, the system
generically will have no roots with z; = 0.

In short, unless some of the polynomials in a system f = 0 are divisible by an z;, all the affine
roots will generically have non-zero coordinates. This is the more common situation in practice, and
in this case the Bernstein bounds already count all the affine roots.

2.0.2 Newton Polytopes and Bernstein’s Theorem

Definition 2.1 The finite set A; C Z™ of all monomial ezponents appearing in f; is the support of
fi. The Newton Polytope of f; is Q; = Conv(A;) C R™, the convez hull of A;.

Polynomials so defined are called sparse because we consider a general set of exponents A4; rather
than all exponents of some degree.

Definition 2.2 The Minkowski Sum A + B of convez polytopes A and B in R"™ is the set
A+B={a+blac A,be B} .
A+ B is a convex polytope. Let Vol(A) denote the usual n-dimensional volume of A:

Definition 2.3 Given convez polytopes Ay,..., A, C R", there is a unique real-valued function
MV (Ay,...,Ay) called the Mixed Volume which is multilinear with respect to Minkowski sum, such
that MV (Ay,..., Ay) = n!Vol(A,). Equivalently, if \y,...,\, are scalars, then MV (Aq,...,An)
is precisely the coefficient of AMAg---\, in Vol(A1A; + -+ + M\ Ay) ezpanded as a polynomial in
D ST W

The Newton polytopes capture the combinatorial properties of the system in a remarkable way.
We have the following bound on the number of roots of a system of m = n polynomials in n variables,
see [Ber75], [Kus76], [Kho78].

Theorem 2.4 (Bernstein’s Theorem) Let fy,..., f, € Clzy,z71,.. ., z,,2;Y]. The number of com-
mon zeros in (C*)" is either infinite, or does not exceed MV(Q1,...,Qy). For almost all specializa-
tion of the coefficients c;; the number of solutions is exactly MV (Qy, ..., Qr).

2.0.3 Sparse Resultants

For systems of m = n+ 1 polynomials in n unknowns, there are generically no solutions, and there is
an algebraic condition on the coefficients for a solution to exist. That is, a solution exists whenever
a certain polynomial in the coefficients of the system is zero. This polynomial is called the resultant
of the system. We use the term sparse resultant to refer to the resultant of a system with particular
supports, to distinguish from the term “resultant” which has traditionally meant either the Sylvester
resultant or the resultant of a homogeneous system. The sparse resultant is the more general object,
and includes the others as special cases.

The simplest and most efficient way to define the resultant is as the determinant of matrix
whose entries are the coefficients of the polynomials, or zero. This is a generalization of the classical



Sylvester formula for the resultant of two polynomials. In general, the sparse resultant cannot be
expressed as the determinant of a single matrix, but as a factor of this determinant. But for our
purposes, is just as good to define a matrix whose determinant is a multiple of the resultant, and to
discard any extraneous factors.

Once a resultant matrix is defined, it can be used for numerical equation solving or for symbolic
variable elimination. For the first use, we construct from the resultant matrix another matrix whose
eigenvectors define the solutions of the system [MC93]. This method is based on the use of generalized
companion matrices, and provides a particularly simple way to deal with non-linear systems. The
resultant matrix is the same for all polynomial systems with a given set of exponents, and can be
computed offline. Given this matrix in symbolic form, each particular system can be solved online
with only an eigenvalue routine. See section 3.1.

To use a resultant for variable elimination, we repeatedly evaluate the resultant for specializa-
tions of the other variables (those not to be eliminated), and use Chinese remaindering and sparse
interpolation to reconstruct the answer. This method is applied to surface implicitization in [MC92a).

2.1 The Sparse resultant matrix

For the sparse resultant, we assume we have m = n+1 polynomials in n variables. We wish to define
a square matrix M whose determinant is divisible by the sparse resultant of fi,..., fo+1. Let Q; be
the Newton polytope of f;. We need the notion of a mixed subdivision of @ = Q; +- - Qny1. Mixed
subdivisions are defined fully in the appendix (section 7), but a short summary is helpful here:

Definition 2.5 A mixed subdivision A of @ = Q1 + -+ + Q. is a polyhedral subdivision such
that every element F' € A is of the form F = Fy + ---+ F,,, with F; a face of Q;. Furthermore
dim(F) = 3 dim(F;).

5o a mixed subdivision may be thought of as a decomposition of the Minkowski sum Q1+ - -+ Q,»,
into elementary Minkowski sums Fj + - - -+ F,,,. Certain faces of the subdivision play a special role:

Definition 2.6 A face F € A is called a mixed facet if dim(F) = n and every F; has dimension
<1.

If m = n, then all the F; in a mixed facet F have dimension exactly one. The mixed volume
MV (Q1,...,Qn) is the sum of the volumes of the mixed facets of A in the mixed subdivision A of
Q. The mixed subdivision, and hence mixed volume, can be computed effectively using a convex
hull routine on a lifted polytope as described in the appendix. If only the mixed volume is needed,
it can be computed by enumerating the mixed cells as described in section 3.2.1.

Returning to resultants, we assume from now on that m = n 4+ 1. The rows and columns of M
will be indexed by integer lattice points contained in @, and the subdivision A will be used to select
which coefficient ¢;; appears in each matrix element.

For the selection to be well-defined, we must perturb the Minkowski sum slightly so that each
integer lattice point lies in the interior of a facet of A. Thus we choose a generic vector § € @™, and
the set of exponents that index rows and colums of M will be

E=T"N(6+Q)



If As denotes the subdivision obtained by shifting all faces of A by §, the choice of § is satisfactory
if every p € £ lies in the interior of a facet of As.

We can now define our selection rule for elements of M. We define a function RC : £ — 72 (for
row contents) as follows

Definition 2.7 (Row content function) Let p € £ be an exponent. It lies in the interior of a facet

6§+ Fi+---4 F,yy of As. Let i be the largest integer such that F} is a vertex, so F; = a;; for some
J. Then RC(p) = (3,5).

The row of M indexed by p € £ contains the coefficients of fi, and represents a multiple of f;
which is

z(P=ais) £, (3)

where (7, j) = RC(p). The coefficient of z? in z(P—2+s) fi appears in the ¢** column. More explicitly,
the matrix M is constructed as

Definition 2.8 M is an || x |£| matrix whose rows and columns are indexed by elements of £, and
whose elements are

u { c¢ik if ¢ — p+ aij = aix for some k, where (4,5) = RC(p)
P 0 ifg—p+ta;¢A

and therefore My, = a;; where (i, ) = RC(p). For the matrix to be well-defined all exponent vectors
of (3) must lie within &, which we show in the next section.

2.2 A Sample Sparse Resultant

The construction is illustrated for a system of 3 polynomials in 2 unknowns;

fi = e+ crazy + c1azy + craz
fo = eny+ 622932112 + 023:1:23/ + ca4z
3 = e31+ 3y + ca3zy + cagx

Pick generic functions

Lhiz,y) = L°z+ LY
I(z,y) = L’z+ L%
ls(z,y) = Lz+y

where [ is a sufficiently large integer. These functions define a mixed subdivision of @) as described
in the appendix. The input Newton polytopes are shown in figure 1 and the mixed subdivision A+ §
is shown in figure 2.

To illustrate the construction, we will generate one row of the matrix. Choose any point in the
subdivision of figure 2, say the point (1,2), which represents the monomial zy?. We will fill the
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Figure 1: The Newton polytopes and the exponents a;;.

matrix row indexed by (1,2). This point lies in a face F + 6 labelled “a;1,a33”. This means that F is
the Minkowski sum Fy + F; + F5 with Fy = aj; and F3 = as3 both vertices, and F; a non-vertex. In
this case F3 = Q2. Either of the points a1y or agz would define a suitable row, but the row contents
function is defined to choose the larger ¢ value, so RC(1,2) = (3, 3).

Now RC(1,2) = (3,3) = (4,5) where i is the number of the polynomial whose multiple fills row
(1.2). The multiplier is chosen so that the coefficient ¢33 lies on the leading diagonal. The exponent
of the multiplier is p — as3 = (0,1). So row (1,2) is filled with yfs.

1,0 2,0 0,1 1,1 2,1 3,1 0,2 1,2 2,2 3,2 42 1,3 2,3 3,3 4,3

1,0 C11 Ci14 0 0 C12 C13 0 0 0 0 0 0 0 0 0 T
2, 0 C31 C34 0 C32 C33 0 0 0 0 0 0 0 0 0 0
0, 1 Co4 0 C21 0 C23 0 0 0 Ca2 0 0 0 0 0 0
1, 1 0 0 0 C11 Cig 0 0 0 C12 Ci3 0 0 0 0 0
2, 1 0 0 0 0 C11 Ci14 0 0 0 Cio C13 0 0 0 0
3, 1 0 C24 0 Ca1 0 Ca23 0 0 0 C22 0 0 0 0 0
0, 2 0 0 0 0 0 0 Ci11 Ci14 0 0 0 C12 €13 0 0

1, 2 0 0 C31 C34 0 0 C32 C33 0 0 0 0 0 0 0 (4)
2, 2 0 0 0 C31 C34 0 0 C32 C33 0 0 0 0 0 0
3, 2 0 0 0 0 C31 C34 0 0 C32 €33 0 0 0 0 0
4, 2 0 0 0 0 0 Co4 0 0 C21 0 Cag 0 0 0 Ca2
1, 3 0 0 0 0 0 0 0 €31 C34 0 0 €32 C33 0 0
2, 3 0 0 0 C24 0 0 C21 0 Cao3 0 0 0 C29 0 0
3,3 0 0 0 0 0 0 0 0 c31 C34 0 0 c32 €33 0
4, 3 L 0 0 0 0 0 0 0 0 0 C31 C34 0 0 C32 C33 i

The matrix M is given in equation (4) with rows and columns indexed by exponent vectors from
¢. Note that the leading diagonal is always non-zero. This property is important in proving that
the determinant of M is non-zero in [CE93].

2.2.1 The Size of M

M is an |£] x |€] matrix. The cardinality of |€| to a good approximation equals the volume of Q.
Ideally, we would like the size of M to be the total degree of the resultant, which can be shown to
be MV (Q1,...,Qnt1) or MV(Q) by a slight abuse of notation. So our construction, while it does
depend on the Newton polytopes, is suboptimal by a factor of

Vol(Q)
MV(Q)
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Figure 2: The mixed subdivision As of Q+6. Each facet is labeled with the vertices which contribute
to optimal sums within that facet.

In general, this ratio is difficult to determine. Worse than that, there are collections of polytopes
whose mixed volume is zero, but whose Minkowski sum volume is finite. For these systems, the
suboptimality ratio is infinite.

For reasonable cases, the ratio is better. As an example, suppose that all the Newton polytopes
are identical:

Ql = "‘:Qn+1 .
Then the total degree of the resultant MV(Q), is the sum of all 7 4 1 n-fold Mixed Volumes, each
being equal to n!Vol(Q,). Hence
deg R = (n+ 1)! Vol(Q,) .

The Minkowski Sum has volume Vol(Q) = (n 4+ 1)"Vol(Q;) and the number of lattice points in it
is asymptotically the same [Kan92]. Then || = O (%Li_:ﬁ!—}{). Using Sterling’s approximation and
letting e be the base of natural logarithms, we arrive at

10



Lemma 2.9 For unmized systems

|€] = O(e™ deg R) .

This is exponential in n, but of course, the mixed volume itself typically grows exponentially with
dimension. e.g. if we posit a family of systems with Newton polytopes all equal to dQ; for integer
d, then the resultant degree is O(d"). Our resultant matrix size is O((de)"), and so is polynomial in
the resultant degree considered either as a function of d or a function of n. But there is still room
for considerable improvement.

2.2.2 A smaller sparse resultant matrix

An improved construction is described in [EC93]. That paper defines a matrix M’ whose determinant
is a multiple of the resultant, and whose size is at most the size of M. In general, it is known to be
impossible to construct a matrix whose determinant is exactly the sparse resultant. So M’ has to be
larger than optimal. But we claim the construction of M’ leads to close-to-optimal size. We cannot
make this statement quantitative yet, but have found some strong supporting evidence. Namely, in
all the cases where optimal-size matrices are known to exist (enumerated in [SZ93]), the matrix M’
has optimal size. This is the algorithm we plan to use in the toolkit for the elimination task. Even if
we cannot prove better bounds on its size, we will gather plenty of empirical data on its effectiveness.

3 Toolkit Overview: Numerical Kit

Figure 3 shows the breakdown of the numerical part of the toolkit. It is actually two independent
systems. One is based on resultants and eigenvalues, and the other on homotopy methods. These
two methods are clear front-runners for numerical equation-solving, both in terms of simplicity and
sheer speed, over other current techniques. Between the two, there is no clear winner, and their
virtues are complementary, so both are included in the toolkit. Homotopy methods are faster in
practice for very large problems. Their complexity for well-conditioned inputs is linear in the number
of solutions N of f = 0. Their weakness is on singular problems, where they may diverge or run
intolerably slowly. Resultant-eigenvalue methods work very well on small to medium sized problems,
and they are simple to implement. Because of extensive study of singular eigenvalue problems, a
resultant-eigenvalue method can provide more information about singular solutions, and can compute
them accurately if their multiplicity is known. For now, the complexity of the resultant-eigenvalue
method is O(N?), assuming an O(N x N) resultant matrix is available. But because this matrix
is very sparse, it may be possible to use more efficient eigenvalue algorithms whose complexity is
quadratic or even pseudo-linear in N. This is a topic that warrants further study.

3.1 Equation-Solving with Resultants and Eigenvalues

The idea of solving a non-linear polynomial system with resultants and eigenvalues is both general
and simple. We believe it will find very wide application in the future, and along with homotopy
methods will become the methods of choice for polynomial equation solving. It is described more fully
in [MC91a] and [MC93], and applied to a robotics problem in [MC92b] and to geometric modeling
in [MC91b).

In the last section, we summarized the theory of sparse systems and defined the resultant of a
system of n + 1 equations in n unknowns. Before this general formula was known, there were many
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Figure 3: Numerical subsystem components

resultant formulae for specific systems. Almost all these formulae also express the resultant via
matrix determinants. e.g. For a pair of polynomials f(z) and g(z) in a single variable, the resultant
is the determinant of the Sylvester matrix:

R
1 A A
gm « s ... go . 0

[ 0 - gm - -+ go

The form of the resultant matrix in the sparse case [CE93] is analogous, although in the multivariate
case, the structure is more varied, as can be seen in the example resultant from section 2.2. But
one important common feature is that each row of the matrix represents a multiple of one of the
polynomials. That is, all the entries in that row are coefficients of that polynomial (or zero). This
form is particularly convenient because it allows us to reduce the non-linear equation-solving problem
directly to an eigenvalue problem.

3.1.1 Method 1: Adding a linear polynomial

The simplest way to perform the reduction is to add a generic linear polynomial. Suppose we are
given fi,..., f, as polynomials in z1,...,z,. We add the linear (in z) polynomial

r(s,z) = s —Il(z)

where [(2) is linear in z, and s is a new variable. We now have n + 1 equations in n variables, so
the resultant is well-defined. It will be a polynomial R(s) in the new variable s.

12



R(s) must vanish when all the equations have a common solution, and this is precisely when
s = 1(£), where z = ¢ is a solution of f = 0. By ordering the rows of the resultant matrix A so rows
containing r(s,z) appear after all the others, A can be written in block form as:

An A1z
A21 (3) A22 (S)
where the elements of Ay and Agq are linear in s. After some elementary row operations, we obtain:

An Ap
0 A22(8) bt A21(8)A1_11A12

whose determinant differs by only a constant factor (det(Ay;)) from the determinant of B(s) =
Aga(s) — A21(3)A1_11A12. Now B(s) is again a matrix whose elements are linear in s. So it can be
written B(s) = sBy 4+ By. Multiplying through by B 1 we obtain

B'(s) = sI + BoBy!

and considered as a polynomial in s, the determinant of B’(s) has the same roots as det(B(s)) and
det(A(s)) which both differ from it by constant factors. The roots of B’ (s) are the eigenvalues of
~BoB; L.

By the construction, these eigenvalues are the values of I(£) for various roots & = £ of f = 0. So,
for example, we could set I(z) = z1, and the eigenvalues of —BOBI‘1 will be the z; coordinates of the
solutions £. But a better approach is to choose a generic linear polynomial for I(z), say by specifying
!(z) with n random numbers. Then, with high probability, the values of I[(z) will be distinct for
distinct solutions £ and ¢’. So long as the solution & = ¢ has multiplicity one, I(£) will be a simple
eigenvalue. In this case, all the coordinates of the solution £ can be recovered from the eigenvector
corresponding to the eigenvalue /(£).

This method is even simpler if the sparse resultant matrix of [CE93] is used. It is possible to
define the matrix M of section 2.1 in such a way that the constant coefficient of g(s,z), which is the
only coefficient depending on s, falls always on the leading diagonal. Consequently, the matrix By
is diagonal, in fact the identity matrix, so no inversion of it is needed.

3.1.2 Method II: Generalized Companion Matrices

Suppose we have the same system of polynomials fi,..., f, in z1,...,%, and we would like to solve
f = 0. Rather than adding another polynomial, we can reduce the number of variables by hiding
one in the base field. So we rewrite fi,. .., f, as polynomials in z3, ..., z, whose coefficients are now

polynomials in z;. This time, we have n equations in n — 1 variables, so a resultant is well-defined.
Again, let A be the matrix whose determinant is the resultant. The elements of A are coefficients of
f and so are polynomials in z;. We can arrange A in powers of z; as

A(zy) = 2345+ -+ Ao
Assuming Aq is non-singular, we can define

A/(ibl) = A;lA(xl)
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whose determinant has the same roots as det(A(z;)). Then we use theorem 1.1 [GLR82] to construct
a generalized companion matriz of the form

0 I, 0 0
0 0 L, ... 0
C=| & 1o, (5)
0 0 0o ... I,
—Ay AL —Ap .. A

such that the eigenvalues of C correspond exactly to the roots of det(A(z1)) = 0. C is a numeric
matrix of order dN, where N was the original size of A.

In this case, the eigenvalues will be the z;-coordinates of the root vectors £. This is true because
we have hidden 2 in the coefficient field in order that the system f = 0 be overconstrained and have
a resultant. But this doesnt change the solutions of the system. So there can only be a sequence of
values (z2,...,%,) satisfying f = 0 when z, is specialized to the first coordinate of a solution. The
existence of a solution (z3,...,2,) for some value of z; implies that the resultant must vanish for
that value of z1, and by the construction above, we have shown that the roots of the resultant are
the eigenvalues of C.

3.2 Sparse Homotopies

The second subsystem of the numerical kit is based on homotopies. For those not familiar with the
homotopy method, a very short explanation follows. Suppose we have a system f = 0 that we would
like to solve. Suppose also, that we have another system g = 0, and suppose both systems comprise
n polynomials in n variables. Now consider

(1=-XNg+Arf=0

For A = 0, this reduces to the system g = 0. As ) increases from 0 to 1, the solutions vary continously
as functions of A, and when A = 1 they must have either diverged to infinity or converged to solutions
of f = 0. The tracking of solutions is typically done with Newton iterations, taking small discrete
steps in A, from Ag = 0 to Ay = 1. Each solution of the system (1= Xi—1)9+ Ai—1f = 0is used as a
seed for solution of (1 — A\;)g + A\;f = 0.

Under appropriate conditions, we can choose a system g = 0 whose solutions converge to all of
the solutions of f = 0. For example, if f; and g; both have the same set of exponents for each 7, g has
distinct roots, and if we track solutions in complex projective space, we will obtain all the solutions of
f =0, provided we dont run into a singularity along the way. This is very useful for sparse systems,
because both f = 0 and ¢ = 0 have a number of solutions given by Bernstein bounds. And the
complexity of homotopy methods is very good, in practice almost linear in the number of solutions.
So it would seem that homotopy methods immediately offer a way to fully exploit sparseness.

The story is not so simple, because there is no way known in general to design a system g = 0
which has given exponents and known, distinct roots. On the other hand if one is always solving
systems with the same structure, i.e. set of exponents, one can perform a computation offline to find
the roots of one such system f = 0 from a somewhat larger start system ¢ = 0. Then the roots of
f = 0 can be saved, and subsequent calculations can use these roots and the system f = 0 as the

start system. For example, a suitable start system is ¢g; = z:-i" ~1,for ¢ = 1,...,n, where d; is a
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bound on the degree of f;. The number of solutions of this system is given by Bezout, rather than
Bernstein bounds so the first calculation may be very expensive. Subsequent calculations will only
need to track the Bernstein number of solutions.

But this is a poor solution when one has to deal with polynomial systems that do not all have
the same structure. Fortunately, the problem of finding start systems was recently solved in [HS92].
The solution is not in the form of a single start system g = 0, but a family of start systems f|r = 0,
where F ranges over the mixed facets of a mixed subdivision. Specifically, in the notation of section
7, let Q; be the Newton polytope of f;, and let A denote a mixed subdivision of Q; + - -- + Qn.
Let 7 = Fy +---4 F, be an n-dimensional face of A. Then each F; is a face of @i, and the sum
of the dimensions of the F; will be n. F will be a mixed cell if and only if all the faces F; are
one-dimensional.

The start system f|r consists of the equations

file, =0, fore=1,...,n

where fi|p, is the polynomial f; with all terms set to zero except those whose exponents lie in F;.
Thus the Newton polytope of f;|r, is F;. While it has a one-dimensional Newton polytope, fi|r
is not a univariate polynomial, and finding the roots of f|r = 0 is still non-trivial. But after a
monoidal change of variables z; +— g% where y = (¥15--+,Yn), b; € Z™, we obtain polynomials
fllF;(y:) which are univariate, and which are easily solved. The number of roots of flF = 0 either
before or after the monoidal transformation is exactly the volume of the polytope F. Applying the
monoidal transformation to the y-solutions obtained by solving the univariate system gives us the
z-solutions of f|r(«) = 0. We track these solutions from f|z(z) = 0 to f = 0, using a homotopy
method.

There is a very satisfying proof in [HS92] which shows that every root of f = 0 is the endpoint of
a path begining at a root f|r = 0 for some mixed facet F. The number of roots of f = 0 is therefore
the total of the numbers of roots of the f|# = 0. This is exactly the total volume of all the faces F ,
which is exactly the mixed volume of Q1,...,Q,. In this way, [HS92] provides a constructive proof
of Bernstein’s theorem.

3.2.1 Computing Mixed Cells and Volumes

The idea of a mixed subdivision of a Minkowski sum of polytopes is described in an appendix
(section 7). We hinted in the previous section how the mixed subdivision furnishes information
about a family of homotopy start systems, one for each mixed cell of the subdivision. To complete
the implementation of a homotopy solver for sparse systems then, we need an efficient algorithm for
computing either mixed subdivisions, or enumerating directly the mixed cells of a subdivision.

Because of the complexity of a mixed subdivision in high dimensions, we have found it much more
effective to enumerate only the mixed cells. Let F = Fj + .-+ F,, be a mixed cell of a subdivision
A of the Minkowski sum Q1 + -+ + @Q,. Then every F; is an edge of ;. We could enumerate
all possible mixed cells by enumerating all n-tuples of edges, one from each polytope, and checking
them, but this method soon runs into a computational brick wall. Imagine for example, that n = 6
and each polytope has 20 edges - there would be 65 million possibilities to check. Fortunately, there
is a much better search strategy.

Define the Minkowski sum of the first i faces contributing to F:

Fei=FR+-+F
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Similarly, in the space of lifted polytopes, R**1 we have
-7:-51' =R+ + F

A necessary condition for F to be a mixed facet is that every F; is a facet of the partial Minkowksi
sum Q + - - - + Q. for i = 1,...,n. This immediately suggests a search strategy:

Our mixed volume algorithm constructs a tree of candidate .7:'<,"s. The root of the tree is level
zero. The first level of the tree contains all lifted edges of ;. The kt* level of the tree contains
candidate k-fold sums of edges. Let F< be the k-fold sum corresponding to tree node v. We explore
v by checking whether F¢} lies on the_boundary of Q1 +---+ Qs using linear programming. If not,
then no further expansion of v occurs. If ﬁsk is on the boundary, then a new child u of v is created
for each edge é of Qk+1- The facet at u is the Minkowksi sum ]:—Sk 4 é. These nodes are explored
in the same manner. The search continues down to level n, and those leaves whose facets lie on the
boundary of @ define the mixed cells.

This search strategy works well in practice, and has allowed us to solve some very large mixed
volume calculations, in up to 28 dimensions. As a benchmark, we give its running times for bounding
the number of cyclic n-roots for various n. The cyclic n-roots problem is of some independent interest,
but it has primarily served as a computational benchmark for algebraic algorithms. More details
and references are given in [BF91].

The equations themselves arise in Fourier analysis. There are n equations in the variables
T1,...,Zy, and they have the form:

i+ +z,=0
T1Z2 + ToT3+ -+ 2oz =0
T12223 + TaT3T4 + -+ Tp2122 =0 (6)

1T &y = 1

Using our mixed volume algorithm, we computed the Bernstein bounds for cyclic systems for
various values of n, and these are shown in figure 3.2.1. The mixed volume algorithm is written in
ANSI - C, and the test data is from a SUN Sparc-10 workstation.

The last equation z,---z, = 1 forces all the solutions to lie in (C*)™. So Bernstein’s theorem
provides an exact count allowing for multiplicities. In the one case where the number of solutions
is known, n = 7 [BF91], the multiplicities are all 1, and the Bernstein bound is exact. To our
knowledge, the bounds for n = 9 and » = 10 have not been computed before, and the value for
n = 7 tooks many hours to compute using a Grébner algorithm called Bergmann in [BF91]. This is
an encouraging sign for the effectiveness of the mixed volume algorithm.

4 Toolkit Overview: Symbolic Kit

As shown in figure 5, the primary function of the symbolic toolkit is to determine solvability of
systems of polynomial inequalities over the real numbers. A numerical approximation to the solution,
if any, can be easily extracted. The symbolic toolkit can also compute optimal solutions to systems
of inequalities, given a polynomial objective function.
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10 36650 20h 22m 1s

Figure 4: Bernstein bounds for the cyclic n-roots problem

We plan also to use various modules of the toolkit for other purposes. For example, computing
connected components of algebraic curves, and ordering points along those curves. This leads ulti-
mately to an algorithm for computing connected components [Can88a]. We also plan to implement
some fast query algorithms for point location in arrangements of polynomial surfaces. The algebraic
algorithms needed in these applications are all contained in the toolkit. This explains the toolkit
moniker, and the module-by-module description in this report. But in this report, for reasons of
space, the only calculation described will be solution of systems of inequalities.

The input is a predicate that specifies a semi-algebraic set. The predicate can be a general
boolean combination, rather than simply a conjunction, of polynomial inequalities:

Definition 4.1 A semi-algebraic set S is the set of points in R satisfying a predicate of the form
B(Ai, ..., Ag) where B : {0,1}* — {0,1} is a boolean function and each A; is an atomic formula of
one of the following types:

(fi=0), (fi#0), (fi>0),(fi<0), (fi 20), (i <0) (7)
with each f; a polynomial in 1, ..., x, with rational (for our computational purposes) coefficients.

Semi-algebraic (SA) sets are a versatile class that includes the forms of most familar objects in
R3, such as cones, cylinders, spheres, and combinations of these. SA sets in 3D are slightly more
general than CSG (constructive solid geometry) models, for example, SA sets include sets of mixed
dimension, and sets which are not topologically closed. Both of these are forbidden in CSG.

SA sets are defined in any dimension, and can also be used to represent the set of legal (e.g.
obstacle-avoiding) configurations of a mechanical system, such as a robot, or the set of camera
transformations consistent with some geometric constraints, or the set of positions at a given distance
from a surface to guide a milling machine. The defining formulae for SA sets are the real analogue
of SAT formulae, and they provide the ability to search over a space of real values for a solution
satisfying some property.

The goal of the inequality solver then, is to decide if a semi-algebraic set S is non-empty, and to
produce a sample point if it is. We describe each module of the solver in the following sections. The
next section, on the sample point enumerator, gives also an overview of the whole system.

4.1 Sample point enumerator

In order to decide if the predicate is satisfiable, that is, if the semi-algebraic set S it defines is
non-empty, the solver tries to find a witness point v € S. The existence of such a point is a proof of
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Figure 5: Symbolic subsystem modules

satisfiability. It is also possible to prove unsatisfiability by enumerating sufficiently many potential
witness points, one of which must lie in S if § is non-empty.

For simplicity of explanation, we will assume that the set S is closed and bounded, and that
the surfaces f; = 0 are in general position. These assumptions are not necessary, and methods for
dealing with other cases are given in [Can93b).

Since we know the polynomials f; are in general position, the intersection of any n + 1 of them
in n dimensions will be null. Any j < n of them will intersect in a manifold of dimension n — 7. Let
P be an extremal point of 7 in the set S. Then P is also an extremal of 7 in a manifold M which
is the set of zeros of some polynomials f;,,..., Jfi;- These polynomials are precisely the f; which are
zero at P.

So to enumerate all potential witness points, we enumerate the critical points of 7 on the set of
common zeros of f; ,..., fi, for every set of j < n polynomials. First we define a polynomial

J
2
9 = Z ]
=1
and solve the system

_ G99 _  _ 99 _
g=r (91:’2_ T 9zt T

n

(8)
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“in the limit” as 4 — 0. The coordinates z5,...,2! are a basis for the n — 1 dimensional linear
space which is the kernel of . The process of solving this system in the limit is described in
[Can88b] and [Can90], and involves computing the resultant of the system, arranging it in powers of
#, and retaining the lowest degree coefficient. The result is a polynomial p(s) and rational functions
(r1(s),...,7a(s)) such that the solutions to the system (8) are all the tuples (ri(e), ..., ()
where a; are the roots of p(s) = 0.

To compute the signs of the other polynomials at these critical points, we substitute z; — ri(s)
for i =1,...,n, giving ¢:(s) = fi(r(s)) and the set of signs we are looking for is precisely the sign
sequences of

(q1(8), ..., qk(s)) at roots of p(s) = 0

and to find these we simply apply the sign determination algorithm of the last section (to numerator
and denominator, since the ¢; here are rational functions).
4.1.1 Summary of the inequality solver

We first choose a generic linear map 7 : R® — R by selecting n random integers 7y,...,m,. Then
the algorithm proceeds as follows:

¢ Sample point enumeration: Enumerate all subsets of j < n polynomials {fis,-- - fi;}- Do
this in order of increasing j, so that “easy” witness points will be found early.

¢ Elimination: For each subset, construct a representation of the critical points of 7 as a
polynomial p(s) and rational functions 71(s),...,7,(s).

¢ Substitution: Substitute r;(s) for z; in the other polynomials, giving ¢;(s) = f;(r(s)) for
i=1,...,k.

¢ Sign Determination: Determine the signs of the g;(s) at roots of p(s) = 0 using the algorithm
of section 4.3. Substitute these signs into the formula B to check if the corresponding critical
point lies in 5. If yes, S is non-empty, so return “true”.

¢ Continue until no more sample points, and then return “false”.

4.2 Reduction to a univariate problem

The function of this module is to take a system of n polynomials in n variables

fl(‘Tla- . ',x’n) == fn($13"'7zn) =0
which has solutions £() € C", for ¢ = 1,..., N, and produce from it a univariate polynomial p(.s)
and rational functions r1(s),...,7,(s). The pair (p,r) is a symbolic description of the roots {€6)}

in the following sense: If the roots of p(s) = 0 are oY € C, for i = 1,..., N, then
£ = r(al)

Put another way, r(s) is a parametric curve in C" which passes through all the roots £(),i = 1,..., N.
The values of s at which it arrives at a root are precisely the roots of p(s) = 0. The system f = 0
will usually be derived from equation 8 of the last section.
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There are several ways to construct (p,r) from f. One method uses polynomial GCDs and
was described in [Can88b]. A more efficient method based on differentiation was given by Renegar
[Ren89], and that is the one we use in the toolkit. Compared to the cost of computing the polynomial
p(s), Renegar’s method computes all the 7;(8)’s in only n times as many operations.

To start, we add to the system f = 0, a linear polynomial

s—I(z)=0, where l(z) =lo+ lyzy + -+ - L2,

and compute the resultant R(s,l). Suppose that [ is specialized to a random linear polynomial
L, then with probability one, the values I(¢()) will be distinct for distinct €@, The roots of the
resultant R(s,l = L) will be s = L(¢(), and will also be distinct. We set p(s) = R(s,l = L) and we
are halfway to our goal.

We obtain the functions r; by differentiating R(s,!). We define r; as

dR(s,l
dl;

ri(8) = IR
( dlo )l:L

The reader can verify that the r;’s have the correct values at s = o(%) by computing the derivatives
of R(s,[)in its factored form R(s,l) = ﬁ-\]:l(s — I(£W)y).

In our implementation, it is particularly easy to compute the derivatives. All the algorithms in
the symbolic toolkit use an SLP (straight-line program) representation of arithmetic. See section
SLP-arithmetic below. The polynomial p(s) = R(s,l = L) is computed explicitly. That is, we
compute SLPs for each of the coefficients py, ..., p, of p(s). Because they depend on the coefficients
of [, they can be written p;(!). Then we compute the derivative of the SLP for pi(1) with respect to
some I;. For each node v of p;(1), we add a new node representing the derivative of v with respect
to ;. This roughly doubles the size of the SLP (see section 4.5.1). Computing all the derivatives of
R(s,!) increases the size of the SLP by a factor of n + 2.

This method works even if the system f = 0 has roots with multiplicity > 1. When this happens,
p(s) will have repeated factors for all choices of I. The partial derivatives above will all be zero. But

we can remove the repeated factors by first choosing a random I, setting p(s) = R(s,l) and then
defining

5(5) = p()/GCD(p(s), )

This time, we define r; = gf? /“1—11%. The partial derivatives are again computed using SLPs, and they
will be non-zero for almost all choices of I.

4.3 Sign Determination

Most of the recent work on real algebraic algorithms makes use of a sign-determination lemma due
to Ben-Or, Kozen and Reif [BOKR86]. This lemma, henceforth called “BKR”, takes a univariate
polynomial p(s), and polynomials ¢(s),...,qx(s), and returns m sign sequences o € {=,0,+}*,
where m is the number of real roots of p(s). Each sign sequence o corresponds to a particular root
a; of p(s), in such a way that o; = sign(g;(e;)).

Given the importance of BKR, it is natural to look for improvements and simplifications. In
(Can91b] and [Can93b], we described a faster and simpler version of BKR, which allows purely
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symbolic elimination. It eliminates the matrix rank tests of BKR, replacing them with a simple
recursive algorithm.

4.3.1 Sign-Determination Algorithm

The input is the polynomial p(s), and polynomials ¢;(s),...,qk(s) with rational coefficients, and of
degree at most d. The output is the set of sign sequences {(¢1(¢;),...,qk(e;))} at the m < d real
roots a; of p(s). Note that the set of sign sequences is an unordered set, and the algorithm does not
output the sign sequences in the order of the a; as real numbers.

1. We assume at the i** step that the algorithm knows for each sign sequence of ¢1,...,¢_1, how

many roots of p(s) produce this sign sequence. Most of these are zero, and the algorithm only
stores the sign sequences with at least one root, and the number of these is m;_; < d.

2. There are 3m,_; possible sign sequences for qy,...,q, and each of these defines a column of
the matrix K, 3m,_,. These columns are linearly independent, so there are 3m;_; rows which
together with the specified columns, define a square submatrix J; of K;3m,_,-

3. We solve the 3m;_; x 3m;_; system corresponding to this matrix, to find the actual sign
sequences of ¢,...,¢;, and repeat the above steps fori =1,..., k.

The first task then, is to give a procedure that accepts a list of m columns of the matrix K, m,
and returns a list of m rows, such that the resulting m x m matrix is non-singular. This procedure
needs to run in polynomial time in n» and m and not the size of K, .

The second task, which is very easy, is to determine the entries of this submatrix of K, n,. Again
this must be in polynomial time in m, so we cannot aford to construct all of K, . This task reduces
to determining the value of a single element of K, ,, given its row and column indices. Both steps
can be solved with simple recursive procedures whose running time is O(nm) and O(n) respectively.
Refer to [Can91b] and [Can93b] for details.

Let m denote the number of real roots of p(s), then m is not more than d, the degree of p(s).
The overall running time is:

O(n(md?log? m + m3)) (9)

assuming naive algorithms for polynomial arithmetic. The improvement over the original BKR is
that we have reduced the maximum number of polynomials in a Sturm query from n to log m. Since
the actual number of real roots of a polynomial is small compared to its degree, the complexity
of BKR without this improvement would typically be nm3d? times some log factors. With the
improvement, we typically get nmd? times some logs.

4.4 Efficient Arithmetic

There are traditionally two routes to take when writing code to solve algebraic problems (i) Using
floating point, and (ii) using exact arithmetic and arbitrary precision integers. Neither approach is
satisfactory for large problems.

If a single floating point number is used to approximate a real number, then approximate tests for
equality, based on an “epsilon” parameter, have to be used. Two numbers that are nearly equal are
delared to be equal, and there is no way to tell if this is a false assumption. The author experimented
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with this approach in the mid 1980s and found that even with double precision arithmetic, Sturm
sequence calculations were unreliable for polynomials of degree > 10. Conversations with other
researchers since have supported this conclusion. A refinement of this approach is to use interval
arithmetic. A real number r is represented as a pair of floats (¢1,¢2), such that ¢; < r < ¢, and
|¢1 — f2| is as small as possible. This eliminates some types of error, but if two intervals overlap, it
is still impossible to tell if the real numbers they represent are equal or not.

Finally, it is possible to construct “arbitrary precision” floating point, which works at fixed
precision until an operation is performed which is a test for zero (or equality). Then the precision
is automatically increased until the result of the test is known for certain. An arbitrary precision
floating point system is described in [Pri91]. This approach is as good as a symbolic approach and
guarantees correct results. The problem is that if the two quantities to be tested really are equal,
the precision must be extended all the way to the equivalent of exact integer calculation. In the
applications we have in mind, this may involve integers of hundreds of words in length. Arithmetic
on such integers takes quadratic time in practice, so the calculation of the two values to be compared,
and all those they depend on, slows down by a factor of 10¢ to 10° compared to double-precision
floating point.

Exact calculation requires arbitrary precision integer arithmetic, and to be efficient, it also re-
quires finite field arithmetic and chinese remaindering. Modular integer arithmetic using chinese
remaindering has complexity O(cp + ap?) with naive algorithms, where c is the number of interme-
diate arithmetic steps, a is the number of integers in the result, and p is the precision in bits. Often
cp dominates ap?. For example, for solving an n X n system of linear equations, ¢ is 0(n?), a is
n, and p for an exact result is O(n). In these cases chinese remaindering offers linear complexity
in p compared to quadratic complexity if arbitrary precision arithmetic is done at the intermediate
steps. The only problem is that p may not be known exactly, and using an a priori bound on p often
leads to unnecessarily high precision. To get around this problem, in [MC93] we used a probabilistic
scheme that does chinese remainder lifting incrementally, and stops when it has sufficient precision.
At this point the lifted integers stop changing with from one iteration to the next.

Even though incremental chinese remaindering method brings down the complexity of large
integer arithmetic, it suffers from the same problems as arbitrary precision floating point. For our
problems of interest, the integers may be hundreds of words long. Even with chinese remaindering,
this slows the algorithm down by a factor of several hundred compared to fixed-precision floating
point. This is still too large a penalty to pay for exact computation.

4.4.1 A Mixed Approach

We will take a new approach, based on the use of both finite field and floating point arithmetic, to
achieve constant cost per arithmetic step. The idea is to use finite fields to test for equality, and then
floating point to compute the approximate values. For example, in Sturm sequence or polynomial
GCD calculation, it is critical to be able to tell if the leading coefficient of a remainder is zero. But
to use the sequence, all that is required is the signs of the actual leading coefficients, and these are
usually far from zero. In what follows, we assume the numbers we are trying to represent are (large)
integers. It is possible to extend the method, with some effort, to rational numbers, but all the
calculations we forsee in the toolkit require integers only.

In our method, we represent a (possibly very large) integer k as a structure with two values. One
is the fixed precision integer k mod p, and the other is a floating point approximation ¢, to k. An
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arithmetic operation on arguments of this type consists of separate operations on the mod p and
float fields. To check two mixed numbers for equality, we check if their mod p values are equal. If
so, we declare them to be equal. The probability of an incorrect answer is very small, and depends
on the size of p. If we require the relative order of two mixed arguments, we compare first the mod
p values to check for equality, and then their float values, and order them accordingly.

In the algorithms we use, equality comparisons are much more frequent than ordering (e.g. every
addition or subtraction of polynomials includes a check for cancellation of the leading coefficient).
It is still possible using mixed arithmetic that we try to compare two unequal numbers, and find
that their floating point descriptions are too close for us to be able to order them. But because the
ordering comparisons are much less common, the chances of this happening are much lower than if
we tried to use floating point alone for equality testing. Nonetheless, ordering tests are a critical part
of algorithms such as the sign determination algorithm, and they cannot be done with the mod p
representation alone. For slightly greater cost than either, a mixed representation give us correct
sign information, and very low probability of failure.

For simplicity, we have described the mixed representation using a mod p integer and a floating
point number. But we also plan to try a mixed representation with an integer mod p and an interval
of two floats. This is a safer representation since the ordering check can determine if the float
descriptions are too close to order, and flag failure rather than producing an incorrect ordering.

4.5 Computing with Infinitesimals

In the algorithms of [HRS90], [Ren92], [GV92] and [Can9la], various singularities are dealt with
by perturbing the input polynomials with infinitesimals. This moves the problem away from the
singularity, and when done carefully preserves the important properties (like connectivity or non-
emptiness) of the input. Computations with an infinitesimal € are done in the rational field Q(¢).
That is, each number a or b in this extension field is a rational function (a quotient of polynomials) in
€. To perform arithmetic, we use the usual rules for arithmetic on rational functions. To determine
the sign of such an element, we exclusive-or the signs of its numerator and denominator, which are
polynomials in €. To determine the sign of a polynomial in €, we use the sign of the lowest degree
non-zero coefficient.

But it is very expensive to compute with explicit rational functions. For example, in the extension
R(u, ¢, 6, p) that we have been using, an element of degree 10 would have several hundred coefficients.
But the sign of the element, which is all we need for the sign-determination algorithm, is determined
by just one of these coefficients. This element is the lowest degree element under the lexicographic
ordering p < e <6 < p

If we knew that this element was say p*eé%p, we could find it by computing modulo the ideal
(1®, €%, 8%, p?), which effectively discards higher-degree terms. Since we dont know the degree, we
would have to do some search, gradually increasing degree until we obtain a non-zero term. Rather

than doing this repeatedly, we can obtain the lowest degree term by differentiating a straight-line
program.

4.5.1 Straight-Line Program Arithmetic

In our approach, we use arithmetic straight-line programs to represent the intermediate values in a

calculation, as advocated by Kaltofen et al. in [Kal88, Kal89, FIKY88]. An SLP may be represented
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as a directed acyclic graph. Each node of the graph holds an operation type, such as “+” and a
value. If the operation is a binary operation, the node will have indegree two, with two incoming
edges from the nodes which are arguments to the operation.

Computation with SLPs is split into two phases (i) creation and (ii) evaluation. During creation,
unevaluated SLP nodes are created. e.g. If a and b are numbers represented as SLPs, computing
¢ = a + b means adding an SLP node with undefined value, operation type “+” and two edges
from the nodes representing @ and b. During evaluation of a node, the value field of that node
is computed by applying the operation to the value fields of the two argument nodes. Evaluation
involves a depth-first search of the SLP graph.

In our implementation, the creation and evaluation phases are transparent, and only normal
arithmetic operations are visible. We do this by implementing arithmetic operations with creations,
and comparisons with evaluations. This is a form of lazy evaluation, although the SLP sub-graph
on which a node depends is always retained, even after the node is evaluated.

The data structure for an SLP node has several essential fields: two argument pointers, which
point to a and b in the example above, the operation field (e.g. “47), and a value field, which holds
the value of the node during evaluation. There will usually also be a flag field to indicate that a
node has already been evaluated, so that the SLP can be evaluated with depth-first search. And in
the toolkit, we will need the values of various derivatives and anti-derivatives of SLP nodes, which
adds two additional pointers to the data structure.

Suppose we have computed an element a € R from some other real values b1,...,b, via a series
of arithmetic operations. For example, such a could be a coefficient of p(s) described in section 4.2,
or a coefficient of one of the Sturm query polynomials. We can represent a as an SLP rooted at
the values b1,...,b,. Now suppose that b; is specialized to the infinitesimal value €, and that the
other b; take on integer values. We would like to know the sign of a. For simplicity we assume that
a = a(€) is a polynomial in €. This is all we need in our applications.

We could substitute € = 0 and evaluate the SLP over the rationals. If we are lucky, a(0) will have
a non-zero value, and this gives the sign of a(e). If not, we can construct an SLP for the derivative
%ﬂ. This has roughly double the size of the original SLP. Now evaluating this program at ¢ = 0
gives us ay, the coefficient of ¢ in a(e). If this is non-zero, it gives us the sign of a(e€), otherwise
we compute the second derivative, and continue. The extra program for the &¥** derivative is about
k 4 1 times the size of the original program, and it uses nodes from the first £ — 1 derivatives. The
total program size to compute the k% derivative is (’“52) times the original.

This process generalizes easily to multivariate elements, using randomization. For example, to
find the sign of a(u, €, §) with 4 < € < 6, we first substitute random integer values for € and §. With
high probability, this doesnt change the degree of the lowest degree term in . Then we apply the
procedure above to obtain an SLP for the first non-zero derivative wrt pat u=0. Let aa(u,e€,é)
denote this derivative. Then aa(0, ¢, ) is the lowest-degree coefficient of @ in i, times the constant
k1!, where ky is the order of the derivative.

We iterate the process, and set § to a random integer, 4 to zero, and run the univariate procedure
on the SLP for aa as a polynomial in €. This gives us an SLP for the first non-zero derivative wrt €
at € = 0, which we denote aaa(y, ¢, §).

Finally, we run the univariate routine on the SLP aaa with p and ¢ both set to zero. Evaluating
the resulting program at 4 = € = § = 0 gives the sign of the lexicographically first term, which is
what we need.
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Some simple analysis shows that the SLP for computing the sign when the lowest degree term is
pF1ek2 6% is k2k2k2 times the original. More generally we have

Proposition 4.2 Let P(ey,...,en) be a polynomial, represented as an SLP with L vertices. If
€ < -+ < €, are infinitesimals, and if the lexicographically first term in P is cekt ... éfm | then an
SLP for this term can be constructed having size < Lk?...k2,, in the same number of steps.

We claim this method is useful in practice because the k;s are typically small constants, indepen-
dent of the degree of a in u, ¢, 6. Each infinitesimal is used to perturb away from a possibly singular
input, and the degree in that infinitesimal is a measure of the multiplicity of the singularity. Where
the input is not singular at all, the degree in that infinitesimal will be zero. Most of the time, we
expect small multiplicities, and the cost of working over the infinitesimal extension should be only
a small constant factor more than integer arithmetic, this factor being the increase in the SLP size.

4.6 Complexity

We measure the complexity of a predicate with four quantities, the number of polynomials k, the
number of variables n, the maximum degree of the polynomials d, and the maximum coefficient
length ¢ of the coefficients of the polynomials.

The time complexity of the inequality solver is

Entl d(O('n))c2

arithmetic steps. This is an improvement over the previously published algorithms for the existential
theory [Ren92], [HRS90] and [GV92], and is within a factor of k of optimal. More importantly, the
algorithm is simple, and there are no large constants hidden in the exponents.

The d°(™) bound can be made more precise. The use of sparse elimination, mixed arithmetic and
lazy limit-taking gives a typical complexity of O(d®"). This assumes that the input is non-singular
or has only low-order singularities. Higher order singularities may require many derivatives to be
taken, pushing the complexity up as a polynomial in the number of derivatives.

This is a dramatic improvement over other published algorithms [Ren92], [HRS90] and [GV92],
all of which give only a “big-O” estimate of the exponents of both k and d, that is, their bounds
are of the form (kd)o(”). Based on the number of infinitesimals used, it is unlikely that any of these
algorithms has typical complexity less than O((kd)™).

5 Future Work

5.1 Coefficient relations

We have now a good understanding of Newton polytope volumes and their effect on the number of
solutions. Given a system with general coefficients, we can compute the sparse resultant, and that
is the smallest possible eliminant. But often in practice, the coefficients of the system we are given
will satisfy some relations, and the sparse bounds are no longer the tightest possible.

As an example, consider the system f; = 1+ 2 4+ y + zy, and f; = 1+ 2z + 3y + 42y, whose
Newton polytopes are the same unit square. The mixed volume of the system is 2, indicating two
solutions. Now suppose we make a change of coordinates, say ¢ = v + v, ¥y = u — v. Then the
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equations become fj = 1+ 2u+ u? — v, and f; = 14 5u — v + 4u? — 4v2. Both these equations
have Newton polytopes which are simplices of side length 2, and the mixed volume is 4. The number
of affine solutions has not changed, but the coefficients are now dependent, and the leading terms
(terms of degree two) of the equations now have roots in common. In this situation, Bernstein’s
theorem is an overestimate. If we used a sparse homotopy method to track the roots, we would find
that two of them diverged to infinity. If we compute the sparse resultant of a system of polynomials
whose coefficients are dependent, we may find that it is indentically zero. This indicates that there
some roots always present, usually at infinity.

This situation is quite common, and perhaps the most striking example is the inverse kinematics
of a rotary-joint robot. The simplest way of writing down these equations gives rise to 6 equations
of degree 6. The Bernstein bound is about 2,000, while the Bezout bound is 46,000. The number of
affine solutions is only 16 [RR89]. The kinematic equations of [RR89] for the same problem give a
Bernstein bound of 384.

The large fluctuation in the bounds is caused by the heavy dependencies between the coeffi-
cients of the equations. For kinematics, the polynomial system consists of 6 of the elements of
the matrix product A;(#;)---As(ts) = B. Each matrix A;(t;) has elements which are quadratic
functions of ¢;. This would give degree 12 overall, but we can take instead A1(t1)Aa(t2)As(ts) =
BAG'(te)A5'(t5) A7 1(14), because the inverses are also quadratic functions of ¢;’s. Clearly, the ma-
trix products lead to many common subexpressions in the final polynomials. The dependencies that
result reduce the number of solutions, but this is not manifest in the Newton polytopes.

Surprisingly, we can make the structure manifest by introducing new variables. We assign these
variables to the common subexpressions and replace each occurence of the expression with the
corresponding variable. This increases the dimension of the problem, and may or may not reduce the
degree. The Bezout bounds will usually increase significantly as a result, but the Bernstein bounds
decrease. This runs against the conventional wisdom for dealing with multivariate polynomials,
which is to keep the number of variables as low as possible. But by reducing the Bernstein bound,
we can use methods based on sparse homotopies or sparse resultants to solve the problem with much
better time bounds.

We have applied this idea to a problem in computer vision. The problem, discussed in [FM90],
is to determine the camera displacement given the ,y coordinates of a set of points from two views.
The equations given there are:

(u2 - Uo)(v2 - 121) = (1)2 - vo)(uz - Ul)
(uz2e2 — ugeo)(vaey — vi€]) = (vaeh — voeh)(uzez — urer)

(001u22 + 602u12 + 260u2u1)(6§v0v1 — 661’022 - 561)11)2 - (5{1)0’02) =
(80122 + 8pav1% + 2650201 )(Sauour — borus? — Sourug — 8yugus)

(bo1uz? + 612up? + 261 ugu0) (850001 — 601022 — hv1ve — Elvovy) =
(601v2% + 612pv0? + 265v9v0)(62u0u; — Soru2? — Sourug — 61u0uz)

The system is bi-homogeneous in the two sets of variables (uo, u1,u2) and (vo, v1, v3). The main
result of the paper [FM90] is that this system has 10 solutions, meaning that there are 10 possiblities
for the camera displacement. (In fact this result was proved earlier by Demazure, but the proof was
non-elementary, and the proof in [FM90] is straightforward) If we evaluate the Bernstein bound for
the system as given, we find that there should be 18 solutions.
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But inspection of the equations shows that there are common subexpressions in the last two

equations. We can introduce two new variables, 2, and z to describe these, leading to the apparently
equivalent system:

(uz2 — uo)(v2 — 1) = (vz — wo)(uz — u1)
(ugeq — ugeq)(vaeh — v1€)) = (voeh — voep)(uzes — urer)

— ! 4 2 ! !

Ty = (62’00’01 - 601’02 - 501)1’02 — 61001)2)
— 2

T2 = (52U0U1 ~ bo1u2” — bpurug — 51’“0"2)

(bo1u2? + bogur? + 260uzur a1 = (8,022 + 55012 + 2640501 )22
(boru2?® + b12u0? + 261uzup)z1 = (85,022 + 89002 + 264v2v0) 2

which has a sparse bound of 12, almost optimal. It seems strange that the second system has
fewer solutions, but remember that Bernstein’s theorem counts roots in (C*)*. These solutions
have all their coordinates non-zero. By introducing z; and ,, we have forced the corresponding
subexpressions to be non-zero for a valid solution. It was the vanishing of these expressions, together
with the first two equations, that led to 6 spurious roots in the first system.

This kind of substitution is a useful heuristic for improving bounds, but we would like a better
understanding of the phenomenon underlying it. Specifically, we would like to extend the theory of
sparse systems from systems f; = --- = f, = 0 to compositions of polynomial maps F; : C™-1 — C™,
of the form Fy(Fy(---)) = 0.

In the example above, the original system can be thought of as a composition of two maps
Fy(F3()). The map F, : K® — K?® has 8 output values which are (uo, uy, uz, vo, v1,v2, &1,22). The
map F : K® — K gives, say, the differences between LHS and RHS of the 4 equations. But the
equations in Fj are the reduced equations 5.1 which use z; and z instead of the expressions they
replace. By performing this decomposition, we have produced polynomial maps F; and F, with
coefficients that are generic, or at least, more likely to be generic. Bounds for this system should be
tighter than for the original equations because the dependencies have been removed.

Tight bounds for the number of roots of compositions of maps would have many implications.
For example, the kinematics of any mechanism with rotary or sliding joints can be written in that
form. The number of solutions for the mechanism could be determined algorithmically. As we have
seen, an understanding of sparse bounds often leads to good algorithms for solving the system. If
this too were possible for compositions of maps, efficient solvers could be constructed automatically.

This is particularly important for new types of complex mechanisms, such as silicon microstructures,
which have large numbers of interacting links.

5.2 Pfaffian equations

One of the most important extensions of the theory of the real numbers is to Pfaffian systems. These

are systems which satisfy ordinary differential equations in a single dependent variable, time, of the
form

X = A(X)u

where X is a vector of states, A is a matrix whose entries are polynomials in X, and u is a vector
of control inputs. If B(X) is a matrix whose null rowspace is the column span of A, the system can
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be written in equivalent form as

B(X)X =0

Pfaffian systems include most of the systems studied by control theorists and many dynamic
problems in other branches of engineering and physics. The complexity of deciding properties of
such systems seems hopeless at first because of the possibility of infinite oscillation, limits cycles etc
and chaotic behaviour. But if one places some reasonable constraints on the domain of the state
variables, some remarkable properties emerge. This line of work began with the remarkable book by
Khovanski [Kho91]. He showed, among other things, that Bezout-like bounds apply to the number
of intersections of trajectories (“p-curves”) of Pfaffian systems.

Recently there has been progress on extension of the theory of the reals with exponential functions
[Ric92], which are the simplest examples of p-curves.

We plan to work on further extensions of the theory of the reals to include Pfaffian constraints,
and eventually incorporate this capability into the toolkit.
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7 Appendix: Mixed Subdivisions
Let ) denote the Minkowski Sum of all the @;:

Q=0Q1+Q2+ -+ Qnt1 CR"

Define an (n + 1)-argument vector sum @ : (R")("+1) — R™ as (p1,.- -y Pnt1) = P11+ + Pnt1,
where p; € R*. @ may be thought of as the image of @1 X - -+ X Qn41 under @. This is clearly a
many-to-one mapping, but it is desirable to define a unique inverse by regularization. That is, for

each ¢ € ) we choose a unique (p1,...,Pns1) in B~ Hg) N Q1 X - -+ X Qnt1. To achieve this, the
method outlined in [Stu92] is employed.

Choose n+ 1 generic linear forms [y, ...,l,+1 € Z[21,...,2,]. Then the regularized inverse under
® of of ¢ € @ is the point p = (p1,...,Pnt1) € @1 X - - X @n41 minimizes

n+1

I(p) = Li(pi)

=1

There is also a geometric interpretation of the inverse. Define, for 1 < ¢ < n 4 1, lifted Newton
polytopes

A A n
Qi = {(pi, li(p)) : pi € Qi} C R™,
Let the Minkowski Sum of the lifted Newton polytopes be
Q=Q1+ +Qn41 CR™.

The (n + 1)-st coordinate of a point in Qi is to be interpreted as the cost of using that particular

point in the vector sum, that is, as the value of I(p). To minimize {(p), we simply choose the lowest
point in () which lies over gq.
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Let 7 : R**! — R™ denote projection on the first n coordinates, and h : R"*! — R denote

projection on the (n + 1)st. Let s : R® — R"! map points in @ to points on the lower envelope of
¢ above them:

s(g) = §€ 771 (g)N Q such that h(§) is minimized

The lower envelope of Q is then s(Q). For generic choices of /;’s every point § on the lower envelope

can be uniquely expressed as a sum of points g + - - - + Gnt1 With ¢ € Q;. See [Stu92] or [Bet92] for
an explanation.

Let A denote the natural (coarsest) polyhedral subdivision of the lower envelope of Q Each
facet (n-dimensional face) of A is a Minkowski sum Fj +-- -+ F, 11 with F; a face of ();, and because
lower envelope points have unique expressions as sums,

n+1 R
Z dim(F;)=n
i=1
The image of A under 7 induces a polyhedral subdivision A of Q.

Definition 7.1 The subdivision A is a mixed subdivision of the Minkowski sum Q.

The facets of A are of the form F} + --- + Foy1 with the same dimension property as A, a
corollary of which is the following:

Observation For every facet F = F} + --- + Foy1 in A, F; a face of Q;, at least one of the F; is
zero-dimensional, i.e. a vertex.

Definition 7.2 A mized facet of the induced subdivision is a facet which is a sum B+ 4+ Fn
where ezactly one F; is a vertex. Thus the remaining F; for j # i are edges.
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