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Abstract

In this paper we study the problem of determining whether two points lie in
the same connected component of a semi-algebraic set §. Although we are mostly
concerned with sets 5 C R™, our algorithm can also decide if points in an arbitrary
set S C R™ can be joined by a semi-algebraic path, for any real closed field R. Our
algorithm computes a one-dimensional semi-algebraic subset R(S) of § (actually of
an embedding of § in a space R" for a certain real extension field R of the given field
R). R(S) is called the roadmap of S. Our construction uses the original roadmap
algorithm described in {Can88a], [Can88b} which worked only for compact, regularly
stratified sets.

We measure the complexity of the formula describing the set S by the number of
polynomials k. their maximum degree d. the maximum length of their coefficients in
bits c. and the number of variables n. With respect to the above measures, the com-
plexity of our new algorithm is (k™ log? k)do("ac2 randomized, or (A" log k)dO(n*) 2
deterministic. Note that the combinatorial complexity (complexity in terms of k) in
both cases is within a polylog factor of the worst-case lower bound for the number of
connected components Q(A").

1 Introduction

Good sequential and parallel algorithms have been available for some time for deciding the
theory of the reals [Gri88], [GV88], [Can88a], and for real quantifier elimination [BOKRS6],
(HRS90a], [Ren89]. Geometrically, these problems amount to deciding the emptiness or
non-emptiness of semi-algebraic sets, and taking projections of these sets. Recently, atten-
tion has turned to computing geometric properties of semi-algebraic sets, such as counting
the number of connected components. The first algorithm for connectivity was described
by Schwartz and Sharir [SS83] who observed that a cylindrical algebraic cell decomposition
provides a convenient substrate from which to extract connectivity information. This idea
was persued by Kozen and Yap [KY85], who gave a simple formula for deciding adjacency
between cells, and made use of a parallel algorithm for constructing the cell decomposition
[BOKRS6] (this paper contains errors that were fixed in [FGM87], see also [Can91]). Their
algorithm was fully parallel. and had single-exponential parallel running time. From Kozen
and Yap's results it follows that all geometric properties of semialgebraic sets are at hand,
because a semi-algebraic set can be represented as a regular cell complex.
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However. all known methods for constructing algebraic cell decompositions require dou-
ble exponential sequential time and improving this bound remains a major open problem.
50 the two previous algorithms run in sequential time double exponential in the dimension,
with the latter taking single exponential time in parallel. Neither looks practical in the
near future even in low dimensions.

A different approach was taken in [Can88a] and [Can88b], based on the construction
of a one-dimensional skeleton of the set. This construction. called a roadmap, gave much
lower (single exponential) complexity. The original roadmap papers [Can88a)] and [Can88b],
see also [Tro89]. made use of regular stratification [GWDL76], rather than a cell decom-
position. which allowed a very coarse (and efficient) partition of the set. Let us measure
the complexity of the formula describing the set S by the number of polynomials &, their
maximum degree d. the maximum length of their coefficients in bits ¢, and the number of
variables n. The complexity of finding paths in [Can88a] was (k" log k)d°"*)¢?, and since
the lower bound on the number of components is Q((kd)™), this algorithm is nearly optimal
i terms of A. This is important for applications in geometric modelling and robotics where
¢ and n are small and fixed. but k. representing the number of surfaces. may be large.
The disadvantage of the algorithm in [Can88a], which we will henceforth refer to as the
toadmap algorithm. is that it required the semi-algebraic set to be compact and in general
position.

Later Grigor'ev and Vorobjov [GV89] gave a (dk)°"™*) algorithm for finding paths in
arbitrary semi-algebraic sets, and the Franco-Argentine school in [HRS90b] and [HRS90c]
gave a solution for the general case with a running time of (dk)"”"’. However, the double
exponents of both algorithms appears to make them impractical for robotics or geometric
modelling applications. The problem of actually finding the connected components in
exponential time. i.e. giving quantifier-free formulae for them, was solved in [CGV91]. See
also [Gou91] for an explicit construction of roadmaps for compact but possibly singular
semi-algebraic sets.

In this paper we describe a method for path-finding in the general case which has a run-
ning time of (k" log® k)d°™)c? randomized, which is within log k of the original roadmap al-
gorithm. Making the algorithm deterministic increases the complexity to (k" log k)d®("*)¢2.
Note that the combinatorial complexity in terms of & in both cases is very close to the worst-
case lower bound of (k™) on the number of connected components. The new method
performs a direct reduction from the general case to the compact, regularly stratified case,
so that the algorithm of [Can88a] can be applied. This reduction increases the size of the
input by a log factor. Each polynomial in the formula defining the original semi-algebraic
set is replaced by polynomials which differ in their constant coefficients by various infinites-
imals. The new collection of polynomials define a semi-algebraic set which is compact and
regularly stratified, and has the same connected components as the original.

2 Preliminaries

The input to the algorithm is a semi-algebraic set S defined by polynomials with rational
coefficients. For a set defined in n-dimensional space, the polynomials lie in the ring
Qle] = Q[xy,.....ty]. Formally, a semi-algebraic set is defined as:



Definition Let £,.... F; € Q[z] be a collection of polynomials with rational coefficients.
A semi-algebraic set S C R™ is a set derived from the sets

SiZ{JIERnIFi(:E)>O} (1)

by finite union, intersection and complement.

A semi-algebraic set can be defined as the set of points in R™ satisfying a certain
predicate of the form B(Ay, ..., Ax) where B : {0,1}F — {0,1} is a boolean function and
each A4, is an atomic formula of one of the following types:

(F:=0) (F#0) (F>0) (Fi<0) (F20) (F<0) (2)

with £} € Q[z]. In the analysis that follows it will be helpful to assume a certain form for
the defining predicate.

Definition A formula B(A;, ..., Ax) is said to be in monotone standard form if the
boolean function B is monotone, and all atomic formulae A; are either (Fi=0)or (F;, >0).

An arbitrary formula can be converted to monotone standard form with a constant
factor increase in size. Assume we are given a boolean circuit C' to represent the function
B. This circuit can be converted to a negation-free, and therefore monotone circuit C'ar as
follows. For each node v € (" there are two in (s, one of which represents v and the other
—v. Now all primitive logical operations between nodes in Cyy can be implemented with A
and V. e.g. if (7 = ('3 V ~Cs in the circuit C', in Cyy, the node representing ('; is the V of
the node representing C3 and the node representing =Cs. We also need to compute —C’ for
later use. and this node is the A of the node representing —~C5 and the node representing
(,Vs.

The circuit ("y; defines a monotone boolean function of the original atomic formulae and
their negations. The negations can be pushed into the atomic formulae by replacing ~( F; >
0) with (£} < 0) etc. This formula can be converted to standard form by substituting for
the inequalities <,#,> with a union of a pair of inequalities using > and =. Overall the
number of atomic formulae increases by a factor of at most four compared to the original
predicate.

Predicate complexity

We measure the complexity of a predicate with four quantities, the number of polynomials
k. the number of variables n, the maximum degree of the polynomials d, and the maximum
coefficient length c of the coeflicients of the polynomials.

There remains one sticky point with regard to the boolean formula B. There is a certain
cost associated with evaluating B, given the signs of the F}’s. This time is clearly linear for
the first evaluation. The algorithm of [Can88a] requires frequent re-evaluation of B when
a single F; changes sign. Our complexity bounds will be valid if the time to re-evaluate
B when a single F; changes sign is O(log k). In [Can90] we show that this will be true if
the function B is defined by a formula. Basically, we show there that an arbitrary boolean
formula can be converted to an equivalent log-depth trinary formula (in polynomial time).
The predicate B has been assumed to be a formula in most previous work on semi-algebraic
sets. Our algorithm will still work if the function B is represented by a general circuit. but
if the time to re-evaluate B when a single input changes is greater than log k, then we must
substitute this larger time for log £ in the complexity bounds above.



2.1 Stratifications

Definition A stratification S of a set S C R™ is a partition of S into a finite number of
disjoint subsets S, called strata such that each S; is a manifold.

A regular stratification satisfies some additional conditions which are well described in

[GWDL76]. There are several basic ways to construct regular stratifications. We will only
need two:

e Taking products. If C and D are regular stratifications of the spaces ' and D
respectively. then the product C' x D is a regular stratification of C' x D.

¢ Preimage of a transversal map. If F: M — N is transversal to D for a regular
stratification D of a subset D C N, then F~'(D) is a regular stratification of F~ Y D).

where F° M D means F is transversal to all the strata of D, and F~Y(D) is the set
{F o) oe D} If we now define

Definition Let /, € Q[z].i=1...., k be a collection of polynomials that define a map
I R" — R* A sign sequence o is an element of {R™.{0}.R*}*. The sets F~Y(o) are
called sign-invariant sets of F.

T'hen we can view a semi-algebraic set S as a finite union of sign-invariant sets of some
polvnomial map F. The sign partition (R)* of R* is a regular stratification of R*. So if
a map F': R® — R* is transversal to (R)¥, then the preimage F- Y((R)¥), which is the

collection of sign-invariant sets of F', is a regular stlatlﬁcatlon

2.2 Infinitesimals

We will make extensive use of extensions of real fields by infinitesimals. This process is
simple to implement computationally, and has been well formalized in [BCR87] using the
real spectrum. An elementary description of the use of infinitesimal elements is given in
[Can88c] in an algorithm for the existential theory of the reals.

Definition For a given real field R, we say that an element ¢ is infinitesimal with respect

to R if the extension R(e¢) is ordered such that e is positive, but smaller than any positive
element of R.

We will have cause to make use of towers of such field extensions. We will use the
suggestive notation é > € for two infinitesimals to mean that € is infinitesimal with respect
to the real closure of the field R(§).

Strictly speaking, in what follows we do not need true infinitesimals. Any result that
we prove for an infinitesimal will hold for all sufficiently small real values. This follows
because the “bad sets” or critical sets for the various calculations we perform are semi-
algebraic. and there is a smallest bad real value. Even when we use towers of infinitesimals, ,
as long as we choose a good real value for each variable. there will be a good real value for
the next variable that is “small enough” with respect to it, and which avoids the bad set.
Some of our proofs will be phrased as though the infinitesimals were real numbers. This



saves us having to use awkward definitions of compactness, connectivity and regularity

for arbitrary real closed fields. This idea may be seen as a special case of the “Transfer
Principle” [Tar43|.

3 Reduction from an unbounded to a bounded set

This is a rather standard reduction which is used in a number of places, see for example
[Can88c]|. First we show that the unbounded set S C R™ is homotopy equivalent to a
bounded set. For this purpose, let p(zy,...,z,) = z? + -+ + 22 be a polynomial radius
function. Consider the set SN D, where D, = p~!([0,r]).

Lemma 3.1 There exists a positive rq such that for all r > rq, SN D, s a deformation
retract of S.

Proof Let I = (Fy,....F;) be a set of polynomials which define 5. Let R" be a
Whitney regular stratification of R® which is compatible with the sign-invariant sets of F.
All sign-invariant sets are unions of strata. Such a stratification is described in [BCRS37].
By the semi-algebraic Sard theorem [BCRS87], the map p has only finitely many critical
values when restricted to any of these strata. Let ro be the largest critical value, then for
all r > rg, SN D, has the same homotopy type (hence number of connected components)
as 5. To see this, use p to lift a vector field on [r,o0) to one on R™ — Int(D,) which is is
compatible with the stratification of R™. The flow along this vector field defines a retraction
of S onto SN D,. a

So to find connected components of S it suffices to find components of SN D, for
sufficiently large r. In practice this is done by treating r as an indeterminate element of
the base fleld. When it comes time to determine the sign of a base field element, which will
be a polynomial in r, we use the sign of the highest degree term in r. This correctly gives
the sign for sufficiently large r.

4 Reduction to a regular stratification

As was shown in [Can88a] one can obtain a regular stratification by taking the sign-invariant
sets of a system of polynomials in sufficiently general position. In the present case, the given
F; will not be in general position. In [Can88a] a fixed perturbation was applied to their
constant coefficients to achieve this. Now consider the following symbolic perturbation of

the F = (Fy,....F:): R® — R¥. Define
Fo=F+ea (3)

where a € R* is supposed constant for the time being, and ¢ is a single infinitesimal.
As shown in [C'an88a] for almost all choices of the constant coefficients ea, the map F.,
is transversal to the natural stratification by sign (R)* of R*, where R = {R™, {0},R*}.
In particular. if we fix a = (a4,...,axr), then for almost all such choices, the map F,, is
transversal to (B;_)k for almost all . This implies that the sign-invariant sets of F,, form
a Whitney regular stratification, a very important property for us later. We assume for



now that such a;’s have been found. Later we will show how they can be determined either
deterministically or probabilistically.

Assume the a;'s were chosen to be positive, the sign-invariant sets of (3) are the same
as for

F]/al + €
Fg/ag + €
S (4)
Fi/ay + ¢
Detine (7, = F,/a,. Then another way to describe the sign-invariant stratification of the

last paragraph is as the preimage under G of the stratification (R)*.

Now suppose instead of a single polynomial, we replace each F; by four polynomials as
tollows:

Fila; + 6, Fi/a; + e, Fila; — e, Fila; — 6 (5)

this gives us a system of 4k polynomials H;, and we claim that for almost all « and for
almost all pairs (¢.8), the map H is transversal to (ﬂ)4k.

We can say this another way as follows. Let Rs, be the stratification of the real line
mnto the points —. —¢, €, and & and the open intervals in between and to +o0o0. Then we
have the following general position lemma:

Lemma 4.1 For almost all « € R*, the map G = (Fy/ay,...,Fy/ay) is transversal to the
stratification (Rs)* of R*, for almost all (6.¢).

Proof We say that a value of « is regular if the set of (4, €)-values such that G is not
transversal to (Rs)* has measure zero in R?. The map G is transversal to (Rse)* if it is

transversal to all the strata of (Rs.)*.

If we can find a value of @ which is ;cgular with
respect to every stratum, we are done because the set of values of (6, €) for which G is not
transversal to (Rs)* is the union of the sets of values for which it is not transversal to the
individual strata. This is a finite union of measure zero sets, and so has measure zero.

We show below that the set of a values which are not regular with respect to a given
stratum has measure zero in R*. From this is follows that the set of a values which are not
regular with respect to the stratification (Rs.)* is measure zero in R¥. Again this is because
it 1s the union of measure zero sets corresponding to non-regular values for the individual
strata. This will complete the proof.

5o 1t remains to show that the set of non-regular values a of G with respect to a given
stratum o5, in Rs has measure zero in R*.

Now o5, 1s a product of points and open intervals in R. From the definition of transver-
sality given earlier, it should be clear that G will be transversal to os, if dG is surjective in
the subspace V' of R* comprising those coordinates where o, is a point. Write G|y for the
map (7 restricted to those coordinates, and o]y for the restriction of ogs. By definition,
p = 0sv is a single point in V. The condition that G be transversal to o5 is equivalent
to the condition that p be a regular value of G|v. '

Now define ¢ € V by ¢; = a;p;. The condition that p is a regular value of Gly is the
same as the condition that ¢ is a regular value of F|y. By Sard’s theorem, we know that
the set of non-regular ¢ values has measure zero in V. In fact the semi-algebraic version of




Sard’s theorem [BCRB87| tells us that the set of bad values is semi-algebraic. Since it is a
measure zero set. it must be contained in a algebraic proper subset Z C V.

The :** coordinate of g is either +a;e or £a;6. Choose a ¢ that avoids Z and temporarily
suppose ¢ = 6 = 1. This fixes the corresponding values a; to +¢;. Let L denote the map
taking ¢ to @ when ¢ = 6 = 1, and suppose henceforth that a is fixed at some value L(q)
where ¢ &€ Z. If ¢ and 6 are supposed variable again, the plane in V parametrized by ¢ and
o intersects Z in an algebraic set. Since this set does not contain the image of the point
(1.1). 1t must be a codimension one subset. Hence for almost all pairs (6, €), the point g is
a regular value of F|y.

Now notice that any value of a which is not in the codimension one set L(Z) is a
regular value in the sense defined above, with respect to a given stratum. Taking the union
of the L{Z) for all strata, we obtain a codimension one set of a values for which G is not
transversal to s for almost all 6 and e. d

Once we have this regular stratification, we can use a certain subset of the strata to
approximate an arbitrary semi-algebraic set. Define Ry, = (—00, —8] U [—€. €] U [6, o0),
then R.ep is a closed set. Intuitively, this is a partition of the real line separating values
that are nearly zero from those that are definitely non-zero. We will show later that the
connected components of the preimage G7!((R.ep)¥) are in one-to-one correspondence with
the connected components of sign-invariant sets of F (if § > ¢ > 0 are both sufficiently
small).

For each sign-sequence o € (R)*. there is also “separated” sign-sequence .., defined as

b.0c)  if o;=R*
(Osep)i = [—e. €] if o, = {0} (6)
(=00, 8] if oi=R-

and the o, are exactly the connected components of (Rsep)k.
The set Rqep has a regular stratification, denoted Rsep:

Rsep = {(—OO. '—6)3 {—6}7 {_6}’ (—67 6)3 {6}7 {6}7 (67 OO)} (7)

but because we chose a carefully, the preimage G7!((Ryep)*) is a Whitney regular strati-

fication of G7'((Rsep)*). Since the preimage is also a closed, bounded set, and therefore
compact. the algorithm of [Can88a| can be applied directly to compute its connected com-
ponents. This takes us a long way toward computing the connected components of a given
semi-algebraic set, and leaves us only with the task of determining adjacencies between
connected components of sign-invariant sets. For now we must show

Theorem 4.2 Let G = (F\/ay,..., Fi/ar) and Rsep be defined as above. Then the con-
nected components of sign-invariant sets of F' are in one-to-one correspondence with the
connected components of G™((Rup)*) for almost all a € R* and for all sufficiently small
6> e>0

The result follows from the next two lemmas. There is a natural correspondence between
each non-empty sign-invariant set F, = F~'(o) and the set G7'(0sp). The lemmas show



that these two sets have the same homotopy type, by showing that they can be retracted
onto a common subset.

Consider a particular sign-invariant set F, of F, and number the F’s such that k,...F,
are all zero on F,. and the remaining polynomials are non-zero. Assume also for simplicity
that all non-zero Fi’s are positive on F,. We replace each inequality F; > 0 for 1 > m
with a new inequality F; > é. Together with the inequality p < r (p is the radius function
defined earlier), this defines a closed set F (§) which is a subset of F, for § > 0. Since it
1= also a subset of the compact ball of radius r, it is compact.

We first show that the homotopy type of F(§) is the same as that of F, for small
enough ¢. In fact we have

Lemma 4.3 There erists a positive &y such that for all positive § < &, the set F~(8) isa
deformation retract of F,.

Proof  Consider the set D in R**! defined as D = {(x1,...,2,,6) | = € F7(6)}. Think
of [ as the “graph” of F;(6). D is certainly semi-algebraic. and so has a Whitney regular
stratification compatible with the signs of the polvnomials F; and (F; — 6). The projection
7. o (r.6) +— 6 has a finite number of critical values when restricted to these strata. Choose
&n > 0 to be the smallest positive critical value, and let § be any positive number less than
0g. Then 75 is regular on all strata for values in the range (0.6]. We can use 74 to lift
a vector field on (0.6] to a vector field on D which is compatible with its strata. Since
) 1s compact when restricted to [0,6]. this gives us a deformation retraction of the set
Dl = 75 (0.6]) onto the compact set D = T (6).

But if we define 7, : (2.6) = «r, then the projection 7.(Gl4) is i* st F,. and 7,(Dls)
1s just F7(6). Furthermore, composing 7, with the deformation r. raction of the last
paragraph gives us a deformation retraction of F, onto F (§). O

To guarantee that ¢ is small enough, we leave § as an indeterminate element of the base
field (like r), and when it comes time to evaluate the sign of a base field element, which is
a polynomial in r and ¢é. we first find the term of lowest degree in é, then among all terms
with this degree in 6 we take the sign of the highest degree term in r. This is equivalent to
preceding all evaluations with the quantification 3rq Vr > rq 360 V6 < & . . ..

Operationally, this is also equivalent to working in a real field extension R(r, §) where r
is larger than any element of R and ¢ is smaller than any ~lement of the real closure of R(r).
However. in the algorithms that follow, all the numerical calculations we make will involve
polynomials from R[r,]. We do not need r and ¢ to be values that do not lie in R, but
only “sufficiently large” or “sufficiently small” real values that the signs of all polynomials
are correctly computed. If we work only over the reals, life is much easier, since the usual
notions of compactness and connectivity apply.

In the last lemma we defined compact sets F () with the useful properties that they
are compact and are deformation retracts of sign-invariant sets. This means that each
connected component of a sign-invariant set F, contains a single component of F(6). Next
we define a set FF(é.¢) which is a “neighborhood” of F;(6) and can be retracted onto
it. To define F}(6,¢), we take each inequality in an F; and replace it with one or two
inequalities:

(Fi+ea; 20)A(Fi—€a; <0) if o, ={0}

(8)
(F: — 6a; > 0) if o, =R*



and notice that £} (é.¢) is now compact. By the previous general position lemma, it is also
regularly stratified by the signs of the polynomials that define it. Notice also that F7(6)
1s a subset of FF (6, ¢).

Lemma 4.4 Assume & is chosen to satisfy lemma {.3. There exists a positive €g such that
for all 0 < € < o, the set F7(8) is a deformation retract of Ft(4,¢).
Proof  We only sketch this proof since it is almost identical to the proof of lemma 4.3.
Let D in R*! defined as D = {(z1,...,zn,¢) | z € F}(é,¢)}, treating 6 as a constant.
For all sufficiently small € > 0, the set D has a Whitney regular stratification D into sign-
nvariant sets of the polynomials that define it. There is some ¢, which is the smallest
positive critical value of the projection 7 : (z,€) — € restricted to D. For € < ¢y, We can
use 7 to lift a vector field on (0, ¢] and thereby define the desired retraction. (]

Notice that FF(d,€) is exactly the set G~'(04ep), the non-singular approximation of
F~'{a). Since F, and F}(6.¢) have a common retract F;(6), they have the same homotopy
tvpe and hence the same number of connected components. This completes the proof of
theorem 4.2.

Finally. we observe that the sets F}(6,¢) and F(6.€) are disjoint for o and o’ distinct.
This follows because if the union of a component of Ff(6.¢) and a component of F (6. ¢)
were connected, then its image under G would have to be connected also. But that image
must lie in the union of the disjoint sets 7., and Oqepr @nd it must intersect both, which is
impossible.

So the connected components of G=!((Rgep)*), which are the union of connected compo-
nents of FF(4.€)’s, correspond exactly to the connected components of sign-invariant sets
of F. Since G™'((Rqep)*) is a compact set which is regularly stratified as G ((Rsep)*), we
can apply the algorithm of [Can88a], modified to work over arbitrary real coefficient fields
as described in [Can88c].

All that remains to determine connectivity of a given semi-algebraic set is to determine
the adjacencies between connected components of sign-invariant sets. This we deal with in
the next section.

5 Determining adjacencies between sign components

[n the last section, we modeled connected components of sign-invariant sets F, with regu-
larly stratified compact “neighborhood” sets Ff(é,¢). In this section, we show that these
neighborhood sets can also be used to determine adjacencies between components. We will
need to make use of a “big” neighborhood of one set and a “small” neighborhood of the
other.

First we remark that if disjoint sets A and B have a connected union, then either
AN B # o, or BNA # ¢. For if this were not true, both A and B would be open in the
union AU B, and therefore both closed in AU B. So to check whether connected A and B
have a connected union, it suffices to check whether either AN B # ¢,or BN A # 6.

Let A be a connected component of F,, and let A*(6,¢;) be the corresponding con-
nected component of 7 (1, ¢;). Let B be a connected component of a second sign-invariant
set Fys, and B*(do, €o) be the corresponding connected component of F*(bo,€). Note the



use of two different sets of infinitesimals. The next lemma shows that for suitable choices

of the infinitesimals, adjacency of A and B can be checked by testing overlap of A*(é;,¢;)
and B*(dg. €0):

Lemma 5.1 With A% (61, ¢1) and B*(éo. o) as defined above, and for all sufficiently small
(51 >>(1 >>éo>>€l)>0.

(ANB#0) < A6, 6)N B (8o.c0) # 6

0
Proof First we clarify what we mean by “sufficiently small”. Let Va mean that there
is some positive a’ such that the formula that follows the quantifier is true for all positive
o less than o’. The lemma states that AN B # ¢ is equivalent to

V61 Ver Vbo Yeo (AT (61, €1) N B* (8o, €0) £ &) (9)

We can simplify this formula by doing quantifier elimination from the inside out. Let
B~{dy) be the component of F (&) that is a retract of B¥(§g,¢p). We claim that

Yeo (AT(61.1) N B (8o.co) £ 0) = (A¥(61,e1) NV B™(60) # ¢) (10)

To see this. notice that the set (A*(6y,¢e;) N B¥(éo.¢€0)) in (7, €)-space is compact when
restricted to ey € [0. €], and so achieves a minimum non-negative value of . If this value

1s greater than zero, both formulae are false, if it is zero. hoth formulae are true. Next we
need 1o show that

Voo(AT(61,61)N B (6o) £6) < (A 6,e)N B+ ) (11)

Let p be a point in (A*(61.€;) N B), and let &) be the minimum of the values of the F}’s at
p. excluding those F;’s which are zero at p (we assume wlog that non-zero F’s are positive).
The first formula will-be true for all &y less than é). Conversely, if the first formula is true for
any &. then there is a point p in (A*(6,,¢;)NB~(6y)). This point is also in (A*(61,61)NB)
since B~ (o) 1s a subset of B, so the second formula is true also. It remains to show that

Vova(At(6,a)NB#¢) <= (ANB#0¢) (12)

Suppose first that ANB # ¢, and let p be a point in ANB. Choose 6, small enough so that
p is in the (relative) interior of A*(4;.¢;), i.e. none of the inequalities Fi(p) > a;6; has equal
arguments. We know that all neighborhoods of p intersect B, and the rest of the formula
checks this. Specifically, for every ¢; > 0, A*(é;,€;) contains an absolute neighborhood
" of p. This follows because all the polynomials that define A*(é;,¢;) are non-zero at p
(some Fi's may be zero of course, but A*(éy,¢;) is defined by these polynomials +a;e;). |
Since [’ intersects B, so does AT(4;,¢€;).

Conversely, suppose AN B = ¢. We show that ‘;’61 At(61,¢1) N B # ¢ is false for any
61 > 0. Pick a é; > 0. Now choose any monotonically decreasing sequence v; — 0 of
positive €, values. Then for at least one of these values A*(8;,¢,) N B = ¢.

Why?  Suppose the intersection were non-empty for all v;. Let p; be a point in
A*(41.v;) N B. The sequence (p;) lies in the compact set A*(&,,v,) N B. and so has a



convergent subsequence. But let p be a limit point, we must have p € A7(6;) C A by
continuity of the polynomials defining A*. So we have a subsequence of (p;) € B which
converges to p € A. This shows AN B # ¢, contrary to our assumption of the last para-
graph. So the above assumption was false, and A*(81,€;) N B must be empty for some (in
fact almost all) v; > 0. d

To compute with this quantification, we once again treat 6y, €1, &g and ¢y as real el-
ements of the ground field. This is equivalent to a real field extension by infinitesimals
R(01, €1, 00, €0) where &y, €1, dp and ¢g are adjoined in that order, and each is taken to be
smaller than any positive element of the previous extension field. However, the correct
semantics is that they are real numbers that are small enough (relative to previously quan-
tified values) that they give the same sign for the ground field elements computed by our
algorithm.

An important corollary of the above theorem is that we can compute the connected
components of an arbitrary semi-algebraic set by computing the connected components of
a certain compact. regularly stratified set. First let us define a fine stratification of the real
line Rgy, which consists of the eight points +6;, t€;, +é9, £€o and the open intervals in
between and to +oc. A

Let & be the original semi-algebraic set defined by polynomials Fy,..., Fi. Assume
without loss of generality or efficiency. that the formula defining S is a monotone boolean
function of inequalities of the form F; = 0 or F; > 0. Suppose a suitable ¢ € R* has been
chosen so that (+ = (Fy/ay,..., Fi/ax) is transversal to (Rga)*. Replace each (F; = 0) in
the formula for S with the conjunction T

(Fi < e0a;) A (F; 2 —€oa;) (13)

and each (F; > 0) with (F}; > éoa;). Call this new set Siepo. We need the defining boolean
formula to be monotone so that the new set Si.po is a union of separated sign-invariant sets
P (05060 )-

Similarly, we can define a set Ssp1 as above using €¢; and §,. We can now state the
result relating the connected components of S and the regularly stratified sets Ssepo and

bsep13

Corollary 5.2 There is a one-to-one correspondence between connected components of S
and connected components of Ssepo U Ssepi-

Proof Let A,,..., A, be the connected components of sign-invariant sets of the map F
that are contained in S. Note that this means there may be more than one A; within the
same sign-invariant set (in fact if one component of a given sign-invariant is in .S, all the
others must be).

We saw in the last section that each A; corresponds in a simple way with a certain
connected component A7 (8o, ) of Ssepo, and to a certain component A}(&;,€;) of Ssepi-
Now consider the union A}* = Af (60, €0) U AT(61,€1). This is a connected set, and it
intersects A;. We complete the proof by showing that A; U A, is connected for distinct A;
and A; if and only if AfT U A;H is connected.



If 4, U A; is connected, then one set intersects the closure of the other. Assume for
instance that A, (1 A; # ¢. We know from the theorem of this section that this implies
AT (é1.61) N AT (bo. €0) # ¢, so that A7 U AT must be connected.

Conversely. suppose A7t U AJ“-L+ 1s connected. We know from the last section that
AF (. ¢0) and Aj(éo,eo) are disjoint, and similarly for A} (é;,¢;) and Aj(él,el). So the
two remaining possibilities are A (6, ¢;) N Aj’(éo, €0) # ¢ which implies A; N A; # ¢, or
AT (0. o1 N A;L(él. ¢1) # o which implies A; N Aj # o. In either case A; U A; is connected.

|
i

5.1 Transformation Algorithm

To summarize, the following algorithm reduces calculation of connected components of a
general semi-algebraic set to calculation of connected components of a compact, regularly
stratified set.

e Convert the input formula to monotone standard form, and if necessary, collapse the
defining formula to a trinary formula of logarithmic depth as described in [Can90].

¢ Add to the formula a conjunction with the polynomial inequality =1 xf < r? (con-
verted to standard form), where r is an infinite positive value (larger than any real).

Let the resulting formula be B(A,,..... 4), it defines a bounded set in the extension
field R(r).

e ('hoose an a € (R — {0})* at random, or let a; > as > --- > ax > 0 be a series of
infinitesimals.

e Construct a formula By from the input formula B(A,....A;) as follows. For each

atomic predicate A,, replace A; with

if Ajis F; =0 then (F,‘-f-éoa,'ZO)/\(Fi—éoa,‘SO)

if A; s Fi > (0 then (F, — 60ai > 0) (14)
where &, > ¢, are infinitesimals. Then the set S.po defined by this formula is
closed and bounded, therefore compact (or semi-algebraic compact, if .e think in-
terms of true infinitesimals rather than sufficiently small reals). By the results of
section 4 the connected components of the sign-invariant sets of By are in one-to-one
correspondence with those of B.

e Now define a new formula B, from B(As,..., Ak) as in the previous step but with ¢,
and 6, replacing €o and &. Set 8; > €; > bo. The formula B, defines a set Sepi1, and
by the results of section 5, the connected components of S,epoU Ssep1 are in one-to-one
correspondence with the connected components of S.

e Return ByV By, which defines a regularly stratified, compact semi-algebraic set whose
connected components correspond one-to-one with those of S.



6 Complexity

A full analysis of the algorithm is given in [Can90], but the main ideas are simple enough
to sketch here. The main facts we need are the following:

I. The algorithm of [Can88a], modified to use the BKR lemma as described in [Can88¢]
makes all its branching decisions based on the signs of query polynomials whose
degree in the coefficients of the input polynomials is d°*). This bound is obtained
by inspecting the resultant matrices used in calculating projections, and the 2-d point
ordering algorithm.

2. The number of such polynomials that might ever occur in the calculation is (kd)O™*),
obtained by considering all the possible slices that might be taken recursively.

3. Each query polynomial contains at most O(n?) infinitesimals. even if all of ay,. .., ax
are infinitesimal. This seems surprising at first, but one must remember that by using
infinitesimal a;’s. we have guaranteed that all the algebraic surfaces defined by the
input polynomials meet transversally. In particular, any collection of more than n
surfaces will not have a common intersection point. If the query polynomials were
only generated by intersection points, there could be at most O(n) infinitesimals in
each one. But the roadmap algorithm also generates hyperplanes which are defined
by n input surfaces. These also meet the input surfaces transversally (except at one
point each), and so an intersection point can actually depend on O(n?) input surfaces.

Making these observations allows us to determine the running time for the determin-
istic version of the algorithm, which uses infinitesimal a;'s. The bounds in [Can38a] and
[Can83c] show that the roadmap algorithm for a particular input requires O(k" log k)do ")
evaluations of query polynomials. The above arguments indicate that each polynomial has
degree d°**) in O(n?) variables, or d°™*) coeficients, and they require d°") time to eval-
uate (coefficient length bounds are much better than this, and dont affect the complexity
bounds). The running time is the product of the number of query polynomial evaluations
and the time for each which is (k™ log k)d°™*).

For the randomized algorithm, we need to figure out the number of random bits required
in the choice of a;’s. We could try to figure out explicitly the conditions for a particular a
to be a good choice, but there is a simpler argument we can use, which takes advantage of
the fact that our calculation can be expressed as an algebraic decision tree. A particular a
must be a good choice if all the query polynomials in the decision tree are non-zero at that
a (excepting query polynomials which are identically zero, which can be ignored). This
follows because for such an a, there is an open, connected neighborhood N(a) such that
all the query polynomials have the same sign over all of N(a) as they do at a. Thus the
algorithms output is that same for all these choices. But almost all of the points in N(a)
must be good choices, since good points are dense. The algorithm must produce the correct
output at these points, hence it produces the correct output at a.

So it suffices to choose a to avoid the zero sets of all the query polynomials. The
query polynomials have degree d°™") and there are potentially (kd)°™"). The union of the
zero sets gives us a bad set which is an algebraic set in the space R* of possible a-values
which has degree (kd)°™*). By Schwartz’s lemma, we will have probability p* of hitting



the bad set if we choose the a;'s randomly with log(p~'(kd)?™")) bits. Fixing p, we see
that O(n?® log(kd)) bits suffice for the a;’s. This contributes the extra factor of log k to the

running time of the original roadmap algorithm, and gives a randomized running time of
(k" log” k)dO*) 2,
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