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Abstract: It was shown in [Ber75) that the nun.ber of roots
in (C*)" of a polynomial system depends only ¢ the New-
ton polytopes of the sysic:s, for almost al' specializations
of the coefficients. This result, henceforth referred to as the
BXK bound, gives an upper bound on the numpez of roots of
a polynomial system. i'he BKK bound is ofi2n much better
than the Bezout bound for the same systen:, but the origi-
nal theorem gives an exact bound only if all the coefficients
corresponding to Newton polytope boundiries are generi-
cally chosen. In this paper, wz show that the BKK bound
is exact under much wssker assna:ptions: only coefficients
corresponding to certain vertices of the Newton polytopes
need be generic. This revnlt allows application of the BKK

bound to many practice! probicns.
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These polyiones, commonly refuried ic as Newion pois.
topss, are higher dimensional analogues of th: classical
Newt:m polygon [Art87). The relationship descriked in
[Ber75; Kus76; Kho78] gives an upper bonund (hence-
forth referred to as thc BKX bound) on the numibes of

roots of a polynomial system.

D. N. Bernshtein [Ber75), amcng others, described
exact. Roughly speaking, the condition is that several
reiated Laureut polynomial systems have no roots in

(C*)". Thus, given Bernshtein’s result, one can de-

_ rive that the number of roots of a poiynomial system

is equal to the mixed volume of its Newton polyiope:,
foz a dense constructible set of specializations of the sys-
tem’s coefiicients. However, with a bit more work, cne
can derive the following stronger result:

Proposition Let F = (fy,...,fa) be a
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ternal coefficients, and depends weakly on its remaining

.fHicients. The notions of “vertex”, “boundary”, and
wnternal” arise naturally from the Newton polytopes
of the system, and this connection is made clear in the
pext section. Our main result is a stronger statement of
the above proposition: the vertex coefficient theorem.
In section 3 we prove the vertex coefficient theorem and

discuss its optimality, e.g., what is meant by “small.”

The BKK bound therefore has considerable prac-
tical significance, considering that root counting meth-
ods based on Bezout’s theorem typically overestimate
the number of roots of a non-homogeneous polynomial
system. Examples of this this phenomenon occur in in-
verse kinematics [Mor90; RR90; WMS90]. Also, root
counts for polynomial systems are germane to complex-
ity bounds of many algorithms in computational alge-
bra.

Before proving our result, we first establish some
necessary facts about convex bodies and complex alge-

braic geometry.

2 Preliminaries
Recall the following standard conventions:

1 = The ring of integers

Q = The field of rational numbers
R = The field of real numbers

C = The field of complex numbers

F* = The multiplicative group of nonzero elements of
the field F

Rlzy,...,z4] = The ring of polynomials in z1,...,Zn

with coefficients in the ring R
S¢ = The set-theoretic complement of the set S

#S§ = The cardinality or dimension of S, according as

S 1s a set or a vector

(-,-) = The standard inner-product on the vector

space R"

dist(A,z) = The standard minimum Euclidean dis-
tance from ACC* to z€C*

By a Laurent polynomial we mean an element of the
polynomial ring Clz1, z7Y,...,zn,z;1). Laurent poly-
nomials will be regarded as functions on the manifold
(C*)". Let f(2) =

To mmphfy our no%atlon we freely use multi-indices,

2 cgz? be a Laurent polynomial.

e.g., the equality z? = P ..z is understood. Also,
we assume all n-tuples to be ordered and all subsets and

subvectors partially ordered by inclusion.

We define the support of f, supp(f), to be the set
of all g for which ¢, # 0, and the Newton polytope of
f to be the convex hull of supp(f) in R*. Also, we
define a Laurent polynomial system to be an n-tuple
F = (f1,--+, fn) of non-zero Laurent polynomials and

supp(F) to be the n-tuple (supp(fi)s -+ -+ supp(fa))-

For convenience, we let 0 denote the n-tuple
(0,...,0). Let S be a compact subset of R" and
a € Q" \{0}. Define m(a,S) = rqneilsl{(a, g)} and Sq =
{g€S | (a,q) = m(a,S)}. Thus Sq is the intersection
of S with its hyperplane of support in the direction a.

If supp(f) = S define fo(z) = 2 cgz?. Finally, let
qG o
F = (f1,...,fa) be a Laurent polynomial system and

define Fa = (fla, -+ -+ fna). Note that {Fo | aeQ™\{0}}
is finite since F has only n Newton polytopes, each with

only finitely many faces.

Let P be the Newton polytope of f. The bound-
ary coefficients of f are the ¢ with ¢ € 8P, while the
cq With ¢ € P\OP are referred to as internal coefi-

cients. Also, the vertez coefficients of f are the ¢, with

q a vertex of P. Note that a vertex coefﬁc1ent isa

boundary, mternal or vertex coeﬁicxent of F is respec-
tively a boundary, internal, or vertex coefficient of f; for

some j€{1,...,n}. If some of the coefficients of F are

indeterminate, then a specialization is an assignment of




complex values to these coefficients. A specialization of

N indeterminate coefficients is said to be generic if its
values are chosen from some fixed dense subset of CN
not of the form W' xC.

We will assume all polytopes to be bounded
and non-empty. Let V,(P) denote the standard n-
dimensional Lebesque measure of a polytope P in R™.
We define an addition on polytopes in R" by setting
Pr+P; = {214 23|21 € P1,z3 € P2} for any polytopes
Py, P, CR". Then if P = (Py,..., P,) is an n-tuple of

polytopes in R", the mized volume of P is

V(P) = (=1)*' Y Va(P)+(-1)*~?
i i<y

"‘+Vn(P1+"°+Pn)

We remark that V(P) is a non-negative symmetric mul-

For a more detailed
discussion of these definitions, we refer the reader to
[Oda8s).

tilinear function of Py,..., P,.

We define dimP to be the dimension of the small-
est flat in R® containing P; + .-- + P, and let Pa =
(Pras- -+ Pna). The set of all n-tuples of polytopes in
R™ thus has a natural partial ordering: for any two such
n-tuples Q and Q’, define Q' < Q <= Q’'# Q and there
exists v € Q" \ {0} with Q, = Q’. Using this partial or-
dering, we introduce a colored tree structure on P and
its {P,} as follows:

Definition An inductive degeneration tree (ID tree) of
P is a rooted tree of n-tuples of colored polytopes defined

as follows:

(T1) The root is P and every P; is colored red. If
d = dimP < n then re-color one P; blue and n—d—1

other P; green.

(T'2) For every non-minimal node Q define a child Q
for every mazimal Q' with Q' < Q. Each child
Q' =(Q1,
its parent ezcept that any blue Q' ; will be re-colored

green and ezactly one red @ ; will be re-colored blue.

..oy Qp) will have the same coloring as

D Va(Pit P+
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Let T be an ID tree of P and Q a height i node
of T. Then T has depth dimP, dimQ =1, and Q has

exactly i red polytopes and (iff i < n) one blue polytope. »I

Also note that the subtree consisting of Q and all its °

descendants is an ID tree for Q. An ID coverof Pisaset

C of vertices of the P; with the following property: For
any height i node of T (i < n), either its blue polytope
has a vertex in C or (if i > 0) the i-dimensional mixed
volume of its red polytopes is 0. Thus any ID cover of
P induces an ID cover of Q by restricting to a subtree.
If P is an n-tuple of Newton polytopes, we will identify

C with its corresponding vector of vertex coefficients.

Let (S1,...,5s) = supp(F) and consider F,. The
construction of F, introduces some dependence into the
variables of F' and the following lemma makes this no-

tion precise.

Lemma 1 Suppose a € (C*)" is a root of F,. Then
at® is @ root of F, for allt € C*.

Proof: For all j € {1,...,n} we have f;,(z) =
Y €29, fia(a)=0, and
9€Sja

fja(at“) = t"‘("’si)fja(a) =0. O

Let P be the n-tuple of Newton polytopes of F.
We paraphrase theorems A and B of [Ber75] as follows:

Bernshtein’s Theorem Counting multiplicities, F
has no more than V(P) isolated roots in (C*)*. Also,
Fo has no roots in (C*)" for any a € Q*\ {0} => F
has ezactly V(P) roots in (C*)*, and if V(P) > 0, the
a

We close this section with some topological consid-
erations: Recall that the Zariski topology on C™ is the
topology generated by taking closed sets to be algebraic
sets. Henceforth, the only topology we discuss will be

converse holds as well,

the Zariski topology over C®. An affine variety is an
irreducible closed set and a quasi-affine variety is an
open subset of an affine variety. A subset of C" is said
to be constructible if it is a finite union of quasi-affine

varieties. Constructible sets are clearly closed under



projection, complementation, finite union, and finite in-

section. The following variant of elimination theory

will be vital in our proofs:

Coefficient Lemma Let G = (g1, .. -, gn) be a Laurent
polynomial system and C a vector of constants corre-
sponding to supp(G). With this correspondence, regard
¢ as the vector of coefficients of G. Then the set of C

such that G has no roots in (C*)" is constructible.
Proof: [Mum?76). O

From the fact that every non-empty Zariski-open
set is dense, we easily obtain the following lemma, whose

proof we omit:

Lemma 2 Any finite intersection of dense con-

siructible sels is a dense constructible set. O

Let X and Y be sets of coordinates chosen from
C™, and C C™. By an X slice of ) we mean the in-
tersection of § with some translate of the X coordinate
subspace of C™. Thus #X =m == any X slice of ©
is ). Clearly, constructible sets are closed under taking
slices. The X projection of §2 is simply the projection of
the X coordinates of 2 onto C#X. If the X projection
of an X slice of Q is dense, we call that slice dense. In
particular, if X C Y and every X slice of  is dense,
then every Y slice of  is dense. Let X’ be a set of
coordinates chosen from C™ and Q' C C™'. Then the

following lifting property for slices can easily be verified:

Lemma 3 Suppose ¢ : C™ — C™ is a linear map
such that the restriction of ¢ to the X coordinate sub-
space of C™ is a surjection onto a subspace of C™' con-
taining the X' coordinate subspace. Then every X' slice

of ' is dense = every X slice of p~'(Q') is dense.

O

For a more detailed discussion of the Zariski topology,

we refer the reader to [Har77] or [Mum?76}.

3 Proof of the Vertex Coeffi-

cient Theorem

We will prove the following theorem:

Vertex Coefficient Theorem Let P be an n-tuple of
polytopes in R" with vertices in Z", F a Laurent polyno-
mial system with P as its n-tuple of Newton polytopes,
and H, I vectors comprised respectively of the boundary
coefficients and the internal coefficients of F. Let C
be a vector of vertez coefficients corresponding o some
ID cover of P. Then there ezists a constructible subset

W C C#H with the following properties:

(1) Every C slice of W is dense.

(2) (H,J) € WxC# = F has ezactly V(P) roots
(counting multiplicities) in (c*)".

Furthermore, if V(P) > 0 or #I =0, then W can be

chosen to satisfy the converse of (2) as well.

Our theorem is optimal in the sense that if V(P)>0
and W is any constructible set satisfying (2), any vector
of vertex coefficients C satisfying (1) is an ID cover of
P. The proof of this fact simply involves applying the
vertex coefficient theorem to construct an ID tree of
P from the leaves up. Also, there need not be a W
satisfying the converse of (2) if V(P) =0 and #I> 0.
We have constructed a counter-example for this case,

but will omit it for brevity’s sake.

The existence of a W satisfying (2) (and its con-
verse, if V(P)>0 or #I=0) will follow easily from the
work of D. N. Bernshtein in [Ber75). Showing that this
W also satisfies (1) is slightly more involved so we will

first establish a few facts.

Fix o€ Q"\ {0} and let i be such that a; # 0. Let
Ga = (g10y--+19na) be the system in n — 1 variables
obtained by setting z; = 1in F,, and Q = (Q1,.- -, Qr)
the n-tuple of Newton polytopes of Go. Then dimQ =

dimP, < n—1, and we obtain the following lemma:

1
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Lemma 4 The system G, has a root in (C‘)"'l =

Fo has a root in (C*)",

Proof: (=) Trivial.
(=) Let a = (a1,...,8,) be a root of Fao. Then by

lemma 1 (using t = ai'l/a‘) we easily obtain a root for

Ga. O

Let j € {1,....n}, Sja = supp(fja), and T}, =
supp(gja). Alsolet H, and I, be vectors comprised re-
spectively of the boundary coefficients and the internal
coefficients of G,. Considering P, and Q, one would
naturally expect that setting r; = 1in F, induces a bi-
Jection between these two n-tuples. More precisely, we

have the following lemma:

Lemma 5 Let {c, | 9€ Sja} and {c, | r€T;a} be the
support coefficients of fia and g4, respectively. For any
2= (q1.-..,qn) € I" define q(i) = (@ 1 @ive ey qn).
Then {cq | g € Sja} consists solely of boundary coeffi-
cients of F, and the map ¢ : Sja — Tj, defined by

g+ q(%) i3 e bijection which preserves ID covers.

Proof: That {c, | ¢ € S,4} consists solely of boundary

coefficients of F is clear. since Sia is the intersection of
S; with a supporting hyperplane. Also, note that any

Qj is the projection of P;, onto the jth

iy

coordinate hy-
perplane in Z". Hence ¢ is clearly a surjection from Sia
to Tja. Since {(a,q) = m(a, ;) for all g€ S, it easily

follows that » is an injection. Thus,

@ is a bijection
between S;, and Tja. Since ¢ is also a projection, we
obtain that ¢q is a vertex coefficient of fia iff !

q
vertex coefficient of g4, i.e., ¢ maps vertices to vertices

() is a

bijectively. It easily follows that % maps ID trees of P,
isomorphically to ID trees of Q. Thus

a

¢ preserves ID
covers.

To conclude, define Ko such that (Ha,I,) €
Ko <= G, has no roots in (C)""!. Then by the
coefficient lemma, we have the following result:

O

Lemma 6 The set K, is constructible,

We now prove our main theorem:
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Proof (Vertex Coefficient Theorem): Let K be
such that (H,I) € K <= F, has no roots in (C*)" for
any a € Q"\{0}. Since we need only check finitely many
Fa, K is constructible by closure under finite intersec-
tion and the coefficient lemma. Since the coefficients of
F, are boundary coefficients of F (lemma 5), it is clear
that K is of the form W x C#/, Thus, by Bernshtein's
theorem, (H,I) € WxC#! = F has exactly V(P) roots
(counting multiplicities) in (C*)", and if V(P) >0, the
converse holds as well. If V(P) = #I = 0, then by the
coefficient lemma we can easily construct a larger W to

again satisfy the converse.

We have thus found a constructible W ¢ C##
which satisfies (2). If V(P) > 0 or #I =0 then W
also satisfies the converse of (2). To show that this W

also satisfies (1), we proceed by induction:

n = 1: In this case, we determine W explicitly:

Here, P= P, =[m,M] and F = fi(z1) = % cgzl.
Then C=H = {em,ear}, and I = {cm“,..‘.’:c"';,_l}.
Note that F, € {F_y,Fy} for any a € Q*, Fy=cpa],
and F_, =cpzM, Letting IV:(C')#H, we obtain that
(H,I) € W x C#/ ‘4=> F; and F_; have no roots in
C* <= F has exactly M—m roots (counting multiplic-
ities) in C* (by the fundamental theorem of algebra).
W trivially satisfies property (1), so we are done.

n> 1: Assume the result true for n—1, To show that

every C slice of W is dense we proceed as follows:

Let W, be such that H € Wo <= (Ho, I,) €
K,. By lemmas 5 and 6, Wo is well-defined and con-
structible, and by lemma 4, H € Wo < F, has no
roots in (C*)". Let J CQ"\{0} be a finite set such that
{Fs|BeJ} = {F3| BE€Q"\{0}}. Clearly then,

w= )W,
BeJ
and thus by lemma 2, it suffices to show that every C
slice of W, is dense. Since C restricts to an ID cover
Ca of Py, it suffices to show that every C, slice of W,

is dense. By lemma 5, C, induces an ID cover D of @.
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So by lemma 3, it suffices to show that every D slice of

K, is dense.

Fix an ID tree defining D and let Q be the (n—1)-
tuple of red Q;, G the corresponding Laurent polyno-
mial system, and H, T vectors comprised respectively of
the boundary coefficients and the internal coefficients of
G. Let Qi be the one blue polytope and gio the corre-
sponding Laurent polynomial. Similarly define H and
I using gro and let m= #(ﬁ, I) Considering Q as an
(n—1)-tuple of polytopes in R®~1, it is easily seen that
D induces an ID cover D of Q. (Simply delete the kth
polytope from each node of the ID tree defining D.)

Let D be the vector of vertex coefficients of Gka
such that D= (D, D). Then by our induction hypothe-
sis, there exists a constructible subset W C C#H with

the following properties:

(1) Every D slice of W is dense.

(2" (F,T) e Wx C#I = G has exactly V(@) roots

(counting multiplicities) in (C*)" 1.

For any y € W x C#T, let R(y) be the set of roots
of G in (C*)*”', and define W(y) C C™ such that
(H,I) € W(y) <= gra(r) #£0 for all r € R(y). Then
W(y) is a non-empty Zariski-open subset of C™ since
(W(y))* is the union of V(@) < oo hyperplanes in C™.
Moreover, for any r € R(y) and any component h of
" s gka(r) is a non-constant affine function of h. Thus
the D projection of any D slice of W (y) is a non-empty
Zariski-open subset of C#D. Define L, as follows:

L= |J {s}xwW()
yEW x C#T
Then (H,T, H, 1) € Lo => G4 has no roots in (C*)"~".
Hence, after a suitable permutation of coordinates,
L, C K,. Now note that the D projection of any D
slice of Lq is of the following form:
A= J{m}xo(@
yeo
where T is the D projection of a D slice of W, and (%)

is the D projection of a D slice of the corresponding

W (y). Since & and &(7) are dense, it is easily seen that
dist(A,z)=0forallz € c#(D.D) = C#D, Since e-balls
form a neighborhood base for the standard topology in

C#D it easily follows that A is dense. Therefore every

D slice of L, is dense.

Since L, C K, we obtain that every D slice of K4
is dense. Thus by our previous reductions, every C slice

of W is dense and our induction is complete.

Earlier in our proof, we defined a constructible W C
C#H gatisfying property (2). We have just shown that
this W satisfies property (1), so we are done.  []

‘We remark that for any set of boundary coefficients
satisfying (1), there exists a set of vertex coeflicients
with the same or lower cardinality satisfying (1). The
proof is based on the following simple argument: If any
coefficient satisfying a genericity condition has its corre-
sponding point lying on the interior of a polytope facet,
we can just as well replace it by a coefficient whose cor-
responding point is a vertex of the same facet. Thus
we’ve lost nothing by restricting our attention to vertex

coefficients.

4 Conclusion

We have seen that the vertex coefficient theorem gives
the weakest possible condition under which a polyno-
mial system achieves its maximum number of isolated
roots: a set of coefficients corresponding to some ID
cover must be generic. Thus the BKK root bound for
a polynomial system is tight “with probability 1,” even
after most of its coeflicients have been specialized. This
knowledge is particularly useful for polynomial systems
occuring in inverse kinematics and surface modelling,

where the supports are sparse or the Newton polytopes

are identical, Therefore, our result shows

bound will be tight almost always in practice.
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