This manual consists of the film script, interspersed with para-
graphs supplying additional information about the problems discussed
in the film and mentioning some additional problems. There is a list
of references at the end.

What is the nicest way of placing N points on a cirele? Intuitively,
At A to'pliace them at the veatices of an inscnibed negular polygon. But
is there some precise, quantitative sense in which this 44 the best arrange-
ment? VYes, there ane several.

For example, the area of a regulan inscribed N-gon 48 greater than
that of any othern inscnibed N-gon. Thus, for any N greaten than 2, the
unique way of maximizing the area is to place the points at the vertices
04 a negular inscenibed N-gon. Now, nathen than maximizing the area, we
might nequine the points to be dispensed as much as possible. The smallest
distance determined by the points should be as Large as possible. In
othen words, we want to maximize the minimum distance between podints of
the set. Note that it suffices to comsidern the distances between adjacent
points on the cincle. Here again, the negularn N-gon provides the unique
solution. That s, the unique way of maximizing the minimum distance L4
to place the points at the ventices of an inscribed regularn N-gon. The
nesult is the same as when we wanted fo maximize the area.

The nesults just stated are not hand Zo prove. (1) But what happens
when the points are- on a sphene? How should they be arranged fo maximize
the volume on the minimum distance? These probfems ane unsofved or, at best,
only pantially solved. 1'm going to discuss them along with some cthen
geometric problems that are unsolved at the time of fifming in 1969.
Perhaps they wild eventually be solved by the discoverny of new geometric
figures orn configurations--that s, by shapes of the future.

(l)There are many published proofs of the fact that, for a given
N and a given circle, only the regular N-gons are of maximum area among
those inscribed in the circle. See, for example, Fejes T6th(1953).
Cbviously the regular arrangement of N points on the circle is the only
one maximizing the minimum distance between the points.
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convex polygons. The problem of placing N points on a sphere so to
"maximize the volume of the -polyhedron with those ¥ vertices'" recuires
that the volume of the convex hull of the set X forrmed by the N points
should be as large as possible.

The volume {4 maximized when N {8 6 by placing the pcints at the
vertices of a regulan octahedron, and when N 44 17 at the verticed of a
negulan Lcosahednon. (3) That might be expected, by analegy with the
negularity o4 the sclfution on the circle. Howeven, the analogy 44 mis-
Leading when N 48 §, fon the inscaibed cube dces not give the maximum
volume in this case. When the sphere 48 of radius «, the cube's volume is
about 1,513 while that of a double pyramid based on a regular hexagon 44
about 1.743; but that isn't the maximum either. Here 4s the best arnangement
cf eight points, which yields a volume of about 1.813. 1t was discovered
in the 1960's when it was approximated by a graduate student with the aid
of a computen and Later proved by fwo othen graduate students te be cptimum.
The complicated natune of the exact expression for the velume hinzs at the

(4]

complexity c¢f the prood. Here's a model of the conflguraticn, meunted 4
that veu can see {t can be inscnibed in a sphere. Plainly 4t's far grom

being regular--for example, {ts edges are of three different Lenoths.

Auvmmm Fejes T6th(1953,1965) for proofs of these statements.

This vp cment oi ¢ight points was appyuximated Ly
Grace {1963) with the aid of a computer search which identified it
as providing a local maximum for the volume of the convex hull of
eight points on the unit sphere of E3. Berman and Hanes (1970) des-
cribed the arrangement precisely and proved that it provides, up to

rotation, the unique global maximum for the volume. Cec. referinias
i

There are acasonable confecturncs for some ctier valucs cf N. Here

w zthe confectured cptimum fon nine vertices, obtained by adding a pyra-
ridat car over cach of the square faces cf a trlangulan vidsm.  The vefume

7

“cblem has actually teen sofved fon all N<§ and fon N = 12. You might ny

§ind the kuown best configuraticns forn 5, 6, and 7 points vcurself, 4n
(5} (61(7)(8)

cader to get a feekdng fon the problem.



[

wraio o

AmV> famous theorem of Euler(1752) (see also Griinbaum(1967)) asserts
that if a polyhedron P has v vertices, e edges, and f faces, then
v-e+f=2 1f P is of maximum volume among all polyhedra formed
3s the convex hull of z given rumber v of points {P's vertices) on the
unit sphere of E3, ther all of P's faces are triangles (Fejes TSth
(1$53)), whence it fcllows easily that 3f = 2e and hence 2e = 6v - 12.
Definirg the valence o: a vertex &s the number of edges incident to it,
let v, dencte the rumber of n-valent vertices of P. 'Then the average
valence of P's v vertices is inv, 12

Ty -
Call the polyhedror P redial provided that all of its faces are trian-
3les and the valence of each of its vertices differs by less than 1
frem the average 6 - 12/v. The following conjecture, dual in a sense
to one of CGoldberg(193%) Amomﬂuv below), was formulated by Grace(1963)
and used also by Bermar and Hanes(1970): If P is a polyhedron whose
v vertices lie on thne uvnit sphere and whose volume is a maximum

-2 g

subject to Tthis condition, then P is medial if a medial polyhedron
Sxists for the v in mcmmﬂwOn. For v<8 the validity of this conjecture
follows from the work cf Berman and Hanes(1970), who state some addi-
ticnal unsclved problers concerning volumes of polyhedra.

vamow points x = Axpv...,xav and y = A<H.v..vwmv of Ed, the inner

reduct <x,y> is given by <x,y» = XY +erid Xgyg- The norm of a
point x is Jx : = Ax,va\w and the distance between two points x and
y is _ﬁx -y |[. W%ten : is not the origin 0, the set R = ﬁmea“Axnwv

= 1} is a hyperplare (. line when ¢ = 2, an ordinary plane when d = 3,
©v+, a (d - 1)-dimensicnal flar in the general case) orthogonal to the
rav frem ¢ through x. In particular, when x belongs to the unit
sptere § = {serd:|l s | = i}, the hyperplane H, is tangent to S at x.
For any point x of E-, ° is defined bv

1,
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(7 The 2-dimensional isoperimetric theorem asserts that, among
all plane convex bodies of given perimeter, the circular disks are
of maximum area. In fact, if L and A are respectively the perimeter
and the area of a 2-dimensional body, then L2/A 2 47, with equality
only for circular disks. For convex polygons with a given number N
of vertices or edges, the inequality is sharpened to L2/a 2 4Ntan(7n/N),
with equality only for regular N-gons (see Fejes T6th(1953)).

The 3-dimensional isoperimetric inequality is bu\<~ 2 36w, where
A and V are respectively the surface area and the volure of a 3-
dimensional body; equality holds only for spherical balls. The
ineguality can be sharpened in various ways for polyhedra. For
example, with wy = MWM m it is known (Goldberg(1935), Fejes Tdéth
(1953)) that 3,02 .
AZ/VE 2 54(f - anm55mA>mw=~Em - 1)
whenever A and V come from a polyhedron of f faces; equality holds only
for regular tetrzhedra, cubes, and regular dodecahedra. Fejes Téth
(1953) gives other conjectured inequalities which have been proved
only in special cases.

The "isoperimetric problem for polyhedra" asks for those poly~
hedra which, for a given surface area and given number k of faces,
are of maximum volume; equivalently, it asks for those which minimize
the quotient 23/v2, But it is known that any such wminimizing poly-
hedron is circumscribed about a sphere, and that >w\<w = 27V for
any polyhedron circumscribed about the unit sphere S. Hence the
problem reduces to the one, mentioned above, of finding the polyhedra
of minimum volume which are circumscribed about S and have k faces.
The problem has been rigorously solved for kX6, perhaps for k=7, and
for k=12, but appears otherwise to be open though it has been studied
by distinguished mathematicians since a 1782 paper of Lhuilier.

See Steinitz(1927,1928), Goldberg(1935), and Fejes T6th(1953,1965)
for references and a more detailed account.

Goldberg(1935) called a polyhedron with f faces medial provided
that each of its vertices is 3-valent and the number of edpres of
each face differs by less than 1 from the average 6 -~ 12/f. For any
polyhedron P having the origin in its interior, it is true that P is
inscribed in the unit sphere € if and onlv if the polar P° is cir-
cumscribed about $, and that P is medial in Goldberg's sense if and
only if P° ig medial in the sense of Grace(1963) and Berman and Hanes
(1970) (see (5 above). Goldberg's conjecture was that if P is a
pelyhedron whose f faces are tangent to the unit sphere and whose
volume is a minimum subject to that condition, then P is medial (in
his sense) if a medial polyhedron exists for the f in question.

The following attractive coniecture seems to be consistent with
the few krown facts. For each k » d and each set X of & points on the

unit sphere S of ma. the following twoe statements mliquwcmeSn“

d-measure than that of X; (b)there is no set of k points on S whose

polar has smaller d-measure than tnat of X.

(8)The term polytope is used here to mean a set (in a finite-
dimensional Euclidean space) which is the convex hull of a finite
set of po.nts; equivalently a polytope is a bounded set which is



tne intersection »f & firite number of closec halfspaces. The
c-ancard referencs on polvtopes is Grunbaum(1967). A polytope of
cimension d is called a ¢-polytope; thus 2-polytopes are convex poly-
gons and 3-polytcoes are convex polyhedra. When P is a d-polytope in
ES, a face of P is either P itself or the intersection of P with a
hvperplane which nmisses the interior of P. Tach face of a polytope
is itself a polytope. The O-faces are vertices and the l-faces are
edges. The 2-faczs are cften simply called "faces' when P is 3-
dimensional.

rmn,WWAwJ denote the sum of the i-measures of the various i~
faces of P; for example, Mwﬁmv is the sum of the lengths of P's edges.

For distinct intezers i end j beteeen 1 and d, let 014 (P) denote the

MmOMmmwsmnwwnnmﬂwm wwﬁwuw\wxwmﬁmvu\q. WCHn«me:meun:nmowuozw:w
problem is open: For which triples (d4,i,3) is nu4mwv bounded above
as P ranges over all d-pclytopes? And even ivaQOWAAmv is known to
te bounded above, the precise value B(d,i,j) of its supremum has
been determinad cnly when 1 = d and j = d - 1.

Egglestcn, Criinbaum and ¥lee(1964) show 8(d,i,j) is finite if

i =c¢ori=d=1>73oriis amultiple of j, and ¥lee(1970) shows
“(d,i,3) is infinite wherever i < j. However, the finiteness of
p(d,i,j) is unsertled whenever d - 2241i>322andiis nota
rultinle of j. From the d-dimensional version of the classical

- -1
isoperimetric inezuality it follows that g(d,d,d-1) = Aaﬂaw\au 1/(d-1)

where Wy is thre ¢-measure of a d-dimensional spherical ball of unit
adius. The supremur B(¢,d-1,d-1) is not attained by any d-pclytope,

>

r

bat E. Griinbaum conjectures that all other finite suprema are attained.
foertn(1963) s B(3,2,1) £ (6m)71/2. Melzak(1965) conjectures
£(3,3,1) £ 27- H‘m_ vith equalitv only for a right prism tased

riangie whose edge-length is equal to the height
orher resulte related to the determination of
LLf£(196#,1970) and larman and Mani(1970%).
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cinele the area and dispersal preblems alyavs have the sore arsien.
dispersal prebfem forn N points has been sotved fon N < 10, N = 12, and

N = 24. A scfution has been announced for N = 11, and there are cenjecturted

schutions fon N = 10 and §on about a dozen othern values ¢4 N. ol

onwOManonm of the dispersal problem for N g 6 were discovered
by Tammes (1930), a botanist. Rigorous solutions were given for
N < 6 and N = 12 by Fejes T6th(1943, 1949, 1953), for N < 9 by Schiitte
and van der Waerden(1951), and for N = 24 by Robinson(1961). Robinson's
result established a conjecture of Schiitte and van der Waerden(1951), as
did the solutions announced by Ludwig Danzer for N = 10 and N = 11.
However, Danzer's arguments, presented at conferences in 1962 and 1958
respectively, have never been published. There are published conjectures
of Schiitte and van der Waerden(1951), van der Waerden(1952), Jucovic(1959)
Strohmajer(1963), Goldberg(1965, 1967a-c, 1969a), and Robinson(1969)
which cover all values of N g 42 with the exception of 23, 28, 29, 34, 38,
and 39, and cover also the values 44, 48, 52, 60, 80, 110, 120, and 122.
The known results and conjectures are summarized by Goldberg(1967a, 1969a)
Among the expository accounts of the dispersal problem are those of
Fejes T6th(1953, 1965), Meschkowski(1966), van der Waerden(1961),
Coxeter(1962), and Klee(1971la).

As was remarked by Robinson(1961), a general method of Tarski(1951)
provides in theory a solution of the dispersal problem for any given
aumber N of points. Indeed, for each N there is a finite number of com-
putational steps leading to an algebraic equation satisfied by the
maximum, overall arrangements of N points on the unit sphere, of the
minimum distance. However, because of the length of the requirecd
computation, the method does not seem to be applicable in practice. Feor
very large values of N one can only seek lower and upper bounds on the
maximum of the minimum distance, or, alternatively, lower and upper
tounds on the maximum number C(¥) of spherical caps of given ancular
.2ine ¢ that can be placed on the sphere without overlapping.
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where a is such that sec2o = 1 + sec2f¢. Here the lower bou

due to van der Waerden(1952) and the upper beund to Fejes TAth(i1%i0);

see alsc Coxeter(1962) for the latter. For ¢ < 22° a sharper but were

complicated upper bound follows from the wor: of Tebinsen(1961}.
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Fcr arather cennection of the dispersal problem with biology,
see the matnematical mcdel of cell-nuclei formulated by §erban and
Streild(19€5). The shapes of virus particles appear not to be re—
lated to the sclutions of the dispersal problem (see Goldberg(1967d))
but rather to znother geometrical problem considered by Goldberg
(1937) (see Caspar and FKlug(1963) and Wrigley(1969)).

In his studies of molecular geometry, Gillespie(1960,1970) (see
also Levine (1973)) notes that the arrangements of electron-pairs in a
given valenoy saell are a consequence of the mutual interactions of
electrons due to (a)electrestatic repulsions, and (b)the operation
of the Pauli exclusion principle, according to which electrcons of
the same spin tend to stay as far apart as possible, while electrons
of oppesite spia tend to be drawn together. He then concludes that,
in most cases, {b) is so dominant that (a) can be virtually ignored
and the dispersal problem provides the correct model for studying the
arrangement. Fiwever, Gillespie(1970) appears to claim incorrectly
that the mest ¢ispersed arrangement of 10 points is at the vertices
of a bicappzd sjuare antiprism.

Ir connection with an earlier model of the atom, Thomson(1904)
sought to d=ter:ine the stable equilibrium patterns of ¥ classical
eleztrons constrained to lie on the surface of a Sphere while re-
pelling each otier accerding to the inverse square law. (One such
patzern would b: that of minimum pctential energy, but there might
be others; ther: might ever be inecuivalent patterns having the
same minimur potential energy.) The problem, which is no easier
than the dispersal problem. was later considered by Fdppl(1912),
Whyze(1952). Ccin(1956), ard Goldberg(1969%), but the tectal amount
of srogress was not great. However, Cohn(1960) was able te provide
a rither comnie-e treatment of the correspondire probler for the
cirzle, where ¥ not necessarily equal point charges are acted upon
by fairly ¢ ral repulsiocn law. For each ordering of the charges
e circ.e t.ere is {(up t¢ rotation} a unigue stable configuraticn,
iTges are ecual it is the regular one.
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unique best artangement for twelve points, and it has been anncunced that
discarding one of those peints provides the unigue best arrangement for
efeven. Similar conjecturcs have been made fon N = 24, 48, 60, and 120.
Thus the misanthrope problem Leads to the following sub-problem: 14
DIN-T} equal t¢ D(N) when N &b 6, 12, 24, 4§, 60, and 120, and otherwise
strictly greaten than DIN)? 0f counse DIN-T) 4s never £ess than D(N). 7]

Awwuﬂrm result for 11 points is Panzer's, as indicated in on.
vhile the conjecture about 24, 48, 60, and 120 is due to Robinson(1969).
The special property of these numbers actually established by
Robinson, and related to the conjecture, is as follows: If N points
are placed on a sphere in such a way that each point is as near to
five others as any two points are to each other, then N is 12, 24,

48, 60, or 120, and for each of these values of N the configuration is
unique up to rotation and reflection. This result has been extended
in a certain difecticn by Fejes TSth(1969b).

A nefated problem involving points on a sphere was the source of a dis-
agreement in 1694 between Isaac Newton and David Gregory. They wondered
how meny sphenes could be arranged so as to Zouch a central spherne without
any overkapping, all the spheres being congruent. The pedints of tangency
cf the outen spheres with the central sphenre provide a distribution of
points on that sphene. 1In the comrespending plane problem--arranging
congruent circles 2o touch a central circle--the maxdimum 44 easdly seen Ze
be 6. Fen the 3-dimensional maxdimum, Newton conjectured 12 and Gregory 13.
Note that if congruent dpheres ane tangent, one subtends on the other a car
01 angidar nadius 30°. Hence the Newton-Gregory problom wmounts t0 ashing:
How many caps of angulan radius 30° can be placed cn a sphere without
cverkapping?

One way ¢4 arranging twelve such caps Lis to maximuze the mindmum
distarce between thein centers. In this arnangement, which places the
contens at the vertices of an snscribed regulan iccsahedron, the 30° cars
can even be enfarged slightly without ovenlapping. Newton knew a sphere
arranaement dnvolving twelve contacts, was unabfe to preduce any dnvofving
Hhinteen, and pachably assumed ne one clse ceuld do it 44 he ceuldrn't.

Thus he confectured the maximum was 12. Gregeny's aucss of 13 was alsc

clausible, as the sutjace area cf a sphere 48 mene than thinteen times
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Smvmmw Coxeter(1962,1963) for an account of the Newton-Gregory
controversy and fer references to solutions. The conjecture for the
two-sphere rreblem is due tc R. Robinson(written communication), who
observes that it implies a conjecture of L, Fejes Téth to the effect
that any pacxing of congruent spheres in E3 in which each sphere
touches 12 cthers must te formed from layers with the usual hexagonal
arrangement.

A a step tevand a reascnable conjectune ben the twe-sphorne problem,
£ot we consdden aicthoa arrangement cof twelve 30° caps on a sphere, this
cre associated with a cubtectahedson rathesr than an Lecaahedren.  In contrast

with the <icosahedwal wangement, this cre dees net pemit the caps to be

erfarced. Hewever, dees Lead te a packing of congrent spheres in

srace. with each conticting teedlve cthers.  Te sce this, sdmplu divide
3-ipace dnke cuber in the natinal way and place spheres concentric with
4é tangont te all twelve cdaos cf Ats
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of congruent spheres in E3 is a Hmnnwnmlvwowwnm and is known to be
the densest such. However, there is in E° a non~lattice packing of
the same density, and it is therefore natural to ask whether some
other non-lattice packing may have even greater density. According
to Rogers(1958), "many mathematicians believe, and all physicists
know" that this is not the case. However, for certain values of d
greater than 3 there are non-lattice packings in Fd which are denser
than the densest known lattice~packings (Leech and Sloane(1970)).

There are many other unsofved problems concerning aviangements o4
points on spheres. Fon example, how should a fixed number of unit charges
be placed on a sphere 0 as to minimize the potential wneray 0§ the con-
mwm:\gai:i:& (r6] However, 1'd Like to pass on o a group of unsolved
problems reloted to the famous four-colon conjecture. These will nequine
some definitions.

Awbvarm probler of finding the most dispersed arrangement of N
points in a set X, and closely related problems concerning the packing
of circles or spheres in X, have been studied for choices of X not
mentioned above. See(l5) for higher-dimensional spheres. For the
cases of circular disks, rectangles, and cubes see Goldberg(1970,
1971a,1971b}, Kravitz(1967,1969), Pvil(1969), Ruda{1970), Schaer
(1965), and Schaer and leir(1965).

Awwvﬂo conclude the discussion of points on spheres, we will
describe some of the higher-dimensional results and problems.

» H:mmmmnwmu ﬂmwmnwObm:Mm between 5 points and 6 in the case of
© was extended to FY by Rankin{1955), who showed that for d + 2

¥ £ 2d, the most dispersed arrangement of KN points on the unit
sphere of E4 involves a minimum angular distance of =/2.

[P ]

Coxeter (1963) was concerned with the maximum number Nq of balls
that can touch s ball in mau all of the (spherical) balls being con-
gruent anc no overlapping permitted; equivalently, Ng is the maximur
number of points that can be placed on a sphere in wm sc that the
winirum angular distance is at least /3. FRe ~btained the following
bounds: 24 S N4 £ 26, 40 5 Ng = 48, 72 = = 85, 126 < Ny £ 146,
240 2 Ng I 244, (See alsc Leech and Sloane(1971).)

FEis lower

hounds are firm, as thev result from specific constructions, but his
upper beunds result from a formula based on a voniecture which is
unproved for all d 2 5. (For d = 4 ir was pr Fdrdczky and

lorian(1964).) Coxcter's formula leads to the
,(4-13/2.3/2,3/2 -1

ptotic expression

for the upper bound. Fejes th and Heppes(1967)
considered the nu of congruent balls ir 4 rhat can be arranged
s0 that each ball family eifther touches a certain ball B er



touches a mem! er of the family that touches B; they showed T, = 2
56 2 T3 5 63, anc 168 < T, = 232. A further extension of this id

‘a$ consicered in F2 2y Fejes Téth(1969a; .

g,
e

AS wW&s explained in the expository erticle of van der Waerden
(1961), tha dispersal protlem on z high-cimensional sphere is of
interest in inforrmaticn theory.
signals are of the sanre énergy and are made up of a limited number of
frequencies, each sigral may be represented by a point on a sphere
centered ar th= origin in E , where the radius of the sphere is
determined by :he erergy, the dimension by the number of frequencies,
and the coordisates of a point by the Fourier coefficients of the
associated wave-form. The communication is inevitably subject to
some "noise', so that when a point p is sent, it is certain only that

In a communication system in which all

the received pcint (signal) is at distance < § from p, where the value

of & depends o: the encrgy of the noise. 1In order to avoid ambi-
guity in ceommusication, any two signals (points) that are used should
be at distance 2 2§, Subject to this minimum distance requirement,
there should be as manv available signals as possible, Alternatively
if the numter ¢f signals is fixed, tney should be as dispersed as
possible ir orcer to ximize the amount of noise that can be toler—
ated. See ieech and Sloane(1971).

In ancther form e the communication problem, one seeks to mini-
rmize the probal ility of error. s leads, as Balakrishnan(1961,19¢5
has shown, :zo the prob.em of placing N points on the unit sphere ¢
of 14 so ac to maximize the mean dth of their convex hull. (For a
convex bodv B < E€ and a unit vecter u g £, the width Q:Amv in the
direction u is dfefined as the length of the interval {<u,bribeB .

The mean wilth (B} is the- cbrained by averaging v, (E) over §; that

-+ The simplex coniccture

= d + 1 the mean width is
vertices of a regular simpl
the regular arrangement
rroef of gletal cvtimalice
Ferber (196
Tanner (19

of infermar
maximized br pil
inscribed i: <.
provides a loca
of landau ard §
Thus the prosle:
survay of tha o
1

Awwvejm in
c1fi: unsolvad
considerable nuz -

che surface Ff +
lave not even me it the closely related covering proi:lems. The
“tantard ref.rer-es on ;acking and covering are Fejes Térh(1953)

and many Sulsecient parers by him) for twoe and three dieins omE, v
wogers (19640 for

‘r=iilmensional spaces.
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nedghbors if thein intensecticn is 2-dimensicnal. A nedighborly family
of negions 48 one in which every negdon 48 a nedghben of every othen
region.  The four regions 0§ this planar map form a nedghborky famity,
40 of ecourse the map cannct be colored in Less than four colons. Howeven,
a plane cannot contain any nedghborly famity cnslsting cf more than foun
hegions.  Now, what 4is the situation in 3-4pace? That is, what is the
maxdmum number of 3-dimensional neglons in a neighborty family? 1t turns
cut there s no maximum, that fon each N thene exL8s a nedghborly gamity
consisting of N 3-dimensional regions. Here's an indication 0§ how such
a gamily coutd be constructed. 17! But whai 44 the negions are veay
restricted in shape--fon example, Lif they are all zetrnahedna?

pran can even be required that all of the regions are convex
polyhedra. Different proofs of this have been given by Tietze(1905),
Besicovitch(1947), and Danzer, Griinbaum, and Klee(1963). See Tietze(19
for the history of the problem. The construction of Danzer, Griinbaum
and Klee is based upon the startling fact that for each N » 4 there
exists a 4-polytope with N vertices such that each pair of vertices
is joined by an edge of the polytope. This fact and its higher-
dimensional analogues, first established by Carathéodory(1911) and
later rediscovered by Gale(1956,1963), play an important role in the
study of polytopes (Griinbaum(1967)).

unscdved problem, Speciiically, what is the maximur
fon a nedghbondy family of totnabedra? Te see that
began with fiwe bases.

numbex

N is at feast

gLl A e conetuct e neLghbonty famibics of foun fotrahodua
Lack by genmding twe puramids. Finally we place the e pyramdds base 2o
oass gtve a slight Beist. That yields #he coenfasunation shewn hene

o dhe plane of the bases. Thus each tetrahedner ip one pyramid family

aas a ave-dimensiconal dntersection

Cth cach in the cthen, and the esght
In the ctien

, 4t has been pacved that no neghbonly damify <ncludes monc thay
-

tetrakedra fonm a nedghbonly family. Hence X is ar feast §.

darecty

mone Zetwheda, though no cne knows whethen wine axe actually pessibie,

Tie <o to decdde whethen the maxinum number M A8 & on @

“r

and the answon 44 generally belicved to be edght. 1In attempting to prove
s gou might want to Look §or a new method rather than refining zthe
vld one, for the exiating preof that N is at mest 9 takes about fiwo
nundred pages! 17¢)



Awmvajm probler: of neighborly tetrahedra is due to Bagemihl
(1956), who proved § s ¥ £ 17. Baston(19€5) showed X < ©. An
exposition c¢f the problem was provided by Klee(196%a). Tor the
analogous d~dimensicnal problem, concerning neighborly families of
d-dimensional simplices in ma. the literature does not even seer
to contain eay good bounds, though Baston(1965) conjectures the
maximumr is 2.

The fowr-colen preblom deabs with very general maps on a plane ok
srhene, in which *he Shapes of tie countries may be very cemplicated.
However, the probiem can be reduced <r several ways. In preparation fex

seme heductions, i'44 say that a set (s convex L4 42 hes ne dents ox holes

4 AT on, mone formally, if it contains abl Line segments whose endpeints
ase 4x the sex.

e degindtlon applies, cof ceunse, to abl dimensdicns.,
A convex polyhedrcn is a 3-dimensional comvex reglon whese surnface ia

made ur X0 a finize numbex ¢f convex polugens. These sunface polugons
are called the fac:s cf e

ecies and vertices. Fex exampfe, 2
ar: all cenvex pefchedra,  Theit numbers of vortices, edges, and {aces

Lyhedren and we'se alse interested in its

© Letwahednen, cube, and cctahednor

are as shoum.

According to one 4o
Coxeh confectutc 4o eguivaioni te the cc fecture
ant corvex polyhed: on car se coleted
mn,‘r&xmcov.pam?«.,»t,?u%,dm,.ho?

buid thote ax

o

¢f the thice cxamps o
atout. T;

&oRedulcd

o won

LD CoRVER pos s AACAUC L ARG N TLOR 0F Brunca

medns Lidedng @ pod pLAR: ARt passes

Sty e AD
emrazel Ane o

anG e neradnd. g v

ans Lt easy Lo s tie gnicdinad

wrades vesdor oa Ju

VeI LOR. L LS

roccelesl, Anon

toiedhon can by

veds n. Thus th» Ceviectune
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va?m most complete exposition of the four-color problem appears
in the book by Ore(1967), and some important aspects omitted by Ore
are discussed by Heesch(1969). MNay(1969) discusses the protlem's
origin and Ore and Stemple(1970) show that any map of less than forty
countries can be colored in four colors.

The reduction of the four~color problem to the problem of coloring
the faces of a (convex) polyhedron follows from reductions given in the
literature together with an important theorem of F. Steinitz which
characterizes the graphs (combinatorial Structures formed by the
vertices and edges) of polyhedra in purely combinatorial terms.

The theorem of Steinitz first appeared in Steinitz and Rademacher
(1934), and simpler proofs were provided by Griinbaum(1967) and
Barnette and Griinbaum(1969). The graphs of d-polytopes for d > 3
have still not been characterized in purely combinatorial terms,
though necessary conditions have been given by Balinski(1961),
Barnette(1967), Grinbaum and Motzkin(1963) (see also Griinbaum(1965)) ,
Klee(1964), and Larman and Mani(1970a). See Griinbaum(1970a) for
some higher~dimensional analogues of the four~color problem.

Now Let's Look at a different aspect of trwncation. If you thuncate
the cube four Zimes in zhe manner shown, you obzain a convex relyhedion
An which each face has three edges on six edges. 1t has been confectured
that every convex polyhedron admits a §inite dequence of truncations
Leading to a polyhednon in which eveny face has a number of edges that
<4 a multiple cf 3. The requined truncation sequences may be more com-
plicated thar the cne already shown fer the cube. Fox exomple, this
cne invelves Twncating a veatex which had itself been intreduced by an
carkion Twncation.  In any case, this <nnccent~s cunding confectune s

Enown zc be equivalent ¢ the fous-colon confectuse’ {20)

20) N
Arouﬁym truncation conjecture is discussed by Hadwiger(1957).

¢ have been several claimed ocss of the dewr-cofon congectuse,
,

ich tuaned eut fo be incerrect. (1)

{0 anctien anteresting unscfved prctler.  In exder to introduce that vhcbicr

vet, ore ok ther has feod

and {12 Let’s consdder anv

ceteult, By this

Lote as o ovdadlt

xoexactfy cnce and retunn to the stasiing point.  Fex exarmofc,
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thot was @ Hameltendan circudd on the cube and here {s cne on the reaulan

dececahedren.  Anu such cdtcult ddvdder the surface of the poluledron

inte Bro halves An 2 natuted way, and Lt can be preved that the faces 4in

rod witn ey fiee colons so that nedghbering faces

each halg can b2 c«
necedve didfencnt cofons.  That Leads fo an acceptable colondng of alk

the gaces with jusr feur colors.

(2D)ynile writing the final version of this viewer's manual *
(Cctober 1971), I heard of another claimed proof of the four-coloer
conjecture, based on vork of Heesch(1968), which sounded much more
promising thar the manv earlier claims. However, I have not yet \
seen the deta:ils cof the argument.

b e Arut- sedes conjectune coudd be pueved by she

(na that any

F-vdent convex drecson ¢ Hamiltondar circudt.  The cxdstence ¢f

o : Re Anan AAXTU Hoas AL,

, Hione Lemadns

at is the

*

mn numben admd il

o bomadfondan

2 ier

o L AL TR ¢
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Grinbaum(1970b) respectively. Several related unsolved protlems
are discussed in these accounts. In particular, the following
attractive conjectures of D. Barnette are stated by Criinbaum(1970b):

A 3-valent polyhedron admits a Hamiltonian circuit if each of its

Fach 4-valent 4-polytope admits a Familtonian circuit

The second conjecture is unsettled even for the simplest 4-valent
4-polytopes~--namely, those formed as prisms over 3-valent polyhedra.
The existence of Hamiltonian circuits for such 4-polytopes has been
observed by D. Barnette to follow from the four-color conjecture.

A graph is said to be k-connected provided that it has at least
k + 1 vertices and is not separated by the removal of any k vertices;
equivalently, each pair of its vertices can be joined by k paths that
are pairwise disjoint except mOMHmwmwn common endpoints. By the theorem
of Steinitz(1934) mentioned in , as reformulated by Griinbaum and
Motzkin(1963), a graph G is isomorphic with the graph of a polyhedron
if and only if G is planar and 3-connected. In connection with the
above problems on Hamiltonian circuits, it should be mentioned that
Tutte(1956) (see also Ore(1967)) proved that every 4~connected planar
graph admits a Hamiltonian circuit. And Fleischner(1971) has recently
proved that the square of every 2-connected graph admits a Hamiltonian
circuit. (The square 62 of a graph G has the same vertices as G.
However, two vertices of 6% are neighbors (joined by an edge) in G2
if and only if they are either neighbors in G or have a common neighbor
in G.)

For results concerning the existence of Hamiltonian circuits on
polyhedra of unrestricted valency, and on certain special classes of
3-valent polyhedra, see Klee(1967) and Grintaum(1970b) and their
references. See especially Grinberg(1968), Sachs(1968), and Barmette
and Jucovic(1970).

For additional unsolved problems on variovus aspects cf the
geometry of polytopes, see Griinbaum(1567,1970b), Grinbaur and She
(1966, Flee(1966), and Shephard(1968).
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Awuvnmm L. derberg{19€3,1969) for the use of Familtonian circuits

in the cod:fic. tion of organic compounds.

A erherdear baif has tie pacperty that fex any fwe planes the area
e Eall's Langert cuess-secticn parllel 2o one plane is the same
W thal of At Largesx crosi-seltdion paralled to the other. 14 4 unknc
whetinen any non-spherleal convex body hay that preperty. The anafogous
an aggimmative answer.  In fact, there 48 a

2-dimens Lonzl quasti

noncirieular convix bodu whese maxdmum cress-secticnal Length in any

. . ) . .
Lnection Lo the sar: as thet 4n any cthen directdion. (e4)

Awbvﬂrm rlane convex bodies "whose maximum cross-sectional length
in any direction is the same as that in any other direction” are pre-
cisely the bodies of constant width, usually defined by the condition
that the distan:e between any pair of parallel tangent lines is the
same as the distance between any other such pair. See Klee(1971a) for
an expositery avcount ¢f some of the surprising properties of these
bodies, and for references to the literature.

The unsolv:d 3-divensional preblem mentioned above, dealing with
areas of plane ‘ross-secticns, is related to the problem of deter-
mining the Fermi surface of a metal by means of the de Haas-van Alphen
effect. Sec Kl:e(1969t,1971a) for accounts of this, and Mackintosh
(1953) for a readable discussion of Fermi surfaces. 7aks(1971) has
constructed som: rather weil-behaved bodies which are not spherical

and yet have thu property cf "constant maximum cross-sectional area';
however, hi. ex.mples are rnot convex.

S G ocs

o
A AL Whoane

Ammvﬂrm problem about floating bodies was posed by S. Ulam in the
1930's, and is repeated in his book (Ulam(1960)) on unsolved problems.
The 2~dimensional example is due to fuerbach(1938).

The ginal prcblem alsc invelves centens cf gravity. A hemegemeous
selid 48 called unistable previded that it is in the shape ¢f a convex
olyhedron and has a special face such that, however the sclid is placed
on a flat sunface, it will nofd over until it rests on that special face.
Here 45 a unisztable solid with 19 faces; the special face s colored ned.
Ne matter how 1 put it down, it will twn until it nests on the ned face.
Howevern, it 4is unknown what is the smallest possible number of faces for
such a solid. f2¢]

26
( vmon the construction and a number of related unsolved problems,
see Guy(1969).
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