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K. A. Post, Six interlocking cylinders with respect to all directions, Internal report,
Eindhoven, 1983,

G. T. Toussaint, On translating a set of spheres, Tech. Rep. 84.4, McGill University,
Montreal, 1984.

E9. Lattice point problems. The next few problems involve properties of
scts in relation to lattice points. For our purposes a lattice point will always
be taken to mean a point in R? with integer Cartesian coordinates. The square
lattice or integer lattice will refer to the set of all such lattice points in R? [see
Figure E3(a)].

[tis possible to pose lattice point problems for lattices other than the square
one [see Figure E3(b)]. Sometimes such problems can be shown to be equiva-
lent to that for the square lattice, though often different problems may result.

A large collection of unsolved problems on lattice points may be found in
Hammer’s book.

J. Hammer [Ham].

E10. Sets covering constant numbers of lattice points. Steinhaus has asked
whether there exists a plane set E that covers exactly n lattice points however
it is placed on the lattice (rotations being allowed). One might hope to
construct such an E by using the axiom of choice or other appropriate axioms
of logic, but apparently no one has yet succeeded in doing this. (This is a
particular case of the problem in Section G9.)

If we require E to be a Borel or measurable set, the problem takes on a
completely different character. Certainly the area of such an E must equal n.
The problem is equivalent to seeking a set such that the 2-dimensional
Fourie: transform of the characteristic function of E is zero on all circles
centered on the origin with radii /i + j?, where i and j are positive integers.
Croft has used the idea of the density boundary to show that E cannot be

Square lattice Triangular lattice

(a) (b)

Figure E3. Examples of plane lattices: (a) for square lattice and (b) for triangular
lattice. Our problems generally concern the square lattice, consisting of points with
integer coordinates.
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measurable and bounded, but his argument does not extend to the unbounded
case.

Croft also poses the following problem. Put a measure on the set of
congruence transformations p using some 3-dimensional parameterization
(x, y, 6) in the natural way. Let E be plane-measurable. We say that the integer
k is essentially represented by E if the set of p for which p(E) contains k points
has positive measure (i.¢., if such covering positions are non-exceptional). Then
is the set of integers essentially represented by E always a block of consecutive
integers? This is not true if “essentially” is omitted: the closed disk of radius

5 can be moved to cover 17 or 21 lattice points, but not 18, 19, or 20.

H. T. Croft, Three lattice point problems of Steinhaus, Quart. J. Math. Oxford Ser. 33
(1982) 71-83; MR 85g:11051.

I. Niven & H. S. Zuckerman, Lattice points in regions, Proc. Amer. Math. Soc. 18
(1967) 364-370; MR 35 #136.

H. Steinhaus, Mathematical Snapshots, Oxford University Press, Oxford, 1969.

E11. Sets that can be moved to cover several lattice points. It is well-known
that every plane (measurable) set of area greater that 7 may be moved (rigidly)
to a position so that it covers at least two points of the unit square lattice.
What is the critical area for covering at least three, and more generally, at
least n points?

A simple argument shows that any set E of infinite area (i.e., infinite inner
measure) can be positioned to cover at least n lattice points for each integer
n. A question sent to us by Steinhaus asks whether E can always be positioned
to cover infinitely many lattice points. If not, what additional hypotheses are
required for this to be so? Croft has shown that it is enough for E to have
unbounded interior.

One can ask similar questions for convex sets. The following problem from
L. Moser’s collection is of particular interest. Let f(A) be the largest number
such that every plane convex set of area 4 can be positioned to cover 4 + f(A4)
lattice points. Does f(A4) — oo as A — co and if so, how fast? Recently, Beck
has shown that there is always a position covering more than 4 + cA'” points
and also one covering fewer than 4 — cA'®. He also points out that, using his
method, the exponent 5 can be replaced by § — ¢ for any ¢ > 0. Simple
examples show that f(4) = O(A"?), and Beck conjectures that f(4) = O(4'*)
is the right order or magnitude.

We propose the following strengthening of Moser’s problem: Can a convex
set of area 4 be placed so as to intersect the parallel line set {(x, y): x is an
integer} in total length at least 4 + f(A) for some f(A) which tends to infinity
with A?

Of course, by placing further restrictions on the class of sets (e.g., circles,
triangles, squares, n-gons, etc.,) we get a plethora of further problems (see
Moser & Pach, Problem 53 for a discussion of the case of a square, and, for
example, Kendall & Rankin in the case of a disk or sphere).
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J. Beck, On a lattice point problem of L. Moser 1, 11, Combinatorica 8 (1988) 21-47,
159-176.

H. T. Croft, Three lattice point problems of Steinhaus, Quart. J. Math. Oxford Ser. (2)
33(1982) 71-83; MR 85g:11051.

D. G. Kendall & R. A. Rankin, On the number of points of a given lattice in a random
hypersphere, Quart. J. Math. Oxford Ser. (2) 4 (1953) 178-189; MR 15, 237.

W. Moser & J. Pach, Problems 52 and 53, [MP].

R. Schark & J. M. Wills, Translationen, Bewegungen und Gitterpunktanzahl kon-
vexer Bereiche, Geom. Dedicata 3 (1974) 251-256; MR 50 # 4498.

E12. Sets that always cover several lattice points. Santalo asked for the
convex set of least area with the property that every congruent copy contains
at least one lattice point. Schiffer and Sawyer showed independently that
the smallest such set is K = {(x, y):|x| <4, |yl <3 — x*} which has area $
According to Reich, Schiffer conjectures that K is also the covering set of least
perimeter. What is the (measurable) set of minimal area if the convexity
condition is dropped—is it still the same set or can area 1 + ¢ be achieved for
any ¢ > 0?

Describe the sets, convex or otherwise, of least area or of least perimeter
with all congruent copies covering at least n lattice points forn =2, 3, ....
Presumably for large n they approach a circular shape—are there any n for
which they are circular? Mdgling gives exact conditions for regular p-gons
always to cover a lattice point if p is odd. Characterize such regular polygons
for even p, and more generally find conditions for arbitrary p-gons always to
cover n lattice points. ‘

It is also useful to have conditions involving other measures of a convex
set K that ensure that K contains at least one (more generally, at least n) lattice
points however it is situated. The intuitive idea here is that if K can cover few
points compared with its area A, then it must be “long and thin.” A basic result
in this direction is due to Nosarzewska who showed that however K is placed
it must cover at least A — 3L and at most 4 + ;L + 1 lattice points, where L
is the perimeter of K. (See the papers of Bokowski, Hadwiger & Wills, of
Schmidt and of Wills for higher dimensional analogs.)

Bender proved the “isoperimetric” result that if 1L < A then K must
contain a lattice point, and he extended this to higher dimensions.
How big must A/L be to guarantee catching n lattice points? Scott showed
that if (w—1)(D —1)>1 then K contains some lattice point, and if
(w— \/%)(D — \/5) > 2 then K contains at least two points. (See McMullen
& Wills for higher-dimensional versions of this.) What are the analogs for
n points? Scott suggests that the more natural thing to look at here rather
than w and D is what he terms the axial diameter. Scott also showed that a
convex set satisfying 4 > 1.144nD must contain n lattice points, and by a
simple refinement of his argument, Hammer pointed out that such a set in
fact contains n? points! Can these results be improved, or generalized to d
dimensions for d > 3?
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P.R.Scott, Area, width and diameter of plane convex sets with lattice point constraints,
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P.R. Scott, On planar convex sets containing one lattice point, Quart. J. Math. Oxford
Ser.(2) 36 (1985) 105-111; MR 86d:52007.
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1. M. Wills, Zur Gitterpunktenzahl Konvexer Mengen, Elem. Math. 28 (1973) 57-67;
MR 53 #3898,

E13. Variations on Minkowski’s theorem. Let K be a convex set in R that
is centro-symmetric about the origin 0. If K has d-dimensional volume V > 24
then K contains at least two lattice points other than o (see Figure E4). This
1s Minkowski’s theorem, which is of fundamental importance in the geometry
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(0,0),

Figure E4.  Minkowski’s theorem: If K is centro-symmetric about the origin and has
an area of at least 4, it contains further lattice points.

of numbers (see Hardy & Wright or Cassels for proofs and consequences of
this result). Many problems on convex bodies and lattice points come from
trying to generalize Minkowski’s theorem or varying the hypotheses. We
mention some of these here, others may be found in Hammer’s book and in
the various papers of Scott.

Ehrhart conjectures that if K is any (not necessarily symmetric) convex
body in R? with centroid at o and containing no further lattice points, then
V < (d + 1)?/d!, this bound being attained by a certain simplex. He proved
this in the plane case. Must sets of any larger area or volume always contain
a pair of lattice points symmetric with respect to o? Might it also be true that
if V> k(d + 1)/d! then K contains 2k lattice points situated symmetrically
about 0?

The extremal convex set for Ehrhart’s result in the plane is the triangle with
vertices (—2, —1), (2, 1), and (1, —1). Scott asks if this is also the convex set
of greatest width with no interior lattice points other than o.

Scott also asks for the convex set of largest area with circumcenter at o
containing no other interior lattice points. He conjectures that the maximum
1s 4.04 ... with the intersection of the circle center o and radius 1.637 ... and
a triangle with two lattice points on each side as the extremal.

Scott proposed maximizing A4/L for a plane centro-symmetric convex set
with center o and containing no other lattice points. This problem was solved
by Arkinstall & Scott, and by Croft who considered the more general case
of A/L* for 0 < a < 2. The 3-dimensional analogs promise to be awkward!

J.R. Arkinstall, Minimal requirements for Minkowski’s theorem in the plane I, I1, Bull.
Austral. Math. Soc. 22 (1980) 259-274, 275-283: MR 82f:52013. ’

J.R. Arkinstall & P. R. Scott, An isoperimetric problem with lattice point constraints
J. Austral. Math. Soc. Ser. A 27 (1979) 27-36; MR 80h:52011. |

J.W.S. Cassels, Introduction to the Geometry of Numbers. Springer-Verlag, New York
1971; MR 46 #5257. ’

H.T. Croft, Cushions, cigars and diamonds: an area-perimeter problem for symmetric
ovals, Math. Proc. Cambridge Philos. Soc. 85 (1979) 1-16; MR 80e:52001.

E. Ehrhart, Une généralization du théoréme de Minkowski, C. R. Acad. Sci. Paris 240
(1955) 483-48S; MR 16, 574.
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E14. Positioning convex sets relative to discrete sets. Many of the problems
of the last few sections concerning lattice points can be asked for more general
sets of points scattered across the plane and subject to some density condition.

The following perplexing problem is due to Danzer. Let S be a point set in
R? of bounded density, that is, with the number of points in § N B, at most
cr? for some constant ¢, where B, is the disk center the origin and radius r. Do
there always exist convex sets of arbitrarily large area not containing any
points of §? This is so if S is a finite union of lattices, but it is false for certain
S with logarithmically greater density, i.e., with (roughly) cr? In r points of §
in B,.

In the other direction, suppose that lim,., (number of points in
S A B,)/nr* = 1.Steinhaus asks whether every domain (convex, or more gener-
ally, measurable) with an area of at least n, has a congruent copy covering n
points of S. Macbeath & Rogers showed that for any bounded domain K of
area 1 not including the origin there exists a linear transformation of deter-
minant 1 mapping K to a set disjoint from S.

R. P. Bambah & A. C. Woods, On a problem of Danzer, Pacific J. Math. 37 (1971)
295-301; MR 46 #2556.

L. Danzer, Problem 6, [Fen].

A. M. Macbeath & C. A. Rogers, A modified form of Siegel’s mean value theorem,
Proc. Cambridge Philos. Soc. 51 (1955) 565-576; MR 17, 241.
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