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Abstract

Chapter 1 deals with shellings of convex polytopes and polyhedral complexes. R.
Stanley first defined the generalized toric h-vector, a fundamental combinatorial in-
variant of polyhedral complexes (and more general objects). When the complex is
simplicial, it is known that this invariant can sometimes be computed by shelling,
or taking apart the complex in a certain order. We show how any shellable complex
with cubical facets can be dealt with analogously. Based on a result of L. Shapiro we

formulate the h-vector of any shellable cubical complex in terms of certain classes of
plane trees.

In Chapter 2 we study subdivisions of simplicial complexes. Stanley defined local
h-vectors, called I-vectors, to investigate the behavior of A-vectors of simplicial com-
plexes under subdivision. The I-vectors of a large class of simplex subdivisions have
certain useful properties. We show that these properties characterize such /-vectors.
We also define refined [-vectors (for vertex-colored subdivisions) and show that they
have analogous properties. v

Chapter 3 is an application of polytope geometry to the enumeration of graphs and
degree sequences. To give a combinatorial proof of Stanley’s enumeration of quasi-
forests in terms of degree sequences, we derive a correspondence between quasiforests
on n vertices and degree sequences of graphs on n vertices by constructing a canonical
decomposition of the appropriate convex polytope into half-open cubes. Using the
same method we formulate a bijective map from the set of forests on n vertices to the
set of score vectors of tournaments on n vertices.

Thesis Supervisor: Richard P. Stanley
Title: Professor of Mathematics
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Chapter 1

Plane Trees and H-vectors of

Shellable Cubical Complexes

1.1 Introduction

R. Stanley first defined the generalized toric A-vector, a fundamental combinatorial
invariant of polyhedral complexes (and more general objects). In the case where the
complex is simplicial, this invariant can be computed by shelling, or taking apart
the complex in a certain order. In this chapter we show how any shellable complex
with cubical facets can be dealt with analogously. Based on a result of L. Shapiro we
formulate the h-vector of any shellable cubical complex in terms of certain classes of

plane trees.

1.2 Background

Let A be a pure (d — 1)-dimensional simplicial complex, i.e., its maximal faces
Fi, Fy, ..., Fy all have dimension (d — 1). Sorn_etimes we will denote A by

(F1, Fa,..., Fi). For each i, let f; = fi(A) be the number of i-dimensional faces in
A. By convention, f_; = 1 unless A = @, in which case f_, = 0. Then the f-vector of

Ais f(A)=(f-1,fo,..., fi-1). A linear transformation of this vector is the A-vector



h(A) = (ho, h1,.. ., hy), which is defined by

d

d
Zf,-_l(x - ].)d—i = Z h,'xd_i.

1=0 1=0

[t is easy to show that

. ,
hA, z) = gh,-x‘ = %z#F(l — z)d#F, (1)

The h-vector is often easier to handle than the f-vector, so since knowing the A-
vector is equivalent to knowing the f-vector, much research has focussed on the
h-vector. (See Chapter 2 for algebraic significance of h-vectors.) Some examples of

the convenient properties of A-vectors are outlined below.

Proposition 1.2.1 If A and T are simplicial complezes then their simplicial join
AxT is the simplicial complez with mazimal faces FUG, where F and G are mazimal

faces of A and T, respectively. Then h(AxT,z) = h(A,z) - b(T, z).

Proof: This is immediate from (1). Q

For shellable simplicial complexes, the h-vector has a simple combinatorial inter-
pretation.
Definition A shelling of A is an ordering of its maximal faces Fy, F;,..., F; such
that for each i, (F;) N (Fy, Fy,..., Fi_y) is a pure (d —2)-dimensional complex. If such
an ordering exists, then A is called shellable.
Ezample Let A be the boundary complex of a tetrahedron with vertices 1,2,3,4.
Then any ordering of its maximal faces {123}, {124}, {134}, {234} is a shelling of A.
More generally, we have the following result, due to Brugesser and Mani ([BM]):

Theorem 1.2.2 The boundary complez of any convez simplicial polytope is shellable.

Now we have McMullen’s interpretation of A-vectors of shellable polytopes (see
[McM70, p. 182]), which holds for shellable simplicial complexes in general. For the

sake of completeness, we include the proof.
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Proposition 1.2.3 Let Fy, Fy,..., Fi be a shelling of A. For each t, define s; to be
the number of facets Fj such that (F;) N (Fy,...,F;_,) has i mazimal faces. Then
h,(A) = 8;.

Proof: Suppose (F;) N (F,..., F;_1) has i maximal faces. Then the contribution of
Fj to h(A,z) with respect to the given shelling is

) o* (1 = ) #,

fE(FN(Fy e Fyoa)

Since (£3) \ (F1,...,F;_1) contains exactly (¢~%) faces of dimension i + r — 1 for
each 0 < r < d — 4, the contribution is just z*, by the binomial theorem. Thus
h(A z) =T szt O

Ezample For the shelling {123}, {124}, {134}, {234} of the boundary of the tetrahe-

dron with vertices 1,2, 3,4 we have

(F)n® = 0,
(F)n(F) = ({12}),
(F3) N (F, Fy) = ({13}, {14}),
(F) 0 (Fy, Py, F3) = ({23}, {24}, {34)}).
z)

Thus  h(A,z2) = 1+z+2% 425

Note that in this example the A-vector was symmetric. This is true for the A-
vector of the boundary of any simplicial polytope, and for a larger class of simplicial

complexes called Euler complezes, defined below.

Definition: The reduced Euler characteristic of A is

d-1 .
= Z (—1)'fi

1=-1



This is a topological invariant, so it depends only on the geometric realization of A
(see [Stan86, Section 3.8]). For each F € A, the link of F with respect to A is the
simplicial complex (G: GUF € A, GN F = 8). A pure simplicial complex A is an
Euler complez if for all F € A,

X (kg F) = (~1)4im(lea F)

Ezample If A can be geometrically realized as the (d — 1)-sphere S4~!, then A is an

Euler complex.

Theorem 1.2.4 Let A be an Euler complez with h-vector (ho, hy, .. .yha). Then we

have the Dehn-Sommerville Equations, h; = hy_;, for all i.

Note: The Dehn-Sommerville Equations are the most general linear relations to hold
among the components of A-vectors of Euler complexes, and hence translate into the
most general linear relations among the components of f-vectors of Euler complexes,

but not nearly so elegantly. (See [MS, Section 2.4}, [Stan86, p. 151].)

R. Stanley was able to generalize the definition of h-vector' to the boundary com-
plex of any convex polytope (not just simplicial) so that the Dehn-Sommerville equa-
tions still hold. The generalized h-vector, in fact, is defined for a larger class of objects

called Eulerian posets, defined below.

Definitions: A poset is a partially ordered set. If z is less than any other element of
P then r is called 0. If y is greater than any other element of P then y is called 1.
A poset P with 0 and 1 is graded if every maximal chain in P has the same length.
If P is graded, the rank r(z) of z € P is the maximal length of a chain from 0 to z.
The Mobius function u of a graded poset P.is given by

l. u(z,z) =1, for any z € P; and

2. u(z,y) =— Ye<acy b(z,2) for all z < y in P.



See [Stan86, Chapter 3] for background on posets.

Definition Let P be a finite graded poset with § and 1 such that for all z,y € P, we
have u(z,y) = (~1)"W-() where y is the Mbius function of P, and r is its rank
function. Then P is called Eulerian.

Ezample If P is the face poset of any convex polytope, then P is Eulerian. (See

[Stan86, Proposition 3.8.9] for a more general result.)

Definition Let P be an Eulerian poset, and P = P — {I}. Forallt e P, let

Pi={s€ P:0<s <t} Letdbe the rank of P. Now define f(P,z) and g(P,z)
inductively by

L f(d,2) = g($,2) = 1

2. f(P,z) = Tiepg(Pryz)(z — 1)3—®)

3. g(P,z) = Z}i{fj(k; — ki_1)z*, where k; is the coefficient of z* in f(P,z)

Then deg f(P,z) = d, and the generalized h-vector of P is h(P) = (ho, h1,-..,hq),

where h; = ky_; from above.

Facts (1) If P is a simplicial poset, i.e., P, is boolean for all ¢ € P, then

d d
Z hizd—i — Zfi—l(m _ l)d—i’

1=0 1=0

where f;_; is the number of elements of rank : in P. In particular, if P is the face
poset of a pure simplicial complex A, then the generalized h-vector of P is simply
the h-vector of A.

(2) (For readers familiar with toric varieties) Let P be a d-dimensional convex poly-
tope in R? with rational vertices and the origin in its interior. (Any simplicial convex
polytope is combinatorially equivalent to such a P.) Then we: ‘can associate with
P a d-dimensional irreducible complex projective toric variety X. The intersection

cohomology of X and the generalized h-vector of the boundary of P are related by
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dim/H*(X) = h; for 0 < i < d, and dim TH(X) = 0 for all other J- Intersection
cohomology theory then shows that ke < hy <--- < h[ 2| (see [Stan87, Section 3)).
Thus, Dehn-Sommerville implies that the h-vector of the boundary of any simplicial
convex polytope is unimodal.

(3) For any Eulerian poset P we have the generalized Dehn-Sommerville equations

for the h-vector of P:
hi = hy_;, Y0 <:<d.

(See [Stan87, Theorem 2.4].) So 9(P,z) completely determines f(P,z).

Ezample The face poset Ly of a d-dimensional cube is Eulerian, so its A-vector is

determined by its g-vector, which is given by L. Gessel as follows (see [Stan87)).

Proposition 1.2.5 We have

Ld/2] 1 d 2d — 2k
9(La,z) = _— (z - 1)~
éd-w(k)( d )

Based on this result, L. Shapiro gave the following description of g(Lg4, ) in terms
of plane trees (see (Stan86], Ex. 3.71g). If two vertices in a plane tree share an
edge, we call the lower vertex a child of the upper, and write a,() for the number of

n-vertex plane trees in which exactly i vertices have more than one child.

Proposition 1.2.6 We have

(4/2)
Ldyz) Z ad‘i‘l(2

=0

Proof: Since there is only one tree on one vertex, we have a,(i) = 6;p. By removing
the root, we see that a plane tree on n > 1 vertices is determined by the ordered set

of trees rooted at children of the original root.
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RO

Let N denote the natural numbers, and P the positive integers. For all u € N,

v € P, let [u], be the set of all (uy,...,u,) € PY such that ¥, w; = u, and [[u]],

the set of all (uy,...

an(t) =

yUy) € N? such that 3, u; = u. We have

) + Z > apy (1) -+ - ap,(t;) forn > 1.

1=2 be[n-1], te[[i-1]];

Let z = ¥o51 Zisoan(i)y'z”. Then z = z + zz + zy22/(1 — z), so

(1+zy—-2z)z

%(1—\/1+4(:1:2-—z2y—a:))
1

—5 L (WG - 2%y — o)
k>1
: 1 2k k(k k
22 (D) y - 1)
k>13=0
(n/2} 1

e ) G (R VI
2

2

— {2 + ::3)} (v=1)a"
n2l s=0

(1+zy —1z) Z 9(Ln-1,y)z", by Proposition 1. O
n>1

Definition A finite graded poset P with 0 is lower Eulerian if P, is Eulerian for all

t € P. So for all lower Eulerian P, we can define f(P,z) as in the Eulerian case.

Ezample Let P be a finite graded poset with § such that for all t € P we have P,

isomorphic to L,, for some r. In this paper, a cubical (d-1)-complez Q) is a geometric

realization of such a poset P of rank d. Thus, the face poset Py of a cubical complex

Q is lower Eulerian, and we can define the h-vector of Q by 4(Q) = A(Fg).

11



We are interested in A-vectors of shellable cubical complexes, defined analogously
to shellable simplicial complexes as follows.
Definition: If Q is a pure cubical (d = 1)-complex, a shelling of Q is an ordering of
its maximal faces Fy,..., F. such that for all i > [ we have that F;N(FuU---U Fi_y)
is a (d — 2)-dimensional cubical complex which is homeomorphic to a ball or sphere,

If such an ordering exists, then Q is called shellable.

1.3 H-vectors of shellable cubical complexes

Let @ be a shellable cubical (d ~ 1)-complex with a given shelling. Our goal is to
find a combinatorial interpretation of h(Q) in terms of the given shelling, analogous

to Proposition 1.2. The remainder of this chapter appears in [Chan].

A maximal face of Q is called a facet. Let F be a facet of Q, and I the intersection
of F' with previous facets in the shelling. If I is a union of 0 < i < d—1 antipodally
unpaired (d—2)-faces and 0 < j < d—1—1 pairs of antipodal (d—2)-faces, the h-vector
contribution by F is Tiepo\p, 9((Po)s, z)(z - 1)4=7®) where r is the rank function of
Pq. We will call F an (i,j)-facet (with respect to the given shelling) and denote its A-
vector contribution by fy(1,,z) = S¢_, ba(¢, 7, k)zk. (So f4(0,d—-1,z) = 9(L4-y,z),
for example.) Let b4(7, 7, —1) = 0 for all 4]

a’ Yo L . .
et Q be the boundary of the 3-dimensional cube
a = withQsheHing (abed, abycd’, a'tcd,abdd’,a’bdd, a’b'c'd").
| 0,0)-facet: abcd
| 1,0)-facet: ab'cd’
oL , 2,0)-facets: a'bed, abdd’
ST A 1,1)-facet: a'bc'd
b 0,2)-facet: a't'dd’

Given a shelling of Q, if we let 3i,; be the number of (7, j)-facets in the shelling,
then it is clear that f(Pg,z) = ¥, ; s;,fa(i, j, 7). Thus h(Q) is given by the sum of the
h-vector contributions by facets of Q. We will show that f,(i,7,z) has nonnegative

coefficients by giving them combinatorial interpretations. Consequently we get a
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combinatorial proof that the h-vector of @ is nonnegative.

Lemma 1.3.1 For all 0 < k < d we have that b4(0,0, k) is the number of d-vertez

trees such that ezactly k vertices have at most one child.

Proof: 1t is clear that f4(0,0,z) = (z - 1)f(La-1,7) + g(La-1,z). We also have
(z=1Df(Ls,z) =" Hg(L,,z7") — g(L,, ) (see [Stan87]). Thus by Proposition 2 we

have
{(d-1)/2]
f4(0,0,z) = :z:dg(Ld_l,a:'l) = Z ad(k)zd'k,

k=0

with ay(k) as defined earlier. The lemma follows. O

Lemma 1.3.2 Forall1 <i<d—-1 and0<k <d, we have
ba(7,0, k) = by(i = 1,0, k) + by_1(i = 1,0, k) — by_y(i — 1,0,k — 1).
Proof: The Lemma is true if and only if for all i > 1 we have
fa(i,0,2) = fa(i = 1,0,2) = (2 = ) fumr (i = 1,0,2). (1)

It is easy to see that an (4,0)-facet contributes everything that an (i—1,0)-facet con-
tributes to the h-vector, except for the contribution by a (d—2)-face which intersects
the previous facets in i—1 antipodally unpaired (d—3)-faces. From this we deduce

(1). O
Lemma 1.3.3 For 0<k<d, 1<i<d—2, and1<j <d—1-i, we have

bd(iaj’ k) = bd(za] - 1,k) + de—l(iyj - l,k) - de—l(ivj - 11k - 1)'

Proof: Equivalently, we need to show that for all 1 <: < d-—2, 1 <j£d-1-1, we

have

fd(ivjvz) = fd(za]— 1,.’1:) - 2(:3 - l)fd—l(ivj - 1,$). (2)

13



Similarly to the proof above, we deduce (2) by comparing the A-vector contribution

by an (7, j)-facet with that contributed by an (z,7—1)-facet. O

1.4 The Connection to Plane Trees

At this point we introduce some plane tree terminology.

Definitions: An n-tree is a plane tree on n vertices. Two children of the same vertex
are siblings. A vertex is a fork if it has more than one child; otherwise it is a nonfork.
A vertex with no siblings is an only child. A child of the root vertex is a root child.
If a vertex has a sibling to its left and right, it is an inner child. In this paper, the
vertices of all plane trees are ordered recursively by root first, and then subtrees of

the root, from left to right. This is called preorder.

Preorder . i -vertices J7-vertices

If the i-th vertex in an n-tree has exactly one child, we will call this vertex an i’.
For 1 <j < n-2, if the (n — j)-th vertex is followed (in preorder) by an inner, only,
or root child, we will call this vertex a J". Forallj < n—2 let ca(t,j, k) be the
number of n-trees with exactly & nonforks which are not U,...,inor1”,...,5". Let
¢a(0,n — 1, k) = an(k) as defined earlier, and ¢a(t,J,—1) =0 for all i,j.

We now can state our main result.

Theorem 1.4.1 Let F be a facet of a cubical (d—1)-complez with given shelling. If
£ 1s an (i, j)-facet, then the h-vector contribution by F is Y g ca(t, 7, k)z*.

Proof: ~ We need to show that ba(i,5, k) = cq(i,,k) for all 0 < k < d. First

we consider the case j = 0. Since there is no such thing as 0/ or 0”, we have

14



c4(0,0, k) = b4(0,0, k) for all =1 < k < d by Lemma 1. So by Lemma 2, it suffices to
show that forall 1 <i<d—1, 0<%k <d we have

cal(t,0,k) = cali = 1,0,k) + cama(i = 1,0, k) = ey (i = 1,0,k — 1), (3)

Now given any (d — 1)-tree with s nonforks which are not U,...,t', we can get a
d-tree with s+1 nonforks not 1’,.... # by inserting a vertex between the (t + 1)-th
vertex and its parent. (In the picture below, circled vertices are nonforks which are

not 1',...,¢.)

4=y

@\
t=3
s=4

This map is injective. From this observation (3) easily follows.

Now consider j > 0. As noted in the last section, f4(0,d — 1,z) = g(Lq,z),
SO the theorem holds for j = d—1. By the definition of shelling, 1 < j < d-2
= 1<i<d-2. Fixsuchi Now cd(2,0,k) = b4(2,0,k) for all —1 < k < d from
above, so by Lemma 3, it suffices to show that for all 1 <7<d-1-14,0<k<d

we have
ci(2,7,k) = ca(i, 5 — 1, k) + 2cq-1(t,5 ~ 1,k) — 2¢c4-1(2,5 — L,k =1). (4)

Given any (d — 1)-tree with exactly s nonforks not U,...,i' nor 1”,..., ;" we can get
a d-tree with exactly s + 1 nonforks not 1’,...,# nor 1”,...,7" in two ways:

(In the pictures below, circled vertices are nonforks which are not 1,...,¢ nor

1,0, 5m)

L. insert a vertex between the (d — 1 — j)-th vertex and its parent.

15



Coe——

2. replace the (d — | — j)-th vertex and its offspring by a single leaf. If there is a
(d—7)-th vertex in the cropped tree, call this vertex v, and reinsert the removed
subtree so that its root has v as a sibling on its immediate right. If no such

v exists, insert the removed subtree so that it is the rightmost subtree directly

under the root.

d=9,i=2j=43=3 d=9,i=1,j=3,3 =4
I
e . @ At
~
@

These two maps are injective and have disjoint images. The identity (4) follows.
a

Ezample Let Q be the rhombic dodecahedron shown below, with shelling
(afeg,cged,eda’t/,t'c'ef,afc'd', abeg, a't'dg,a’f'ed, bee' f', e'd'ab, d'g'e’d, a'f'e'q’).

We have sop =1, 519 = 2, $20 =6, 51,1 =2, 592 = I.

d’ [
I | f(va) (I2+(173) %ﬁ (,=O’J:O
| £ 1 ) e
2(2 ,
a ok -_{q’ y +2(22?) é H izl
s\ +6(z + z?) é) {» i72,i=0
b /a \ e \ +2(2.’E) g % L=l,5=‘l
fip-1— —
// +(1+ z) f /@\ {=0,j=2
¢ d = 1+1lz + 1122 +7°

16



Chapter 2

Some Results on Local A-vectors

2.1 Introduction

R. Stanley defined local k-vectors, called {-vectors, to investigate the behavior of A-
vectors of simplicial complexes under subdivision. He showed that {-vectors of a large
class of simplex subdivisions satisfy certain useful properties. In this chapter we show
that these properties characterize such I-vectors. We also show that refined l-vectors

(defined for vertex-colored subdivisions) satisfy the same useful properties.

2.2 Background

Let A be a finite (d — 1)-dimensional‘simplicial complex with f; :-dimensional faces
(:-faces) for each i. Then its f-vector f(A) is (fo,..., fi-1). By convention, f-1=1,
unless A = 0, in which case f_, = 0. An algebraically desirable form of the f-vector
is the h-vector h(A) = (ho,...,hq), defined by Y4, fioi(z — 1) = $L, hizd-t.
We will often work with the A-polynomial h(A,z) = ¥4, hiz. We will give some
background on the algebraic significance of (A, z) for a certain class of siinplicial
complexes below. Chapter 1 contains other useful facts about h-vectors, in particular

the identities

MAz) = 3 a#F(1 - g)#F,
FeaA :

17



R(AxT,z) = h(A,z)-h(T,z).

Definition Let K be an infinite field, and A a simplicial complex with vertex set
[n]. Let K[zy,...,z,] denote the ring of polynomials in the formal variables z; with
coefficients in K. Each F C [n] defines a monomial zF = [Ticr zi- The face ring (or
Stanley-Reisner ring) of A is K[A] = K(z1,...,2,4]/I(A), where I(A) is the ideal
(zF: F e 2\ A).

The standard grading of K[A]is given by deg(z;) = 1, for each i. With respect to
this grading, the Poincare series F(K[A], z) is the polynomial Lisodimg K[A]; - °,
where K[A]; denotes the i**-graded piece of K[A]. V

See [Stan83, Section 2.1] for proof of the following

Proposition 2.2.1 For any simplicial complez A we have
F(K[A]z) = (1 - z)™%R(4, z).

Notation For any simplicial complex A, let |A] denote the geometric realization of
A, and for any F € A, let |F| denote the image of F in |A]. (see [Stan83, Section
0.3))

Definition For any simplicial complex A, let Hi(A) denote the i** reduced simplicial
homology group of A over a fixed field K. A simplicial complex A is Cohen-Macaulay
over K if for every F € A, Hi(Ika F) = 0 for all i < dim(lk, F).

Ezamples (1) Note that this is a topological property, t.e., it depends only on the
geometric realization of A. For example, all triangulations of balls and spheres are
Cohen-Macaulay. »

(2)All shellable simplicial complexes are Cohen-Macaulay, as a simple consequence of

the Mayer-Vietoris sequence. (See [Stan77, Section 5].)

Definition A set of homogeneous elements {61,02,...,04} in K[A] is called a ho-
mogeneous system of parameters (or h.s.o.p.) if it generates an ideal (§) in K[A]

such that K[A]/(6) is a finite-dimensional vector space over K. Since K [A] has an

18



N-grading and K is infinite, existence of an h.s.o.p. of degree one is guaranteed by

the Noether Normalization Lemma (see [Stan83, Section 1.5]).

Cohen-Macaulay complexes are characterized algebraically by Reisner’s Theorem

(see [Reis] for proof):

Theorem 2.2.2 A is Cohen-Macaulay if and only if K[A)] is a finitely generated
free K[01,0,,...,04]-module for some 0y,0,,... 0, € K[A), which necessarily form
an h.s.o.p. of K[A].

The following proposition relies on the algebraic characterization of Cohen-Macaulay

complexes (see [Stan83, p. 67]).

Proposition 2.2.3 If A is Cohen-Macaulay and 6,,0,, . ..,0, is an h.s.o.p. of degree
one for K[A], then
F(K[A]/(0),z) = h(A, ).

Corollary 2.2.4 If A is Cohen-Macaulay, then hi(A) > 0 for all i.

Corollary 2.2.5 If A is a Cohen-Macaulay simplicial complez on n vertices, then
hi(Q) < ("), 0<i<d

Proof: See [Stan85, Theorem 1]. O

A consequence of the last corollary is the Upper Bound Conjecture for simplicial
spheres:
Definition For every n > d, a cyclic polytope C(n,d) is the convex hull of any n points
on the moment curve {(t,t2,...,t%)} CR®. This is a simplicial d-polytope with f; =
(Ay)for0<i< l_‘-;-J —1, so clearly it maximizes these f; over all simplicial d-polytopes
with n vertices. (See [Griin], Section 7.4) for background on cyclic polytopes.)

By Dehn-Sommerville, fo,..., fl‘;—‘ I-1 determine the whole f-vector of C(n,d), so
the question is, are fl% P fa-1 also maximized by C(n,d)? The following theorem

gives the answer.
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Theorem 2.2.8 [f A is a simplicial complez on n vertices and |A| is homeomorphic

to 831, then

Proof: Since |A| is homeomorphic to S9-!, the desired inequalities follow from

as proved in [McMT70]. Since |A] is homeomorphic to S4-! implies that A is Cohen-
Macaulay, Corollary 1.5 holds. O

McMullen’s g-conjecture, stated below, completely characterizes h-vectors of sim-
plicial d-polytopes on n vertices in algebraic terms. A consequence is a proof of the

Lower Bound Conjecture for f-vectors.

Theorem 2.2.7 A polynomial 3" h;z' is the h-polynomial of some simplicial d-polytope
d :

if and only if Z};A(h; — hi_1)z* is the Poincare series of some standard graded K -

algebra.

Proof: (1) The “if” direction was proved by Billera and Lee using explicit construc-
tions, in [BL].

(2) The “only if” part was proved by R. Stanley using results from algebraic geometry,
in [Stan80]. O

Corollary 2.2.8 The Lower Bound Conjecture holds for all simplicial d-polytopes A

on n vertices, i.e.,

fi 2 Df—-(hi  vi<d-2,
ficr 2 (d=1)fo = (d+1)(d-2).

Thus ends the background on A-vectors and f-vectors which follows from the
algebraic significance of h-vectors. For more background and references, see [Stan85].
Non-algebraic characterizations of h-vectors and f-vectors of simplicial complexes

exist, but are not relevant to this paper. (See [GK] and [Stan83, Section 2.2].)
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2.3 Subdivisions and local h-vectors

A natural question to ask about A(A) is whether or not it increases, as f(A) does,
when some faces of A are subdivided. If A is Cohen-Macaulay the answer is yes, at
least if the subdivision is quasigeometric (defined below). Stanley was able to prove
this by defining the local h-vectors of the subdivision restricted to each face of A,

and using certain useful properties of these I-vectors.

Definitions (1) A simplicial complex I is a subdivision of the simplex 2V if there
exists a map o : I' — 2" such that for each W C V, the restrictioﬁ Tw=o"1(2") is
a subcomplex of I with geometric realization homeomorphic to the ball B#W-1 and
o~Y(W) = { interior faces of Tw}. For each F € T, we call o(F) the carrier of F,
and say F' lies on W if o(F) C W.

(2) A simplicial complex A’ is the subdivision of simplicial complex A if there exists
a map o : A" — A such that for each F € A, the restriction Al = c”Y(F)is a

subdivision of oF

Definition Let I' be a subdivision of 2". Its local h-polynomial is defined by

(T, z) = _sz,-z" = Y (-)*VWIyry, 2),

wcv

and its local h-vector ly(T) is (lo,.. .-,ld).

Facts (1) 1p(2°) =1, and if V # 9, Iy (2V) = 0.

(2) (T, 2) = Tger(=1)*#24-(G)(z - 1)) where ¢(G) = #0(G) — #G is called
the ezcess of G. ([Stan92, Proposition 2.2)) '

(3) i = Iy, for all 4. ([Stan92, Theorem 3.3])

(4) L 2 0. If d > 0, then Iy = 0. ([Stan92, Example 2(0)) ,

(5) A(A",z) = Crea lr(Ap,z) - h(IkaF, zi) when A’ is any subdivision of a pure sim-
plicial complex A. ([Stan92, Theorem 3.2]) '
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Definitions (1) A subdivision T of 2" is geometric if it can be realized in R with
all convex faces. T' is quasigeometric if for all F ¢ [, the vertices of F do not all lie
on a face of 2V of dimension less than dim(F).

(2) If T is a geometric subdivision of 2V, then I is called regular if it is the projection
of a strictly convex polyhedral surface (with boundary) in R¥*'. (This is the same
idea as U being the projection of 47 in Chapter 3, Section 2.) Formally, T is regular
if if there exists a height function w : IT| =R which is piecewise linear and strictly
convez, i.e.,

(i) w is piecewise linear For all F € T, w restricts to a linear function wp on |F|.

(ii) w is convex: For all z,y € ||, and all w € [0,1],

w(pz + (1= py) > po(z) + (1 - plwly).

A

(iii) For all F,G distinct maximal faces of I, the functions wr,wg are distinct (as
linear functions).

Ezamples: (1) Let T be the trivial subdivision 2¥. Then w = 0 satisfies conditions
(i)-(iii), so T is regular.

(2) Let I' be the subdivision of 2 with one interior vertex z and maximal faces of
the form F'U {z} where F is any (d — 1)-dimensional face of 2. Then T is regular.

(see Section 4 for proof.)

Facts (6) (i) All geometric subdivisions of the simplex are quasigeometric, but the
converse is not true. For example, you can get a quasigeometric but non-geometric
subdivision of the 5-simplex by removing any facet of a non-PL 5-sphere (see [Stan92]).
It is easier to see that quasigeometric does not imply regular, since all regular subdi-
visions are shellable, but not even all geometric subdivisions are. |

(ii) Not all subdivisions are quasigeometric. For example: if A has maximal faces
{1,2,3},{1,2,4} and o : A — 20 is given by o({1,4}) = 0({2,4}) = o({4}) =
{1,2}, o({1,2}) = o({1,2,4}) = {1,2,3}, and o(F) = F for all other F € A, then
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A is a non-quasigeometric subdivision of 28 with subdivision map o. See Figure 1.

4 \ Ffﬂure 1

2 o)

(iii) Let A be a finite affine point configuration, and P the polytope conv(A), whose
vertices are contained in A. Then the regular subdivisions of P are in one-to-one
correspondence with the vertices of the secondary polytope Y(A). (See [BFS}.)

(7) If T is quasigeometric, then Iv(T) is nonnegative, i.e., ; > 0, for all <. (The
proof, from [Stan92|, uses homological algebra to show that [; is the dimension of L;,
a vector space associated with I'.) Consequently, using Fact(5), A(A’) > A(A) if A’
is a quasigeometric subdivision of a Cohen-Macaulay simplicial complex A, since A
Cohen-Macaulay implies that VF € A, h(lkaF) > 0. See Section 5 for an analogous
result.

(8) If [ is regular, then Iv(T) is unimodal, i.e.,
Sh <. Sl 2 Dy 2 o 2 dney 2

(The proof, in [Stan92], uses intersection homology theory.)

2.4 Characterization of Local h-vectors

Let V' = [d]. We now show that [-vectors of arbitrary subdivisions of 2V can be

completely characterized as follows:

Theorem 2.4.1 Let I = (ly,...,l;) € Z*!. Then | = Iy(T') for some subdivison T
of 2V if and only if | is symmetric and lg = 0,1, > 0.

The “only if” direction was proved by Stanley (see [Stan92]). To prove the “if” direc-
tion, we will construct a subdivision T, given any ! satisfying the above requirements,

so that Iy(I') = I. We can do so with the help of three lemmas:
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Let [ be a subdivision of 2¥. See Figures 2-4 for illustrations of the subdivisions

described in the lemmas below.

Lemma 2.4.2 Let F be a mazimal face of T, and [" the subdivision of ' with one

new verter z in [nt(F). So the face F of I' is replaced by the faces fU{z} inT"'. Then

c)=h(l,z)+c+22+-

A -

s+ z® and Iy (T, z =ly(T,z)+z+z%+-.. 491,

Proof: We first show that A(I',z) = A(T,z) + z + 22 + --- + z¢~L.

AT, z) = ZJ:#G

GelV

d#G

_ Z c#G(1 — z)d-#G 4 Z z#(Gu{z})(l — z)d-#(Gu{z)

Gel\G#F

= h([,z) -

= (T, z)—z*

= A(T,z) —z*

GCF
#*P(1—z)d - #F + — Z z#G(1 — g)4-#G
1 GcF
Fl-z)d - — x(h(2", z) — z*F (1 — z)*#F)
+ (-2

= h(l,z)+z+z>+ - +2*L.

Now we show that Iy ([",z) =

Since Ty = I'w for all W #

lv(Fl, J:)

Lemma 2.4.3 Let d > 4.

ly(T,z)+z+ 22+ -+ + 241,
v,

= 3 (-1 #h(Tly, )

wcv

= h("z)+ Y (-1)**¥h(Tw,z)
wcv
= h(I',z) + ly(T,z) = h(T,z)

= (o) +z+22+---+2%71. O

Let G be a (d - 2)-dimen.§ional face of T' with (d — 2)-

dimensional carrier W, and ' the subdivision Qf [ with one new vertez w (with
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carrier W) and one new mazimal face G U {w}. So in I, G has carrier V. Then

h(I",z) = K(T,z) + z, and ly(I',z) = ly(T,z) — 2% = ... — zd-2,
A copy of G
[ K ’ s pushed into ﬁgu.,e
_ the intedor of 17 3
as in the Z-dim.
case oF Frgure 1.

Proof: We first show that #(I",z) = A(T,z) + z.

AT z) = Z I#F(l — )4~ #F

Ferl
— Z I#F(l _ z)d-#F + Z :L‘#Fu{w}(l _ x)d—#FU{w}
Fer FCG
= hlz)+z- > o#F(1 - )i 1-#F
Fe2G
= h(l,z)+z- (2% 1)
= h(l,z)+z.
Now we show that ly(l",z) = ly(T,z) — 2% — .. — 242,

Since Ty =Ty if U 2 W,

lv(T,z) = U%:V(—l)d—#[jh( U, T)

= h(",z) = A(Tiy,z) + > (=1)*VR(Ty, 2)
Uzw

(applying Lemma 3.2 to ')

h(T',2) = h(Tw,z) — (z + -+ + 24 + Iy(T, z) — A(T, z) + h(Tw,z)
h(I',z) = (z + 22 + - + 273 + Iy(T, z) — k(T z)

= ly(l,z)~z?—-... =742 QO

Lemma 2.4.4 Let A be the subdivision of 214+1.9+2} yith one interior vertez y, V=

[d+2), and T =T« A. Then Iy(',z) = z - Iy(T, z).
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ra)

I A six tetrahedm

9lued together

Proof:

h(T2) = 30 (-1 #¥h(ly, 1)
wcv
(=1 3 (=)*¥ (D, 2)
wcv
= (1> X (—1)*WUh(Pyu, 2).
WCV UC{d+1,d+2}

For each W C V and U C {d +1,d + 2}, we have
h(Twou, ©) = h(Tw * Av), ) = h(Tw, z) - h(Ay, 7).
[t is easy to compute

h(Ag,z) = h(A{dH},I) = h(A{d+2},2) = 1, h(A{d+1'd+2},z) =1+z.

h(fhz) = (=1)* 3 (<1)*¥ {h(Tw,2) - h(Tw,z) - h(Tw, z) + (1 + 2) - h(Tw, )}
wcv

= z- ) (=D)**¥h(I'w,z)
wcv
= - lv(F,.’L‘). a

Proof of Theorem: Given ly = 0,1; > 0, and l;_; = [;, we want to ﬁnd a subdivision

[ of 2¥, with
d

lv(l,z) =l(z) =)_Lz'.

1=0
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If d <3, we can construct [ directly from 2V by !, applications of Lemma 3.2. For

d > 4, we first find a subdivision Iy of 2¥ with
lv(To,z) =l(z) =l - (z + 2% + - + 2¢71).

From Iy we get T' by [; applications of Lemma 3.2.

Let s =1, — (4.

Ford =4:If s <0, get [y from 2(4! by |s| applications of Lemma 3.3. If s > 0, start
with 20 apply Lemma 3.2 s times, and then apply Lemma 3.4 to get T,.

Ford > 5: Let W = [d—2]. We can assume by induction that there exists a subdivision
I’ of 2% with

IW(F’;I)ZIE—l'(l($)—11'(.’L‘+(D2+---+Id—l)—3.(x2+...+zd-2))'

If s <0, apply Lemma 3.4 to get a subdivision of 2V from I, and then get Ty by |s|
applications of Lemma 3.3. If s > 0, start with I, apply Lemma 3.2 s times, and

then apply Lemma 3.4 to the resulting subdivision to get I'g. O

2.5 Local h-vectors of Regular Subdivisions

Using the same construction as in the previous section, we now show that I-vectors

of regular subdivisions of 2" can be characterized as follows:

Theorem 2.5.1 Ifl = (lo,h,...,l;) €Z" then | = Iy(T) for some regular subdivision

[ of 2V if and only if o = 0 and | is unimodal and symmetric.

Proof: Stanley proved the “only if” direction in [Stan92]. To prove the “if” direction,
it suffices to show that the subdivision T constructed in the proof of Theorem 3.1 is
regular when /o = 0 and [ is unimodal and symﬁetric. For V = [d], let [ be a regular
subdivision of 2" and let w : |T| =R be piecewise linear and strictly convex. See

Figures 5-6 for illustrations of the proofs of the following lemmas:
Lemma 2.5.2 I =T * {z} is a regular subdivision of 2VV{=},

27



Proof: For every p € |I"|, there exists a unique ¢ € Il and A € [0,1] such that
P=Aq+ (1= A)z. Let w'(p) = A - w(q).
If D= /\‘IQI + (1 e Al), and D2 = /\2(]2 + (1 - /\2), then for all U e [0, 1],

ot (L=wpr = p(iq+ (L= M)e) + (1 = p)(Aags + (1 — A)z)

= phq+ (1= phega + (p(1 = A1) + (1 = p)(1 = Ag))z
(B 4+ (1= w)h)(rq + (1 = 7)g2) + (1 — pdy = (1 = p)Ag)z
T(rq1 + (1 =r)g2) + (1 — 7)z,

I

So

S+ (L= p)pa) = 7-w(rgs + (1= r)aa)
2 trw(q) + (1 - r)w(qe)
= phw(q) + (1 — p)Aw(qs)

= pw'(p1) + (1 = p)'(p2),

with equality if q;, ¢2 are in the same maximal face of IT'|, which occurs exactly when
P1, p2 are in the same maximal face of |['|'.
Also, since w'|r = w is different on each facet of I', w’ is different on each facet of I'.

Thus w': |[I'| R is piecewise linear and strictly convex, and I” is regular. O

Lemma 2.5.3 Let G be an i-face of T' with i > 2, and I the subdivision of I' which
results from putting a new vertez v in the interior of G and joining v with all faces

of the form G' — {2}, where G’ D G and z € G. Then I is regular.
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Proof: For every maximal F € I such that F 2 G, wr(v) > w(v) since w is strictly
convex and piecewise linear. So we can choose € > w(v) such that € < wr(v) for every
such F'. Now if G’ is any maximal face of [V such that v € |G|, then for all p € |G|
there exists a unique ¢ € |G’ — {v}| and X € [0, 1] such that p = Aq + (1 — A)v. Let
w'(p) = Aw(q) + (1 — A)e.

For all other p € [I'], let w'(p) = w(p). Then o : |I'| =R is piecewise linear and

strictly convex, by simple geometric arguments. O

Proof of Theorem: As mentioned earlier, we only need to show the “if” direction.
Given [ € Z%*! symmetric and unimodal with ly = 0, let T' be the subdivision of
2V with Iv(T) = I, constructed as in the proof of Theorem 3.1. Since ! is unimodal,
s 2 0 at every step of the construction. So T is built up only from subdivisions
described in Lemmas 4.2 and 4.3. Since the construction begins with the trivially

regular subdivision 2% for some W, it remains regular at each step, so I is regular.

a

2.6 Refined [-vectors

Notation: If S is a finite set and r(z) is any rational expression in the variable
z, then r(A)° denotes the expression Miesr();), and r(A)~5 denotes the expression
Migsr(Ai)7h

Definitions (A, ) is a completely balanced simplicial complex if A is av(d - 1)-
dimensional simplicial complex and 7 is a coloring of the vertices of A by a d-element
color set m(A) such that every maximal face F' € A has a vertex of each color. For
each F € A, let 7(F') denote the set of colors of verticesin F. Define the fine f-vector
of (A,7) by f(A,m,A) = L pea A™F) = Lscr(a) fs(A,7)AS, and the fine h-vector
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by A(A,7,A) = Tpea AT (1 = A)™(8)=(F) = 2scr(a) hs(A, m)AS. (See (Stan79] for

general background.)

The following definition was suggested by R. Stanley and G. Kalai.
Definition Let V = [d], and let (2", id) denote the completely balanced simplex with
color set V' and the identity map as its coloring. Then (T, r) is a balanced subdivision
of (2¥,id) if T is a subdivision of 2V and 7 is a coloring of the vertices of I' such that
for every W C V, if mw is the restriction of 1 to the vertices of 'y, then (T'w, Tw)
is completely balanced and 7w (I'w) = W. (Note that ' must be quasigeometric.)

Then define the fine l-vector of (I, 7) with respect to V by

W(,mA) = 3 (=1)**Yh(Tw, mw, A).
wev

The proofs below are all modifications of analogous results in [Stan92).

The following is an analogue of Fact(2) of Section 2:

Proposition 2.6.1 Let (T, x) be a balanced subdivision of (2¥,id). Then

(T, m,A) = 3 (=14 #F AV BB () - 1)7(\ — i)-w(p).

Fer
Proof:
W(l,mA) = 3 (=) *¥ 4Ty, mw, A)
wcv
— Z (_l)d—#W Z A‘)\‘(F)(l _ /\)W\N(F)
wcv Felw
- Z AT(F) Z (1 _ A)W\W(F)(_1)#W—#F(_1)d—#F
Ferl o(F)CWCV _
— Z )‘W(F)(/\ _ 1)-—1(1-")(/\ _ l)a(F) Z (/\ _ I)W\a(F)(_l)d—#F
Fer o(F)CWCV
= S AERVE (\ _ )P\ - 1)-"F)(_1)d-#F g
Fel

Definition The reduced Euler characteristic X(A) of a simplicial complex A is the
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alternating sum —1 + fo — f; + fo — ..., where f; is the number of i-faces of A, for

each 1.

Lemma 2.6.2 If (T, r) is a completely balanced (d — 1)-dimensional simplicial com-

plez, then
Y (=D #F Rk Fy 7w, M) = —(A = D™D X(D).

Fer

Proof:

Z(—l)d_#Fh(lkrF,ﬂ’,/\) — Z(_l)d—#F Z /\W(G\F)(l _ A)vr([ka)\w(G\F)

Fer Fel [5GOF

= Z(—l)d/\"(c)(l — AT\ Z (=A)~"H)
Ger FCG

— Z(__l)d/\rr(G)(l _ /\)w(F)\r(G)(l _ /\—I)W(G)
Ger .

- Z(_l)d(l _ ,\)r(F)\r(G)(/\ _ l)f(G)
Gel

= (A=1)® Z(_

Gel

= —(A=-1)"DX(T). a

Theorem 2.6.3 Let (A', ') be a balanced subdivision of a completely balanced (d—1)-

dimensional simplicial complez (A, x). Then
RA, 7, 0) = 3 1p(Al, 7, Ah(ka F, 7, A).
Fea

Proof:

Yo (AR, e Ah(kaFymA) = Y A(lkaF,m,A) 3 (=1)MPDR(AL, 75, N)

Fea Fea GCF
= 3 hAG 75N Y (-)H\Dh(Ika Fy 7, )
Gea FDG
= Y kAL 5A) D (-1)*Hh(lkn,cH, T, \)
GeaA HelkAG

(by Lemma 7)
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= = 3 (A, x5, A)(1 - ) AVE@E (K, G)

GeAa

- Z Z /\ﬂ’(K _ /\)W(G)\N(K)(l _ /\)x(A \ﬂ'(G (lkAG)
GeA KEA'

= = D A )N S Bk G,
Kea’ G2 (K)

If 44 is the M&bius function of P(A) U | (See [Stan86, Sections 3.7-3.8]), then

>, X(kaG)= ¥ w(G1)=—pd,1)=-1,

G2o(K) G (K)

SO

Z lp(Af, 75, Mh(lka Fy 7, )) = Z ATE) (] — A)TANR(K)
Fea Kea’
= h(A,7',}). O

Theorem 2.6.4 .If(f‘, m) is a balanced subdivision of (2¥,id), then ly(T,x,A) > 0.

Proof: We may assume that [n] is the vertex set of I'. We can give K[I'] an N%-grading
by deg(z:) = e () € N% Let §; = Lr(j)=i T; for each i € [d]. Then {6,,0,,...,04} isa
h.s.o.p. for K[I'] (see [Stan79, Corollary 4.2]). Since IT'| is homeomorphic to a ball, I'
is Cohen-Macaulay, so F(K(T]/(8)) = h(T, =, ) (see [Stan79] for proof). Now define
the local face-module Ly(T) as follows:

Let (intl') be the interior ideal (zF : o(F) = V) C K[I], and Ly(T) the image of
(intl') in K[I]/(8). So Lv(T) inherits the above N¢-grading. We will show that for
each S C V, dimgLs = Is(T,V, ), where Ls is the e5-th graded piece of Ly (T).

First we need the following technical lemma:

Lemma 2.6.5 Let K be the complez of K([T')-modules

K[F) KT
N,'+Nj N+ + N

K- 1A Ly

t ¢ i<

— 0,
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where N; = (zF : z; € 0(F)) for each i. Then the complez K /0K is ezact.

Proof: See [Stan92, Lemma 4.9].

Note that 8; € N; for each 7, and K(I']/(Ties Vi) ~ K[Ty\s] for each S C V.

Now let 6%, 61, ... denote the maps in K/0K. Then ker(6°) is the image of N; N, =(int(T))
in K([']/(8), so ker(6°) = Ly(T). Since K/8K is exact,

F(Ly(D),A) = Y (=1)*VI F(K([Ts]/(6), A).
scv

Since I' is Cohen-Macaulay and {6;} is a homogeneous system of parameters for K(I},

for each § C V we have
F(K[Ts]/(8),\) = (Ts,m, A),

so F(Ly(T),A) = Iy(T', =, A); equivalently Is(T, V,7) =dimgLs > 0 for each S C V.
a

Corollary 2.6.‘6 If (A',7') is a balanced subdivision of a completely balanced Cohen-
Macaulay complez (A, =), then h(A', 7', A) > h(A, 7, ).

Proof: For any F € A, since A is Cohen-Macaulay, so is lkaF. So for any F € A,
h(lkaF,7,A) > 0 (see [Stan79, Theorem 4.4]). By Theorem 4, we also know that
[p(A%, 7', A) > 0 for each F € T'. So by Theorem 3,

RAL TN = 3 lp(Af, T, MA(Ka F, 7, ))
Fea '
> h(lkad,,A)

= h(A,m,)\). O
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Chapter 3

Quasiforests and Degree

Sequences By Zonotope Theory

3.1 Introduction

In this chapter we derive a correspondence between the set of quasiforests on n vertices
and the set of degree sequences of graphs on n vertices by considering a canonical
decomposition of the appropriate zonotope into half-open cubes associated with the
quasiforests. Using the same method we formulate a bijective map from the set of
forests on n vertices to the set of score vectors of tournaments on n vertices. This
work was suggested by R. Stanley’s paper, “A Zonotope Associated With Graphical
Degree Sequences” ([Stan91}).

3.2 Background

Definitions: For any simple graph G (i.e., no loops or multiple edges) on vertex set
[n], the degree of vertex i is the number of edges of G containing ¢, and the degree
sequence of G is the ordered n-tuple d(G) = (dy,da,...,d,) where d; is the degree of
vertex i. A degree sequence of length n is the degree sequence of any simple graph on
[n]. The polytope of degree sequences of length n, denoted D,, is the convex hull of

all degree sequences of length n, considered as points in R™.
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Fact: The set of points (dy,d,,...,ds) € D,NZ" with even component sum Y7, d
is exactly the set of degree sequences of length n. (See [Stan91] for details)

Dy is a special kind of polytope, called a zonotope.

Definition: A zonotope Z is the Minkowski sum of finitely many closed line segments

Ll,Lg,. . .,Lk in Rn’ i.e.,

k
Z={1:=Za,-:a.~EL.-}.
=1

This is a convex polytope with many special properties. (See [McMT71)).

Ezamples: (1) Let Ly = [(0,0),(1,0)], L, = [(1,0),(2,1)] in R% Then the zonotope
generated by Ly, L, is the set of all points of the form (1,0)+r;+(1,0)+r, -(1,1) where
0 < < 1. This is a parallelogram at the point (1,0), with basis (1,0),(1,1). In
general, if Z is generated by {[0,a;]}, where {a;} is any set of n linearly independent
vectors in R", then Z is linearly equivalent to a geometric n-dimensional cube. We
call Z (and any translation of Z) an n-cube, e.g., the zonotope generated by L;, L, is
a 2-cube at the point (1,0). See Figure 1(a).

(2) Let L3 = [(0,0), (0, —15] in R?, and Ly, L; as in (1). Then the zonotope generated
by Ly, Ly, L3 is the set of all points of the form (1,0)+r1+(1,0)+r5-(1,1) +r3-(0, -1),
where 0 < r; <1 for each i. Thisis a hexagon in R2. See Figure 1(b).

Te: Rauwre

Figure 9
- Do L 1th)

‘. | L

1z

Note: By translation, we can assume that the line segments L;, called generators of

¥

Z, all have one endpoint at 0. For convenience, we will usuale denote the closed line
segment L; = [0, a;] simply by its nonzero endpoint a;. In this paper, Z will denote
an n-dimensional zonotope in R" and ay, a,...,a; its generators.

The following proposition is proved in [Stan91).

Proposition 3.2.1 D, is a zonotope with generators {e;; : 1 < i< j < n}, where

€ij = e + e; where e;,e; are the standard unit coordinate vectors in R™.
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Note: We will often let e;; stand for the vector from 0 to eij as well as for the edge
{i,7}. So we can talk about linearly independent vectors e;; and also about graphs
with edges e;;. We will be particularly interested in sets of linearly independent ;s
and the corresponding graphs, which are called quasiforests.

Definitions: In this paper, all graphs have the vertex set [n]. In any graph G,
a cycle of length s is a set of s edges {i,jl},{jl,jg},...,{j,_l,i} in G, such that
1, J1,J2y- -+, Jo—1 are distinct. G is connected if there is a path of edges in G from
any vertex to any other. A connected graph containing no cycles is called a tree. A
connected graph with one cycle is called a quasitree if the cycle has odd length. A
graph made up of trees is called a forest. A graph made up of trees and quasitrees is
called a quasiforest. Quasiforests will be denoted by the letter Q.

It is easy to see that

Proposition 3.2.2 The graph G = {€ijir---r€i5} is a quasiforest if and only if

{€iijis--, €05} is linearly independent as a set of vectors in R™.

We will use the following notation:

1) If A C R" is an ordered set ap < +++ < ai then A — q; is the ordered set a; <
1< @j-1 < @41 < -+ < ag, and for any ¢ € R", Afc — a;] denotes the ordered set
ay < - <aj << @y <0+ < ag.

2) If A, B C R™ are the ordered sets ay < -+ <@g, by <--- < bk, then (A) denotes
the (k x n)-matrix with row vectors ay,...,a; in that order, and (A, B) denotes the
(n X n)-matrix with row vectors ay...,0k, by, ..., b, in that order.

3) Let M be a square matrix. Then M, , denotes the matrix M without its r* row
and s** column, o M) denotes the sign of det(M), and | M| denotes the absolute value
of det(M).

3.3 Cubical dissection of Zonotopes

Definitions: (1) If C is an affine n-cube and H is an affine hyperplane in R™, then
H is a supporting hyperplane of C if the interior of C lies entirely on one side of H. A
face of C is either C itself, or the intersection of C with any supporting hyperplane.
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A facet of C is an (n — 1)-dimensional face of C.

(2) An n-dimensional cubical cell complez Q) is a set of n- dimensional affine cubes
such that

(i) If C i1s in , then any face of C is also in Q.

(i1) If C,C; are in Q, then C; N C; is a face of C;.

A facet of U is any facet of an n-cube C € Q.

(3) A cubical dissection of a set S CR" is a cubical cell complex Q such that the set
union of all C' € N is S. Then we say that S is the underlying space of Q. Clearly,

most sets S do not have a cubical dissection.

Any zonotope Z with generators ay,...,a; can be cubically dissected as follows
(due to Bernd Sturmfels [BLSWZ, Section 2.2]):
Let Z, {a:} be as above. Consider R"C R™*! by (z1,...,2,) = (Z1,...,Zn,0).
(1) Choose heights p; > 0 so that if &; = a; + y; - en4; € R™*! for each i, then for any
(n+1)-set A= {z,...,2,,,} spanning R", the set A = {d; : a; € A} spans R**..
(2) Let Z be the (n + 1)-dimensional zonotope generated by ay,...,ak,€ens1. The

lower boundary of Z with respect to eq4; is
0Z={z€Z:VYe>0,z—¢-enpy & Z}.

This is a union of n-dimensional faces which projects down to Z by (z1,...,Zn41) —
(z1,...,2n), yielding a cubical dissection Qg of Z.

(3) For each linearly independent A = {a;,,...,a;,}, A generates a facet in 7 at the
point 3";(4) @;, where

L(A) = {j : &, points opposite e, relative to the hyperplane spanned by A}

= {j : o(4, i;) = —a(4, ent1)}.

Thus A generates a cube in (o at the point ¥4 a;. (See Figure 2.)
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(4) Finding the sets £(A) is relatively simple if we fix an order on the a;’s and choose
the 4;’s so that whenever a; < aj, pi is sufficiently larger than u; so that for any
A = {ay,...,an41} spanning R™, if any1 =min{a; € A}, we have p,4,|A - anp1] >

2icn HilA = ai, so U(/‘i) =0(A - amp).

3.4 Half-cube Decomposition of Zonotopes

Definition: A half-open cube, or half-cube, is the Minkowski sum of half-open in-
tervals. A half-cube is said to be generated by the linearly independent vectors
bi,...,b €R™if it is the Minkowski sum of the half-open intervals [0, &),...,[0, b,).
An n-dimensional half-cube will be called a half-n-cube.

We can decompose Z .into half-cubes generated by linearly independent sets of a;’s.
Starting with the cubical dissection from Section 2, we will use a direction vector v to
reduce n-cubes to half-n-cubes, and then cross-up vectors wy, wé, ...y Wn-1 to generate

n-cubes from the lower-dimensional cubes which remain at each step. (See Figure 3.)

Let vz = and W= N

. ' ducing 2-dim. eubes 1o half-cubes
Then, — ﬂ; log first re '
P~ WG i

s infp the cube

which is g 0-dimysiond half-cuibe.

and there reduce #t discarded 1-dim. cubes 40 hatF-cubes by OSSNy Wit W,
and oplying Vi ~ B~ T~ od then there s only e verdex (e,

Choose v, wy,ws, ..., wa1 € R™ satisfying:

(*) If <4, then w; points opposite v on each hyperplane generated by

{wi, . wiy 80,0050, )\ {w;}, where {a,,,...,a,,_;} is a linearly independent set
of generators of Z. This property is crucial for the half-cube decomposition method

below.
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Notation: If Q is an (n — 1)-dimensional cell complex in R™ and w €R™, then Q) x 1

denotes the Minkowski sum of  and [0, w], i.e.,
Oxw={z+y:z€0yecl0,w)}

A cell of Q x w is the Minkowski sum of a cell of  and [0, w].

Let Wy = Z and let Qg be the cubical dissection of Z from Sec. 2. Let Qg denote
the set of (n — 1)-faces of through which v points into W,. For 1 < i <n-1,
let ; be the set of n-cubes in Q;_; U (Qi_, x w;), W; the zonotope generated by
1582, ..., Gk, W1, W, ..., Wi, and Q] the set of (n — 1)-faces of through which v

points into W;.

Lemma 3.4.1 Let 1 <i<n—1. Then Q; is a cubical complez with underlying space
W;.

Proof: We already have that € is a cubical complex with underlying space W;. Fix
. We can assume by induction that Q;_, is a cubical complex, so ;_, is a cubical
complex as well. We now show that _; x w; is a cubical complex. For all (n—1)-
dimensional faces C; and C, in Q_,, if there exists a point z in (C1 xwi)N(Cq x wy),
then z =a+ A -wi =b+ - w for some a € Cy,b € Cy, A\, p € (0,1). Soifa # b
then the line L through a and b is parallel to w;. Since W;_, is convex, the part
of L between a and b is in Wi_;. But then property (*) implies that w; points in
opposite directions (, i.e., out of W;_,) at a and b. This is impossible. Thus a = 5. So
(Cixwi)N(Cyxw;) C (C1NC3) xwi. So (Cy xwi)N(Ca xw;) = (C1NCy) xw; = F xw;
for some face F of C;. So any intersection of faces of }_; xwj is still a face of _, xw;.
So Q_, is a cubical complex. |

Appealing to the property (*) again, we have that the faces of Q_, X w; intersect

the faces of Q;_; only on faces of €/_,. So since ;_; and Q/_, x w; are both cubical

complexes, their union {); itself is also a cubical complex. Since W;_; is the underlying
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space of (;_; (by inductive hypothesis), it is clear that W; is the underlying space of
Q,. 0O

Now let @ = Q,_;. So Q is a cubical dissection of W,_;. Then we have the

following

Lemma 3.4.2 Q contains one cube generated by each n-independent set of generators

of Wa_y.

Proof: Since § is a cubical dissection of Wa-1, it is the projection of the lower
boundary W of an (n + 1)-dimensional zonotope W (see [BLSWZ, Section 2.2)).
So each n- independent set of generators of W,_, corresponds to a set of generators
of a pair of antipodal facets of W, exactly one of which belongs to OW. So each

n-independent set of generators of W,_, generates exactly one cube in Q. O

Now use v to partially decompose W,_; into half-cubes, i.e., for each n-cube C

of {1, throw away all facets through which v points into C. The resulting half-cube is
denoted C.

Lemma 3.4.3 These half-cubes are disjoint.

Proof: Suppose C, intersects C,. We will show that this forces Cy=C,. Let z be a
point in C; N C"g.

(1) If z is in the interior of C;: Since C; N C; must be some face of C), that face must
be C itself, since no proper face of Cy contains any point in the interior of C;. Then
Cy = Cy N Cy, which must also be a face of C;. The only face of C; of dimension at
least n is C, itself. So C; = C,.

(2) If z not in the interior of C;: Then z belongs to some facet of C;. Since z can
not be in any facet of Cy through which v points into Cy, —v points into C; through
every facet containing z. Thus there exists ¢ > 0 such that £ — € v is a point of

Int(C). But then by argument (1), C; = C,. O

Note that, due to the property (*), there is only one discarded (n — 1)-dimensional
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face of W,_, which intersects Z. This is generated by wy,..., wn_q, and its inter-
section with Z is a single point zo. So the rest of Z belongs to the union of the
half-cubes C in W,_,. Any such half-cube intersects Z if and only if its generating
set is of the form AU {wy,ws, ..., wn_;} where 4 is an i-independent set of a;'s, and
I <12 < n -1 Its intersection with Z is then an i-dimensional half-cube generated
by A. Since the original half-cubes C are disjoint, their intersections with Z are also
disjoint.

Thus we get a complete decomposition of Z into half-cubes, one generated by each

independent set of a;’s (where the point z¢ is the half-cube generated by 0).

3.5 Cubical dissection of D,

Restricting our attention now to the zonotope D, we see that D, can be dissected
into a cell complex of n-cubes generated by maximal quasiforests Q on n vertices.
We use the method in Section 2 to cubically dissect D,,using lexicographic order on
the ey;'s, that is, e;; <y ek if and only if (1) ¢ < k; or (2) ¢ = k and j < I. In order

to describe the dissection in terms of quasiforests, we need some definitions:

Definitions: If ) has k edges, it is called a k-quasiforest. If two vertices belong to
the same component in @, they are connected by that component. If Vi, V; are two
sets of vertices such that some vertex of V; is connected to some vertex of V; by some
component in @, then Vi,V are connected by that component. If Q Ue;; is not a
quasiforest, but (Q U e;;) — ex is, then we say e;; replaces ey in Q. If that is so,
then Q) — ey must contain a tree connecting {k,{} to {¢,7}, and the number of edges
from {k,1} to {7,7} in such a tree is always even or always odd. (i.e., independent of
chosen tree.) The tree-distance from e;; to ey is the smallest such number of edges.

For each (1, ), let é&; = eij + pij - eny1 Where the pi;'s are as in Section2. So if Q is
an n-quasiforest and if Q Ue;; is not a quasiforest, and if e;; <z ey for all replaceable
ex € Q, then 0(Q, &) = o(Q).

As in Section 2, let D, be the (n + 1)-dimensional zonotope generated by the é;;’s,
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and project its lower boundary onto D, to get a cubical dissection €.

Lemma 3.5.1 In Q,, each n- edge quasiforest Q generates a cube Cq at the point
2-c(Q) €ijy where £(Q) = {e;; & Q : the least replaceable edge of Q is <, eij and is

even tree-distance from e;;}.
Before proving the Lemma, we need the following

Lemmina 3.5.2 Let[q;;] = (Q), the incidence matriz of Q with edges in lezicographic

order.

(A) If Q has n edges, then o(Q) =sgn(r), for any © € S, such that Gixy = 1 for
each 1;

(B) If Q has (n — 1) edges and Q U e;;, Q U e, are n-quasiforests, then o(Q, ;) =
o(Q, €jk).-

Proof: (A) Since all ¢;; are 0 or 1, det(Q) = 25, 580(T)qur(1) * * * Qkn(k) = Lrsgn(m),
where T' = {r € Si : Vi, g; n(iy = 1}.

If # € T, then for each 7, vertex (i) belongs to the :** edge of Q. So 7,7 € T can

only differ on entire cycles of @ as shown in Figure 4.

A/q For n=4 and @ =38, €, ,8345, E@
3 2z TeT must be one of the 4wo
[ ossihilities shown. (Avows indicate

3A/ ) \f)h{dn veviex is asSigred to which edge.)
2

Since all cycles in Q have odd length, 7, can only differ by an even permutation, so

sgn(r) =sgn(r). Thus o(Q) =sgn(x) for any v € T.
(B) Since j is in a tree in @, we can assign to each edge of Q a vertex # j contained in

that edge. So we can find 7 € S, such that 7(n) = j and g; r;y = 1 for each i <n—1.
Thus o(Q, e;;) =sga(r) = o(Q, e;x), by (A). O

Proof of Lemma: It suffices to show that

L£(Q) = {ey; : O'(Q,éi,‘) = —0(Q, ent1)}-

First we show:
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(1)o(Q, é;) = o(Q,enH) when e;; <, all replaceable edges in Q, and
(2)0(Q, &;)
of Q.

(1) This is clear, since in this case p;; is so relatively large that LHS = o(@Q), which
equals RHS.

Il

—-a(Q, en+1) when e;; is O tree-distance from the least replaceable edge

(2) If e, is O tree-distance from the least replaceable edge €ij;» We may assume ¢ = i;.

Then

o(@Q &) = —a(Qé:; — &z, &)
= —o(Qlei; — eij])
—-0(Q) (by the Lemmina)
—a(

g Q’en+l)'

Now assume the hypothesis is true for tree-distance < t and prove for ¢ :
Assume ejy is a tree-edge adjacent to ei; towards e, ;. If e is odd tree-distance from

€ig then

0(Q.&5) = —o(Q[&; — &xl,é8)
= —0(Q[é; — éjil,ens1) (by induction)

= —0(Q,ens1) (as above).

Similarly, if e;¢ is even tree-distance from e, ;,, then 0(Q, &;) = (@, ent1)- O

Ezample: Let n = 5,Q = {e12, €13, €15, €25, €45}, €;; = e23. Then the least replaceable
edge is e;3. In @ — e;3 the tree-distance from e;3 to es3 is 0 since both edges are
adjacent to the 0-edged tree {3}. So by the above proof, o(Q, &) = o(Q, €s) and
e23 € L(Q). (see Figure 5.) '
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3.6 Half-cube decomposition of D,

Now we decompose D, into half-cubes generated by quasiforests. If v, wy,..., w,_; are
carefully chosen, our task is relatively easy. In particular, we want to make it as easy
as possible to compute |A|, whenever A is a matrix with row vectors Whyyo ooy Whiy @
for @ an (n — ¢)-quasiforest. This is of interest to us since we use such matrices to
determine where the n-cubes of Q lie, as well as which vertices their half-n-cubes
contain.

Let w; = (wi1, Wiz, ..., win) for each 7, and let g,, denote the (r, s)** entry of the
incidence matrix (Q). Note that det(wx,,...,ws,, Q) is the sum of terms of the form
fu(m) =sgn(m)wi, a1y - - - Wi, x(i)q1,7(i+1) * * * Gni,n(n), Where © € Sy, such that x(1),...,7(2)
is a set of vertices each frbm a different tree in Q). (Otherwise gi r(i+x) = 0 for some
1 <k < n -1, because of the placement of 0's and 1’s in the rows of (Q).) Also, if
7,7 € Sa and 7(j) = 7(j) for 1 < j <4, then f,(r) = f,(7), by reasoning similar to
that in the proof of the Lemmina. We would like there to be some choice of values for
(1),...,m (i) which would make f,(r) so large (in absolute value) that it determines
the sign of the whole determinant.

We first choose uo, u1 ..., unz1 € R2 so that det(ug,,...,ux, Q) is dominated by
fu(m) for certain =, as described above. Then we let w; = (—1)7u;, so that for the
same 7, f,(r) dominates det(wy,,...,wk,Q), and we show that condition (*) from
Section 3 is satisfied by {w;}.

Foreach0 < j <n-1, let u; = (uj1,uj2,. .., Ujn) Where ujy > ujz > <00 > ujq >
0 such that for any (n — 7)-quasiforest @, if A is the matrix (ug,,...,us, Q), where
kv > ky > oo > ki, then ug, j+| 4y 5] > Y m>; Uky,m|A1,m], for all j such that |A, ;| # 0.
Then clearly det(u,,...,uk,Q) is dominated by f,(r) where (1) < --+ < 7(i) are
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each the smallest vertex of some tree in Q.

Lemmina 3.6.1 Let v =ug and w; = (—l)iu; for each i. Each w; points opposite v

relative to the span of {wy,...,W;,...,w;} UQ, where Q is any (n — j)-quasiforest.

Proof:

o(w;, ..., w,... yw,w, Q) = (—1)‘“10’(wj, coow, Q)
= “U(wja"'swi-f-la_wl'y""wt'—ly'”a-th)

= _U(wja sy Wigly Wi, Wiz, ..., 0, Q) a

Thus the condition (*) in Section 3 is satisfied, so the half-cube decomposition method
applies.

For each (n — i)-edge quasiforest Q, let Cq be the n-cube in Q generated by Q U
{w1,...,w;}. The vertex contained in its associated half-cube C’Q is the intersection
of the facets of Cq through which v points out of Cq.

Definitions: If ¢ is the least vertex in some tree of @, then 7 is called an indez of
Q. For each ej, if ¢ is the greatest index connected to ejk in Q — ejk, let r(Q, e;x)
denote the least number of edges from e;; to i in Q — ejk, and s(Q, ejx) the number

of indices larger than 7 in Q.

Lemma 3.6.2 Cg lies at the point 2 c(Q) & and contains the verter 2 L(Q)uP(Q) Eiss
where L(Q) = {e;; € Q : (1) &;;UQ is a quasiforest and 3(Q, ei) +1(Q, €;) is odd, or
(2) ei; U Q not quasiforest and the least replaceable edge in Q is <y, e;; and an even

tree-distance from e;;}, and P(Q) = {ei; € Q : s(Q, ei;) + r(Q, e;;) is even }-
For the proof, we first need the following

Lemmina 3.6.3 Let w(k) denote the ordered set {we,...,wr}. If Q is an (n —1)-
edge quasiforest and e;; € Q, then | ' .

(A) If QU ei; is a quasiforest, o(w(i — 1), e;5,Q) = (=1)+*o(w(i — 1),v,Q), where
T, 8 denote r(Q, e;;), s(Q, &;;).

(B) If Q U es; not a quasiforest, then if t is the tree-distance from ¢;; to the least
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replaceable edge e;;in Q, o(Q', €;;) = (=1)"*'a(Q", ent1) for any n-edge quasiforest
Q' containing Q.
(If ei; <i eij, then we define t = —1.)

Proof: (A) Since Q is an (n — 7)-edge quasiforest on n vertices, it must contain i
tree-components. Let j; > --- > j; be the indices of the trees in Q. lf r =0, then

vertex ¢ or j is the index j,41, so

o(w(i—1),e5,Q) = o(w(i-1),e;,,,Q)

= 0(Wicty. .o, Wayr, (—1)°e5,,,, w(s),Q)
w,-..l,...,w,.H,(—1)’ej.+l,(-—1)’ej,,...,—-ejl,Q)
Wisly. ooy Watly Wey =Wergy ..., —W1, =V, Q)

= (—1),U(w(i - l)vv’Q)-

Now we proceed by induction on r. Let ¢jx be the first edge of the shortest path in

Q from e;; to js41 (so we assume j is connected to js4,). Then

0'(6.‘]', w(’ - 1)’ Q) = —a(ejk’ w(z - 1)7 Q[eij - e.fk])
= —(=1)"""o(v,w(i - 1), Q[ei; — e;i]) - (by induction)
= (=1)™o(v,w(i - 1), Qle; — ej])

= (-1)™*0o(v,w(i -1),Q).

(B) Since the edges in Q' replaceable by e;; are exactly the edges in @) replaceable by

eij, the proof of the previous Lemma applies. O

Proof of Lemma: (1) By the construction of 2, we know that CqoNQyi_,y is an (n—1)-
cube Fjy through which v points into W,-_l.- Fj is generated by QU w(i —1) and is
located at ¥x ¢;;, for some set F of e;;’s not in Q. In particular, if ¢;; € @ and e;; UQ
is a quasiforest, then e;; € F exactly when o(eij, w(i = 1), Q) = —o(v,w(i - 1), Q),
which is exactly when e;; € £(Q), by the Lemmina. If ¢;; € Q and e;; UQ is not a
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quasiforest, then by the Lemmina, if Q' is any n-edge quasiforest containing (), then
o(Q',€;) = (=1)*'0(Q’, ens1). So ei; € F if and only if e;; is even tree-distance
from the least replaceable edge in @, which is exactly when eij € £L(Q). Thus Cy is
located at F = L(Q).

(2) Since Cq lies at the point z; = L(Q), it contains the vertex z; + p ei; where
e;; € P if and only if e;; € Q and o(eij, w(i), @ — e;;) = o(v, w(3),Q — eij). By the

Lemmina, these conditions are satisfied if and only if e;; € P(Q). O

3.7 The correspondence between quasiforests and
degree sequences

Now we can formulate the half-cube assignments in terms of the corresponding quasi-
forests, to get the correspondence between quasiforests and degree sequences. As
suggested in [Stan91], we will associate each quasiforest Q with the degree sequences
in its corresponding half-cube Dg = Cq N D,.

First we want to know which degree sequences lie in Dq. We know DQ lies at some
point z = (z1,...,2,) € Z" ND, with ¥ z; even. Assume z € Dg. (the following is
easily modified if a different vertex belongs to Dq.)

Then the set of degree sequences in DQ is {y=(y1,..-,¥n) € Z"ODQ : 2 yi is even}
={y€Zhy =247, cqeijei; where 0 < ¢;; < 1 and Ty, is even} = {y = T+Ts tei;
where S is the set of edges of an even number of cycles in Q}.

(Note: the even number can be 0, i.e., S = 0 is okay.)

So #{ degree sequences in Dg} = #{ choices of even number of cycles in Q} =
max{1,2¢(9)-1},

The desired rule is:

Q@ — {d(Q,S) : S = set of even number of cycles in Q}

where

1
dQ,8) =Y ei+ Y. e;,-+2§e;,~.

Q) P(Q)-s s
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A chart of this correspondence for n = 4 appears at the end of this chapter.

Open Problem: Formulate the “inverse” rule (d1,...,ds) — Q which assigns to each

degree sequence d the quasiforest Q such that d € Dq.

3.8 The correspondence between forests and score

vectors

Definitions: A tournament on V = [n] is the complete graph on n vertices with
a specified direction on each edge. The score vector of a tournament T is s(T) =
(81,--+,8x) where s; is the number of edges directed away from vertex i. For each
l<i<j<n,letfi; = ei—e; € R™. Then the set of all score vectors of length n is ex-
actly the set of all points (0,1,...,n — 1)+ ¥ # fij where F is any set of fij’s. We now
decompose the zonotope O, generated by the fi;’s. Since O, is (n — 1)-dimensional,
we apply the decompesition method above to On x wy, using direction vector v and
Cross-up vectors wo, ..., wn_;. As before, we determine the half-cubes generated by
Wiy ..., Wnoy, F', where F is any t-edge forest, z > 1. In this way we decompose O,
into half-cubes Op generated by the forests F', and obtain the following one-to-one
correspondence between forests and score vectors:

Fe—(0,1,2,...,n=1) + Xc(ry fis + o) fis

where L(F) is the set of all f;; ¢ F satisfying one of the following conditions:

(1) fij U F is a forest and s(F, f;;) + r(F, fi;) is odd, or

(2) fij U F is not a forest and fij is an odd number of order changes from the least
replaceable edge;

P(F) = {fi; € F: s(F, fij) + r(F, f;;) is even };

s(F, fi;) is the number of order changes in the path of vertices in F' from {3, 5} to the
greatest connected index 1;

and r(F, f;;) is the number of indices in F greater than <.

Notes: (A) In the definition of L(F), fi; satisfies (2) only if it is lexicographically
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greater than the least replaceable edge, and the order changes are counted on a path
in f;; U F avoiding the smallest vertex of the illegal cycle.
(B) An order change is a change in order of consecutive vertices on a path of edges.
For example, in the path of edges {1,4},{4,3}, {3,2} the vertices are ordered 1 <
4 > 3 > 2, so there is just one order change, at the vertex 4.

It is straightforward to reformulate the above rule as follows:
Given a forest F', let i, denote the index connected to vertex 7, for each 7, and direct
each edge {z,y} of a tournament T by
(1) if 1z <ty and 1, is less than an even number of indices in F, then direct z — y;
if 1z < 1y and 1, is less than an odd number of indices in F, then direct y — z.
(2) if {z,y} € F, let F’ denote the forest F with edge {z,y} removed, and let iz, 1y
denote the indices of z,y in F'. If ¢, < 2y, and 7 is less than an odd number of indices
in F', then direct z — y;
if ¢ < ¢, and ¢} is less than an even number of indices in F”, then direct y — z.

(3) if ¢y is the smallest index in the path from z to y in F, and if ¢, u are the vertices

adjacent to iz, towards z,y respectively, then direct z — y if and only if u < ¢.

Then F — s(T).

Open Problem: Formulate the inverse rule (sy,...,s,) — F which takes each score
vector s(T) to the forest F such that s(T) —(0,1,2,...,n —1) € Op.
(Compare to the bijection in [KW].)
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