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Abstract

This paper relates the recent theory of discrete Morse functions due
to Forman [11] and combinatorial decompositions such as shellability
and partitionability, which are known to have many useful applications
within combinatorics. First, we present the basic aspects of discrete
Morse theory for regular cell complexes in terms of the combinatorial
structure of their face posets. We introduce the notion of a general-
ized shelling of a regular cell complex and describe how to construct
a discrete Morse function associated with such a decomposition. An
application of Forman'’s theory gives us generalizations of known re-
sults about the homotopy properties of shellable complexes. We also
discuss the relation of our work to a variety of other decomposition
results that have been shown for special classes of complexes.



1 Introduction

This paper will focus on a recent development in topology — namely a discrete
version of Morse theory developed by Forman [11], and relate it to combi-
natorial decompositions such as shellings and interval partitions which have
been studied extensively in combinatorics. We refer the reader to Bjorner’s
chapter (2] on “Topological Aspects” in the Handbook of Combinatorics
for a comprehensive survey of some important topological techniques that
have been useful in combinatorics. The primary purpose of this paper is to
show that discrete Morse theory provides a unifying framework for many
interesting and important problems of topological combinatorics. One of
the principal ideas of discrete Morse theory is to construct for a given fi-
nite cell complex (which we will assume to be regular), a “more efficient”
cell-complex (which will not, in general, be regular), while retaining topolog-
ical properties of the original space as much as possible. The construction
of the more efficient complex depends on the existence of discrete Morse
functions on the original regular cell complex. Forman’s work is a discrete
analog of “smooth” Morse theory of Milnor [15], [11]. In the original the-
ory, there are canonical choices for Morse functions for smooth manifolds
while in the discrete version this does not appear to be the case, at least
from Forman’s paper. We will show that for a given generalized shelling of a
regular cell complex there is a canonical discrete Morse function. A simple
application of Forman’s theory gives us a generalization of known results
about the homotopy properties of shellable cell complexes. We should point
out that Forman also constructs a differential complex associated with a
discrete Morse function which has the same integer homology as the origi-
nal cell complex — however, we will not cover this aspect of discrete Morse
theory here. We will present those definitions and results of Forman which
are readily accessible given some familiarity with the tools of combinatorial
topology discussed in Part II of Bjérner’s Chapter [2]. Further topologi-
cal details and applications of this elegant and powerful theory of discrete
Morse functions can be obtained from [11]. We will end the paper with a
discussion of a variety of applications and interesting open problems that
arise when one views combinatorial decompositions from the perspective of



discrete Morse theory.

2 Preliminaries

We will assume familiarity with the notion of cell complexes [2], which are
traditionally called CW-complexes in standard algebraic topology texts such
as Munkres [16] and Massey[13], [14]. Throughout the paper we will assume
all such complexes to be finite. In a combinatorial context, it is most natural
to consider regular cell complexes since with this additional property, the
topology of the associated space is completely determined by the face poset
of closed cells ordered with respect to containment. We refer the reader to
Bjorner’s survey [2] or the appendix of Chapter 4 of [6] for further details and
terminology. Hence forth, without change of notation we will also regard
a regular cell-complex ¥ as a poset, whose order and cover relation are
denoted by < and <, respectively, with >, <, = etc. having the obvious
interpretations. For o € X, let éo be the boundary subcomplex of o and let
6 = 0 Udo. Recall that if ¥ is a regular cell complex , & is (homeomorphic
to) the dimo-ball while do is a (dimo — 1)-sphere. The dimension of ¥ is
the number maz{dimo : 0 € £}, and we will say that ¥ is pure if all its
maximal cells have the same dimension. When the regular cell complex is a
simplicial complex, we will refer to its cells as its faces and its maximal cells
as facets.

The property of shellability has been classically been studied only in the
context of pure cell complexes and pure simplicial complexes. It leads to
very interesting algebraic, enumerative and topological consequences ([21],
1], [3]) for many complexes that arise naturally in combinatorics. Recently,
Bjorner and Wachs [4], [5] have undertaken a systematic study of shellability
for general (non-pure) cell complexes and its applications. We now present
this definition of shellable complexes.

Definition: Anordering 0y, 09,..., 0, of the maximal cells of a d-dimensional
regular cell complex ¥ is a shelling if either d = 0 or it satisfies the following
conditions:

e (S1) There is a ordering of the maximal cells of do; which is a shelling.



® (82) For 2 < j < m, éo; N (Ui;ll dok) is pure and (dimo; — 1)-
dimensional

® (S3) For 2 < j < m, there is an ordering of the maximal cells of do;

which is a shelling and further, the maximal cells of do; N (Ufc: doy)
appear first in this ordering.

A regular cell complex is said to be shellable if it admits a shelling. In the
general non-pure context, the following result is due to Bjérner and Wachs
[4], [5] and it describes the primary topological consequence of shellability.

Theorem 1 : If a reqular cell complez ¥ is shellable then it is homotopy
equivalent to a wedge of spheres. g

Next, we define an even more general decomposition property for regular
cell-complexes which has a natural relation to the discrete Morse theory of
Forman.

Definition: An ordering 01,09, ...,0., of distinct cells of a regular cell
complex ¥ is a generalized shelling if satisfies the following two conditions

and (81), (S2) and (S3):
e (G1) S =U", 6.

e (G2) If 0; € b0, then i < j.

Hence if 01,09, ..., 0., are maximal cells of 3, then we get the definition
of Bjorner and Wachs [4]. Clearly, every regular cell complex admits a trivial
generalized shelling — a total order on all of its cells which is consistent with
1ts partial order. We will show later that there are examples of complexes
that are not shellable but admit non-trivial generalized shellings that are in,
some sense, canonical. Figure 1 shows an example of a regular cell complex
with 3 maximal cells which is not shellable but admits a generalized shelling
sequence with 4 cells as shown.

The next proposition relates the existence of generalized shellings in
simplicial complexes to interval-partitions and provides a non-recursive def-
inition for generalized shellings in this context. We omit the proof, which
1s quite routine. Note that, as is traditional in combinatorial literature, the
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empty set is also considered to be a face when considering interval partitions
of a simplicial complex .

Proposition 1 Let ¥ be a simplicial complex. Then for an ordered subset
F\,F,,... Fy of faces of £ the following are equivalent:

(1) F1,Fy,... Fy, is a generalized shelling for ¥.

(i) There ezist faces G1,Ga,...Gm with G; C F, such tha! the sequence
{[G.. Fi],i = 1,...,m} of intervals, partitions £ and further Uk, [Gs, Fy) s
a simplicial compler for k=1,2,...,m. g

Following [7], we will refer to the ordered sequence of intervals {|G;, Fl,i=

3 Elements of discrete Morse theory

We will derive results for the homotopy type of complexes which admit
non-trivial generalised shellings by applying the theory of discrete Morse
functions developed by Forman [11]. We begin with the definition of these
functions.

Definition: Given a (finite) regular cell complex T, a (discrete) Morse
[function on ¥ is a function f : ¥ — R satisfying the following two conditions
for every cell o of ¥ :

o {r<0o:f(1)> flo)}] < 1. (M1)
o {w>o: flw)< flo)} < 1. (M2)

A convenient way to think about a Morse function is to regard it as being
“almost increasing” with respect to dimension. Clearly, any function which
1s increasing with respect to dimension would be an (uninteresting!) example
of a discrete Morse function. Figure 2 shows an example of a discrete Morse
function on the cell complex of Figure 1.

Definition: A p-dimensional cell o of ¥ is critical (with respect to a fixed
Morse function f) if it satisfies each of the following conditions:

* {7 <0: f(r) 2 f(0)}| = 0. (C1)



e {w>o: f(w) < f(o)} =0.(C2)

We will denote by C(f) - the set of critical cells of ¥ with respect to
f. In the example of Figure 2, there exactly two critical cells for the given
Morse function - the O-cell a and the 1-cell df.

The following is one of the central theorems of discrete Morse theory.

Theorem 2 :

1. ([11] Corollary 3.5) Suppose T is regular cell complez with a discrete
Morse function. Then I is homotopy equivalent to a cell complez with
ezactly one cell of dimension p for each critical cell of = of dimension

p-

2. ( [15], [11] Corollary 3.7 ) “Weak Morse Equalities”: Let (3; be the
J'th Betti number of ¥ with coefficients in some fized field and m; be
the number of j-dimensional critical cells, then Bj < mj for every j.

We will indicate later an outline of the elegant proof of statement (1) of
this theorem using terminology that is some what different from Forman’s. If
we take the dimension as a Morse function on any complex, every cell would
be critical and hence the above theorem tells us nothing new. Hence, it is
important to construct “efficient” Morse functions (that have few critical
points), especially in view of (2) of the above theorem. For more details
about both weak and strong Morse inequalities, we refer the reader to [15]
and [11]. Observe that applying the above theorem to the example of Figure
2 shows that the complex is homotopy equivalent to the 1-sphere.

We will now restate the basic concepts of discrete Morse theory in graph-
theoretic terms to emphasize the combinatorial nature of the theory for
regular cell complexes. The discrete vector fields discussed in Forman’s
paper [11] and the work of Stanley [20] and Duval [10] on decompositions
of simplicial complexes have underlying ideas that are similar in nature to
what we will present. We begin with following simple lemma of Forman.

Lemma 1 : If f is a Morse function on a regular cell complez © and o is
any cell of ¥, then conditions (C1) and (C2) cannot both be false for o.



Proof : If possible, let w > o > 7 satisfy f(w) < f(o) < f(1). Now let «
be a cell distinct from o that also satisfies w = a > 7. The existence of such
an a for a regular cell complex follows from the fact that éw is a sphere.
Applying condition (M1) to w and (M2) to 7, we have f(w) > f(a) > f(7)
which leads to a contradiction. g

In particular, if a cell is not critical then it violates ezactly one of (Cl)
and (C2). In graph theoretic terminology, this implies that there exists a
matching M(f) on the Hasse diagram of ¥ associated with every discrete
Morse function f of ¥ such that the set of cells of & not incident to any edge
of M is exactly C(f). From the definition of a discrete Morse function, it
1s clear that M(f) is the precisely the set of the cover relations where f is
non-increasing with respect to dimension. We can easily perturb f without
changing the set of critical cells (or the matching relations) so that it is
(strictly) increasing or decreasing across all cover relations. Now we appeal
to the elementary combinatorial result that a directed graph is acyclic if
and only if there is labelling of the nodes such that each edge is directed
from a node to another node with strictly lower label. Hence, by assigning
directions on the cover relations of ¥ according to increasing value of f,
we obtain a unique acyclic orientation on the Hasse diagram of T for every
discrete Morse function on ¥. In the other direction, we can regard the
Hasse diagram of ¥ as a directed graph which we call G(Z) with the edges
being cover relations directed from higher to lower dimensional cells. Clearly,
G(X) is acyclic in the directed sense. Now we choose a matching M (possibly
empty) of edges of this graph such that the directed graph G(Z) obtained
from G(X) by reversing the direction of edges in M is also acyclic. In
particular, we have Gy(X) = G(X). Evidently, by choice of M, any node
labelling on the acyclic G )/(X) which is increasing along the direction of the
edges, is a discrete Morse function on £ with the critical cells being precisely
the nodes are not incident to any of the edges in M. We have essentially
proved the following proposition.

Proposition 2 : A subset C of the cells of a regular cell complez T is the
set of critical cells for some discrete Morse function f if and only if there



exists a matching M on G(Z) such that Gp(Z) is acyclic and C is the set
of nodes of G(X) not incident to any edge in M. g

Proof of Theorem 2 (an outline): We will now present a rough sketch of
Forman'’s proof of Theorem 2 using the language of the above proposition.
Since Gy (X) corresponding to a given discrete Morse function f is acyclic,
it must have a source node, say a p-dimensional cell 0. Now assume that ¢
1s not maximal in 3. Then by the construction of Gp(X), o is contained
in the boundary of exactly one (p + 1)-dimensional cell, say 7 and further
o and 7 must be matched to each other in M. It is well known that the
subcomplex of 3, defined by X\ {0, 7} is homotopy equivalent to, in fact is
a deformation retract of, X. (See [11], [2] where such a reduction is referred
to as an elementary collapse). The proof essentially follows by induction.
On the other hand, if o is a maximal cell then ¢ must be critical. Now we
apply the result inductively to the subcomplex X \ {c}, which completely
contains the boundary of the cell 0. Then if we glue the open cell ¢ back on,
along its boundary, the resulting complex has the desired properties. We
remark that in this case, the resulting complex need not be regular, as the
boundary of o might be collapsed to a point, as can be seen for the cell df
in the example of Figure 2. Following conventional terminology [2], we will
refer to complexes that admit a Morse function with only one critical point
as being collapsible since they admit a sequence of elementary collapses that
reduce them to a point.

4 Generalized shellings and discrete Morse func-
tions

In this section, we will construct discrete Morse functions for complexes with
given generalized shellings. We will first prove these results for shellable
pseudomanifolds. Recall that a d-pseudomanifold is a pure d-dimensional
regular cell complex such that

(i) every (d — 1)-cell is contained in at most two d-cells,

(ii) Given any two d cells 8 and 7 there exists a sequence of d-cells
3 = 01,02,...,0m = 7 such that o; and 0,41 share a common (d — 1)-cell



forl <i:1<m-~—1.

The boundary of a d-pseudomanifold is the subcomplex generated by the
set of (d — 1)-cells which are contained in exactly one d-cell.

We begin with a fundamental result due to Bing, and Danaraj and (Klee
9], [6] Chapter 4).

Lemma 2 : Let 01,09,...,0m be a shelling of a d-pseudomanifold ©. Then
Uizlék is a d-ball for every 1 < j <m. X = UJL,8k is a d-sphere if & has
empty boundary, otherwise X is a d-ball. g

Thus a purely combinatorial property, namely shellability, enables us to
deduce a topological property - of being (homeomorphic to) a ball or sphere.
It is easy to show ([11] Corollary 4.4) that a simplex and its boundary admit
Morse functions with exactly one and two critical points respectively. We
extend this result in the next proposition to shellable balls and spheres.
Following Bjérner (1], we call the cell o, for j > 2, a homology cell with
respect to a fixed generalised shelling 01,09, ...,0,, of a complex ¥ if do; N

(U]Z] dox) = b0,

Proposition 3 : Let 01,09,...,0m be a shelling of a d-pseudomanifold &
and let v be any 0-cell in 6;. Then, ¥ admits a Morse function f such that

(i) If £ is the d-sphere then v and o, are only critical cells, while if ¥
15 a d-ball then v 1s the only critical cell.

(ii) When restricted to Uizlék for 1 < j < m, the only critical cell of f
15 v,

Proof. We will prove the result by induction on the dimension d. For
d = 0. the result is obviously true. Now for d > 1, we will construct the
required Morse function f inductively.

First, we note that éo is a shellable (d—1)-sphere and hence by induction
admits a Morse function f; on éo; in which v and some (d — 1) cell w; are
the only two critical points. Thus there exists a matching M; on G(do1)
as per Proposition 2 such that Gy (do1) is acyclic and v and wy are the
only unmatched cells. It is easy to see that v and w; are the unique sink
and source node, respectively, in Gy, (601). Now, extend the matching M,
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to a matching M; of G(&;) by adding the matching relation (w;,01). We
claim that G g, (71) is also acyclic. First, we note that w; is also the unique
source node in Gy, (51) and hence cannot be in any directed cycle. But any
directed cycle of G 7, (51) must contain the node o, as G, (d01) is acyclic.
However the only edge of G (51) into o7 is (w;,01), and hence it must be
on any directed cycle contradicting the fact that the node w; is a source,
thus proving the claim. By Proposition 2, we have constructed a Morse
function with the desired properties for 1.

Now forj > 2let a; = 5ajﬂ(uf;ll d0) and suppose o; is not a homology
cell. Now there is a shelling of do; (which is a (d — 1)-sphere) such that the
maximal cells of the pure and (d — 1)-dimensional complex «; appear first.
Then by induction, there exists a Morse function f; on do; with a 0-cell v;
and a (d — 1)-cell w; being the only critical cells such that v; is the only
critical cell when f; is restricted to a;. In particular, if M, is the matching
associated with f; in G(do;), then there is no edge of M; from a cell in
@; to a cell in doj \ ;. As a consequence, the subgraph of the directed
graph G, (d0;) when restricted to the cells of do; \ a; is also acyclic with
w; being the only unmatched cell. We can extend this acyclic subgraph with
the induced matching to &; \ a; as before by adding the matching relation
(w;.0;) and the other appropriate edges all directed away from o;. Now this
acyclic graph with no unmatched cells corresponding to 7, \ o; is attached
to the (inductively constructed) acyclic graph for Ui;&k with v being the
only unmatched cell. Since the attaching edges contain no matching edges
and hence are all directed away from 7 \ «j, the resulting graph is also
acyclic with a well defined matching such that v is the only critical cell.

If 0, is a homology cell, then we let om be attached unmatched to the
inductively constructed acyclic graph. The resulting graph is also clearly
acyclic since we are adding a source node and from the construction, v and
am are the only critical cells for the resulting Morse function. This completes
the proof of the proposition. g

Thus we have shown that shellable pseudomanifolds are “nice” examples
for discrete Morse theory in that we can construct the most efficient Morse
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functions for them. For boundary complexes of convex polytopes, we can use
a strengthening of the famous Brugesser and Mani result about shellability
of these complexes [23] to obtain the following result. (compare this result
to Theorem 4.6 of Forman [11])

Corollary 1 : If & is the boundary complez of a conver d-polytope then for
any vertez v and any facet F of the polytope there ezists a discrete Morse
function on & such that v and F are the only two critical cells. =

It would be interesting to find triangulations of balls (spheres) that do
not admit discrete Morse functions with exactly one (two) critical cells.
Clearly such triangulations cannot be shellable and hence must be of di-
mension d > 3 ([9]). The obvious first candidates for these examples would
be Rudin’s unshellable triangulation of the tetrahedron [9], [23] and an un-
shellable 3-sphere due to Lickorish [12].

The construction of discrete Morse functions for shellable pseudoman-
ifolds can easily be extended to prove the next theorem which states the
precise connection between generalized shellings and Morse functions.

Theorem 3 : Let 01,09,...,0, be a generalized shelling of a reqular cell
complez & and let v be any O-cell in &,. Then there ezists a discrete Morse
function f of ¥ such that v is critical and further any other cell o is critical
if and only if it is a homology cell. g

Applying Theorem 2 to the Morse function of the above theorem we get
the following result.

Corollary 2 : For a d-dimensional reqular cell complez X, let m; be the
number of j-dimensional homology cells in some generalized shelling, 7 =
0.1,....d and suppose they are not all zero. Then we have the following:

1. X is homotopy equivalent to a cell complex with mg + 1 points and m;
J-dimensional cells for j =1,2...,d.

2. If the homology cells appear in non-increasing order of dimension in
the generalized shelling then ¥ is homotopy equivalent to a wedge of
spheres consisting of m; j-dimensional spheres, 3J=0,1,2....d.
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Proof. The proof of (1) follows immediately from Theorem 2 and The-
orem 3. We can prove (2) easily by induction on the number of homology
cells in the generalized shelling. The key observation is that if a p-cell o; is
a homology cell, then it is critical and further it is a maximal cell for the
subcomplex Uizlak. As per the proof of Theorem 2, it is attached along its
boundary which is contained in Ui;llék. But by induction, Uf;;llék is homo-
topy equivalent to a wedge of spheres all of dimension at least p. Hence the
boundary of o; must have been collapsed into the single 0-cell and therefore

uizlék is homotopy equivalent to wedge of spheres. g

Remarks and an example:

(i) The condition of non-increasing dimension for homology cell is in-
spired by the rearrangement lemma (2.6) of Bjorner and Wachs [4], [5].
They show that the maximal cells of a shellable regular cell complex can
be rearranged to give a shelling order in which the maximal cells appear in
non-increasing order of dimension. Hence for shellable complexes, statement
2 of the above corollary reduces to Theorem 1.

(i) The following example further illustrates the significance of the ho-
mology cells appearing in non-increasing order of dimension. Consider the
(disconnected) simplicial complex on the vertex set {a,b,c,d,e} whose facets
are ab,bc,ca.de. This is an example of a pure simplicial complex which is
not shellable. Consider the following S-partition: [0,de], [a,a], [b,ab], [c,ac],
[bc,be]. Now, (1) of the above corollary says that this complex is homotopy
equivalent to a cell complex with two O-cells and one 1-cell, and we also
know that there is a subcomplex which has the homotopy type of O-sphere.
Clearly, these two facts by themselves do not rule out a contractible com-
plex! On the other hand, for the S-partition [@,bc], [c,ac], [be,bc], [d,d],
[e.de] , the corollary gives a wedge of spheres as the only possibility.
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5 Applications and some open problems

5.1 Decompositions of surfaces

An interesting class of regular cell complexes which are not shellable, in
general, are regular cell decompositions of surfaces (by which we mean com-
pact, connected 2-manifolds without boundary). It is well-known [9] that
regular cell decompositions of 2-spheres are shellable - indeed along with
Lemma 2, this means that the class of shellable 2-pseudomanifolds with
empty boundary is the class of “spherical” 2-pseudomanifolds. Therefore
2-pseudomanifolds which decompose surfaces of non-zero genus cannot be
shellable. We now consider two such examples.

1. Consider the triangulation of the projective plane shown in Figure 3
whose facets are {123,125, 136, 145, 146, 234, 246, 256, 345, 356}. We
can construct the following S-partition: [0,123], [5,125], [6,136],[4,145],
(46,146],[24,24], [34,234], [26,246], [56,256], [35,345], [356,356]. This
S-partition gives a discrete Morse function which results in the most
efficient representation of the projective plane as a cell complex namely
a complex with one cell each in dimensions 0,1, 2.

2. Consider the regular cell complex which decomposes the torus as shown
in Figure 4 with 2-cells A,B,C,D,E. Then we have the generalized
shelling: A, B, 12, C, 13, D, E. Hence the homology cells are 12, 13
and E and this gives a Morse function with one 0-cell, one 2-cell and
two 1-cells being critical.

In general, any surface S of genus g has a (most efficient) representation
as a cell complex with one 0-cell, one 2-cell and p(S) 1-cells, where p(S) =
2g(g) if S is orientable (non-orientable) and its Euler characteristic is x(S) =
2 — p(S). Then we ask the following question:

Given a 2-pseudomanifold ¥ without boundary, of Euler characteristic
x(Z), is there a combinatorial decomposition property P(x(Z)), such that
¥ is a surface if and only if it satisfies P(x(XZ)) ?

The motivating special case is the 2-sphere for which the answer is in
the affirmative and the decomposition property in question is shellability.
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A related question is whether every regular cell complex ¥ on a surface S,
admits the most efficient Morse function possible for S. This can be also
be formulated in terms of the graph G, which is the 1-skeleton of X. In the
terminology of {17], which is a survey of results on embeddings of graphs on
surfaces, X is a closed 2-cell embedding of the graph G on the surface S and
it is shown that such a graph has to be 2-connected. It is well known that
any 2-connected giaph admits an ear-decomposition (see [19] for details).
However, we ask the following question: Given such an embedding X on S,
does G admit an ear-decomposition, which starts with a facial circuit and
contains n — 1 facial circuits in all, where n is the number of faces of G
(2-cells of ¥) in the embedding ? We leave it to the reader to construct a
discrete Morse function for ¥ which is the most efficient possible for S from
such an ear-decomposition.

5.2 Relation to the decompositions of Stanley and Duval

There is a result of Duval [10] which describes a canonical combinatorial de-
composition for simplicial complexes with a prescribed set of Betti numbers
over some field. This settled a conjecture of Stanley and Kalai made in [20],
where a special case of the result was proved by Stanley. Hence these results
of Duval and Stanley, and results from discrete Morse theory presented in
this paper are, in some sense, partial converses of each other. For instance,
Stanley [20] considers a simplicial complex ¥, all of whose Betti numbers
are zero (he calls such a complex acyclic but we avoid this term for obvious
reasons). In the terminology of Proposition 2, he shows, using techniques
from exterior algebra, that the Hasse diagram of such a simplicial complex
2 admits a matching M such that

(a) The only unmatched face in ¥ is a vertex.

(b) The set of lower dimensional faces of the matching edges is a sub-
complex of Z.

In the special case when ¥ is a cone over some vertex, the result is easy
to see. In relation to Proposition 2, we remark that in the general instance of
Stanley’s theorem, it is clear that Gs(X) need not be acyclic since this would
mmply, by Proposition 2, that X is collapsible. For instance, any triangulation
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of the projective plane satisfies the hypothesis of Stanley’s theorem. For the
triangulation of Example 1, Section 5.2, one can construct a matching M
satisfying the above two conditions using the given S-partition. It can also
be easily seen that G(X) is not acyclic for any such M, as expected.

In the other direction, since a collapsible simplicial complex has trivial
reduced homology, one should be able to modify the matching M on a
collapsible simplicial complex ¥ constructed by Proposition 2, to obtain
a matching on ¥ satisfying the above two conditions. We leave it to the
interested reader to devise s?ch an algorithm.

5.3 On some complexes related to matroids

In this section we discuss the topology of a set of simplicial complexes related
to matroids called Steiner complezes which were introduced by Colbourn and
Pulleyblank [8], motivated by applications to K-connectedness reliability
on graphs. We will not present the original definition but rather a simpler
reformulation in terms of matroid ports which is shown to be equivalent to
the original by the author [7]. In what follows, we assume familiarity with
the basic concepts of matroid theory.

Definition: Given a connected matroid N and an element e of the ground
set of N, the port of N at the element e is the set

P={C~-{e}:e€C,C is a circuit of N}.

A Steiner complex on a ground set E is a simplicial complex S defined
by

S={E—-A:PC Afor some P € P}

where P is the port of some connected matroid N on ground set E U {e}
at the element e. Now consider the set P* of inclusion-minimal elements of
2F —S. It follows from elementary matroid theory that P* is the port of the
matroid N* at the element e. An important consequence of this fact is that
if § is a Steiner complex defined with respect to the matroid N then S? is
a Steiner complex associated with N*, where S® = {E - F : F € 2F — S}.

Note that by Alexander duality on the sphere ([1], page 278, exercise 7.4.3)
we have that
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Hy(S) = Hig|_,—3(S")

for all ¢, where H;(X¥) represents the i-th dimensional (reduced) homology
with coefficients in some field. Before we discuss the topological properties
of Steiner complexes further, it might be appropriate to give some examples
of ports and Steiner complexes.

The most important example of ports from the point of view of appli-
cations are Steiner trees of a graph with respect to fixed subset K of the
vertices of a connected graph. The number of faces of the corresponding
Steiner complex is of great interest in network reliability applications and
we refer to [7] for further details. Of course a matroid complex is also a
Steiner complex, however, it is easily seen that Steiner complexes are nei-
ther pure nor shellable in general. We will apply results of previous section
to the following S-partitioning result for Steiner complexes [7], which was
motivated primarily by applications to network reliability. Let B be the set

of bases of N which do not contain e and let S(N*) be the B-invariant of
N~ (see [1]).

Theorem 4 : Let S be a Steiner complex defined with respect to the port of
a connected matroid N of rank p at an element e of its ground set E U {e}.
(1) ([7]) There is an ordering By, Bs, ..., By, of the bases in B and sets
G; and F; satisfying G; C E— B; C F; such that the sequence of intervals
{IG,.F),i =1,...,m} forms an S-partition of S.
(1) (implicit in [7]) The number of homology faces of the S-partition is
equal to B(N*). m

Combining Theorem 4 and Corollary 2, we get

Corollary 3 : The Steiner complez S is homotopy equivalent to a wedge of
B(N*) (|E| — p)-dimensional spheres, where p is the rank of N.

One could also have derived the homotopy properties of Steiner com-
plexes by using some of the techniques that are described in Bjorner’s survey
[2]. For instance, let L° be the geometric semi-lattice (see [18] for defini-
tions and [22] for application to affine hyperplane arrangements) obtained by
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deleting the order filter of flats containing the element e from the geometric
lattice defined by the flats of the matroid N*. Then the maximal elements of
L° correpond precisely to the facets of S and the matroid closure operator of
N~ is an order-preserving map from S to L°. Now one could apply the fiber
theorem of Quillen ([2], 10.5) to this map from S to L° or one could also
apply a version of the cross-cut theorem ([2] ,10.8) to L° and obtain S as a
cross-cut complex. Both approaches would show that th: Gteiner complex S
is homotopy equivalent to the order complex of L°. It is known that ([22])
that the order complex L° is homotopy equivalent to reduced broken-circuit
complex of N*, RBC(N*), defined with respect to any order in which e
is the smallest element. Both these pure complexes can be shown to have
the homotopy type of a wedge of B(N*) (|E| — p)-dimensional spheres by
shellability arguments ([1] [18], [22]). We remark that RBC(N*) is, hence,
a proper and pure subcomplex of § with the same homotopy type as S. In
fact, one can show using the S-partition of the Steiner complex of [7] and the
canonical shelling of the reduced broken-circuit complex shown in [1] and
[22]. that this homotopy equivalence can be constructed by a sequence of
elementary collapses. We can use this observation to explain a certain topo-
logical duality for reduced broken-circuit complexes which was observed by
Bjorner in [1]. For the connected matroid N and its dual N* on the ground
set E'U {e}, we have 8(N) = B(N*). Now for any fixed total order on the
ground set in which e is the smallest element, if RBC(N) and RBC(N*)
are the reduced broken circuit complexes associated with N and N*, then
this implies the following for every 7. ([1], (7.39))

Hi(RBC(N)) = Hg|—;_3(RBC(N™))

To quote Bjorner [1] - “(this is)...a curious topological duality for reduced
broken circuit complexes that seems to lack a systematic explanation”. We
have already shown that S is homotopy equivalent to RBC(N*). By matroid
port duality, S° is homotopy equivalent to RBC(N ). Therefore, the topo-
logical duality of the reduced broken-circuit complexes observed by Bjérner
is actually inherited from the (Alexander) duality of the pair of Steiner
complexes.
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5.4 A discrete Morse theory for posets 7

It would be interesting to try and generalize discrete Morse theory from
regular cell complexes to posets with the hope that the existence of Morse
functions with certain properties would enable us to derive topological conse-
quences for its order complex. Most known results about topological prop-
erties of posets derive from lexicographic shellability type argumerts due
to Bjorner and Wachs [3] which show that the order complex is shellable.
However, there are examples of interesting posets which are not known to be
lexicograpically shellable but have nice homotopy properties. For instance
P,, the poset of partitions of the integer n ordered by dominance is not
known to be lexicographically shellable. However, it is known through other
fairly complicated methods [5] that (the order complex of) every interval of
the poset P, has the homotopy type of a sphere or is contractible. Since
discrete Morse theory is a more general tool for deriving homotopy prop-
erties than traditional shellability techniques, an extension of the theory to
posets. if possible, may indeed be worthwhile.
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Figure 1. A generalized shelling of a complex which is not shellable

Figure 2. Example of a discrete Morse function
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