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ABSTRACT

This paper reviews some of the techniques developed recently for approximating or
decomposing geometric shapes in two and threc dimensions. The relevance of these
techniques to robotics is. compelling. -As is well-known in the arca of computer
graphics, replacing complex objects by approximations or decompositions into
simple components can greatly facilitate parts-manipulation (e.g. detection of inter-
ference, hidden-line elimination, shadowing). For this rcason, as well as for the
theoretical challenges raised by these problems, considerable work has been de-
voicd on this subject in recent years. This paper attempts to survey some of the
major advances in the area of approximation and decomposition of shapes. Meth-
ods of particular intcrest for their practical significance or their theoretical import
are reviewed in detail.

1. INTRODUCTION

Planning collision-free motion and recognizing shapes are central tasks in
robotics and automated assembly systems, in particular. In both cases, the pro-
cess is complicated by the necessity to operate in real-time and the occasipnal
presence of fairly complex objects. To cope with the complexity of the gcometric
problems at hand, two lines of attack can be contemplated: one involves sim-
plifying the shapes by computing approximations of them; the other calls for
rewriting the objects as combinations of simple parts. Both of thcse approaches
have met with considerable success in computer graphics and automated design,
and their relevance to robotics as a whole is evident. It is the aim of this paper to

145



146  CHAZELLE

present a brief survey of the various methods and techniques known today in this
area.

2. APPROXIMATION OF SHAPES

The goal is to replace a complex shape § by a simpler figure F that captures
morphological features of S. Since F will often be used to approximate the
clearance of S amidst obstacles, it will be assumed to enclose §. 5o as to provide
a conservative approximation. We review some of the most common approxima-
tion schemes previously devised.

2.1. Convex Hulls

The convex hull of a set S of n points is the intersection of all convex sets
containing S. We omit the proof that the convex hull of S, denoted C, is a convex
polygon whose vertices (the extreme points) are points of S. A simple charac-
terization of a vertex of the convex hull states that a point is extreme if and only if
it docs not lic strictly inside any triangle formed by any three points. This lcads to
a trivial O(a") time algorithm. For cach such trianglc, climinate ciach point lying
inside. The remaining points will be extreme. A number of more efficient al-
gorithms have been (only recently) discovered. We propose here to review some
of the most important, practical, and/or original methods. The honor of discover-
ing the first optimal convex hull algorithm goes to R. Graham (1972).
Graham Scan: The mcthod involves sorting the points in a preliminary stage
and then retricving the convex hull in linear time via a procedure traditionally
known as a Graham scan. Let {py. . . . ,p,} be the points of S sorted angularly
clockwise around p,, the point of S with largest y-coordinate (take the one with
largest x-coordinatc to break ties, if necessary). Computing the list of p;'s can be
donc in O(nlogn) time.

Before procecding any further, we should make an important observation
concerning the computation of angles in particular and the design of geometric
algorithms in general. Although it is very helpful and intuitive to think in terms
of angles in the design part of a geometric algorithm, computation of angles and
of their natural functions (such as trigonometric functions) tends to be computa-
tionally expensive. There are usually ways around this difficulty, however. Most
often, we find all that is needed is a primitive operation to determine the relative
order of two vectors. This operation can be implemented with only a few multi-
plics and subtracts. Figure 4.1 illustrates this concept. Let 8 = Z(ab, ac) be the
angle from ab to ac, measured in counterclockwise order. We may assume —m
< 0 < 7. As a matter of terminology, we will often refer to the expression **b,
a. ¢ forma right (resp. left) turn’* to mean that 8 > 0 (resp. <0). If p,, p, denote
respectively the x and y coordinates of point p, we easily show that ‘

0> 0 (h —ale, —a)— (¢, —aXb, —a)> 0.
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FIG. 4.1, b

From a programming perspective, this equivalence allows us to compare, merge,
and sort angles without having to compute them cxplicitly. For example, let a,
a,, ....a, bep + | distinct points in E2. To sort the points a,, . . . .4,
angularly around a (clockwise, starting at a,), one can simply use one’s favorite
sorting routine and re-implement the primitives <, = , > uscd by the algorithm.
Partition the original set of points into L = {g, | £(aa,, aa) > 0}, M = {a, |
L(aa, aa)) = O} and H = {a, | £(aa,. aa,) < O}, and concatenate L, M, and H,
after having sorted the sets separately. To do so, any comparison of the form A,
< A, in the algorithm should be replaced by Z(aa; aa)) > 0 and implemented
with the formula given above. What we have here is an instance of abstract data
types, a notion of crucial importance in geometric algorithm design. It is often
possible and advantageous to specify geometric algorithms solely in tcrms of
generic operations and treat the implementation of types separately. The reason
is that many of thesc algorithms are extensions of well-known combinatorial
algorithms couched in geometric terms. Identifying and separating their geo-
metric and combinatorial components often simplifies the entire process of de-
sign, analysis, and implementation. With this ebservation made, we can now
return to the convex hull problem.

Let px designate the horizontal ray emanating from p in the right direction and
assume that Z(p,p,.p,x) has the smallest value of any Z(p,p,;, px). Imaginc that
a rubber band is attached to p, at one end, and that the other cnd is taken to p,.py.
.. .., intumn (Fig. 4.2). At the end of this process, the rubber band will be
shaped exactly as the convex hull of S. The Graham scan is essentially a comput-
cr simulation of this process. Conceptually, it is casicst to describe this process
as a stack manipulation algorithm. Recall that a stack is an abstract data type
(i.e., a set and some operations defined on it), which behaves much like a pile of
trays in a dining-hall. The only operations allowed arc: PUSH(e) (add e to the

FIG. 4.2.
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top); POP (remove top of stack); the top of the stack is designated TOP. The
algorithm is bascd on the notion of left and right turns. At any stage, the stack
contains the edges which should be on the convex hull were the algorithm to
terminate at that instant. If the next vertex encountered witnesses a right turn, a
new edge is added to the stack, otherwise, edges are popped off until the right
turn condition is satisficd. The top of the stack is an edge TOP, whose endpoints
are denoted ¢, and {,, in clockwise order around the boundary.

begin
< PUSH (pypy)
fori=3,...mn
begin
while (1, 15, p,) ums left
begin POP end
PUSH (13, p))
cnd
end

In an actual implementation, it might be more convenient (although concep-
tually more complicated) to simulate the stack with an array where cach record
holds a vertex and not an edge. The problem with representing edges is that in-
formation is essentially duplicated. See Sedgewick (1983, pp. 329) for an exam-
ple of working code. A simple examination of the pseudo-code shows that the
algorithm runs in lincar time (the stack is PUSHed at most once per point in §).
A Lower Bound: We casily see why Graham's O(nlogn) time algorithm is
optimal. We can sort n numbers ay, . . . ,a, by computing the convex huli of the
n points {(a,, ad), . . . (a,. a?)} and reading off the vertices of the hull in
clockwise order. Of course, this reduction assumes that by ‘‘computing the
convex huli'' we mean determining the order of the extreme points around the
boundary. What if we only require the extreme points without reference to their
order? Using a fairly technical argument, which we will not develop here, Yao
has proven that cven in this relaxed instance the convex hull problem requires
Q(nlogn) operations (Yao, 1981). Yao's model of computation is limited to
decision trees with quadratic polynomial evaluations at the nodes. This assump-
tion is actually quite realistic since all known methods seem to fall squarely in
this mode! of computation. At any rate, calling upon deep results of algebraic
geometry, Ben-Or has generalized Yao's lower bound to any decision tree with
fixed-degree polynomial evaluation at the nodes (Ben-Or, 1983).
Gift-Wrapping: One drawback of the Gruham scan is that it has the same
complexity regardless of the size-of the output. For example, if the convex hull
happens to have only a small number of vertices, it is conceivable that a faster
algorithm could be used. The gift-wrapping method, also known as the Jarvis
march (Jurvis, 1973), provides a (partial) response to this concern. Once again,
ihe algorithm is the simulation of a very simple physical process. Let p, be as

2
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usual the point of S with largest y-coordinate. Attach a long rope to p; and wrap it
around S one step at a time. A sep is the discovery of a new contact with the rope
(i.c., a new extreme point). A simple angle *‘calculation’ (sec remark above
concering angles) allows us to implement every step in linear time. This leads to
an O(nh) time algorithm, where A is the number of extreme points. How will this
method fare against the Graham scan on the average? Let h*(n) be the expected
number of extreme points in a set of n points chosen uniformly and independent-
ly inside a bounded region R. It has been shown by Renyi and Sulanke (1963)
that if R is a square or any convex k-gon for a fixed k, h*(n) = O(logn), and that
if R is a circle, h*(n) = O(n"?) (Shamos, 1978). This shows that for the case of a
uniform distribution in a k-gon the Jarvis march will asymptotically match the
Graham scan in the average case.

Divide-and-Conquer: A very good algorithm in the sense of expected behavior
was developed by Bentley and Shamos (1978). Assume that the points of § are
stored in an array A1, n]. Recursively, the algorithm computes the convex hull P
of A1, [n/2]} and the convex hull Q of Alln/2] + 1, n]l; then in time propor-
tional to the added size of P and Q it computes the convex hull of §. The
expected running time of the algorithm T(n) follows the recurrence relation, T(n)
= 2T(n/2) + O(h*(n)). It follows that T(n) = O(n) in the case of a uniform
distribution inside a k-gon or a circle. Two important facts to observe:

I. The recursive calls involve passing indices or pointers and nof the entirc arrays.
The latter solution would always cntail an O(nlogn) run time:

2. The uniformity of the distribution is preserved through recursive calls since the
subsets handled are defined independently of the value of their elements.

To complete the demonstration of the efficiency of Bentley and Shamos’ meth-
od, we must describe a linear method for **merging’’ two convex polygons. Let
P and Q be two convex polygons with respectively p and g vertices. We describe
a method for computing the convex hull of P U Q in O(p + q) operations. Let
{vio ... v and {w, ... ,w,} be a clockwise vertex-list of P and Q. respec-
tively. Since P is convex the sequence of vertices {v,. ... v} is angularly
sorted around v,. Is this also true of Q7 If v, happens to lie inside Q. it is
certainly so. Otherwise, the sequence of angles is bimodul, i.c. unimodal up to a
circular permutation. By checking each vertex of Q, compule the.two segments
of support v,w, and v,w,: these segments are such that v, w,, w,_, and v, w,
w,, , form right wms, and v;, w,, w,_, and v|, w;, w, , form left turns (Fig.
4.3) — arithmetic on indices is done mod ¢. Note that these two conditions will
be satisficd if and only if v, @ Q, so whether v, € Qor v, ¢ Q need not be decided
beforehand. Every vertex from w, , , to w; _ | clockwise (if any) can be discarded
and Q can be redefined as {w;, w,, . . . . .w}. In all cases, Q now forms a
monotone sequence of angles with respect to v, so we can merge the vertices of
P and V together in lincar time, and then apply the Graham scan on the resulting
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FIG. 4.3.

list of vertices. This will provide us with the convex hull of PUQ in O(p + q)
time, which completes the description of Bentlcy and Shamos' algorithm. De-
spitc the lincar cxpected running time of the algorithm, one will notice the
similarity between this method and mergesort (Aho, Hopcroft, & Ullman, 1974;
Knuth, 1973; Sedgewick, 1983).

Divide-and-Conquer with Sorting: If we apply the Bentley-Shamos algorithm
after having sorted the points of S by x-coordinate, the merge part can be casily
implemented without resorting to a Graham scan (Preparata & Hong, 1977) (of
course, by doing so we forsuke any hope of breaking the O(nlogn) barrier, as it is
well known that sorting takes on the order of nlogn operations, even on the
average). Let P and Q be, as above, the two convex polygons to be merged. We
assume that 2 lics totally to the left of Q. The convex huli of P U Q is obtained
by computing the wpper and lower bridges of P and Q, i.e., the two unique
segments joining a vertex of P and a vertex of Q with both polygons lying
entirely on the same side of the infinite lines passing through the bridges (Fig.
4.4). Whethcer a scgment is a bridge can be checked locally in constant time since
P and Q are convex. For example, the upper bridge v,w, is such that all four turns
e Wy Wy ) v,y ) (Vo VW), (Ve uvgwy) are right. To compute
the bridges of P and Q, pick the leftmost vertex of P, say, v, and compute the
segments of support, v,w, and v,w,, as described earlier. Then proceed to roll the
linc U (resp. L) passing through v w, (resp. v,w;) clockwise (resp. counterclock-
wisc) around (), until the linc contains the upper (resp. lower) bridge (Fig. 4.5).

wppar bridge w

Lewsr ydge FIG. 4.4.

vah
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Rolling the line U passing through v,w, can be done by maintaining the two
current contact-points, v, and w,, and deciding whether v, , , or w, , | should be
the next one. Once again, this procedure can be understood as a two-way merge
(i.e., merge of two sorted lists), with the primitives <, =, > re-implemented as
left turn, no turn, right turn conditions. The only major difference with merging
is in the way the algorithm terminates. Rather than scanning the two lists through
the end, the algorithm must keep on checking whether the bridge has been found,
and stop as soon as it has. Unlike the previous one, the running time of this
method is inherently O(nlogn) because of the preliminary sorting. Why then did
we bother mentioning it at all? The truth is that the algorithm serves as the ideal
stepping-stone for the next method, the first one known to be optimal in both
input and output size. :
Marriage-Before-Conquest: Aside from the fact that the method we last de-
scribed entails a sort on n numbers, a simple look at Fig. 4.4 reveals its main
shortcoming. Once the bridges have been found, many edges of P and Q are
bound to become irrelevant, therefore all the work done to obtain these edges
will tum out to be useless. It would be nice in some sense to be able to run the
algorithm backwards. We would first compute the bridges and then discard all
the points lying directly below or above them, at which stage we would simply
iterate recursively on the two sets of remaining points. The advantagc of such a
scheme would be to guarantce that cvery bridge computation is effective; in other
words, no bridge computed would ever be thrown away. The bottlencck caused
by the preliminary sorting can in turn be alleviated by resorting to a linear-time
median algorithm (Aho et al., 1974; Knuth, 1973). This will allow us to partition
the input set into two roughly equal-sized sets at a lincar cost. This approach was
taken by Kirkpatrick and Seidel and led to the {irst optimal algorithm in the sense
of input and output size. More specifically, if h denotes as usual the number of
extreme points in §, Kirkpatrick and Seidel’s method runs in time O(nlogh).
Optimality follows from an information-theoretic argument given in Kirkpatrick
and Seidel (1983). :

We bricfly review the main facets of the algorithm, referring the reader to
Kirkpatrick and Seidel (1983) for further details. To begin with, we may restrict
ourselves to the upper hull, i.e., the chain of the convex hull that runs clockwise
from the leftmost to the rightmost point. The lower hull will be computed in a
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similar fashion, from which the convex hull will follow directly. Let {p,,
. « « 4} be the points of § in arbitrary order, with x(p,) denoting the x-coordinate
of p,. Let a be a real number and P (resp. Q) be the convex hull of {p € S| x(p) =
a) (resp. {p € S| x(p) > a}). The expression *‘upper bridge over a’* refers to the
upper bridge of P and Q. Let's assume for the time being that we know how to
compute the upper bridge over a in a lincar number of steps. The upper hull of §
is computed by calling HULL(1,n.5).

HULL(KLS)

Find median a of x-coordinates in §

Find upper bridge pp, of § over a, with x(p) s x(p)
5, eS| =)}

5, «~{p € 5| x(p) = x(p))

“nuote that p, € §, and p, € §,""

ifi=k

then print (i)

cise HULL(k, i.5,)
ifj=1

then print ()

clse HULLG. 1. S))

It is not difficult to sec that in the worst case, one bridge computation will
requirc O(n) steps, two will require O(n/2) steps each . . ., and more generally
2/ bridge computations will require O(n/2') steps each. In other words, there is
some integer k such that £, 2/= h and the running time is O(2,, 2/(n/2)).
This lcads to the optimal O(nlogh) time complexity announced earlier. To com-
plete the demonstration, we nced to describe a linear time algorithm for comput-
ing the upper bridge of P and Q. In a lincar number of operations, we wish to be
able to discard at lcast a fixed fraction of the points of §. Let a be an arbitrary
slope € (-, +%) und let L,, be the line of the form ¥ = aX + @, with largest B
such that there exists at least one index i with p; € L, Assume that x(p)) < a.
The key obscrvation is that for any pair (p,. p,) such that x(p,) < x(p,) one may
discard the point p,, provided that the slope of p,p, exceeds a (Fig. 4.6). Indeed,
because of the rclative positions of p, and p,., the point p, cannot be an endpoint
of the upper bridge. Symmetrically, if we have x(p) > a, we will be able to
discard p, every time slope(p,p,) < a. In order to balance the odds, we will pair
up (Py» P2)s (P, D). etc. and compute the median slope a of the {n/2] segments
Py . Py Lt p, € L, once we have identified whether x(p,) < a or not, as many
as |n/4) points will immediately fall out of contention. lterating on this process
will eventually produce the upper bridge. The time T(n) taken by the algorithm
satisfies the recurrence relation T(n) = T(n — |n/4]) + O(n), which gives T(n) =
O(n). Our cxposition has left a number of special cases conveniently hidden (e.g.
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FIG. 4.6. .

segments with infinite slopes, several segments with slope a, several points with
x-coordinate a, etc.). All these difficulties can be easily handled with extra care,
however, so we simply refer the reader to Kirkpatrick and Seidel (1983) for
details.

Quickhull: Eddy and Floyd independently developed a convex hull algorithm,
which although quadratic in the worst case, behaves remarkably well in practice
(Eddy, 1977). This is not without resembling the case of quicksori, a sorting
method which fares better than almost any other in practice albeit vulnerable to
extremely poor behavior in the worst case (Aho et al., 1974; Knuth, 1973;
Sedgewick, 1983). For the reader familiar with quicksort the resemblance will
shortly appear much deeper than this, which is the reason why we christened the
algorithm quickhull. Let A and B denote respectively the highest and lowest point
in §. Compute the two points C, D of S on the leftmost and rightmost lines
parallel to AB. Eliminate the points inside the quadrilateral ABCD. Sweep lines
parallel to AC, CB, BD, DA, in turn, outward from the quadrilateral, and elimi-
nate the points from inside the four triangles thus created (Fig. 4.7). Each of
these triangles is formed by the segment from which the sweep starts and the last
point swept. The algorithm iterates on this process. Under some reasonable
assumptions concerning the distribution of the points in S, it is possible to show
that the algorithm will run in lincar expected time. In practice, this algorithm
could be used as a preprocessor to Graham's algorithm, for example. The idea is
that after a small number of passes, only very few points should be left, so0 a sort

FIG. 4.7.
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is unlikely to be time-consuming. Similar to quicksort, quickhull is a prime
candidate for a simple, practical, and cfficient implementation.
Approximation Method: On the practical side, it is worthwhile to mention a
very fast convex hull algorithm due to Bentley, Faust, and Preparata (1982). The
algorithm produces an approximation of the convex hull, that is to say, it might
fail to report the exact convex hull, but can always be guaranteed to produce a
convex hull arbitrarily close to the exact one (for some realistic measure). This
might often be acceptable in situations where only a rough approximation of the
morphology of the point-set is desired. :

Higher Dimensions: In three dimensions, the situation is (ironically) much
“clearer’ than in E2 because of the paucity of efficient algorithms. Preparata
and Hong (1977) have deviscd an optimal O(nlogn) time method which con-
stitutes an extension of the divide-and-conquer method with sorting given for E2.
For higher dimensions (/ > 3), algorithms arc given in Chand and Kapur (1970},
and Scidel (1981). Chand and Kapur (1970) extend the gift-wrapping method to
arbitrary dimensions, while Seidel (1981) gives a general algorithm which is
optimal when o is cven. The running time of his algorithm is O(nlogn +
njsg1]).

Dynamic Convex Hulls and Convex Layers: Prcparata (1979) has described an
optimal algorithm for inserting ncw points into a two-dimensional convex hull. If
the convex hull has # vertices, any new point can be added to it in O(logn) time.
One drawback of this method is that points which cither fail to be on the convex
hull, or stop being on the hull as a result of an insertion, are lost, thercby making
deletions impossible. Overmars and van Leeuwen (1981) have shown that by
sacrificing a little in time it is possible to accommodate delctions (see chapter by
Dobkin and Souvaine in this volume). Their algorithm handles any update of this
nature (insertion or delction) in O(log?n) time. Chazclle has shown, on the other
hand, that if only deletions from’the convex hull are allowed, then optimal
(amortized) time can be achieved (Chazelle, 1985). This, in particular, allows
for the computation of the convex Jayers of un n-point sct in O(nlogn) time.
These are the various polygons obtaincd by computing the convex hull of the
point set, and then removing all the vertices from the set and iterating on this
process until all the points are gonc. This coflection of polygons turns out to be
very uscful in statistical analysis (Shamos, 1978). 1t also allows for cfficient
range scarching, as has been shown in Chazelle, Guibas, and Lee, 1983.
Convex Hull of Polygon: An important class of convex hull applications in-
volves a set of points joincd together by a simple curve. Recall that a curve is
simple if it is not sclf-intersecting. Let P be a simple polygon with n vertices.
This cxist several algorithms for computing the convex hull of P in O(n) time
(Bhattacharya & E! Gindy, 1984; Graham & Yao, 1983; Guibas, Ramshaw, &
Stolfi, 1983; Lee, 1983; McCallum & Avis, 1979). Most of these algorithms can
be viewed as gencralizations of the Graham scan. A pointer scans the boundary
of the polygon, while one or two stacks keep track of the **current’* convex hull.
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2.2. Rotating Calipers

A simple, albeit rough, method for approximating the shape of an object is to
place it in a bounding box. In Fig. 4.8, object P has been tightly enclosed by a
rectangle B whose sides are paraliel to the axes. The term axes refers here to the
two directions of an orthogonal system of coordinates (Ox, Oy). This method is
very popular in computer graphics (Newman & Sproull, 1979), because it greatly
simplifics the task of removing hidden parts from a scene, testing intersection
between several objects, etc. In raster graphics, the horizontal and vertical direc-
tions are privileged, so it is natural to orient bounding boxes along them. Assume
that P is represented as a polygon with vertices p,. . . . o, in clockwise order.
We easily compute B in O(n) time by determining the maximum and minimum x
and y coordinates among the p,'s.

Sometimes, insisting on a specific orientation of the bounding box can cause
considerable degradation in the quality of the approximation. Figure 4.9 suggests
that the proper measure of the quality of the bounding box should be the area that
it occupies, regardless of its orientation. By rotating the box B counterclockwise
by approximately 45 degrees, onc reaches another enclosing box of much higher
quality by this measure. The question that leaps to mind is then:

What is the complexity of computing the smallest-area rectangle enclosing the
polvgon P?

If P is highly symmetric, it is casy to sce that its smallest-arca cnclosing
rectangle may not be necessarily unique. For this reason, we limit our search to
any such rectangle, which we generically denote s4(P). Toussaint (1983) has
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shown that finding (P) can be done in O(n) time. His method relies on a
number of gecometric obscrvations. To begin with, since s#(P) contains the
convex hull C of P, we can advantageously drop P from consideration and
restrict our investigation to C. As has been mentioned earlier, C can be computed
in O(n) time. The next crucial fact is a theorem by Freeman and Shapira (see
Toussaint, 1983) which states that s4(P) always has one side containing an edge
of C. This suggests an O(n?) time algorithm based on the previous bounding box
method. Make the x-axis parallel to cach edge of C in turn, and for each
orientation obtained solve the bounding box problem in O(n) time. Toussaint
observed that there is no need to repeat each computation from scratch for every
position of the x axis. Instead, one should try to barch computations together by
trying to derive the next answer directly from the previous one. ;

This intuition is materialized in the notion of rotating calipers. Let c,,
.+« 4, (p = ) be the vertices of C given in clockwise order. Consider the
bounding box anchored at ¢, _ ;¢ i.c., the smallest-arca enclosing rectangle with
onc side containing ¢, .. ,¢,. This rectangle is formed by four infinite straight lines
L. L, L, L, (Fig. 4.10). Let ¢, ¢; ¢4 ¢, be the vertices in contact with the
boundary of the rectangle, withc, € L, ¢, E L, ¢, € L;, ¢; € L, (whenever a
whole edge is in contact with the rectangle, we choose its Jast vertex clockwise
as its representative). We look at L, L, Ly, L, us calipers rotating clockwise
around C in such a way that they preserve the integrity of the rectangle they
form. Because of Freeman and Shapira’s result, we may restrict our attention to
the positions of the calipers for which one line contains an edge of C. To
compute the next position from the current one, it suffices to compare the four
angles, a,. a,. a,, a, formed respectively by L, and ¢, ¢, . Lyand ¢;, ¢, 4 Ly
and ¢, ¢;,,, and L, and ¢, ¢;,,. The smallest of them (a, in Fig. 4.10)
determines the next position of the calipers. The rotation will continue until the
calipers are back to their initial position. Because of the obvious symmetry of the
calipers, the rotation can be limited to 90 degrees.

'Y

FIG. 4.10.
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The algorithm is implemented by maintaining four pointers to keep track of ¢;,
¢ €. and c;. It strongly resembles the traditional method for merging four sorted
lists into one, the so-called 4-way merge (Knuth, 1973). In particular, its com-
plexity is clearly O(n) in both time and space. The similarity with merging can be
better seen if we map the polygon C into a different space. We resort (o a
technique of very conwnon usc in computational geometry: a dual transform.

The idea is (in this case) to put points and lines in one-to-one correspondence
50 as to be able to rephrase problems on lines as problems on points and vice-
versa. Point p = (a.b) #(0,0) is (bijectively) mapped to the line D, : aX + bY +
1 = 0, and conversely D, is mapped to p. Intuitively, this mapping is effected by
considering the line L passing through both p and the origin O, and determining
the point ¢ of L at a distance 1/|0p} from p, with O on the segment pq (Fig.
4.11). The line D,, is obtained by taking the normal to L passing through 4. It is
casy to sce that the transformation D preserves incidence relations. For this
reason, it is tempting to consider each of the lines bounding C and map them via
the dual transform D. Let L, be the line containing the edge ., , and let v, =
D,, denote its dual point (1 =i < p; index arithmetic taken mod p). Assume that
the origin has been chosen to be inside the polygon C. It is easy to see that the
sequence {L,, . . . ,L,} is mapped into a sequence of points {v,. . . . .v,}, which
form a clockwise vertex-list of a convex polygon V.

A mechanical analogy of this correspondence is to roll a line (a caliper)
around C clockwisc and follow the motion of its dual point. The trajectory of this
point will be precisely the convex polygon V. Define a cross to be a set of two
lines passing through O normal to each other. A cross intersects V in four points,
called cross-points. Our original set of four calipers is mapped into a set of four
cross-points. The analogy is now complete: rotating the calipers corresponds to
moving the cross clockwise. If L is a list of numbers, let L + x be the list
obtaincd by adding the number x to each element in L, and let 6, be the slope of
Ov, (1 S i < p). Let L be the sorted list of angles {8,, . . . ,8,}. The 4-way
merge of lists to which we evasively referred as the backbone of the rotating
algorithm is now taking shape. A moment’s reflection shows that the algorithm
for computing the smallest-area rectangle all but boils down to merging together
the four lists L, L + 90, L + 180, and L + 270.

This example and the little excursion into dual space which followed tcll us
something. First, a fairly specific geometric problem is solved in a very simple
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way by use of a gencral, unifying technique: the rotating calipers. Second, this
technique is nothing but a geometric instantiation of a fundamental programming
concept: k-way merging (Knuth, 1973). Put in this light, it is no surprise that the
rotating calipers should find many other applications in computational geometry.
For example, it is possible to find the diameter of a st of n points in E? in
O(nlogn) time, i.c., the largest distance between any two points (Shamos &
Hocy, 1975; Toussaint, 1983). We can do so by first computing the convex hull
of the point-set in O(nlogn) time, and then rotating two parallel calipers around
the hull in O(n) steps. The two points realizing the maximum distance must
appear as contact-points of the calipers in some position. Of more direct rele-
vance 1o the subject of shape-approximation, we pose the following problem.

What ix the complexity of computing the smallest-area triangle enclosing a convex
polygon?

Note that solving this problem will also allow us to compute the smallest-area
triangle enclosing an arbitrary set of points. We do so by taking the convex hull
of the points as a preprocessing step, and thus reduce the problem to the one
posed. Klec and Laskowski (1985) have proposed an O(nlog2n) time algorithm
for computing the smallest-arca triungle of a convex polygon with n vertices (or
any of them if there arc several). Their algorithm was recently improved to
optimal O(n) time in O'Rourke, Aggarwal, Maddila, and Baldwin (1984). To
quote O'Rourke ct al., **the strength of their (Klee and Laskowski's) paper lics
in establishing an clcgant geometric characterization of these (local) minima,
which permits them to avoid brute-force optimization.’* The strength of O’Rou-
rke et al.’s paper, on the other hand, is to prove an interspersing lemma, which
cnables them to usc rotating calipers as a guiding hand. Three calipers are used to
represent tentative enclosing triangles: the only conceptual difference with the
rectangulur casc is that (1) angles between calipers arc not fixed; (2) the three
calipers do not have a uniform behavior. Nevertheless, the algorithm decides on
the basis of a constant-time test which caliper should be moved next and by how
much. Since calipers move in the same direction, the running time is trivialty
linear. Once again, we can interpret the basic method as a k-way merge (k = 3),
although the non-uniformity of the ranking criterion makes the analogy slightly
less compelling.

2.3. Circle and Ellipse Enclosure

We leave aside polygonal shapes temporarily and turn our attention to smoother
curves like circles and ellipses. Conic sections or for that matter any polynomial
curves of reasonably small degree have the advantage of being space-effective:
just a few cocfficicnts arc necessary to represent them. Also being smoother than
polygons, these curves will often provide finer approximations than, say, tri-
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angles, rectangles, or more generally polygons with a small number of vertices.
To begin with, we ask the following question:

What is the complexity of computing the smallest-area circle enclosing a set of
poinis?

2.3.1. Circle Enclosure. The casc of circles is particularly intercsting from
an algorithmic standpoint. The problem can be traced as far back as Sylvester
(1857) and has gone through numerous developments (see Shamos, 1978;
Megiddo, 1983 for a short bibliography). Until recently the best solution known
was due to Shamos and Hoey (1975) and was based on a geometric construction,
called the Voronoi diagram. lts complexity of O(nlogn) was subsequently im-
proved to optimal O(n) by Mcgiddo (1983) in a seminal puper on linear program-
ming in M3, The two methods are radically differcnt and deserve scparate
treatments.

Shamos and Hoey's method: This is the simpler of the two. It rests crucially on
a geometric construction, called the farthest-point Voronoi diagram. Let § =
{Pis - - - p,) be asct of n points in the Euclidean plane. Partition the plane into
regions with common farthest neighbors. More precisely, for any point p, let
fip) be the index i such that for each j # i, the distance |pp.] exceeds the distance
|pp,|. Whenever more than one index i can be found, flp) stands for the set of
such indices. The function f partitions E2 into faces, edges, and vertices. Let v,
denote the face associated with p,. V, is the intersection of each half-plane that is
delimited by the bisector of (p, p) (I = j #i=n) and contains p;. For this
reason, either V, is emply or it is a convex polygon (in the latter case, it is easy to
show that V, is unbounded). Furthermore, V, is not empty if and only il p, is a
vertex of the convex hull of S. This lcads to the fact that the faces V; can be
ordered cyclically around the boundary of the convex hull (Fig. 4.12). Since the
sct of cdges forms a frec tree (connected acyclic graph) it immediatcly follows
that the subdivision contains at most F — 2 vertices, where F is the number of
faces. Since F < n, we conclude that the farthest-point Voronoi diagram of n
points in the plane has at most n — 2 vertices. Shamos and Hoey (1975) have
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FiG. 4.13.

described how to compute this diagram in O(nlogn) time, using a divide-and-
conquer stratcgy. v

We next show how to compute the smallest circle using this diagram. Let C be
the smallest-area enclosing circle of S, To see that C is uniquely defined, assume
the existence of two such circles C and C’, and let A, B be their two intersection-
points (notc that the two circles must intersect). Every point of S lies in the
shaded area in Fig. 4.13, therefore the circle of diameter AB contains S and is
smaller than C and C’, a contradiction. Let p,, p, be the pair of points in S whose
distance to cach other is maximum. This distance, called the diameter of S, can
be obtained in O(n) time using the farthest-point Voronoi diagram. To do so,
determine the farthest ncighbor of each point in S. Once the diameter is avail-
able, check whether every point of S lics inside the circle with diameter pp,. If
yes, this circle is clearly C. otherwise, C passes through at least three points p,,,
P, P, Of S. Obviously the center of C is then the vertex at the intersection of V,,,
V.. V.. Trying out all vertices of the farthest-point diagram and keeping the one
whose associated circle has maximum radius will give us C. To conclude, we
have described an O(nlogn) time method for computing the smallest-area circle
enclosing n points.
Megiddo’s Method: Recently, Megiddo proved the surprising result that C can
actually be computed in only a linear number of operations. His method is based
on a general technique used primarily in the context of linear programming. It is
this technique which inspired Kirkpatrick and Seidel to design their ingenious
marriage-before-conquest convex hull algorithm (see section 2.1). Since the
eatire algorithm can be explained reasonably simply in a self-contained manner,
we cannot resist the temptation of trying. As the reader will undoubtedly realize,
the method contains a treasure of algorithmic insights. In the following, the pair
(a,, b)) will denote the coordinates of p, (1 < i < n). To begin with, we solve a
simpler problem. Let L be an arbitrary line; a circle is said to be centered at L if
its center lics on L. The question we pose is the following:

). What is the smallest-area enclosing circle centered at L?
The same argument uscd above shows that this circle, denoted C, , is uniquely

defined. For the sake of convenience, we think of L as the x-axis, so we can
represent the center of C,_ by its x-coordinate, x*. Megiddo's approach is similar
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in spirit to the well-known linear-time median algorithm (Aho et al., 1974;
Knuth,1973). The idea is to identify and discard points that are irrelevant to the
problem. A point p is irrelevant if it can be determined that C, is the smallest-
area circle enclosing S — {p} centered at L. We will show a methed for discarding
at least a fraction a of the input set in linear time. This will allow us to zoom in
on the solution intime O(n + (1 —a)n + (I —a)n + . . . ) = O(n). To do so,
we nced to describe a number of primitive operations.

1. To begin with, it would be nice to be able to determine quickly whether x*
=< x for an arbitrary valuc x. We can answer this question in linear time by
computing the maximum distance d from (x, 0) to any point in S. Let/ be the set
of points that realize this distance, i.e. I = {p, | (0, = x)2 + b2 = &?}. If every -
point in / is to the left (right) of x, so must be x*. More specifically, we have the
following implications: if for each p, € I, a, > x then x* > x; if for cach p, € 1,
a, < x then x* < x. Otherwise, we have x = x*.

2. Secondly, given two points p,, p; (a; < a;), we would like to dccide
whether p, or p, can be discarded for good. Let z be the x-coordinate of the
intersection of L with the bisector of (p,, p)) (we leave it to the reader to see what
to do should this intersection be undefined). If it is known that z < x* (resp. 1*
< 2), then clearly p; (resp. p,) can be discarded.

Next we will see that with these two primitives it is possible o discard a
fraction of the points in O(n) operations. For each even value of i (2 < i < n),
compute z,, the x-coordinate of the intersection of L with the bisector of the pair
(P;—y,P). I a,_ | = a, itis legitimate to discard whichever of p, or p, _ , is closer
to L; we then leave z, undefined. Next, compute the median element z,, of the list
of z,’s thus obtained in O(m) steps, where m is the number of remaining points.
Using Primitive 1, determine in O(m) time whether x* lies strictly to the feft or
strictly to the right of z,. If neither is the case, we have x* = 2, and we are
finished. Otherwise, Primitive 2 allows us to immediately discard at least one
point for each pair z, falling on one side of z,. This leaves us with roughly <
Im/4 = 3n/4 points, which leads to an O(n) running time for computing x*.
Next we ask a slightly different type of question,

Il. Given a line L, does the center of the smallesi-area enclosing circle lie on L: if
yes, where? If not, on which side of L does it lie?
4

Using our solution to Problem I, it suffices to determine the sign of y,.. the y-
coordinatc of the center of C. Without invoking convexity results explicitly, we
will show by a simple geometric argument how to determine the sign of y,.. Let r
be the radius of C, and let J be the set of points of S at a distance r from (x*, 0),
i.e.J = {p,| (a, — x*)? + b= r?}. If ] has a unique clement, J = {p,}, then a, =
X* and ) - has the sign of b, (always assuming that L is the x-axis). If J has at least
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two elements, one of them must be to the left of x* and the other to its right,
otherwise it would be possible to *‘improve™ x*, Lel p, and p, be such that p,. p,
€ J, a; S x* < a; and lct D, (resp. D)) be the disk centered at p, (resp. p,) of
radius r. The center of x of C must lic in the intersection DN D,. It is immediate
to see that K = D, N D, is {rce of any point of L besides (x*, 0), thercefore K lies
totally on one side of L. Which one it lies on can be determined in constant time
once p, and p, arc availuble. This directly solves our problem since x lies in K.

in somc instances, it is possible to determine x immediately. To identify these
cases, we will compute X* = Np,EJD, instead of simply K. To do so, we
consider cach p, € J in turn (in any order) and update the current intersection.
‘Since all the disks have a common point, the intersection cither is a single point
or consists of two circular arcs, so it can be computed in constant time per disk,
i.c. in O(n) time. If K* happens to be reduced to a single point then x = (x*, 0)
and we arc finished. Otherwise, K* lics entirely on one side of L, since we have
(in particulur) K* C K. Next we solve the last subproblem of our series, from
which we will be able to conclude directly.

1. Eliminate o fraction of the points in S on the grounds that they are irrelevant to
the dcfinition of the smallest-area circle enclosing S.

Using our algorithm for problem 11, we can carry out a binary scarch over the
Euclidcan plane and thus zoom arbitrarily close towards the center x. Unfortu-
natcly, this will not indicatc the points contributing the center, however close we
get to x. Following a patiern by now familiar, we carry ouit the binary search not
over E2 but over a discrete set, namely S itsell. To realize this objective, we must
supplement our sct of primitives with the following one: given a convex polygon
(not necessarily bounded) in which x is known to lie, and given the bisector of
the pair (p;, p)), discard either p, or p,. This can be easily done as long as the
bisector docs nof intersect the convex polygon. Indecd, in that case, onc of the
points, say p,. lics on the sume side of the bisector as every point in the polygon.
This implics in particular that x is closer to p, than to p, and so p; can be
discarded. We arc now in a position to present the algorithm in its entirety.

To begin with, pair up the points of S in an arbitrary fashion, e.g. (p,, 2),
(Ps. Pa)s - - -+ and let L be the bisector of (py, p3). L, the bisector of (p;. ps),
etc. Consider the slopes (in | — %, +)) of the |n/2] bisectors L, . . . ,Ll,,,,],
and in O(n) time, compute the median slope, a. Next, pair up each bisector L,
with slope(l.,) = « along with a distinct bisector L, with slope (L)) = a. This
gives us |n/4] pairs of the form (L, L;). For convenience, let’s re-oricnt the x-
axis along the dircction a; a line with slope o becomes a line with slope 0. For
cach pair (L,, L), define the quantity v, as follows: if L, and L; have distinct
slopes, let (x,;. ;) be their intersection. Otherwise, let y,; be the mean y-coordi-
natc of L, and L,, i.c., the y-coordinate of the midpoint between {x = 0}NL, and
{X = 0)NL,. By convention, we let y;, = + ifboth L, and L, are parallcl to the
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y-axis. At any rate, compute the median y of the |#/4] values of the form y, in
O(n) time. Using our solution to Problem II, we can decide in linear ._m:_n
whether x lics on the line ¥ = y (in which case we are finished), or lies above or
below. Assume wlog that x lies strictly below.

Next, consider all the [#/8] pairs (L, L) suchthat y, = y. If L, and L, are
parallel, the intersection with X = 0 of one of them, say L, must lie m.:.mn._w
above (0, y). Since L, is then parallel to the x-axis, one of the two points defining
the :.._n can be discarded, namely, the one lying below L,. Let i, be the number
of points dropped this way and n, the number of remaining pairs (ny +'ny =
[n/8}). Consider now the set of remaining pairs (with ¥y Z ¥) and compute the
median x of the x,'s. Test on which side of the line X = x the center X must lic.
Once again if x lies on the line, we are able to solve the problem directly.
Assume wlog that x lies to strictly to the left of the line (Fig. 4.14). For each of
the |n,/2] pairs (L,, L)) to the right of X = x, one of the four points involved can
c.e dropped from further consideration. Indeed, for cach pair (L;, L)), one of the
lines, say L,, is oriented in such a way that it is possible to identify with certainty
on i_.__n__ side of L, the center lies. To see this, L, can always be chosen with
ncgative slope (by construction, either L, or L, satisfics this property). Let p, and
P, be the two points of which L, is the bisector, with p, (resp. p)) below (resp.
above) L,. Since x must lie in the quadrant delineated in Fig. 4. 14, whatcver the
oxmn. location it will always be closer to p, than p,, therefore P, can be discarded.
.q_:m leads to the dismissal to n, + |n,/2] = [n/16) points from S, hence the
linear running time of the overall algorithm.

z._nmm.._._o.m method, however appealing, cannot be recommended for practical
s_u.v.__n»:o:m. For one thing, its reliance on lincar-time median computation may
n.::ﬁ___v~ hamper its performance when applied to problems of modest size. But
since .r.n algorithm does not need the exact median but any value close enough,
computing the median out of a small sample of the input might perform just as
well, and give a *‘somewhat’’ simpler algorithm.

2.3.2. m::...:. Enclosure.  After dealing with circles, the natural question is:
how about ellipses? An ellipse is defined by five parameters whercas a circle
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nceds only three. These two additional degrees of freedom should in general
allow for wrappings that fit more tightly around the set of points (Post, 1981;
Silverman & Titterington, 1980). '

What is the complexity of computing the smallest-area ellipse enclosing a set of
points?

As is well-known, any cllipsc in the planc centered at u, = (xy, yo) can be
analytically represeated by an equation of the form (u — ug)'Alu — ug) = 1,
where A is a 2 X 2 positive-definitc matrix, Since A is symmetric, five numbers
suffice to define any cllipse and, as one should expect, at most five points
uniquely define an ellipse. A simple algorithin consists of computing all candi-
date ellipses enclosing S. To so, we consider all cllipses passing through five
points, and all smallest-arca ellipses passing through four and three points rc-
spectively. In cuch case, we check whether the candidate ellipse contains every
point of S, and throw it away if it does not. Elementary analysis shows that this
algorithm will be extremely time-consuming, as it will require O(n®) operations.

Post (1981) has shown that it is possible to reduce the compultation time to
0O(n?). The key to Post’s method is to be able to throw away at least one point
after a lincar number of operations. The algorithm starts off with a spanning
cllipse, checks whether it is the smallest, and if not, throws awuy at least one
point and then shrinks the cllipse. lteration tukes over at this point after making
sure that the new cllipse does enclose all the points of S. Additional work is
nccessary if this condition is not satisfied. The guadratic performance of the
algorithm follows from the linearity of each pass.

24, Oz.,o.. Enclosure Problems

A large number of enclosure problems have been studied lately. We review some
of the main results.

1. Given a set S of n points in the plane, consider all k-gons which can be
formed with the points in §. Boyce, Dobkin, Drysdale, and Guibas (1982) have
given an algorithm for finding the maximum perimeter triangle in O(nlogn) time
and the largest perimeter or area k-gon in O(knlogn + nlog?n) time for any k.

2. Given a simple n-gon P, find the largest-area convex polygon contained in
P. This potato-peeling problem, s it is often called, has a number of variants,
one of which calls for the maximum-perimeter enclosed polygon. Chang and
Yap (1984) have proposcd polynomial algorithms for all these problems.

3. Given a convex n-gon P, find a minimum-area convex k-gon enclosing P.
Besides the aforementioncd work of Klee and Laskowski (1985) and O'Rourke
at al. (1984) for the casc k = 3, a number of interesting results have been
obtained. Using dynamic programming, Chang and Yap (1984) have described
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an O(n*logk) time algorithm for the general problem. This bound has been
improved to O(n?lognlogk) (See Aggarwal, Chang, & Yap, 1985). Dc Pano and
Aggarwal (1984) have considered special cases of this problem: they give an
O(nlogk) (resp. O(nk?)) time algorithm for the case where the enclosing polygon
is equi-angular (resp. regular). See also O'Rourke (1984) for extensions of the
smallest enclosing box in three dimensions.

Some problems in location theory arc very similar in spirit to the type of
questions we've been asking so far. Given a set of points and disks in the plane,
is it possible to arrange the disks so as lo cover all the points? Megiddo and
Supowit (1984) have shown that the problem is NP-hard. However, the problem:
Given a set of n points in the plane, what is the smallest disk that covers at least k
points? can be solved in O(k2nlogn) time, as demonstrated by Lee (1982). Also,
the question: Given n points in the plane, what is the largest number of points
that can be covered by a single disk? has been shown (o be solvable in O(n?) time
in Chazelle and Lee (1986).

A useful primitive to have in applications involving enclosure problems
checks whether a polygon can fit into another. Given nwo polygons P and Q.
determine whether Q can contain P, if rotations and translations are allowed.
Chazelie (1983b) has given a general O(pg*(p+¢)) time algorithm for deciding
on this question, where p (resp. q) denotes the number of vertices in P (resp. Q).
If Q is convex, the complexity can be reduced to O(pg?). The algorithm essen-
tially involves finding *‘all’* possible Jocations where P could fit. The difficulty
is to establish an upper bound on the number of locations. Despite its high
complexity, the algorithm is optimal with respect to that measure, if pis a
constant. This still leaves open the question of whether the decision problem can
be solved more efficiently. :

A few results are known in the special case where only translations are
allowed. Letting n = p + g, the problem can be solved in O(n) time if both
polygons are convex (Chuzellc (1983b). For the case where cither the inside
polygon is convex or both polygons are rectilinearly convex, Baker, Fortune,
and Mahaney (1984) have given an O(n?logn) time algorithm.

3. cmoOZ_vOm_dO.z OF SHAPES

3.1. Triangulations /

Let P be a simple n-gon, ic., a simple polygon with n vertices. A triangulation of
P is any partition of the polygon into disjoint triangles, all of whose vertices are
vertices of the polygon. It is often useful to have a triangulation of P. For one
thing, triangles arc easy to handic, so a pantition of this nature simplifies tasks
such as testing for interscction, inclusion, etc. The idca is to perform computa-
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tions iteratively on cach part; for example, one can use this **decomposition”’
approach to detect interference or collision between a number of moving objects
(see Ahuja, Chien, Yen, & Birdwell (1980) for example). Another benefit to
gain from a triangulation is valuable information concerning topological proper-
ties of the polygon (Chazelie, 1982).

Triangulation problems are many and varied. ‘In numerical analysis, for in-
stance, a triangulation is often used to evaluate a function of two variables by
interpolation or to integratc a function by the finite-element method. In these
applications, the shape of the triangulation can be of great importance. In the
context of the finitc-clement methad, for example, it is likely that long, skinny
triangles should be avoided because of the errors they tend to generale (see, for
example, Baker, Gross, & Rafferty, 1985). We will not concern ourselves with

such matters, howcver, since their relevance is relatively small if a triangulation

is viewed solely as a tool for facilitating gcometric computations. This is most
often the casc in robutics, computer graphics, computer animation, CAD/CAM,
etc. As a starter, we posc the following problem:

What is the complexity of computing a triangulation of a simple n-gon?

Unfortunately, despite the large amount of work devoted to this problem, a
definite answer still eludes us. There have been solid advances on the subject,
however, both on the practical and theoretical sides. Garey, Johnson, Preparata,
and Tarjan proposed the first O(nlogn) time algorithm for triangulating P (Garey
et al., 1978). Their algorithm works in two phases: to begin with, a regulariza-
tion procedure is applicd to P, which in O(nlogn) time produces a partition of the
polygon into L-monotone picces, for some line L. A polygon is said to be L-
monotone il any normal to L intersects the polygon in no more than one segment.
With this decomposition in hand, Garey ct al.’s algorithm completes the tri-
angulation by cutting cach monotone picce into triangles. This sccond (and last)
pass takes lincar time.

Chazelle (1982) has established a polvgon-cutting theorem, which is useful
for triangulation as well as other problems (e.g., visibility, internal distance).
Assign a positive weight to cach vertex of P in an arbitrary fashion, with the total
weight not cxcecding 1. Roughly spcaking, the polygon-cutting theorem states
that there exists two vertices a, b such that the segment ab lies entirely inside the
polygon P and partitions it into two polygons, neither of whose weights exceeds
213,

If we allow additional vertices to be introduced, then a successful approach to
the triangulation problem is the line-sweep paradigin ( Bentley & Ottmann, 1979,
Shamos, 1978). Imagine a vertical line L sweeping the plane from left to right;
the segments of the intersection LNP are kept dynamically in a balanced search
structure (c.g., AVL., Knuth, 1973), red-black, Sedgewick, 1983, trees). An
even! takes pluce cvery time the line encounters a new vertex. At that point, the
search structure is updated to record the fact that a segment is about (o vanish, to
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be created, or to have one of its endpoints switch to a different edge of P (Fig.
4.15). The net result of this line-sweep process is the so-called vertical decom-
position of P, a set of vertical segments oblained by connecting every vertex of P
to the edge immcediately above or below it, in such a way that the segment
created lies inside P (dashed lines in Fig. 4.15). It is easy to derive a triangula-
tion of P from its vertical decomposition (note that the triangulation is not
uniquely defined, but the vertical decomposition is). In a nutshell, the idea is to
identify the cusps of P, i.c., the vertices that are locally in leftmost or rightmost
position. For each trapezoid generated by the line-sweep procedure, connect
cach cusp to a vertex of the other vertical side (solid interior lincs in Fig. 4.15).
Removing all vertical segments produces a decomposition of P into monotone
polygons (with respect to the horizontal direction). The linear time postprocess-
ing of Garey et al.'s algorithm can then be applied to complete the triangulation.

Using a fairly similar method, Hertel and Mehthorn (1983) succeeded in
lowering the O(nlogn) running time to O(n + rlogr), where r is the number of
reflex angles in P. Their method differs from the previous one in two important
aspects. ‘First, it performs the triangulation on the fly, i.e., it computes the
triangles during the linc-swecp process. Second, it skips over vertices that do not
display reflex angles. The import of Hertel and Mchlhom’s result is to express
the running time of the algorithm not only as a function of the input size but also
as a function of a parameter which reflects a morphological property of the
polygon.

In the same spirit, Chazelle and Incerpi (1984) developed a radically different
algorithm based on divide-and-conquer. Their method requires O(nlogs) time,
with s < n. The quantity s measures the sinuosity of the polygon, that is, the
number of times the boundary alternates between complete spirals of oppogite
orientation. The value of s is in practice a very small constant (e.g., 5 = 2 in the
case of Fig. 4.15), even for extremely winding polygons. The running time of

the algorithm depends primarily on the shape-complexity of the polygon. Infor-

mally, this notion of shape-complexity measures how entangled a polygon is,
and is thus highly independent of the number of vertices. Aside from the notion
of sinuosity, Chazelle and Incerpi have also characterized a large class of poly-
gons for which the algorithm can be proven to run in O(nloglogn) time. Imple-
mentation of the algorithm has confirmed its theoretical claim to efficiency.
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Procedure ConvDec(P)
beginprocedure

STEP &:
The preprocessing involves checking that P is simple and nonconvex. We
make a list of the notches v, . . . ,v,, and we initialize all B(i, i) and F(i, i) 10 0.

ford=1,...,c-1
fori=1,...,c
Jim i+ d fmod ¢}

do STEPS 2, 3, 4

STEP 2:

Compute the best Y-pattem connecting v, and v, as follows:

Foreach k; v, € V(i + |, j — 1), compute the set Q = U, ., @, where

Q, = (FU. b, Bk, ) /* N2-nodc on path */

Q, = {(BG, k — 1), Fk, MIU((BG. j — 1), FG. )} 1* no N2 or N3 nodes on
path */ .

Q, = {(Bli. k = 1), Btk. j = )} /* N3-node on path */

Q= {{Fti + 1, k), Ftk + 1, )} 1* N3-node on path*/

The clements of Q arc pairs of the form (C, T). Let T be the Y-pattern which has the
maximum C valuc in Q.

STEP 3:
Let $(i, /) be the maximum of L, M, N with respect to cardinality, where (max
is taken with respect to cardinality)

L = maxy, ey ;- 1) 150, OUSEk + 1, j}

/* comresponds to a patching together of Y-patterns */

M= max {{x,,, JUSG+ L, a— DUS@@+ 1.b- DUSH+ 1, §- 1)

for all X,-pattcens x, , ,, , connecting v, v,,. v,, v, with v, v, € V(i, )).
/*comesponds to the use of an X,-pattern */

N = {the Y-pattern T of STEP 2JUSG + 1, i, — DU ... USU,_, + I, i,
~=NUSG, + 1. j= 1)

where v, v,, . . ., v, v, are the notches of T in clockwise order.

I* corresponds to the use of the Y-pattern T */

STEP 4;
Cumpute B(i, j) and F(, j).
STEP §:

Finish off the decomposition using the naive decomposition, i.e. adding one poly-
gon for cach remaining notch.
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FIiG. 4.20.

endprocedure

In the following we explore some of the primitive operations used by the
algorithm in greater detail.

1. Paiching Y-subtrees (STEP 2)

The function (ARG) takes two Y-subtrees and constructs a Y-pattern if these
two subtrees can be patched together. ARG is any argument of the form: (F(i, k),
Bk, ), (BGi, k — 1), F(k, i), (B, k — 1), Bk, j— 1) or (F(i + 1L, k), F(k+ 1,
M), with v,, v,, v, occurring in clockwise order.

Case 1. (F(i, k), B(k, j)) (Fig. 4.20a).
Let F(i, k) = T and B(k, j) = V, with r and s their respective arms. If £(r, 5)
< 180 and 7 # O and V # 0, then set (F(i, k), B(k, )) = (IS(, k)| + [S(k. j)] +
1, Y-pattern: TUV), else (F(i, k), B(k, j)) = 0.

Case 2. (B(i, k — 1), F(k, j)) (Fig. 4.20b)..
Let B(i, k = 1) = T and F(k, j) = V. If an extcnded X,-pattern is possible
between v, and v, then set {BGi, k — 1), F(k, )} = (15G, k — D] + |Stk, )] + 1,
Y-pattern: {vyJUTUV), cisc (BG, k — D), Fik, j)) = 0.

Case 3. (B(i, k — 1), Btk, j — 1)) (Fig. 4.20c).

Let B(i, k — 1) = T and B(k, j — 1) = V. If an extended X,-pattern W is
possible between v, v, v,, then
BG. k-1, Bk j—1)=(St k= D]+ [Stk, j = 1] + 1, TUVUW), cise (B(,
k= 1),Bk j=- 1) =0
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Case 4. (F(1 + 1, k), Flk + 1, ))) (Fig. 4.20d).
Let F(i + 1. k) = Tand F(k + |, j) = V. Il an cxtended Xy-pattem W is
possible between v, v, v,, then
(FU+ 1K) Ftk+ 1,00 = (56 + 1,0 + Stk + 1, )] + 1, TUVUW), clse
(Ft + 1, k), Ftk + 1,)) =0,

Because of Relation (1), it is clear that STEP 2 computes the V-pattern
connecting v, and v, (if any is to be found) such that the number of compatible
patierns which can he upplied in V(i, j) is maximum. All we have to check is that
all cases are indecd handled in STEP 2. Consider the path from v, to v, in any
such Y-pattern. 1 it contains an N2-node, it will be detected in Q,. Otherwise
onc N3-nade may appear on this path and all these candidates will be reported in
0, and Q,. The final case, handled by @, assumes that the path from v, to v; is
free of N2 und N3-nodes.

2. Computing S(, j) (STEP 3)

Assume by induction that S(k, /) has been computed for all v, v, € V(i j)

(except for S(i, /). The algorithm investigates the three following cases in turn:

1. Disallow the presence of uny pattern having both v, and v, as vertices.
2. Consider the possibility of an X,-paticrn connecting v; and v,.
3. Consider the possibility of a Y-pattern connccting v, and v;.

3. Constructing Y-subtrees (STEP 4)

We compute B(i, j) and F(i, j) by iteratively patching Y-subtrees together via
two functions, Y(i, ARG) and Y'(i, ARG). ARG is an argument of the form B(a,
b) or (B(a, b), B(c, d)) (or the same with F). We describe these functions with
respect to B's only, all other cases being similar.

Case 1, Y(i, B(a, b)) (Fig. 4.21a)

The vertices v, v, v; occur in clockwise order. Let T = Bla, b). Extend the
notch at v, to tuke into account the arm of . Extend the notch at v, by making its
associated wedge be the entire plane. If an extended X,-pattern is possible
between v,. v, and if w = Z(R, vyv,) < 180, set Y, B(a, b)) = (Y-subtree:
{vw JUD, clsc Y, Bla. b)) = 0.

Case 2. Y(i. (B(a, b), B(c, ) (Fig. 4.21b)

The vertices v, ¥, V,. ¥, ¥, occur in clockwise order. Let T= B(a, b) and
V= B(c. d). Extend the notch at v, (resp. v,) to take into account the arm of T
(resp. V). Extend the notch at v, by making its associated wedge be the entire
planc. If an cxtended X ,-pattern is possible between v, v,, v,, compule the locus
of its N3-node. Let S be the point in the locus which maximizes the angle w =
LR, vS).

It w € 180, sct Y. (Bla, b), Blc, ) = (Y-subtree:{Sv,JU{SY JU{Sv, JUTUV), clse
Y(i, (B(a. b). Ble, d)) = 0,

N
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Case 3. Y'(i, B(a, b)) (Fig. 4.21¢c)
We define Y'(i, B(a, b)) in the same way as Y(i, B(a, b)), with Z(R,, vy,)
replaced by Z(vy,, L)). Y'(i. F(a, b)) is defined similarly, so we omit the details.
We are now rcady to implement STEP 4 of the decomposition algorithm. We
will only describe the computation of B(l, j), since the casc of F(i, j) is striclly
similar. We begin by computing the four sets B,, B,, By, B,. Let C be the value of
IS¢, j)| computed in Step 3.

B, = { Y-subtrec of B(i, k)], for all v, € V(i. j — 1) such that [S(i, k)] + |S(k + L
= C.

/*v, is not a notch of the Y-subtree */

a_N {Y’' (i, B(k, jn}. foralt v, € V(i + 1, — 1) such that |S( + 1,k — 1) + [S(k,
M=CcC

/* v,'s ncighbor is an N2-node */

By ={V'G. Fi + L iflsG + 1, = C.

/*v;'s neighbor is an N2-node */

B, ={Y'(G(FG+ Lk, Fk+ 1, )} forall v, EV(i + 1.j- 1)

such that [S( + |, k| + |Stk + 1, )l = C.

/* v,'s ncighbor is an N3-nodc */

Let T be the Y-subtree of 8,U8,UB,UB, which maximizes the angle «
(1, L)), where ¢ is understood here as the arm of T dirccted outward from v,

(Fig. 4.22). We define B(i, j) as a pointer to the arm of T (now understood to be
directed towards v).
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o 81 " 82

FIG. 4.22.

It follows from previous remarks that B(i, j) can be computed in polynomial
time. Y-subtrces can be merged in constant time by linking their respective arms
together. B, through B, cvaluate all candidate Y-subtrees adjacent to v, .__z_._w.m:m
in V(i, j), and keep a single candidate, i.e., the subtree which has maximum
angle u. It is casy to show by induction that it is sufficient to consider only the -
subtrees in the B's and F's. B, considers all subtrecs which do not have both v,
and v, as notches (Fig. 4.22a). B, and B, compute the subtrees whose vertex
adjacent to v, is an N2-node. Note that B, and B, may share common sublrees.
The two possible configurations are illustrated in Fig. 4.22 b,c. Finally B,
detects all candidate subtrees such that the vertex adjacent to v, is an N3-node
(Fig. 4.22d). . :

4. Completing the OCD (Step 5) X )

The last step of procedure ConvDec consists of removing the remaining
notches with the naive decomposition. This can be done in polynomial time,
leading to the main result: an optimal convex decomposition of a simple polygon
can be computed in polynomial time. )

A rough analysis of the algorithm’s complexity shows that the exponent in .:.n
polynomial is prohibitively high. Cutting down the complexity to O(n + cYisa
long and complicated process which we will not address here. The reader can
find the basic scheme in Chazelle and Dobkin (1985) and all details in Chazelle

(1980),

4. EPILOGUE

Approximations and dccompositions of two and three dimensional shapes are
only beginning to be understood. Powerful algorithmic techniques are available,
and problems oncc treated in an ad hoc fashion can now be solved with general,
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versatile methods. All of the algorithms reviewed here have been analyzed and
many of them have been implemented. Their relevance to robotics is compelling,
but more work needs to be done to adapt these methods to the context of specific
applications. In particular, relatively little is known regarding problems in three
dimensions.

The aim of this article has been to present state-of-the-art methods for approx-
imating and decomposing geometric shapes. We have given emphasis to tech-
niques with direct practical applications as well as methods of purely theoretical
interest. Our rationale for including the latter has been that these methods often
reveal enough insights to suggest simple, practical methods. For example, our
long development on the OCD problem readily suggests efficient approximation
methods (based on the naive decomposition and, say, X,-patterns only). It is
certainly counterproductive to dismiss complicated theoretical methods solely on
the grounds of impracticality. Many recent advances in theoretical computer
science might never come into practice as such but may very well, as has often
happened in the past, trigger the making of practical breakthroughs. For exam-
ple, the availability of practical methods for planar point location today (a central
operation in many tasks—see chapter by Yap in this volume) owes a great deal to
an carlicr algorithm by Lipton and Tarjan, theorctically remarkable, but unfit for
practical use.

The ficld of computational geometry is blossoming. One of its challenges is to
span the entire spectrum from theory to practice, enabling powerful mathe-
matical constructions to have an impact in practical domains. Robotics along
with statistics, computer graphics, and a number of other applications areas serve
as the prime providers of fascinating problems to researchers in computational
geometry. In return, we belicve that robotics is advised to keep an cye on an arca
that is blossoming today and is likely to come up with many of the algorithmic
tools that it needs in the years to come.
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