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CONVEX ->.-.—.—.=.02m OF POLYHEDRA:
A LOWER BOUND AND WORST-CASE OPTIMAL ALGORITHM®

BERNARD CHAZELLEt

rlitioning a polyhedron into a minimum number of convex picces is known
We cstablish here a quadratic Tower Bound on the complexity of this problem, nnd we
describe an alporithm thit produces & number of convex parts within a factor of optimal in the
worst cuse, e adgenithi ix linear in the size of the polyhedron and cubic in the number of seflex angles.

Since In ment applications areas, the former quantity greatly exceeds the Iatter, the algorithm is viable in
practice.

Key words. Computiional geometry, convex aﬁe:.—.o-—._or. data structures, lower bounds. potyhedra
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1. Introduction. The gencral problem of decomposing complex structures into
simpler components has received a great deal of attention recently 1}, (4), (5). [8].
The reason for this concern comes partly {rom the impossibility of applying many of
people’s fuvorite geometric algorithms to nonconvex structures. Often, decomposing
the structures into convex parts and applying the algorithms to each part is one wity
to overcome this difliculty. For example, intersection [2] and searching problems [9]
can be solved clficicatly by means of convex decompositions. One of the forefathers
of decompasition alporithms is Garey et al.’s algorithm [4] for pastitioning an n-gon
into triangles in O(n log ) time. Minimality considerations were addressed later on
in {11, where an O(n 4 N°) time algorithm was given for decomposing an n-gon with
N reflex angles into a minimum number of nonoverlapping convex pieces. Scveral
varsiants of this problem were shown to be NP-hard [8); in particular, the generalization
of the pablem to polygons with holes S). This result was to be used as a stepping
stone to prove that the fullowing probiem was NP-hard. :

Given a three-dlimensional polyhedron P, what is the smallest set of pairwise disjoint
convex polyhedra, whose convex union is exactly P?

“This paper is devoted to this problem, and is organized along the following lines:
in § 2, we presemt the basic concepts and outline an effective method for decomposing
an arbitrary polyhedron into convex pieces. Let n and N designate respectively the
size of the input and the number of reflex angles into the polyhedron. We prove that
the algorithm never produces more than approximately N?/2 convex picces. We show
in § 3 that this figure is optimal in the worst case up to within a constant factor. To
do s0, we exhibit a polyhedron P with an arbitrary number of reflex angles N and
n = O(N) vertices, and we prove that P necessarily has 1(N?) convex parts. Of course,
by a trivial output size argument, this result also establishes a quadratic lower bound
on the time complexity of the decomposition problem. Finally in § 4, we give the
details of the algorithm outlined at the beginning.

Belore proceeding, we shall set our notation. We define a three-dimensional
polyhedron as a finite, connected set of simple plane polygons, such that every edge
af each polygon belongs to exactly one other polygon. To exclude degenerate cases
(e.g... two cubes connected by a single vertex), we also require that the polygons
surrounding cach vertex form a simple circuit {3, p. 4]). Note that this definition does

* Received by the cditors May 17, 1982, and in revised form July 21, 1983. This work was partly
supported by a Yale fellowship and by the Del Ad d R h Projects Agency under contract
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F1G. 2. Removing a netch.

decompuosition may produce intermediate objects of higher genuses. In spite of these
intricacies, we can cusily show that repeating the cutting process on each remaining
nonconvex part will eventually produce a convex decomposition in a finite number of
steps. To lind out how many convex parts such a decomposition may gencrate, we first
observe that, at any time, any notch of a part is either a notch of P or the subsegment
of a notch of P, called a subnotch. This follows from the fact that a cut may intersect
other nutches, thus duplicating them (Fig. 3). Note, however, that no new notch is
ever created. At worst, each cut may intersect all of the other notches or subnotches
present in the polyhedron considered. If f(N) is the maximum number of cuts which
a complete decompusition may nccessitate, we have f(0)=0, and

f(N)S2f(N-1)+1.

Thercfore. at must 2V — 1 cuts are needed, which shows that the procedure will always

converge and produce at most 2" convex parts. Unfortunately, as shown in [1), this

scheme may indeed produce an exponential number of pieces, so an alternate method
!

1 is in order.
2 Subnoleh

’

F16. ). The duplication of :e..m_.nh

LiMMA 1. There exist two constants a, b and a class of polyhedra P(n) with O(n)

vertices, sich that for any n > a, the naive decomposition applied 0 P produces at least
2™ convex parts.

Proof. See (1] O ‘

2.2. ‘The naive decomposition revisited. To avoid an exponential blow-up in the
number of picces, we will remove all the subnotches of each notch with coplanar cuts.
This will cnsure that all the cuts used in the removal of a notch duplicate a total of at
most N — | other notches, leading to an O(N?) upper bound on the number of convex
parts. More precisely, let us define for each notch g, a plane T; that resolves its reflex
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angle. We proceed as before, with the additional requirement that the cuts of each
subnotch of g, should be coplanar with T} . ) ;
Treorem 2. The revised naive decompasition algorithm applicd to P yields at most
N2/2+ N/2+1 convex parts. .
! Proof. We can assume that all the subnotches of a notchare removed consecutively.

‘Since the cuts corresponding to the subnotches of g, are coplanar, their union intersects

i he ith step, each remaining
every other notch in at most one point. It follows that, at t \
=o_n_<. will have becn broken up into at most {+1 azcso.mraa. and step i+ 1 will
introduce at most {+1 polyhedra into the decomposition. .

In the last section of this paper, we will describe an effective method for carrying
out the naive decomposition. But first we will establish a tower bound on the size of
any convex decompusition.

. uadratic lower bound on the number of convex parts. -

w.-wr_...__.-e..ea._..a. The algorithm described above produces O(N 1) convex parts,
:E.... saving us from an exponential blow-up. We may «2. wonder whether O(N) _z.:.w.
is not always achicvable, as is the case in two a._amosu_osu.c_. We next tackle this
problem and prove that this O(N?) upper bound is indeed tight. To E.“_:nﬁ. our goal, -
we must exhibit a class of polyhedra which cannot be ._.ano:.__émna into fewer .::5
cN? parts. The technique used to derive this lower bound is g.a?_ on volume no:m_u_.eq.
ations. We define a portion X of the polyhedron P and, wcmn.qs:m that a decomposition
of P also realizes a partition of X, we study the contribution of each convex part to
this partitioning. The crux is to show that a convex part can only have a m:z._._ picce
lying in I, and therefore lots of convex parts are needed to fill up 3 .._.o._.on_.nn ~._=m
condition, we must carcfully design X, giving ita warped shape so that its intersection
with any convex object can never occupy too ..==a_. space. The fact .—_.3 Z must 70
defined by means of straight lines suggests giving it the shape ofa 3..2.._5_5 paraboloid.
Recall that this surface can be generated by two sels of c_..:_owo:»_ fines {1 _ p. 6491,

The main idea can be summarized as follows! M has .s.nw:.nmm € s0 that its volume
is approximately ¢N?. The warpness of a hyperbolic parabolaid will then ensure that
since & is bounded by notches, the “chunk” of T removed 3~==< convex picce can
only be very small, i.c. have volume . As a result at least }(N?) convex parts will be
necessary to decompose X.

3.2. Description of the polyhedron P. P isessentially a rectangular .33:2».132_
with a series of N+ 1 notches cut through the lower _nna. and N+ 1 similar notches
cut through the upper face {Fig. 4a,b). The two laces 2.:22:.5 any .:...ar form a
very small angle and, for our purposes, can be _.nmsan.._. as a single vertical quadri-
lateral. Thus, we have N+1 such quadrilaterals o::.:u.._:w from the lower fuce, all
of which are vertical, parallel to the plane Oxz, and equidistant. The upper edges of
these quadrilaterals are called the bottom noiches of the .no_v.__na-o:. P, and are
designated BOTO, -+, BOTN in ascending Y-value. To achieve the desired warping,
all the bottom notches lie on the hyperbolic paraboloid z = xy. The N+1 n_.:sa:_u.a;_w
emanating from the upper face of P are parallel to the plane Oyz and satisfy the same
specifications. Similarly, their lower edges are called the top notches of 1 and are
designated TOPO, - * - . TOPN _in increasing X-order. All .__mma =o.aJmu lic on the
hyperbolic paraboloid z=xy+e. We now give a more precise ._o_._.:_:,..v: of P by
characterizing its significant vertices with the system of wx&..:.__naoa in _‘_.m. 4b. Note
that the origin O is the intersection of BOTO with the vertical plane sw.ﬂ_sn.::::m:
TOPOQ. The upper face of the paralielepiped lics on the plane z2=2N u:a..:m _a.i2
face, on the plane 2z = —2N. This ensures that all bottom and top notches {it strictly
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Fia. 4. The polyhedron P.

between these two [uces. Also the parallclepiped has a depth and width of N+2. Fig.
4c gives all the coordinates of the top and bottom notches.

"+ 3.3, Decomposing P into convex parts. We define X as the portion of P comprised

between the two hyperbolic paraboloids z=xy and z=xy+e and the four planes
x=0, x=N, y=0, y=N. X isa cylinder parallel to the z-axis, of height ¢, whose base
is the region of the hyperbolic paraboloid z=xy with 0sx,ysS N (Fig. 5). Let
Qy.++, O be any convex decomposition of P and let QF denote the intersection of
‘Q, and X. Since X lics inside P, the set of QF forms a partition of X. Note that Q}
may consist of (), 1, or several blocks, most of which are likely not to be polyhedra.
Our gonl is to prove that m= ¢N? for some constant ¢, by showing that the volume
of Qf cannot be too large, By volume of Q?, we mean the sum of all the volumes ol
the blocks composing Qf. We first characterize the shape and the orientation of the
large QF's. which permits us to derive an upper bound on their maximum volume.

yrererrrene T Y

FIG. 5. The warped region X.
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For all i between 0 and N, let BOTi* (resp. TOPi*) denote the vertical projection
of BOTi (resp. TOPi) on the plane Oxy. The set of all BOTI* and TOPi* lorms a
regular square grid of N7 cells, each cell being itself a one-by-one square. Consider
the two points A: (x4, Ya, 24) and B: (x5, Ym zp) lying in Q. We will investigatc their
possible positions when their vertical projections on the grid lic on two parallel lines
which are at a distance 2 of each other. Wlog, we will assume that x, = xp. We have
the following result. :

Lemma 3. Let A and B be two points of Q.

1. If x5 is an integer i with 0SISN-2 and xp=x,+2, then yp—ys s 2e.

2. If y is an integer | with 2S5 1SN and yp= yo—2, then xy— xS 2e.

Proof. Recall that the lines supporting BOT! and TOPi are defined respectively
by (y=i z=ix) and (x =i, z=iy+e). . v

1. Let the coordinates of A and B be respectively (xo™=1, ya, z4) and (x, =i+
_N. ¥m 2p) with 05 1SN ~2. Let T be the middle point of the segment AB, (x; =i+
1L, yr=(ya+ys)/2, 2y = (24 +2a)/2, and consider the point C on TOPI +1 with coor-
dinates (xc = X, Yo ™ ¥ 2c = Xc¥c + £). Since Q, is convex, the whole segment AB
lies in Q, and T lies inside P, therefore zy S z¢. Also, since A and Bliein X, x ya S 24
and Xpyn S zp, therefore (xaya+ Xnyn)/2S 2n Combining these results yields (xay. +
Xpyo)/ 23S 2, therefore ‘

iya+(i+2)ynS2e +(i+1)(ya+yn)/2),
hence
Yn—yaS2e

2. The Toi is very similar. The coordinates of A and B are respectively (x4. i, 24)
and (xg, i—2, zp) with 2513 N. The middle point of AB is now defined by T: (x5 =
(xa+x0)/ 2, yr=i—1, zr=(2o+25)/2) and lies right above the point of BOTi—1,
C: (xc =X, Yc = ¥n 2¢ = XcYc), therefore zc 3 zn Since both A and B belong to
3, zaSxayate and zp S xpynte, therefore

2i=1)xa+xp)/ 2S5 2e +ixa+(i—2)xp

Xp—XpS2e

which completes the proof. D

When A is now any point in T with 0Sx, SN -2 and 25y, s N, we can still
use the previous result to delimit the region where B cannot lie. The shaded area in
Fig. 6 represents the forbidden area. Assume that x - [x4]>2and let A" and B’ be
the two points on the segment AB with x, = [x4] and xg-= x,-+2. Since A’ and B’
lie in OF, we can apply the result of Lemma 3 on these two points. It [ollows that
¥a-— ¥a S 2e. therefore

Ya=¥a_Yo=In
Xpg— X4 Xg =Xy

Mn..

This shows that B —uct lis vrder the line v = v, +¢lx—x,) as irdicated in Fiz.

P -

R & Semilarly. s 2 cor ¢ o ke ¥ 1y, D -3 > 2 Bomust e on the left-haed €A 2t

) .5 PRl 15 Il I
e Cary preB 3ETE ov oy o= tRee ko matorey
O Rec2 =t 2° ¥ sy e e e s Faevemt Bogis L 2w v
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BOTU or TOPN in order to have the points B and C of Fig. 7 well defined. More
precisely, we require that

0<x,<N-2, NAV)AZIW.P

Fig. 7 is only u reproduction of Fig. 6, specilying the regions of interest with respect
to A. Note that VA, VB, and VC really denote the intersection of X with the vertical
cylinders whose bases are represented by the shaded areas in Fig. 7. We know that
Qf fics catircly in the union of VA, VB, and VC. So we can partition Qf into 3 parts,

VAL, VIJ1, and VCI, defined respectively as the intersection of QF with VA, VB,
and VC.

soTn*

ToPO¥

TOPN*

-

0%

soTo* . !
F1a. 7. Restricting the domain where Q} has to be computed.

1) Evaluating the volume of VA1. When there is no ambiguity, we will refer to

a three-dimensional object and to its volume by using the same symbol (in this case

VA1). To derive an upper bound on the volume VAL, we integrate a vertical section

of VA1 ulong a direction “almost™ parallel to Y-axis. This permits us to exploit the

warping of X in order to bound the area of the section, while having a very short

interval of integration. More precisely, let P, be the vertical plane (P,,: y = x tan 6 + w),

and S(0, w) the area of the cross section formed by the interséction of P, and VA].

. The volume of VAL can be computed by integrating S(0, w) along a line normal to
the planes P,

VAl l._. S5(8, w) cos 0 dw.
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If we choose 0 _m_,.mo.. than (Ox, AB) (Fig. 7), .___.s._:n.a of S(8, w) will be null ovtside
of A and D, that is, for:
W> Wwam ya—Xatan 0

and
w< wp =y —Xp tan 6.
Letting S(0) be the maximum value of S(8, w) for all w, we have
VAl S(wy—wp)S(8)cos @

and from y.—33 yp and xp =N, we derive
(1) VAl sS(3+N tan 6)S(6) cos 0.

The condition on @ is easily expressed as '
(2 . e<tand.

We are now reduced to establishing an upper bound on S(8, .5.. We will find it more
convenient to change the system of coordinates so that the point (0, w, 0) becomes
the new origin and the line (2=0, y =x tan 0 + w) becomes the new M.E:? We nx_.:o“am
the old coordinates (x, y, 2) of any point in terms of the new coordinates (X, Y, Z) as

follows:
o x=Xcos0—-Ysinb,

y=w+Xsin0+Y cos 9,
! ; =2
The hyperbolic paraboloid z = xy is now described by the equation:
Z=(X cos 8— Y sin 8)(w+ X sin 6+ Y cos 9)

and the intersection of P, with I is a strip in the plane (Y =0) comprised between
the two parabolas:
N: Z = X*sin 0 cos 8+ Xwcos 6,

(g): Z=X?sin 0 cos 0+ Xwcosb+e.

!

. i i . i it about areas covercd
Before proceeding further, we will prove a technical resul :

by v»:.co_n.M Suppose that we have two parabolas of the previous type, m_nwn::n.._ by

f(x)= ax?+ bx witha > 0,and g(x) = f(x) +e.Let T(x) be thearea 85_.:...2._ between
the parabola f and the tangent to g at x (Fig. 8). We can show the fotlowing

Y

gix)/4 1ix)

Tix)

~—_4 X

FiG. 8. The function T(x).




496 ) PERNARD CHAZELLE

Li:mMmA . T(x) Is a constant function equal 10 4ede/a/3.
Proof. ‘The tangent to g at x has the equation:

Y =(2ax+b)}(X -x)+ax*+bx+¢
and interscets the parabola f at the points with X-coordinates x, and x,, solutions of
(2ax+ b} X ~x)+ax?+bx+e=aX®+bX
that is,

aX?~2axX+ax’—¢=0

L — I
ﬁo_&__m.:la ~Je/aand xy=x+Jefa. It is ..o..w -:-E_:?nisa.ooﬁ_:ao.25.

T(x)= ‘__ [(2ax+ b)(t—x)+ax*+ bx+e—at®—br) dt

that is, . )

C T m (= xy)(e = ax?+ ax(x, + x3) — a(x} + x,x,+ x3)/3)

therefore . ‘ .
T(x)=4eJe/a/3,

which cstablishes the proof. 0

We will now take a closer look at the structure of the parabolic strip formed by
the intersection of X and P, which, we know, contains S(6, w). Here again, S(0, w)
designates both the surface and its area. Recall that S(8, w) may consist of several
disconnccted picces. The intersection of P, and X is a connected strip enclosed between
two vertical lincs X = a, X = b (the exact values of a and b are irrelevant for our
purposes). Also, as illustrated in Fig. 9a, the upper parabola of this strip, g, intersects
the top notches, TOPk, at regular intervals of length 1/cos 0. Let F denote the convex
polygon formied by the intersection of Q; and P.. Assuming that F is not empty, we
distinguish two cases:

1) No _x:.: of F lics above the parabola g (Fig. 9b).

Since I¥ is convex, there exists a line L separating g and F. Since L', the .s__wn.:
to g paralle! 1o L, also separates g and F, the X-coordinate, u, of the tangent point
satisfies $(8) s 7'(u).

2) There cxists a point M in F _ﬁ:n above g (Fig. 9¢c). !

Using the notation of Fig. 9¢, it is clear that S(6, w) lies totally in LUCUR.
Since the areas of L nnd R are dominated by T(X,) = T(X..,), and the area of C is
exactly €/cos 0, we have

5(0, w)S2T(X,)+e/cos .
From Lemma 4, it follows that
S(0, w) 5 e/cos 8+3eve/sin 0 cos 0.
And from (1), we derive
VAL1Se(3+N tan 0)(1+§e/tan 0).

1) Lvaluating the volume of VC1. Since the hyperbolic paraboloids are sym-
metric about ¥ and y, the same computation will give an upper bound on VC1. Note
that now. no condition like (2) must be set on the angle giving the direction of
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(a)

z

(b)

(<)

‘F1a. 9. Evaluating S(8, w).

integration. For convenience, we

VC1se(3+Ntan 3:+u,\..\.u= 9).

1i1) Evaluating the volume

VB has a maximum arca of eN
¢2N2/2. This yields an upper bound on VB1

will take it equal to 6, however. Thus, we have

of VB1. The shaded area of Fig. 7 corresponding to

272, therefore the volume of VB is dominated by

vB1se’NY/2.

3.4. The lower hound on the number ol convex parts. We can now prove our

main result.
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Tin:owes 5. There exist a constant ¢ and a class of polyhedra involving an

arbitrarily large munber of vertices such that each polyhedron cannot be decomposed

into fewer than cn® convex parts, where n Is the number of vertices.

_ :—Q\. —ﬁ??--— :-n- -—-O <°—=—=OU ﬂoa—u—zﬂﬂ —_— n-—O Ppr evious section are O—-—< —O_ﬂ<u—=n
—OH :—P —S-——-—I. A salis —W-—-ﬂ

. 0<z,<N-2 and 2<y,<N-3e
Let V be the corresponding portion of Z. We have
V=(N-2)(N-3e-2)e.
!

Since no Q, can contribute more than VAIL+VB1+VC

c ¢ i 1 to th

derive the fullowing fower bound on the number m ol convex vM-N..c_M”: o Vo can
\4

ma
VAl+ VB1+VCl

Assume that N is large enough and that ¢ <sin 8 < 2
A e e _ in tan 8 < 1/ N, Relation (2) is then

VAL, VC1<(149)(3+1/N)e<16e. .
Also, since .

v>eNY2
it follows that '

. m>eN/2(32¢ +£2N?/2), )
hence 4 ,

m>N?/66'
which completes the proof. 0 ..

) 4. "The decomposition algorithm. We jve a precise descripti i-
tion =.__hs_A:_== outlined in § 2. We will u_zmi ::._” it is vommmw_ﬂ._pwza.uouﬁ“““ ﬁw_.w_ﬂ_o
O(N?) picces in O(nN (N +log n)) time, using O(nN?) storage. We will also indicate
that .=_ the price of added complication, we can reduce the running time to O(nN?).

The first issue to investigate is the mode of representation used for describing a
polyhedron. Since many practical problems involve dealing with faces rather than
n._mm.z or vertices, we may assume that the edges enclosing a given face are readily
available. Mure precisely, we require the data structure chosen to provide three types
of lists:

i. r..._n....a.?..u lists: contain the names of the two faces adjacent to each edge.
o 2. Face-to-edge lists: give the sequence of edges enclosing each face in clockwise
er.

3. Adjacency lists: provide a set of the vertices adjacent to each vertex.

Note that the faces of a nonconvex polyhedron may be polygons with holes. In
that case. cach face-to-edge list should provide clockwisc descriptions of the outer as
well ns of .._F. inner boundaries. We call a graph representation of a polyhedron any
representation providing the above lists. We may notice that these representations are
redundant, but they are chosen to be so for the sake of simplicity. These lists reflect

the size of the polyhedron accurately, however, since the ciearly require O
! * storage.
Recall that p is the number of edges in P. y y req ( p) storage
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Because decomposing P consists essentially of dividing it up with successive cuts,
we first consider the problem of computing graph representations for the two polyhedsa
P, and P, into which a cut § breaks up P. For the time being, we will assume Ptobe
of genus Q. Inthe following, we will successively show 1) how to compute the intersection
of T and P, 11) how to obtain S from it, and 111) how to compute the two polyhedra
P, and P,. But before proceeding we need to take a closer took at the problem and
prove a preliminary result.

Let e be the cdge through which the cut is performed. We first compute W, the
intersection of P with the plane supporting S. W may consist of a st of polygons with
holes, which may themselves contain polygons of the same nature. We identily S as
the unique polygon which contains the edge ¢ (Figs. 2, 11). Whereas it is immediate
to compute a description of the outer boundary of S, obtaining the inner boundarics
(if any) requires more work. Viewing W as a set of nonintersecting boundaries, we
first determine all the boundarics in W which lic inside the outer boundary of S, thus
forming a sct W*. Next, we keep all the maxima of W*. A boundary is kaid to be a
maximum it it is not contained in any other boundary. We can show that the two
problems are very closely related, and that an algorithm for solving one can easily be
modified to handle the other. i

LemMA 6. All the maxima of a set W of boundaries can be found in O(n log 1)
time, if n is the total number of vertices in W,

Proof. To begin with, we should note that the nonintersection of the boundaries
of W implies that W always has at least one maximum. The method which we will
describe is inspiredfrom Shamos and Hoey's algorithm for intersecting pairs of segments
[10). The crucial ohservation to make is that the intersection of a vertical line L with
the maxima of W forms s set (possibly empty) of disjoint segments. The endpoints of
each segment lic on some edges of W, and the vertical line L induces a tutal ordering
R on the set E of these edges. E consists éxactly of all the cdges of maxima which
intersect L (Fig. 10a). We say that two edges of E, consecutive with respect to R, are
linked if the vertical segment joining them lies in a maximum of W. Note that
consecutive pairs of edges in R are alternately finked and not linked. For any point
v of L, we define h(v) {(resp. I(v)) as the first edge in E above v (resp. below v). i
no such edge exists, h(v) or I(v) is 0 (Fig. 10a). The notion of above and helow is, of
course, defined with respect to the vertical linc L. Similarly, the order of two cdges
of W is delincd with respect to a common intersecting vertical line. Actually, this
order is the same for any vertical line since the edges of W can intersect only at their
endpoints. I v is the jeltmost vertex of a polygon P of W, P is a maximum if and only
it h(v) and I(v) are not linked. This condition is clearly necessary since. if h(v) and
I(v) are tinked, they belong to the same polygon, which cannot be P since v is its
leftmost vertex. To see that it is sufficient, assume that P is not a maximum; then
there is a unique maximum Q in W which contains P, and Q must intersect the vertical
line passing through v, therefore the intersection is a segment containing v and the
pair h(v). {(v) must be linked.

The algorithm proceeds 8§ follows: we sweep 2 vertical line from left to right,
passing through cach vertex v in W. The vertices are maintaincd in sorted order (by
X-values) in a set Q. We first check if v is the feltmost vertex of a polygon P of w.
1 it is, we can decide immediately if Pis a maximum by finding whether Ji{p) and
{(v) are linked. If they arc, P is not a maximum and all its vertices are deleted from
0. Otherwise, P is a maximum. Actuaily, since nonmaxima are removed as soon as
their leftmost vertex is encountered, the polygon containing v is a maximum inall the
other cases (i.e., when v is not a leftmost vertex). Then we can simply update the
ordering R with the functions insert and delete, as well as the linked pairs with the
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Fui. 10, 8) The ordering R. b) The algorithm for computing maxima.

functions link and unlink. This is fairly straightforward
present is sclf-explanatory. '

MAXIMUM(W)
Q =S¢t of vertices in W stored in order
by x-values.
R=0.
forall v in O (in ascending x-order)
hegin
Let 1* be the polygon to which v belongs, -
if v is the lefumost vertex of P
and h(v), I(v) are linked . _
then P is not a maximum"
delete all vertices of P from Q
clse “P is a maximum”
UPDATE(R, v)

and the algorithm we next

cend

UPDATE(R, v)
Let a, b be the two edges adjacent to v,
Switch to the case corresponding to Fig. 10b.
case 1:

inscrt (a), insert (b)

unlink (h(v), I(v))

link (h(v), a)

link (b, I(v))

break
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case 2.
insert (a), insert (b)
link (a, b)
break
case 3:
delete (a), delete (b) .
unlink (a, b)
break
case 4:
delete (a), delete (b)
unlink (h(v), a)
untink (b, I(v)) e
link (h(v), I(v)) )
break ' : !
case §:
" delete (a), insert (b) .
unlink (a, I{v))
link (b, I{v))
break
case 6: )
delete (a), insert (b)
unlink (h(v), a)
tink (h(v), b)
cqnur_ . !

Note that when the algorithm terminates, only the vertices of maxima will remain
in O, thus the maxima can be obtained from Q in O(n) time. To implement the
algorithm efficiently, we can store Q asa doubly-tinked list with random-access to the
nodes, thus allowing constant time deletions. R can be maintained as a balanced tree,
5o that the functions h, L, insert, and delete perform in logarithmic time. Link(u, v)
will simply set two pointers, one from u to v, and the other from v to u, whilc
unlink(u, v) will remove these pointers. With this implementation, the algorithm
requires O(n log n) time. Note that all the preprocessing needed involves sorting the
vertices by X-values and computing the leftmost vertices, all of which also takes
O(n log n) time. O

We can now turn back to the problem of dividing up a polyhedron P. Reeall that
the intersection of P with the plane T supporting the cut S is in general a sct of
polygons. These polygons may have holes which may themselves contain other polygons
of the same kind. We first compute S, from which we derive P, and P,.

1) Computing the intersection of P and T. Consider each face F of P in turn and
report all the edges of IF which intersect the plane T, yet do not lie in T. This includes
all the edges of the inner and outer boundaries. Let a,,* * * , g, denote the intersections
of T with these edges, as they appear in sorted order on the line supporting the
intersection of F and T, Call u, the edge of F intersecting T at a,. Observing that the
intersection of T and F is made up of the segments a,a,°* *, Ox- 1% (Fig. 11b), we
set two pointers for each pair (¥4, uy,); one {rom uy- 10 uy and the other from
Uy O liy—y. lterating on this process for all faces of P will eventually provide
doubly-linked lists for all the boundaries of the polygons of the intersection of P and
T Let U denote this set of boundaries. Since each edge Is considered at most twice,
all these operations take O(p) time, except for the sorts, each of which requires
O(p, log p!) time, where pj is the number of edges intersecting T involved in the face
considered. Since each edge appears on two faces, the sum of all the p; is less than or

LTS
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F1G. 11, 8) A cut 8. b) .:.a edges of S.

equal t oW ' !
o“_ n.“_ A .M w.s_. Tsw”.rn”_. _Q.M_u to an O(p’ log p’) running time (similarly, p’ is the number
of ed _ c ;on..._m T). Note that the conversion of the doubly-linked li
. M_‘nacs.__.,.a of ..m. is straightforward in general. Some special cases :.n<< et cM o,
ter _“:s”..... q:___ﬂ:.._.m_.w.unvo_a. of u, “M:_ several edges arc adjacent to W? It *uo”M“. _._o
. . s¢ cases can be h i i
E._:“___m thme of the algorithm, which is Mﬁﬂ.ﬂ.&twﬂ“ﬂ.ﬂ.g without altering the total
g 3.. , a”.‘..”“\—j:.:a ._M To begin i.m_? we determine the outer boundary of S, denoted
eo...:&:moa , m.._.”_w_o”c nn”.o:_..“_.._o!.,w. ..__ C._i«_hwn_. contains the edge e. To find “__o m._:”_.
S i 8 involved. i ’ isti
of all the boundaries which Jie inside $*, To Mo ”M.. HWM _n-_!“_“.oua....-.wma e Sgortthry
I Z>VM MUM used in the proof of Lemma 6 ‘ mriant of the slgorithm
is still the sct of all vertices in U, oao_..nn b A
s A y X-values. Th i
_M,-_._."_:i. ”".<=_<..u the edges of S* only. As before, the main _oo_” M&MM:-_W qa. _“m.ioxn:
et :.-.a_:_. ...J.vz_:._.. through cach vertex in Q. If v belongs to $* ioﬂa | i _nw_ e
e :.nrﬂ..“”_:”.. -sh_.m__,_ ..—._sn —”ﬂ_n_“_o._ UPDATE defined earlier. O_roqirn ﬂswoawﬂ“_n.w“”
he ; which contains v lies inside S* if it h
arc distinct from 0 and are linked. Thu T emiary o
‘ : f e linked. s, we know whether a bound
. Man =M.._ ”_“_”””“..__M” ”ea n_u_.s-___::n its leftmost vertex. To make the nEhﬁ:ﬂ.ﬂ.ﬂ”ﬂﬂMﬂ:«W
. s dclete all the vertices of the boundary from Q, aft i .
s del ; , after exami
vertex. Like its Jook-alike, MAXIMUM, this algorithm requires OA.” “““w»ws.__...-“”.

where k is the total nu i
o' diinc e of . he running tme 1s OCp' tog o COTesponds
Q = Sct ol vertices in U sorted by x-values
R = W = LEmpty set, .
for ull v in Q (in ascending x-ordey)
begin
if v belongs to S*
then UPDATE (R, v)
else l.et B be the boundary in U
containing o,
delete all vertices of B from Q.
i h(v) and {(v) are not 0
and arc linked
then v lies inside $*"
W= WU (B)

end
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We are now ready to apply the result of Lemma 6 to the st W. This will give us
exactly all the inner boundaries of S, with a total running time of O(p' log p').

111) Computing P, and Py. The last step is to compute a graph representation of
P, and P,. This is a trivial graph transformation, and we only sketch out the procedure.
Let Adj (w) be the adjacency list of the vertex w in the graph representation of P.
Also, call E the set of cdges of P passing through the vestices of S. We can assume
E to be readily available, since the edgesin E must be determined in order to computc
5. Let w be an endpaint of some cdge in E. Defining P, as the polyhedron cut by S
that contains w, we next show how to compute P, in O(p) time.

1) Adjacency lists of Py. For each edge ab of E which does not lie on T, let v
be the unique vertex of § lying on ab. We can always assume that a lies on thc same
side of T as w. that is, is a vertex of P, whereas b is a vertex of Py If v is distinct
from a, we replace b by v in the list Adj () and delete the list Adj(b). If v=a, we
simply delete b from Adj(a) as well as the list Adj(b). Repeating these operations
for all the edges of E which do not lic on T has the effect of disconnecting P, from
P;. Then, a depth-first search in the resulting graph of P, starting at w, will provide
all the vertices of Py. All the adjacency Jists of the vertices common to P and P, have

_already been updated. Finally, since we have a doubly-linked-list description of the

boundaries of S, we can set up the adjacency lists of the new vertices, that is, the
vertices of P, lying on S. All these operations require O(p) time. o

2) Face-to-edge lists of Py. Since the previous lists provide the set of vertices of
P,, we first remove all the faces of P made up entirely of vertices not in P,. Then,
since all the faces of P intersecting S have been previously determined, it is easy to
compute a description of the parts of those faces which lie in P,. Let F be such a [ace,
with a,,* * -, @, being the vertices of S lying on F. Recall that a,,- ", have hecn
computed in sorted order (Step 1). We may assume that the boundaries of F are
represented by doubly-linked lists with the nodes representing the vertices. Letting 1
be the edge of F passing through a, and b, be the endpoint which lies on the same
side of T as w, we first delete from the lists all the vertices lying strictly on the other
side of T, then we enter the vertices a, into the lists by linking both ways b, and a; as
well as aj,_, and ay (Fig. 12a). Note that we can always assume that 1, does not lie
on T, which ensures that b, is always well-defined. The resuit of these operations may
produce several disconnected lists, since F may be broken up into several faces of P,.
Finally, if F has some cdges lying on T, the algorithm may produce lists consisting of
two vertices, and these degenerate cases should be removed in a postprocessing stage
(Fig. 12b). Finally, the face-to-cdge lists of-S (which have already been computed)
must join the set of face-to-edge lists of Py, Once again, ail these operations will take
O(p) time. .

3) Edge-to-face lists of Py. These lists can be obtained in O(p) time by scanning
through the face-to-cdge lists once and recording the faces next to each of their
boundary edges.

The computation of P, and P, is now complete. We conclude:

LemMMA 7. A polyhedron P of genus 0 can be partitioned with a cut in time
O(p+p' log p'), using O( p) storage, with p’ being the number of edges in P intersecting
the plane supporting the cut.

We have seen that in the course of its action, the naive decomposition may produce
polyhedra containing holes. For that reason, we wish to generalize the previous result
to polyhedra of arbitrary genus. Now, instcad of breaking P into two picces, a cut
may simply decrease its genus by one or have some of the cfiects described at the
beginning of §2.1 (c.g.. removing a handle and creating another). To handic these
cases, we may first cut each edge of P which intersects S, by updating the adjiacency
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(a)

Fio. 12, Computing the faces of P,.

lists accordingly. Next, we test the connectivity of the graph by doing a depth-first
_search with the adjacency lists. If it is no longer connected, the cut breaks P into two
separate picces P and P; which can be computed as indicated above. Otherwise, we
updatc the lists of the representation in a similar way; the only major difference being
the introduction of two faces corresponding to the cut. We may omit the details of
these operations which are very elementary. . .

In our analysis, we were careful to use the number of edges p and not the number
of vertices as the measure of the input size. Indeed, Euler’s formula, which relates the
number of vertices, edges, and faces of a polyhedron has to be altered for higher
genuses [6]. Consequently, the well-known inequality ps3n—6, which holds for
0-genus polyhedra, is no longer valid when it comes to polyhedra with holes, as is the
case in our problem. It is, however, easy to verify that the number of edges always
gives the size ol the description of P, up to within & constant factor. The revised
algorithm for the naive decomposition is merely a repeated application of the procedure
described above. This leads to the following result. : .

Tieonresm 8. The naive decomposition of a polyhedron P of genus 0 can be done
in O(nN*(N +1og n)) time, using O(nN?) storage.

Proof. “Ihe algorithm proceeds by removing each notch in turn. In an O(p)
vqn.v..o.“c..#,:n stuge, we can assign to each notch a plane resolving its reflex angle.
Then, for cach notch in turn, we remove each of its subnotches with cuts lying in the
plane associnted with the notch. This will produce O(N?) convex parts in the end, as
has been shown in Theorem 2. Each cut can be implemented with the procedure of
Lemma 7 and the generalization for higher genuses which we just mentioned. Consider
the partial decomposition before the notch g is removed. Let P,, -+, P, be the
(nonconvex) polyhedra in the current decomposition which contain a segment of g as
a subnotch (we have scen that k 5 N). Let p, be the number of edges in P, and pj the
number of cdges intersecting the plane supporting the cut used to remove g. From
Lemma 7, we know that we can remove the subnotch of g in P, in time O(p.+pitogpi).
We next evaluate the maximum number C of edges present at any time in the
decomposition. We distinguish two kinds of edges: first the edges which are pieces of
edges of P. Since cach edge of P can be divided into at most N+1 segments, the
number C; of such edges cannot be greater than pX (N +1). .

Cengs asies B
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The other edges are intersections of cuts with faces (or parts of faces) of P or
intersections between cuts. Since each cut lies on any of N possible planes, and all
faces of P lie on q possible planes, the C, edges we are now considering lie on at most
gN possible lines. Next we show that each of these lines supports at most 3N edges
(we do not belicve that this upper bound is tight). Let L be such a line and 1, -+, 4,
be the edges of the decomposition that lie on L. The edges u, -, u, form m
disconnected segments ry, - - -, r,, on L, ench segment consisting of contiguous edpes

L

33 -
"waw
TT W~

F10. 13, Counting the number of edges in the decomposition.

(13 m S 1) (Fig. 13). Let m’ be the number of endpoints common to twa consccutive
uy; we have
(1) m4+m' =

\
L is the line passing through the intersection of a cut § with a face of P or the

intersection of two cuts S and 5", In either case, let /i be the notch passing through
the cut S. The union of alt the cuts used to remove h forms a polygon Q, which may
possibly have holes. Moreover all the segments r, are edges of Q and each notch of
Q corresponds to a distinct notch of P. At this point, we must anticipate a little and
use a result which we will prove at the end of this section (Lemma 10). This result
states that the line L cannot intersect Q in more than 2N segments. Therefore we have
{2) l ms2N.

Since the interior endpoints are all intersections of cuts with L, we also have

(3) m'sN,
Combining (1)-(3) shows that 15 3N, which proves our claim and implies that
ﬁ;n = @QZN.

Since each edge of P is adjacent to at most 2 faces of P while a face has at least 3
enclosing edges, we have
Jg=2p
showing that
C,= O(nN?)
since p=O(n) (P is of penus 0). Our counting argument considered each 1, as the

intersection of a cut or a face with a cut. Therefore each edge u, will be countcd exactly
twice in py+- - -+ py, hence

ot SC+2G,.
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Fimally, sinwe Gy ptN+1) and p= O(n), we have - .
Pt +p=O(aNY),

Also, since at most 2 edges intersecting a given plane in a _r..-_o point can be collinear,
the maximum number of edges which can intersect a given plane Is bounded by the
maximum number of lines L, therefore .

‘“.... . .+\»l°.¢-z~. .

It follows that all the subnotches of g can be remaved in time: O(AN(N +log n),

using O(nN?) storage. Since N notches must be removed, the prool is now com-

plete. O : ..\.

It is possible to improve the running time of the algorithm to O(nN %), using the
same amount of storage. The algorithm is too long and too complex to be presented
here, given the relatively minor gain it represents. We, therefore, refer the reader to
{1} for u detaited description of the method.

Tin:onim 9, The nalve decomposition of P can be carried out in O(nN®) time and
O(nN?) space.

Proof, Sce 1) O ) s

We will now prove the claim made earlier that L intersects Q in at most 2N
segments, .

Limmia (0. Let N be the number of reflex angles in a nonconvex polygon Q with
any number of holes in it. No line L can intersect Q in more than 2N segments.

Proaf. We will prove the lemma in two parts: first assume that all of Q Hes on
one side of L. Assume wiog that L is horizontal and that Q lies below L. Although
all the vertices of Q that lie on L are collinesr, we can assume that among the other
vertices, no two lic on a common horizontal line. This is only desirable for the sake
of simplicity and docs not restrict the generality of the problem in any way. Let
5).* . 5 be the segments of QN L in left-to-right order, and let U0, 0p be a list

. of the vertices of Q lying strictly below L, sorted vertically in descending order. If we
translate the line L downwards along a vertical axis in a continuous motion, we observe
that the scgments 3, undergo continuous transformations. New segments may appear
in the process, sxome may vanish from L, while others may merge. Eventually all of
them will disappear from L. The crucial observation is that since Q s connected, no
5 will disappear before merging at least once. Therefore there will be at least k/2
merges in the process (actuatly, it would be easy to show that there will be at least
k— 1 merges). Note that the merges can occur only when L reaches a vertex o, Let
L, be the corresponding position of L (i.e. the horizontal line passing through u).
Since ull the v, have distinct Y-coordinates, at most one merge can occur at L, Suppose
that @ and b arc two segments merging on L, The endpoint common to both segments,
v is clenrly a notch of Q, therefore Q has at least as many notches as we have merges,
Le. k/2, provided that k> 1, , - P

Assume now that L may intersect Q in an arbitrary fashion, and let 3,, - -, 5,
be the intersecting segments. Let us cuf along each segment s, This operation partitions
Q into ut most k +1 polygons, each lying entirely on one side of L, as in the previous
case. Note that we may have strictly fewer than k+1 polygons if Q has holes. Also,
since Q is connected, each segment g is the edge of at least one polygon which has
at least another edge collinear with L (assuming that k> 1). It follows that among
these polygons we can find f of them, say, Oy, -« -, Q, such that each has at least two
edges collincar with L and each & is an edge of at least one of them. Let N, be the
number of reflex angles in O, and let k; be the number of edges collinear with L. Since
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O, has at least two edges adjacent to L, we can use the previous result to derive
k52N, Since ky++ « ++ k, 2 k, and all the reflex angles of Q involved in the j quantities
Ny.+ -, N are distinct, we have k 2N, :Zn_d completes the prool. O

5. Conclusions. The contribution of this work has been to describe 8 heuristic
for decomposing a polyhedron into a set of convex pleces, with the cardinality of this
set lying within a constant factor of the minimum in the worst case. We have also
established a quadratic fower bound on the complexity of the minimum convex
decomposition problem In three dimensions. Refinements of the algorithm given in
this paper might take into account the particular shapes that most practical polyhedra
are likely to have. For example, it is often the case that two notches will be sdjncent
and can be removed with the same cut. This simple observation may reduce the number
of convex psrts by hall. More generally, we believe that efficient special-purpose
heuristics could be developed along these lines. An interesting case Is to restrict the
domain of polyhedra to architectural designs where, for example, all the edges lic on
three possible perpendicular directions. Another restriction mnay further require that
the convex parts be rectangular parallelepipeds. All these problems are highly practical,
yet still open. : ‘

Only in two and three dimensions is the concept of nonconvex polyhedra totally

natural. In higher dimensions, convex polyhedra are still eastly expressed as intersce-
tions of halfspaces, but nonconvex polyhedra do not lend themselves to such easy
descriptions. One method s to express a polyhedron as a connected union of convex
polyhedra. Note that the convex polyhedra may overlap, thus do not necessarily
constitute a convex decomposition of the polyhedron. This representation is common
in linear programming, when the constraints are expressed by k set of inequalities,
and at least one set has to be satisfied. If we can find a convex decompasition of the
polyhedron into p parts with p« k, and if each convex part has relatively mat laces,
testing the feasibility of a point can be greatly simplified by testing its inclusion in any
of the p convex parts. Here again, because of the complexity of the problem (recall
that the standard version of the decomposition problem is already NP-hard), only
efficient heuristics should be sought,
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