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Abstract. This paper is concerned with the problem of partitioning a three-
dimensional nonconvex polytope into 8 small number of elementary convex parts.
The need for such decompositions arises in tool design, computer-aided manufac-
turing, finite-clement methods, and robotics. Our main result is an algorithm for
decomposing a nonconvex polytope of zero genus with n vertices and r refiex cdges
. into O(n + r?) tetrahedra. This bound is asymptotically tight in the worst case. The
. algorithm requires O(n + r?) space and runs in O((n + r?) log r) time.

1. Introduction

This work is concerned with the problem of partitioning a polytope in 9 into a
small number of elementary convex parts. The general problem of decomposing an
object into simpler components has been the focus of much attention in recent
years. In two dimensions, computer graphics and pattern recognition have been the
main source of motivation for this work. Beginning with the papers of Feng and
Pavlidis [15] and Schachter [26], the problem of rewriting a simple polygon as a
collection of simple parts has been exhaustively researched; sec O'Rourke’s book
[22] and the survey article by Chazellc [8]. In higher dimensions, however, results
have been few and far between. It is known from [7] that a polytope of n vertices
can always be partitioned into 0(n?) convex picces, provided that Steiner points
are allowed in the decomposition, and that this bound is tight in the worst casc.
Ruppert and Scidel [25] proved recently that if no Steiner points are allowed, the
problem of deciding whether a given polytope is decomposable into tetrahedra
(whose verlices have to be vertices of the polytope) is NP-complete, cven if -
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restricted to the class of star-shaped polytopes. The algorithm to carry out the
partitioning deseribed in [7] is based on the exact RAM model of compulatioa
The issue of robustness while dealing with finite precision arithmetic is considerel
in [2). where u numerically robust algorithm to compute a convex decomposition
of nonconvex polytopes of arbitrary genus is presented.

On a related problem, Aronov and Sharir [1] have shown that the celb’

of an arrangement of n triangles in 3-space can be partitioned into a total d
O(n*x(m) + I tetrahedra, where b is the number of faces in the arrangement, and
a(n) is the inverse Ackermann function. For fixed arbitrary dimension d, Edels
brunncr ¢t ul. [14] have given an optimal algorithm for computing the partitios |
of d-spice induced by a collection of hyperplanes. The stratification and triangula. -
tion of real-algebraic varictics and related issues are discussed in [6], [9], [ 1.[24)
[27] and [29). '

The specilic problem of partitioning a three-dimensional polytope into simple
‘parts ariscs in mesh generation for finite-clement methods, computer-aided design
and manufacturing, and automated assembly systems and robotics [3], [16], [28)
The problem comes under various guises, depending on the desired shape of
partitioning clements: convex, simplicial, star-shaped, monotone, rectangular,
isothetic, ctc. In general, the quest for minimal partitions seems destined to be
frustrated. For example, finding minimum convex decompositions is NP-hard
— 2{19) In practice, however, good approximation algorithms may be just a
attractive, especially if they are fast and robust and the decompositions produced
are [ree of pathological features. Indeed, a minimum partition can sometimes be so
contrived that a fincr, yet more regular, decomposition is preferable. !

How diflicult is it to triangulate a polytope (that is, subdivide it into a collection’
of tetrahedra)? In practice, a “good” triangulation algorithm should not only
guarantce O(n?) picces in the worst case, but it should also make the size of the
triangulation dcpendent on both n, the size of the polytope, and r, the number of
reflex cdges. The polytopes arising in standard application areas tend to be almost
convex, and this fuct should be used to one's advantage. For example, 2
triangulation of quadratic size would be disastrous if, say, the polytope is convex.
When both n and r arc taken into account, the lower bound on the triangulation
size becomes (n + r?) (as is easily derived from [7]). By this criterion, the
algorithm dcscribed in this paper is optimal: A polytope of n vertices and r reflex
edges is triangulated into O(n + r?) pieces. The running time is O((n + r?) log r).
We believe-that the algorithm is practical. An implementation is under way, and
the plan is to test it on actual problems arising in the use of finite-element methods
in aerospace engincering.

'The triangulation algorithm consists of two parts. In the pull-off phase the size of
the polytope is reduced to O(r). To achieve this we identify vertices of small degree
that are not hindered by other vertices.and remove them one by one, much like we
would pull a ski hat off someone’s head. Next, we enter the fence-off phase, which
involves crecting vertical fences from each edge of the polytope. In Section 2 we set
our notation and move a number of technicalities out of the way. Section 3
describes the tuangulation algorithm proper,
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n Cups, Crowns, Domes, and Other Widgets
4 )

We begin by recalling some standard terminology and introducing some of our

; i i ise-li .manifold with boundary, which is
:own. In 9* a polytope is a piccewise-lincar 3 .._:::_.c v

.!383062% to a closed k-holed torus for arbitrary k. Its c.o::%& consists of a
" eollection of relatively open scts, the faces of the polytope, which are called vertices,

" dges, or facets,

i their alline closures have dimension 0, 1, oﬂ. 2, Sa_”.on:.é.;.
is si i int. Note that, for each point p

A polytope is simple if no two faces share a _..o::. . .

Sﬂv_nw. c%w_in_.w of a simple polytope, there exists a ball B, centercd at p, which

 fatersects only the facets that contain p in their closure. We definc a simple

be nondegenerate if the boundary of Q divides the ball B, ?_n_.,_:na
”wh“ﬂvmoﬁaqaa ata Mo:: p on Q's boundary in on..n:w. two :o:«BJQ _._nm_csa.
oncin Qs interior and the other in Q's complement (Fig. 1). The n_.mmm o eo_w.ovom
with which we deal in this paper is the class of :o:.%mo:o;.a simple .x“_ y M__xu
of genus 0; thus scli-intersecting, dangling, or abutting faces, as well as handlcs,

ut. o

-a_.qn:._ah mo a nondegenerate simple _E_ic_a.. An E_mm e .cq P is said to be m&.ﬁ
il the (interior) dihedral angle formed r.w.._..a :,3 incident facets cxcee m= .“w
By extension, we say that a vertex is reflex if it is ___o_._o_: upon at _a.aa.. one _3
edge, and that it is flat if all its incident facets lic in at most two a..u:q_o_ Ju:nnmo.
Finally, a vertex is pointed if it is neither flat nor reflex A._.._m. 2). Itis n_s.w_w o_w "
that a pointed vertex cannot be incident upon two collincar namnﬂ. «w oug -
¢an be incident upon two coplanar (adjacent) facets .o_. P. As usual, the E“_E_._:o
of edges incident upon a vertex is referred to as its degree. Next, we n:&
the cone of a pointed vertex v as the ::cm::._oa convex polyhedron ﬂvmzmzz
by the edges incident upon v. More precisely, 8:.25 is the _.ooE A” po e
v+ Yo gich @lwp — ) where wy, ..., w, are the vertices of P m..&som_z n“_e ﬂo
the a,’s are arbitrary nonnegative reals. We are now _..2-& to intro "._oo n._mﬁ o<_.
notion of a cup. The cone of a pointed vertex v contains a number o ‘_\2 _~~ ,.n :
P distinct from ». Some lie on the boundary of the cone; others may lic str y w
inside. Let IT and H™ be the convex hulls of all the <o_”:oou of P lying ~_= 2:“ %
and cone(v)\{v}, respectively. We define cup(v) as the simple polytope formed by

the closure of H\I{".

degeneracy

y

—
Fig. 1. A degenerate polytope.




Fig. 2. The different types of vertices.

A numbcr of simple properties follow n..ouam_ iti
\ ) ‘ y from the definition. A cup is th
m___omza of the a__qoaaaom between the convex hull of a finite point-set A U Wewm-i
€ convex hull of A. Since v does not belong to 4, its cup is a simple star-shaped
polytope whosc kernel contains v (Fig. 3). Its boundary contains a number of

polygons incident upon v which are glued to the convex hull of A. The gluing

border is a closed simple polygonal curve, called the crown of v, and can be §

centrally projected onto a plane so as to appear as the boundary of a conver

“polygon. The crown acts as a Jordan curve on the boundary of the cup, which i .”.

separatcs into one piece on the boundary of the cone and a concave (wi
the n_WE polyhedral patch, which we call the dome of v. (If a ?MM” ..““. ”h“ﬂu.__ﬂ
contains a vertex or an edge of P then it is refined to include these additional
featurcs.) Edges and vertices of the dome that are not in the crown are called
::n.:.i. Obviously, the internal edges of the dome are the only edges of the cup
which are reflex (with respect to the cup). To conclude this string of definitions, we
refer to the pointed vertex v as the apex of the cup of v. .
We now investigate the relationship between P and the cup of v. All cup vertices

are vertices of P though, obviously, the same cannot be said of cup edges. A more B

intercsting obscrvation is that the cup lics inside P. This follows from the fact, to be
proven below, that the facets of the cup that are not in the dome lic on the
boundary aP of P. Thus, it is impossible for a facet or an edge of P to intersect the

apex . . ;

Fig. 3.

A cup.

A facet of & cup.

Fig. 4.

d interior of the cup, unless a vertex of P does. But that, of course, is ruled out by the v

very definition of a cup. This cstablishes our claim. Let us now prove the premisc of
this reasoning, which is that a facet of the cup that is not in the dome lies in 9P, It
suffices to show that the crown lics entirely in dP. Let gy, ..., g, be the facets of P
incident upon v and let us (mentally) merge any pair of coplanar facets. This

R produces superfacets f), ..., /i (given in either circular order around v), such that
 the dihedral angle between two adjacent /;'s is strictly less than n. Now, for each
M i=1,...,klet H (resp. H,") be the two-dimensional convex hull of the vertices of

—_——

P lying in f; (resp. f\{v}). The closure of H\H,~ is the polygon formed by
intersecting the cup of v with the plane supporting f;: it is the two-dimensional
equivalent of a cup (Fig. 4). Its boundary consists of a two-edge convex chain

 followed by a concave chain (possibly reduced to a single edge). By a convex (resp.

concave) chain we mean a piece of a polygon’s boundary which always turns
strictly right (resp. left) when traversed clockwise. The construction works as
desired because v is pointed, and therefore exhibits an angle less than n in f;. The
crown of v is the closed curve obtained by concatenating the concave chains in
sequence. This proves our claim that the crown lies in P. In addition, no vertices
but the endpoints of such concave chains can be pointed vertices of P. Therefore,
since all edges of the cup adjacent to the apex are also edges of P, a pointed vertex
can be on the crown of another pointed vertex only if they are adjacent in P. Note,
however, that the converse is not always true. In particular, if two pointed vertices
are connected by an edge which is incident upon two coplanar facets, none of them
Jies on the crown of the other.

Let us summarize the various types of faces which a cup may have. The
following statements are to be understood with respect to the cup and not with
respect to P. The edges incident to the apex as well as the edges of the crown are
nonreflex. Actually, none of them can be incident to two coplanar facets. The
reason is that the convex hull operation merges coplanar facets. As a result,
although each facet of the cup incident upon v lies in 9P, it does not necessarily lie
within any given facet of P. Returning to our classification, we should note that the
internal cdges of the dome are all reflex.

o
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We close this section with a few technical lemmas which hold the key to |
understanding the whys and wherefores of the pull-off phase. Our goal in the pulk
of phasc is to bring the size of the polytope down to proportional to the number of
its reflex cdges. The idea is to identify pointed vertices of the polytope, and to
remove them by pulling their cups off. The selection of the pointed vertices 1o be
removed, however, must be done carefully, if we do not want to increase the genus
of the polytupe or compromise its nondcgeneracy. We say that a dome is hindered
it contains (i) an intcrnal vertex, or (ii) an internal edge that is also an edge of P.
The removal of a pointed vertex whose dome is not hindered ensures that neither
the genus of the polytope will change, nor any degeneracies will be introduced.

In the following, we assume that P is a nondegenerate simple polytope of zero
genus with n vertices and m edges, exactly r of which are reflex. We also assume that

P does not have any flat vertices. /

Lemma 2.1.  Let v and v’ be two distinct nonadjacent pointed vertices of P. No point
can be an internal vertex of the domes of both v and v'. Similarly, no line segment can
be an internal edge of both domes.

- Proof. Let z be a vertex internal to the domes of v and v', Let us first assume that
the intersection Q of the interiors of the cups of v and v’ is nonempty. The closure of
Q must have at Icast one vertex outside the dome of v, otherwise it would have
empty interior. The only such vertex can be the apex v, however, since the interior
of a cup is frec of vertices. Thus, v lies in the cup of v'. Since it can neither coincide
with ¢’ nor be an internal vertex of the dome of v, the vertex v must lie on the crown ,
of v'. But this is not possible, since v and v’ are assumed nonadjacent. ;

So, we can now assume that the intersection of the interiors of the two cups is
empty. Since z is internal to the dome of v, there exists a small open half-ball
“centered al z that lics entirely within the cup of v. A similar statement holds for v’ as
.well, and sincc the two half-balls are nonintersecting, the domes of both v and v,
locally around z, have to lie on the plane separating the two hall-balls, which
contradicts the simplicity of P. .

This proves the first part of the lemma. The second part is a trivial corollary;
simply introduce an artifical vertex at the midpoint of the internal edge. 0

Lemma 2.2. Any reflex vertex of P which is internal to a dome has at least three
reflex edges of P incident upon it.

Proof. Lct w be an internal vertex of the dome of some pointed vertex. There
exists a small open half-ball centered at w that lies entirely inside P. Therefore, w is
a veitex of the convex hull of the point-set consisting of w and all its adjacent
vertices in P. Moreover, since P is simple, w will be incident upon at least threc
edges of the convex hull. The lemma follows from the observation that the
convex hull edges incident upon w are also edges of the polytope, and are in fact
reflex. a

Lemma 2.3,
distinct domes.

A reflex vertex of P can contribute internal vertices to at most three

sH

ceallzzy,

e

Fig. S. The reflex vertex p hinders the cups of u, », and w (on the right, the cup of v).

roof. Figure S shows that this bound is tight. Now, m:—.vomo..qoq contradiction,
h_s. a reflex vertex p is internal to the domes of four pointed vertices u, v, w and 2z of
P. It follows from Lemma 2.1 that all four apexes must be adjacent to each other,
thus forming a tetrahedron T whose six edges all lie in 9P. d:m tetrahedron cannot
have empty interior, othcrwise one of the apexes would be o____a._. reflex or flat. Note
also that the cup of a pointed vertex s contains any vertex ¢ adjacent to s such that
the (interior) dihedral angle around st is strictly less than n. Thercfore, the crown ..v_.
cach of u, v, w, z contains the other three apexes as vertices. Furthermore, since p is
aninternal vertex of all four domes, and the edges of T arc nonrcflex, p must licin T.
However, it cannot lic on any of T's edges, otherwise there would be two
nonadjacent apexes. )

Since p is internal to the domes of all four apexes, there exists a u_:n_._ ball
centered at p that lies entircly in cach of their cones. As P is :o:.._awoaa;,..a. this ball
intersects P’s complement, and it contains consequently a point ¢ outside P that
avoids each of the six planes defined by p and any two of the four apexes. Then p
must lie in the interior of one of the four tetrahedra defined Jw. q and any thrce of
the apexes. All four vertices of that tetrahedron, however, lic in .Jo cone of the
fourth apex. Thus, p cannot bc a vertex of that apex’s dome, which gives us a

contradiction. o

Lemma 24.  Given an edge pq of P, there are at most two pointed vertices u and v,
such that pq is internal to the domes of both u and v, and p and q lie on the crowns of

both domes.

Proof. Suppose that pq is internal to the domes of u, v, and w, and that p and q lie
on all three crowns. Then all six line segments pu, qu, pv, qv, pw, qw lie in aP, and all
three triangles puq, prq, pwq lie entirely in P. Furthermore, it follows from ro.a.ss
2.1 that u, v, and w arc adjacent to each other, and, therefore, each of them lics on
the crowns of the other two, making it impossible for the boundary of each of the
triangles pug, pvg, pwq to contain more than one of i, v, and w. We can thus
establish an ordering of these triangles clockwise around pq; let it be puq -pvq-pwq .

Let us denote by [x, I, y] the dihedral angle that is bounded by the .io.r»:.
planes passing through the linc | and containing the points x and y, 8%«22.2«.
and is swept when the former hall-plane rotates clockwise around [ until it
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Fig. 6. Intcrnal cdge pq has ils endpoints on the crowns of u and v (on the right, the cup of v).

coincides with the latter one. From the definition of the dome, and the fact that the
edge pqy is internal to the dome of u, we conclude that there is a plane S passing
through pq such that u lics in one of the open half-spaces defined by S while v and v
'lie cither in the other one or on S. Since the same argument applies to v and w as
well, the dihedral angles [u, pq, v], [v, pq, w], and [w, pq, u] cannot be larger thanx.
None of them can be equal to n either, however, because of the adjacency of the
apexes. _

Thercfore, all three dihedral angles [u, pq, v], [v, pq, wl, [w, pq, u] are less than x.
As a result, the union of the three tetrahedra defined by pq and any two of the
apexes completely contains a small open ball centered at the midpoint of pq. Since
the edge pq is u reflex edge of P, there is a point 2 outside P that lics in that ball and
avoids all three supporting planes of pug, pug, and pwg. Then the interior of one of
the triangles unz, vwz, wuz intersects pq. If this were uvz, then pq cannot possibly be
internal to the domc of w, as the relative interior of uvz lies outside the cup of w.

Note that the statement of the lemma is tight, as shown in Figure 6. RN

Summarizing the results of the previous lemmas, we derive:
Lemma 2.5. The polytope P contains at most 2r pointed vertices whose domes are
hindered.

Proof. Wec partition the reflex edges of P into three classes:

(1) those with at least one endpoint being an internal vertex of mo—._.ao dome,
(2) internal edges of a dome with both endpoints on the crown, and
(3) all remaining reflcx edges.

Let us prove by contradiction that classes 1 and 2 are disjoint. Assume that there
exists a rcflex cdge ¢ of P, internal to the dome of a pointed vertex u, such that one
of its endpoints, say p, lies on the crown of u and is internal to the dome of v. Then
there exists a4 smail open half-ball centered at p that lies entirely in the cup of v, and
hence in P. Since e is internal to the dome of u, it is not collinear with pu. With pu
nonreflex, it follows that the unique plane defined by e and pu intersects the half-
ball in & half-disk centered at p. The internal angle between e and pu is strictly less
than n however, thercfore the half-disk cannot lie entirely in P: a contradiction. We

oo:.."_:an:::._o<n:oxnn=¢om=83n_.o:..oao_:oo:_uom:”on<n:oxn=u=no=
the crown of another one. ’

s13

= be the cardinality of the ith class above. >n8_..&:m to .ra.:aw
U.r “”...M%mn m”.. Mrumw 1 may hinder at most three ao.:.om by oo=:_.¢=:=n minﬂn_
vertices through one given endpoint g (so the total might cn as high as M;V. h M
endpoint g, however, will be incident upon at least p.io additional _.nq_am ¢ m”m.o .
in class | (Lemma 2.2). Thercfore, the r, edges in class _.os__ _:=~ er =__.3MM_.
{2 x 3)/3 r, domes. Additionally, from Lemma ~..A. each edge in class may | _=q .
at most two domes. The lemma follows readily. The stated bound is in u_nu
achievable, as shown in Fig. 7.

Lemma 2.5 implics that a polytope of n vertices and r reflex edges has at _m"_m_
n — 4r pointed vertices whose domes are not hindered. The cups of these vertices

" can be removed onc by one, and be decomposed into tetrahedra, resulting in a

polytope of at inost 4r vertices and a collection of ¥, (d, — 2) tetrahedra, s\p_ﬂ“_ M_ .__“
the degree of the apex of the ith cup removed. The qn._:cﬁ._. however, B:ms e done
in a systematic way il we want to guarantec that a _58_..::3:2 of _o._qu._ nw :.Z. o
produced. Let us consider the convex polytope of 2k vertices shown 5& _m.. :. SA“.._
that if the cups of the vertices ty, Uy _y, ..., U, aT€ removed in that or n-q.:_ nms:“o
pumber of tctrahedra extracted is (k — DI, __oioﬁ._.. the cups o ) ¢ same
vertices are removed in the reverse order, we end up with o=_<. 2k —2) + o
tetrahedra. This observation and the fact :.w.p the degree o—m pointed <M22 e_.Omv r
is an upper bound on the number of the vertices of crown(v) if the co:.:. =._J. M..:nom
triangulated suggest that we should try to remove the cups of the poin o. .N rtices
of small degrec first, or cven those of degree bounded by some constant d.
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implementation of the algorithm this consta .
. ' | nt may have been set by th ;
ﬂ_on” ”.”__M_M .._._. ”._q.”_n. “._“.o”n?.os..___& by the user. The larger d is, the BNS wnw.q_mmh ﬂ.—.
 rer . R ore, the more time the pull-off ph i y
skinnicr the polytope (resultin ' Femiocs) il b, Clont
rth g after the removal of th i i
N..a”.”..:n:.__n =__= =."_a=:o= to pointed vertices of aﬂnhunoﬁ.””__“uwﬂ h_"uw”.um_“”.._”
arantee that the removal and triangulation of their ¢ i
o .
number of tctrahedra. On the other hand, we must also aE:Wou .ﬁw_" ﬂ«a:hh.@ﬂ..:ﬂﬂ .

in fact bring the size of the pol
act ytope down to li i
This is established by means of the _.o__oiman-””_”“.. henumber ofits reflex edges.

“M..“.:n\n WM p .0‘2 .M VW\M#W« aa.\v_.xnw ::Mnns. and let ¢ < | be a prespecified positite
_real. od - —4), then P contains at least (1 — - -
pointed vertices of degree at most equal to d whose domes nmn .SMW““S&“ i =1

w ’

M_Us < 2Am - 1), . 0

where m is the total number of edges of P. Let us denote by N and n’ the number of

pointed vertices of degree at most d, and ¢ i
pointed wertices of A he ===_¢2.o_. reflex vertices, respectively.

l, = o .
M_U: unM.Uusm....g.M- m.Nu2+?I=.IZX&+C. @

The combination of (1) and (2) yields 3N + (n 2 n—NXd+1)<2(m—r)or

d+1Xn — 1) =2m~r)
N> . . )

Since each rcllex vertex is incident u .
. : pon at least one reflex edge, we have n'
while the formula relating the number of edges, and the number of <2=nomMo—~..-.

polytope of genus 0 provides us with th ituti
R e e bound m < 3n — 6. Substituting these

ZNA.\x%_x=l~wvl~@=|al;nﬁl&:lnm~+ 12
d-2 d-2 ’

Among these vertices, at most 2r can have their domes hindered (Lemma 2.5). So,

macao_._om:::_:_on;na i i i i
in order o presence of pointed vertices with unhindered domes, it

d-5 2d 12
d-2

> 2r.
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Table 1. Values of o{d — S)/(4d — 4) and (1 - oXd - SHd - 2).
d=6 de1 d=8 dw? d=10 d=11 d=17 dw=2S
ew} 140 1/24 3/56 116 sm 3/40 3/32 s/48
18 /S /4 2n 516 13 2 10/23
ew] 1130 ins e s /54 110 1] $/36
3 112 215 /6 an s24 b)) ans 20/69
=1 /80 116 9/112 £ 57 /48 9/80 9/64 532
S 1/16 110 1”8 \1 5132 /6 \/s 523
=1 1/25 I8 3/35 110 19 3/25 3720 1/6
: 1/20 2/28 1/10 435 1/8 215 425 a3
e=} 124 5m2 5/56 /48 257216 18 5/ 25/144
1124 118 1/12 221 - 5/48 .Y 215 10,69
c=f Y0 114 - 998 328 s/42 910 9/56 5/28
1/28 2138 114 4/49 5/56 21 438 20/161
The number of such vertices will then be ut least
d-5 2d 12 d=5Sm—(@4d-4)+12
P L Ty Ll by i-1
NC —cXd ~ 5 + 12
d-2 ) ]

What Lemma 2.6 states is that, provided that the number of reflex cdges of P is
“relatively " small, the number of pointed vertices of small degree whose domes are
unhindered is at least a constant fraction of the total number of vertices of P.
Consequently, by removing the cups of these vertices, and reiterating on the
resulting polytope, we will eventually end up with a polytope whose size will be at
least equal to a multiple of r, as desired.

In Table 1, we present the values of c(d — 5)/Ad — 4)and (1 — c)d - 5)(d - 2)
for a small sample of values,of c and d. To clarily the meaning of these numbers, let
us consider a concrete example. Let us select, for instance, ¢ equal to . The table
indicates that if we pick d to be equal to 6, i.c., we intend to remove the cups of
pointed vertices of degree at most 6, then if the ratio of reflex edges over vertices of
the polytope is at most 3/80, at jeast one out of 16.vertices will qualify. Ifinstead, d
is chosen equal to 11, then for a ratio of reflex edges over vertices no less than 9/80,
the ratio of “qualified” vertices increases to 1 out of 6. The figures in the table
persuade us that our algorithm can indeed be useful in practice.

3. The ._,qm-..n..._-__e: Algorithm

Given a nondcgencerate simple polytope P with n vertices and r reflex edges, we
show how to partition P into O(n + r?) tetrahedra. The algorithm requires O(n log r
+ r? log r) time and O(n + r?) space. Up to within a constant fuctor, the number
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~of tetrahedra produced is cptimal in the worst case. This follows from a lows

bound of SXm?) on the number of convex parts needed to partition a certaia .

polytope of m vertices, which is 2 member of an infinite family {P,.) [7]. Indced, we
simply add dummy nonreflex edges to P, until we have a polytope of n vertices with

r reflex cdges. Although not all realizable pairs (n, r) thight be obtained in this way, |

enough of them are to justify our claim that ©(n + r?) is a tight worst-case bound

on the number of tetrahcdra needed to triangulate a polytope with n vertices andr
reflex edges.

As we alluded to carlicr, the triangulation algorithm consists of two phases, °

figuratively termed pull-off and fence-off. In the pull-off phase we reduce the size of
the polytope to O(r). The idea is to locate pointed vetices of small degree whose
domes iure not hindered, and to remove them by pulling their cups off, and by
replacing the boundary of P incident upon’them by théir domes. This shelling step
reduces the vertex count without increasing the number of reflex edges. Then, in the
fence-off phuse, we erect vertical fences through each edge of P, achieving a
decomposition of P into cylindrical pieces that can be easily partitioned into
tetrahedra, .

We assume that all the incidences in the polytope P are explicitly listed. For this

purposc we can usc any of the standard polyhedral representations given in the '

literature, c.g. winged-edge [5], doubly-connected-cdge-list [21], and quad-edge
(17]. We also assume that P is given to us in normal form, meaning that it is free of
_flat vertices, and that its boundary is triangulated. A simple polytope can be
normalized in O(n + r log r) time. Its boundary can be triangulated using, say,
Mchihorn and Hertel's triangulation algorithm [20]. To do so, we triangulate each
facet by swceping a line across its supporting plane, stopping only at vertices
exhibiting rcflex angles. Since these vertices are incident upon reflex edges, there
will be nt most O(r) sweep-line stops, each incurring a search and update cost of
O(log r) time. The Nat vertices can then be identified and removed in time linear to

the size of the polytope. Note that the normalization may increase the number of
nonreflex edges, but does not affect n or r.

3.1, The Pull-Off Phase

This is a form of preprocessing aimed at bringing down the number of vertices of a
given polytope P to the same order as the number of its reflex edges. Since our
strategy will be to remove the cups of a number of pointed vertices whose domes
are not hindered, we need to be able firstly to decide whether the dome of a pointed
vertex is hindered or not, and secondly to compute its cup. Let us consider a
pointed vertex 1 of P. The boundary of the convex hull of v's crown consists of two
polyhedral patches scparated by the crown itself, one of which isolates the other
from v. Let K, be the polytope that contains v and is bounded by the patch in
question and the cone of v. The dome of v will be unhindered if and only if every
reflex vertex and cvery reflex edge of P lies either outside K , or on the boundary of
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i i i 's cup is
" K. that is incident upon v. Furthermore, if the dome of v is unhindcred, v's cup
L4

v.nmm.n ._w_. .M..ﬂ_oq to decide whether the dome of a —,.o::nﬂ_ <nﬂ_ox v :.mx_.._n_.__amcuaﬂ.:&”
we have to check K, against both the 3._._2 vertices n.:g _.Ma e Suau ! mmo o acing
can unifly the two cases using the technique s.c_.__n.a in ..q._.ﬂ_o _.n.n ma.«m_.:nou ing
each reflex edge by a dummy reflex vertex at ._.m midpoint.  Fefles e e, and
the midpoints of the reflex edges are collectively 2_._& a._Sn =e._22.3m=.n nd
theit number is no more than 3r. Note that :.,omo <o_.:nn.... nao:nanwoao ermine the
pointed verlices whose domes are E:ao:x._. since every __.=> M”ﬂo A e
kast one puncturing vertex that docs not lic on the crown. A O s dome.
off phase, we assume that every v__an_cq_-mn- MMGM_“ m_M.a—m.o-”m“"__”.sw._oi e veed oul
Local tests on the incidence m.:_n—.:am o Hices might o necessary
many candidates. Aithough this might eo a practical s ov. ta ,“n_,:nom  necessery
:ctly speaking. In the light of the definition om the punc _=. g vertices, .

”_._”%.__.N_ow& n_o.m_om is statcd as follows: first x.._u oo._.::w.._aa. :_n“r _"_.M. M““ﬂ”_‘%w
vertex lies inside K, or on K,’s 79_:&»__”« n._..: _Mn.mﬁ._ w.._.m_ ent upon v,

t hindered; in this casc, the cup of v s precks . )
“ _%o achicve the desired reduction in .__n.mm_um Nﬂvw_.x“ i._"_ _“.nuu_ww_ﬁ_ to nq_.._““m“\hmcu—_w

whose domes must have becn verihie . : . he

M“ww..“mvo__&:m K,'s against cach of the —E...n.:_._:m vertices, roﬂn“.._um _“w:.w.oz_mw ““:_n
undesirable Q(nr) time complexity for this phase. To _.3—:3 on ! ma.. N
for the moment that an oracle, the Witness Oracle, provides us R e itmess
of P, alter AP has been triangulated. The members of Ware re

facets, and have the following v_.o_...o:moﬂ.

(i) the mn. of vertices incident upon all witness facets is a superset of the pointed
vertices that have hindered domes, ) uring vertices that
(i) each witness facet f is associated with a subsct of puncturing

i i i tices, and
otentially hinder the cups of \ s vertices, . .
(iii) wwo—_ c::.w_:::w vertex is associated with no more than four witness facets

The implementation of the Witness Oracle is described _“_ the Aﬂ“ﬂdﬂwﬂﬂ“ o
The pull-off phase is an iterative process. In the genera mﬁ?_ e e of
lytope P(i = 1), where P, is the given vo_ﬁovo. P. Un : e
ventice { P, is not “much” larger than the number of its reflex edges ( .
Mooa:oniaooqo:..wﬁ from P, a number of pointed vertices whose A_oa,_“m.mn.”“n _”Ma
i, oot P the et polylope. 10 WO oms o Py looking for those
out as follows: first, we go throug ; r Doking b e of
an some fixed constant d, and we insert the .
M.cwmmum ﬂﬂ.ﬁaﬂooﬁwas__ the vertices have been processed, we repcat the following

steps until the queue is empty. »
f the queue. If v is marke
the favorable vertex referenced by the top of the :
" ”MWM Nﬂmvw& we remove v from the queue, and we reiterate. Otherwise, we

incident upon v, and determine v's crown,
through the facets of P, that are inciden
mm?o:..wroinﬁ_.. modifying the boundary of P,. Then we compute the
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Fig. 9. The effect of the computation of v's crown on six coplanar facets incident upon ».

/

, convex hull of the crown, and from that, the polytope K, as described in the
_ opening puragraph of the pull-off phase.

2. If v is incident upon a witness facet f; we check whether the puncturing
vertices associated with f lie inside K, or on the part of K,’s boundary that is
not incident upon v, thus determining whether the dome of v is hindered
or not. Since the cup of v is of constant size, this can be- done in time
proportional to the number of puncturing vertices probed. If the dome of vis
found hindered, we remove v from the queue, and proceed with step 1.

3. We are now ready to extract and triangulate the cup of v, which is in fact K,;
its size is constant, as the degree of v is no more than the fixed constant d,
First, the boundary of P, is retriangulated, so that the resulting polyhedral
patch formed by the facets of P, incident upon v is precisely (dcup(v))\
dome(v) (Fig. 9). (Note that the retriangulation involves only the facets of P,
that are incident upon v.) As a result, some facets of P, may be substituted by
new oncs. In casc that such a facet f is a witness facet, the information in W
must be updated, and the puncturing vertices associated with f must be
appropriately distributed among the new facels that intersect f. After that, the
cup of v can be pulled off by removing the facets of P, that are incident upon o,
and substituting them with facets of the dome of v. The dome of v is easily
retricved from K,. Again, if any of the removed facets, say f; belongs to W, the
new witness facets that result from s removal need to be determined (these

arc the fucets of the dome of v that lie vertically above or below f), and lists of
puncturing vertices associated with them need to be set up. Finally, the cup of
v, of equivalently K,, is triangulated. The decomposition consists of the
tetrahedra determined by v and each nonincident facet of K,’s triangulated
boundary.

4. We remove v from the queue, and mark the vertices adjacent to v before the
cup removal, so that they are skipped if met later in the queue.

Property (iii) of the witness facets and step 4 ensure that each puncturing vertex
will not be probed more than a constant number of times during a single pass
through all favorable vertices. As a result, such a pass over a polytope of n, vertices
will take a total of O(dn, + r)time. From Lemma 2.6 and the fact that at most d + |

fo L3 . P

MY
"...E-._u.._u::n a Nonconvex Polylope

ime step 4 is
favorable vertices are removed from the queue or marked cach time step
5 executed, we derive that this process removes at least

w m.l. _|6X&|'MMB.NQ=.

di+1  d-2

5:..2 from the polytope, where ais a fixed —.oum:.s.,. constant less ..rw:..h:.."__..r”m.« M“"
+ are left with a polytope of n;,, < (1 olﬂowv”_._.ﬁu-”m_”” _”._H“, M”.m“__w“_ Mg
ing this pruning pass until n, = O(r) takes tim .

: MM"& .”.._._“wm :_v _ro_o ._m_»_” as the cups of the vertices arc being pulled off, some reflex

i i nd
verlices may become pointed. Therefore, the set of puncturing vertices, a

i wever, {0
consequently the set of witness facets, may need updating. We choose, ho ,

make no updates at all, possibly ending up 4:__ uoﬂa ”:“_:823_@ work being

done. In any case, the stated time no._sv_ax_é is not a mn ._“_ .a b witness oracle
Summarizing, the total time required by ..__a ncm_.o p uw .: ety of

included, is O((n + r?) log ), taking into consideration that t n» ~_= e ot

..__o oz_omo isO(nlogr+r’log l.u n:h._. :.w_. ﬁu_m._u_wo:aﬂnm M.“___“.a..,ovamm _” q..:x_:onm "

. . Finally, .
HM”M Moun.awnn._”ﬂo.””__,.“r.ﬂ_m.: mw ..._wn end Aw_. this phase, m. is decomposed into 2
collection of O(n) tetrahedra and a polytope of O(r) vertices.

t
t
.

1.2. The Witness Oracle

For a given polytope P of n vertices and r reflex edges i_“_omﬂ WM.._._HMNH M
triangulated, the oracle comes up with a set o.q O(r) facets of m._.. mz %ﬂ_oimsw cs form
a supersct of the pointed vertices that have hindered aaao.a. e fo lowing lemme
iz.w_” takes advantage of the geometry of the cup, provides us wi

carry out this computation.

dome(v)\crown(v). Then, for every line passing through p,
vom p must intersect the closure of .
\..:.9. _.” Moreover, the line segment delimited by p an

entirely in P.

v's cup. Therefore,
P i ts the crown
facets) and thus intersects the . .
one of the cup facets incident upon v, and the line segm

! The function h(x) = x/log x t .
directly implics that rlogn < (n + 1 Ylogr.

Iytope P and let p be any point of
Lemma 3.1. Let v be a pointed vertex of a polytop e e e o vays

P's triangulated boundary) _.an..mm..:
e d the point of intersection lies

iti i lyhedral patch with respect to
tion, the dome of v is a concave po 2 respe
o Melon cither at least one of the two rays from p intersccts the 53:_2 MH
the line lies on the dome (in this case, the ao:.,n consists of coplan a
u In either case, the line intersects the o_oqu.o
ent with endpoints the point

pand the point of intersection with the facet lies in the cup of v, and consequently in

is strictly increasing for x > ¢ = 2.718. Thus, h(r) < h{n + r’), which
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P. For a piven triangulation t of aP, let n(z |
. ive i , , 1) denote the connected pol
w_“:o: consisting of :_.." facets of P incident upon 2. It is easy to see that ____.M _.M”M“ﬂ
.” .mcs of o that are Snao.:. upon the apex constitute the intersection of all the
patches a(v, v} over all possible boundary triangulations t,. Thus, we conclude that
the linc intersects the closure of a facet of the polytope incident upon v ]

The lemm implies that a sct of facets of P, w i
.-.o::ﬂ_ vertices that have hindered domes, can _Numhqﬂ_._...ho.hajﬂ.ﬂo:_.ﬂ_uﬂﬂqmc—”.ﬂ.h.__-n
ing vertex p, we compile a list of the facets of P that are r:o_.wnm.& by ._5-. <2=0L
_.=m :.:.o:E_ p. and, among them, we retain only those for which the line segment
delimited by p and the point of intersection lies entirely in P. For 3:<o=mo=wo. we
assume .::: no vertex of the polytope lies vertically above or below any of the
punctuting vestices. Nolte that this assumption can be checked in O(n log r) time
and can be relaxed with little extra effort. This assumption narrows down the
number of facets intersected by a vertical line through a puncturing vertex to at
most two per boundary crossing; as a result, the number of facets in the final list
M.““_ co. 3:.-._:.:_?::_ to the number of puncturing vertices. So, our task is to
erminc which (triangular) face ical line passi
e _E__.,.:_M.m:n <no:2.v ts of P are traversed by a vertical line passing
If we take projection on the xy-plane, we can restate the problem in terms of the
.:.no_m .cq ’ :z.?__:izn Which projcctions of puncturing vertices (on the xy-planc) lic
in a given trinngle? To answer such a question, we set up a complete binary tree
whose _. suves dre in onc-to-one correspondence, from lcft to right, with the
puncturing vertices of P, ordered by nondecreasing x-coordinates .i:: each
internal nodc 1 of the Lrce, we associate the canonical strip {(x, )} x M X € X}
i__o._.n X pin ==.; Xouas 1€ respectively the smallest and largest x-now__q&:n.om o_.__m_o.
vertices associuted with the leaves descending from ¢. Let abe be the projection of a
triangular Facet f of P on the xy-plane, with a < b < ¢ in x-order. Followin
m.»:@.”_:_ scgmeat tree partition [23], and using the x-order of the tree leaves, sm
vnzm.moa the N-cxtents of ab and be into O(log r) intervals. This, in turn ?a:o.nu a
qu.::n.v: of abe into a logarithmic number of trapezoids (or :::._w_omv o«o_.w. one of
which is associnted with a distinct node of the tree. For each such =om_n t, we must
determinc ¢.<_:c__ points among those stored in t’s descending leaves lie m.__mao the
“w“_omuﬂa_:m _:._ﬁssmu. One nice feature in this set-up is that although we have
y different trapezoids, we i i
of two fxed nc:...__.."asnam.nu. can replace each of them in the computation by one
e<n. dualize the problem using the following asymmetric transformation: a point
(u, v) is mapped to the line y = ax + b; a line y = kx + d'is mapped to the point
(—k, &..Z:.n that the transformation maps vertical lines to a point at infinity,
n.-a .m:.a is what makes it attractive for our purposes. The reason is that no <2:8_.
line lies cntircly in any of the double wedges with which we are dealing, and
therelore, the .c__cmnz transformation maps such wedges to finite _oswz.. line
“Mw__u.m__,._w.h.oz.._v___.n_.a_: transformation might map such a double wedge to a pair of
..;n n__.,_.:ﬁ_:.:_ of the - duality transformation results in each node of the tree
being associated with a certain arrangement of lines (the duals of the projections of
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the vertices stored at the leaves below the node in question). We do nol store these

arrangements explicitly, except the one at the root of the tree. This takes O(r?) time

and space, using the methods of Chazelle et al. [10] and Edclsbrunner et al. [14].

We further process the root arrangement to support 0O(log r)-time point location

{18], [13], which requires a linear amount of work through the arrangement. As it

{urns out, we also need point-location structures for all the other arrangements in

the trec. We can use nn cconomical strategy, however, bascd on the fact that the

arrangement of a node is a portion of the arrangement of its father. More

specifically, cach region of a father’s arrangement lics entircly within onc region of
cither child’s. Thus, we provide cach region of the root arrangement with two
pointers, one directed toward the enclosing region for each child. The same pointer
scheme can be applicd throughout the tree, although the only arrangement, and
hence geometric information, stored in the tree lics at the root and .t the leaves.
Setting up all these pointers can he done in O(r?) time by cnsuring that the work at
a given node is at most proportional to the square of the number of its descending
leaves. In the general step, we have at our disposal the full arrangement at a given
nodc, and we color the lines green or red, depending on which of the Icft or right
children inherits them. To compute, say, the green arrangement with the pointers
directed to it, we begin by merging collinear green edges into edges of the green
arrangement. By traversing the full arrangement, we can now collect cach region
lying within a given region of the green arrangement. The same process applicd to
the red edges completes our work.

In dual space, the problem of finding which members of the point-set associated
with a given tree node f lic in a double wedge is the same as computing which lines
of a line arrangement intersect a line segment. The latter version is easily resolved
using our data structure, First, we need to locate the endpoints p and q of the line
segment in the line arrangement. To do that, we locate p and g in the root
arrangement, and then using region-to-region pointers, we go down the tree
stopping at the node . The entire operation takes only O(log r) time. Il pand g licin
the same region, no further work need be done, and the answer is the empty set.
Otherwise, we pursue our search in the two children of t. This process takes us to a
certain subset of the leaves, where the desired intersections can be found dircctly.
Since a vertical line can cut only O(r) facets, the total amount of time spent
computing intersections between lines through puncturing vertices and facets of P
is no more than O(n log r + r? log r).

As mentioned carlicr, of all the intersections between a vertical linc through a
given puncturing vertex p and the facets of P, only those for which the linc scgment
connecting p to the point of intersection on the facet lics in P necd be rctained for
further consideration (Lemma 3.1). Since a puncturing vertex will contribute no
more than four facets, and there are at most 3r such vertices, the total number of
selected facets is O(r). Furthermore, during the selection process, pointers to the
corresponding puncturing vertices are included in the records of the facets that are
retained. As a result, in the end, the record of each such facet f contains a list of the
puncturing vertices that potentially hinder the cups of the vertices of . From a lime
complexity standpoint, the Witness Oracle accounts for O((n + r¥) log r) in the
running time of the algorithm. The space necded amounts to O(n + r?).

]
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3.3. The Fenee-Of) Phase

Our goal here is 1o trinngulnte a nondegenerate simple polytope of n vertices into
O(n?) tctruhedra. This mcthod is satisfactory if at least a fixed fraction of the edges
are reflex. We begin by partitioning P into cylindrical picces, and then we
trianguliate ciach picce scparately. To build the cylindrical partition we attach
vertical fences 1o cach edge, reflex and nonreflex, one at a time. Let us say that a
point p is visible from an cdge if it can be connected to it by a vertical segment
whose relative interior tics in the interior of P, The set of points visible from an edge
e is casily scen to be a monotone polygon: it is called the fence of e and is to be
attached to it (Fig. 10). Our fences are similar to the walls used in the slicing
theorem of Aronov and Sharir {1]; onc difference is that while fences project
vertically onto their attaching edges, walls lood all over the free portion of the
vertical planc passing through the edge.

The fencing operation partitions P into cylindrical pieces, each of which can be
defined by ’

(i) specilying o horizontal base polygon,

(ii) lifting it vertically into an infinite cylinder, and

(iii) clipping the cylinder between two planes (which do not intersect inside the
cylinder).

Although some fences may have exposed edges “sticking out,” the hope is that in
the end the cylindrical pieces will form a convex decomposition of P. Unfortunate-
ly, this is not always true. Of course, every reflex edge of P is “resolved” in the sense
that the angles between its adjacent facets cease to be reflex. The problem is that
new refiex edges might be created between two fences (Fig. 11). Let us examinc this
phenomenon in some detail. Let e be a vertical edge of a fence, Since the edge e is
incident upon at least one vertex of P, and 3P is triangulated, the edge e cannot be
left exposcd after the fencing. It is conceivable, however, that e coincides with an
‘edge of another fence which results in a dihedral angle Jarger than n. What we can
say at this point is that the fences partition P into cylindrical pieces, which are free
of nonvertical reflex edges. But then, a triangulation of the base polygons of each
cylindrical picce refines the partition into one consisting of cylindrical pieces whose
base polygons are triangles. A decomposition of P into tetrahedra follows trivially.

Fig. 10. The fence of ab.
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Fig. 11. A nonconvex cylindrical picce.

In general, erccting fences will result in cutting o:..mo_:o cdges m._:o subedges. We
| till treat cach cdge as one entity, and deal with all its subedges in onc fell mioo?n
We give a very simple, albeit slightly incflicient, ..:o.__oa for 83._.:::«.:8 ?:n.m of .
an edge e of P. Let E be the set of segments o_u:._:ma by computing the ::2.825___
of the facets of P with the projection of e on their supporting planes. In mn:n:_.. ,
T consists of a number of disjoint _«o_umozm__ curves. Next, we 83_2“0._.._ e
trapezoidal map induced by the visibility relation among the scgments of L. :m.
is the planar partition formed by I and s__ the vertical unmq:ouﬁ .ru—aam_ﬁnﬂ
endpoints to their visible segments in L. w.:_no cach trapezoid is boun _mw y M
vertical segment through an endpoint, which no:.om_..o:am to an on_m.o of P, s.:.
there are O(n) edges, the size of the _Bvoucr.:m_ map is a.x:v. The ::.ﬂ is compu _”_.
by sorting the scpments in I, and by sweeping them in order, to 2o.:.._==o. m”
visibility polygons. The entire computation for each edge can be carried ou
time. .
ecﬂmma-w -__o_. however, store each fence oxv:n:_x. _3_02._. we _un__:_n each
ponvertical bounding segment s of cach fence in a list associated with the ?nu
whose intersection with the fence is preciscly s. After alt fences —;::.u been noa_.::o_ .
and their bounding segments have been attached to the s_..v_.c—.:u..o :..no. record M.
cach facet of P is scanned in turn, and its constrained triangulation is compute
(the constraints are the edges incident upon the facet and the fence segments
associated with it). The triangles reported are inserted ina global J_u_ of _:m:_m__a.
If we merge collinear segments during the triangulation, the list of triangles
consists, in the end, of pairs of triangles such that

i jecti i -plane are identical, and
i) the projections of the members of a pair on the xy-p! . an
AA:W the w«::azcu_ polytope that is determined and bounded by such a pair lies

in P.

Note that the collection of these cylindrical pieces ma. nothing .?: .”a _.n.mz&—
decomposition of P into cylindrical pieces that we Bn__._o__& an:_mq.._.._ .w. 3_“ M
triangles will not necessarily be in order in the list. This can be wnr_n.ﬁ , oﬂ.rowm
by sorting the triangles in the list with -onﬁoﬁ. to the x- and v.nwo_..._.aspnm w__a e
vertices (this will bring together triangles with the same projection on ~.o wn
plane), and, in case of ties, with respect to .__m u.o.....o&_sn.n oq their gi_na: s,
which will do the final matching. Each cylindrical piece determined by such a pair
of triangles can be trivially decomposed into at most three tetrahedra.
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The introduction of fences results in a partition of P that inv
O(n?) vertices, cdges, and facets. The :.F:n”_m:o: of the facets ”:M _.ﬂ_nou nﬂ.ﬂﬂ.nu_moﬂ..
of .o:.i.a“a.:_ mercly adds a constant multiplicative factor to the size of the
decomposition. Therefore, the description size of the final partition is O(n?), and
n.o_zoa:n_:_z O(n?) tetrahedra are produced. As mentioned earlier, the ooan...:n.
.:.5 ..: all :._a fences takes O(n? log n) time. The triangulation of .n facet that is
-uuon_n.oa.s:__ k, constraining segments can be carried out in O(1 + k, log k;) time,
so that triangulating all the facets will take a total of O(n? log aw aan. since
Yk l.ec.J. Finally, sorting the triangles takes another O(n? log n) ._Bn. while
processing the pairs does not take more than O(n®). Summarizing, :.o.n:za
fence-ofl phasc requires O(n? log n) time and O(n?) space.
!

34. Putiing the Picces Together \

Given a nondcgenerate simple polyto wi i
pe of zero genus with n vert
edges, we start the partitioning by rices and 1 rele

3 qo..._oi._n all Mut vertices, and doing the obvious clean-up
! c; triangulating the boundary, and .

(iii) applying the pull-off phase in case n greatly exceeds r.

¢.<o finish the decomposition by going through the fence-off phase. The running
time of the algorithm is O(nlog r + r2 log r). In practice, it will be important to
have a 3?_& representation of cell complexes in 3-space in order to carry out the
computation successfully and efficiently. A representation of three-dimensional
polyhedral subdivisions, along with the set of navigational primitives needed to

carry out the required cutting operations, can be found in [12]. We summarize our
results below. !

Theorem 3.1.  In O((n + r®) log r) time it is possible to partition a nondegenerate
simple polytope of genus 0 with n vertices and r reflex edges into O(n + r?) tetrahedra
The time bound includes the cost of producing a Jull-fledged triangulation with E_.
explicit description of its facial structure. Up to within a constant factor, the number
of tetrahedra produced by the algorithm is optimal in the worst case. .

4. Closing Remarks

Of course, nol every n-vertex polytope with r reflex edges necessitates Q(n + r?)
tetrahedra to form a triangulation. Are there simple heuristics which could be used
to guarantce that the triangulation size does not exceed the minimum by more than
a 3&.8352 in all cases? Is there a polynomial-time algorithm for such an
wvv_.cx.am:o: scheme? Also, it is often desirable to avoid long, skinny tetrahedra
in mesh gencration. Sce [4] for similar concerns in two dimensions. One approach
is to retrinngulate the undesirable tetrahedra produced by our triangulation.

)
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Again, are there preferred heuristics to keep the number of Steiner points as low as
possible?
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