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INTERCALATE MATRICES: I. RECOGNITION OF DYADIC TYPE

GILBERTO CALVILLO, ISIDORO GITLER. AND JOSE MARTINEZ-BERNAL

Abstract

This is the first of a series of papers where we study the characterization
problem of which intercalate matrices determine integral formulas of sum of
squares. Matrices that can be embedded into the Cayley table of a group of
exponent two are intercalate matrices. called dyadic. This paper is devoted to
¢iving combinatorial criteria to recognize dvadic matrices.

1. Introduction

The aim of the present paper is to characterize which intercalate matrices
can be embedded into the Cayley table of a group of exponent two, such matri-
ves are called dvadic. To this end we give five criteria: the first two hinge on
. simple theorem of alternatives given in Section 2. Lemmas (3.1) and (4.1)
‘ound below rely on the fact that an intercalate matrix is completely deter-
mined by the position of its intercalations tor co-intercalations); their proofs
ire not given, the reader should have no problem in proving them, as well as
proving Lemmas 5.1 and 5.2. The other criteria are based on connectedness,
homogeneity and duality of intercalate matrices, respectively. All of these
concepts are defined further helow.

In this paper we consider the group of exponent two (N, %), where N =
10,1, 2....} and = is the dyadic sum defined as follows: consider the binary
representation of @ and b, then add componentwise mod2 to obtain a & b. We
regard K as a vector space over GF(2).

A matrix is intercalate if its entries, thenceforward called colors, along any
row and along any column are all distinct. and furthermore, each of its 2 x 2
submatrices has an even number of distinct colors. Those 2 » 2 submatrices
with two (four) distinct colors are called intercalations (co-intercalations).

The Cayley table of (14, <) is an infinite intercalate matrix that we denote
bv D[N : N1 For (ordered) subsets R = {ry,...,7,} and C = {e1,..., ¢4} of N,
denote by DIR : C the p » g submatrix of D[N : 1] whose (i, j)-colorisr;stc,; R
and € are called the set of row and column generators of DIR : C1, respecti\}ely.
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When R = {0,1,...,m -1} and C = {0, 1,...,n — 1} we will write D[m : n].
Matrices D[2" : 2"] (see Example 1.1) are the Cayley tables of all the possible
finite groups of exponent two (up to isomorphism). They will play an important
role in our subject of study. Throughout this paper all intercalate matrices are
assumed to be finite and to have colors in the set N.

Example (1.1).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 157
i 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 3 0 1 6 7 4 5 10 1 8 9 14 15 12 13
3 2 1 0 7 6 5 4 1 10 9 8 15 14 13 12
4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 1
5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
7 6 5 4 3 2 1 0 15 14 13 12 1 10 9 8
8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 8 11 10 13 12 15 4 1 0 3 2 5 4 7 6
0 11 8 9 14 15 12 13 2 3 O 1 6 7 4 5
i1 10 9 8 15 14 13 12 3 2 1 O 7 6 5 4
12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
13 12 15 14 9 8 1 10 5 4 7 6 1 0 3 2
14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

L15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0!

D[16 : 16]

Two intercalate matrices are isotopic if one can be brought to the other by
row and column permutations and, if necessary, a relabelling of its colors (we
always assume that a relabelling associates distinct new labels to distinct col-
ors). In case permutations are restricted to columns, we call them c-isotopic.
Isotopy is an equivalence relation on the set of intercalate matrices. In these
terms, an intercalate matrix is dyadic if it is isotopic to the matrix D[R : C]
for some sets of generators R and C. Observe that being dyadic is preserved
under isotopy.

An intercalate matrix is consistently signed if it is possible to associate a
plus or minus sign to each of its coordinates in such a way that every interca-
lation results with an odd number of minus signs. It is well-known ([10], [14],
[16], [17], [18], [21], [23]) that there exists a consistently signed r x s interca-
late matrix with n distinct colors if and only if there exists a sum of squares
formula

% AN OF- BT N

where each z; is an integral bilin‘ear form in the indeterminates x,..., x,
and yi,...,¥s; thatis, z, = >, afjx,yj with the afj integers. Determining
if a given intercalate matrix is consistently signed will be refered to as the

signability problem.



INTERCALATE MATRICES: I. RECOGNITION OF DYADIC TYPE 59

The fact that any intercalate matrix containing a non-consistently signable
submatrix cannot be consistently signed, suggests searching for minimal ob-
structions. In forthcoming papers we develop a matroid approach to the signa-
hlity problem obtaining diverse structures that an intercalate matrix must
avoid to be consistently signed. In a subsequent paper we will exhibit the
smallest forbidden matrices for the signability problem. In another paper we
w1 <hew a relationship between such smallest forbidden matrices and the Pe-
terscn graphs; this relation depends strongly on the fact that these matrices
are dyadic. This is a main reason why we are interested in studying dyadic
matrices. :

2. A theorem of alternatives

Lot F be a field and let 4.+ s(F) denote the set of r x s matrices with entries
in F. Denote by e; the vector whose ith entry is 1 and all other entries are zero.
We write x > 0 to express that all the entries of a vector x are distinct from
zero.

THEOREM (2.1). Let E be a vector space over the field F. Let A € My, n(F)
and B € AMyxn(F) be matrices distinct from the zero matrix. If n — rank(A) <
dimp(E) < oo, then one and only one of the next two conditions holds.

(D ZxcE" Ax=0 and Bxp0.
(D Zie{l,...,q} and Ja€FP: aA = ¢B.

Proof. Let r be the rank (over F) of the matrix A. Let I, denote the identity
matrix of order r. By Gauss-Jordan elimination, we can find a matrix A €
A p(F)and a permutation matrix ® such that AA® = [I, R], for some matrix
R ofsizer x n — p.

Case r = n. In this case we have a solution of (IT) by taking i such thate;B # 0
and a = ¢, BOA.
Cuase r < n. Assume that the linear system (I) does not have a solution.

Take a vector z in E*~" so that its entries are linearly independent over F.
Now define y = —Rz € E™ and x = (3, 2) € E". Since AA®x ={I, Rl(y,2) =
v -+ Rz = 0, and because of the assumption the system A®x = 0 and Bdx > 0
has no solution, there must exist an i such that e;B®x = 0. Hence we obtain,
with B® = [BY B?], that 0 = ¢;B®x = ¢;[B* B*]x = e(B’y+ B?*2) = e(—BYRz+
B?2) = e,(— B’ R + B?)z. But the choice of z implies that e;(—B*R + B®) = 0, so
¢;B'R = e, B*. Therefore we have a solution of (I) with « = ¢; B*A. In fact, we
have

aA® = ¢;BYAA® = ¢;B’[I, R] = [e;B” ¢;B’R]
= [e;B’ e;B?] = ¢;[B” B*] = ¢;B®.

Finally, it can easily be verified that both conditions cannot be simultaneously
satisfied.

We will use Theorem (2.1) in the proof of Theorems (3.2) and (4.2) with E = N
and F = GF(2). Note that in this case dimp(E) = co.
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3. Co-intercalation criterion

LEMMA (3.1). An intercalate matrix is dyadic if and only if there is a rela-
belling of its colors for which every co-intercalation has zero dyadic sum.

Lemma (3.1) gives a method to verify if a given intercalate matrix M is
dyadic. The method consists of finding new labels x1, . . ., X, € Nfor the distinct

colors my, . .., m, of M, through the system of equations and inequalities
3.1 x; ®x;Dxpdx; =0, forevery co-intercalation with

colors m;, mj, my, my, and
(3.2) xi®x; #0, fori,j=1,...,n; L #J.

For a set X denote its cardinality by |X|, and for a matrix N denote its
set of distinct colors by v(N). Let A denote the symmetric difference operator.
The following theorem gives a characterization of dyadic matrices based on the

theorem of alternatives of Section 2.

THEOREM (3.2). Let M be an intercalate matrix. Then either M is dyadic or
else there exists a family € of co-intercalations of M such that |Aceev(C)| = 2.

Proof. Let A and B be the coefficient matrices of the systems (3.1) and (3.2),
respectively. A has a row for each co-intercalation and a column for each
distinct color of M. The result follows by a direct application of Theorem (2.1)
with E = Nand F = GF(2).

Example (3.3). The matrices

1 2 3 4 5 6
123 4 ézg‘,‘,g 7 3 2 8 9 10
2 14 3 6 3 2 0 3| ama |L1213141050
5678 |19 1213 14 15 16 14 13 17 18
65090 1 16 15 19 20 21 22
93 24 25 21 20 26

are not dyadic. The first one contains the two co-intercalations {1,3,5, 7}
and {1, 3,5,0}, whose symmetric difference is {7,0}; the second one con-
tains the co-intercalations {1, 3, 10, 12}, {3,7, 10, 8}, {8,7,12, 17}, whose sy.a-
metric difference is {1, 17}; and the third one contains the co-intercalations
11,4, 16,20}, {2, 4, 16,13}, {2, 9, 13, 10}, {9, 10, 20, 26}, whose symmetric dif-
ference is {1, 26}.

4. Intercalation criterion

Let M be an intercalate matrix whose rows and columns have been labelled
in some arbitrary way. For every submatrix I of M, let (R(I), C(I)) be the pair of
its row and column indices. For a family # of intercalations of M we define its
border difference as the pair of sets (R(#), C(# )), where R(#) = Ares R(I)
and C(.#) = A7 4C(I). We denote the emptyset by 0.
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A f2mily of intercalations of M is ill aligned if its border difference
(R.s ), CL.#)) satisfies one of the following three conditions.

1. R#) ='C(#)|=2 and (R(#), C(#)) determine a co-intercalation of M.
2. |R(#) =2and C(#) = 0.
3. R(#)=0and |C(#)] = 2.

LEMMA (4.1). An intercalate matrix M is dyadic if and only if there exist sets
017 sie i3 for the rows and C for the columns with the property that the labels
of two rows have the same dyadic sum as the labels of two columns when, and
only when, such rows and columns determine an intercalation of M.

The role of Lemma (4.1) parallels that of Lemma (3.1). But now one must
findlabels ry, ..., rp € Nfor the rows, and labels ¢, ..., Cq € N for the columns,
¢ that

(4.1) ridrideda = 0, whenr;,rjceC determine an intercalation,
4.2) rier, @ daF 0, whenr,r;ceC determine a co-intercalation.
(£.3) rior; #0, fori,j=1..,p5 i#J

(4.4) c;®c; #0, fori,j=1...,4 i#£]

THEOREM (4.2). Let M be an intercalate matrix. Then either M is dyadic or
else it has an ill aligned family of intercalations.

Proof. Let A denote the coefficient matrix of the system (4.1) and let B
denote the coefficient matrix of the system of inequalities

Cq

where Bj, Bz‘and B; are the coefficient matrices of the systems (4.2), (4.3)
and (4.4), respectively. If the systems (4.1), (4.2), (4.3), and (4.4) have a
simultaneous solution, then M is dyadic, as is verified by relabelling the (i, j)-
color of M with r; @ ¢;. If any of these systems has no solution, then, by
Theorem (2.1), a row of B is obtained as a GF(2)-linear combination of the
rows of A. Depending whether such a row is in By, Bg or B3, we obtain one of
the three conditions for an intercalate matrix to be ill aligned.

Example (4.3). If M is an intercalate matrix of size 4m x 4n, having a
partition into 2 x 2 submatrices so that all, except one, are intercalations, then
M is not dyadic. Note that all the intercalations in the partition are ill aligned.

s e Fhan
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5. Connectedness criterion

An intercalate matrix is an extension of another intercalate matrix if the

latter appears as submatrix of the former.
Following Yiu [18], we will say that an intercalate matrix is:

e complete, if the colors in each row are a permutation of the colors in every
other row.

« connected, if the two submatrices induced by any bi-partition of its set of
columns have at least one common color.

e saturated, if whenever we extend it to an intercalate matrix by adding a
new row, and if in this new row at least one new color appears, then all the
other colors appearing in this new row are also new.

LEMMA (5.1). Any complete and connected intercalate matrix is saturated.

The columns of an intercalate matrix can be partitioned so that each
submatrix in this partition is connected and different parts have disjoint set
of colors. These parts are called the connected components (by columns) of the
matrix.

LEMMA (5.2). Every connected component of a complete intercalate matrix
is complete.

LEMMA (5.3). Any complete and connected intercalate matrix M, with at
least two rows and two columns, can be partitioned (up to isotopy) in the form

P P ]
M= s
[Ql Q2
where | g‘ land [P *] are the same matrices up to relabelling, Py is complete and

connected, the first row of Q1 is equal to the first row of Py, and Py and (1 h-ve
no common colors.

Proof. Consider a maximal set of rows determining a non-connected sub-
matrix P of M. It is not difficult to verify, using Lemmas (5.1) and (5.2), that
P has exactly two complete and connected components which can be arranged
to obtain matrices P; and P;. The partition of P induces a partition 1n xts
complement within M to obtain @, and @;. Permuting the columns of 2 J,
one can ensure that the first row of @, is identical to the first row of Ps. Hence
from this and the intercalacy of M, the required condition on the equality of
the submatrices follows.

THEOREM (5.4). A complete and connected intercalate matrix M is dyadic.

Proof. Proceed by induction on the size of M. The result is trivially true if
M has just one row or column. So assume M has at least two rows and two
columns. Apply Lemma (5.3) to M and let

r Pl P2
M‘[Qa Qa]



INTERCALATE MATRICES: 1. RECOGNITION OF DYADIC TYPE 63

be the matrix obtained from M by removing the first row [R; R3] of the
cubmatrix [@; Q]. Using the induction hypothesis one can conclude that
M’ is dyadic. Since g‘l | and {g‘z | are equal up to relabelling, one can assume
that the generators of the columns of ( 5 are obtained by adding 2* to every
column generator of | gll ], where k has been fixed adequately and the addition
is the dvadic one. Then the generator of the row {Ry Ro]is r & 2%, where ris

the generator of the first row of M".

COROLLARY (5.5). An intercalate matrix is dvadic if and only if it can be
« mbedded into a complete and connected intercalate matrix.

Example (5.6). Symmetric (hence connected) intercalate matrices are not
necessarily dyadic, as the following example shows.

J

ra b ¢ d e 1 2 3 4 5
b a h 1 j 6 3 2 1T 8
¢c h a [ & 9 10 11 8 7
T i f a g 10 9 12 13 14
e j k g a 15 16 13 12 17
16 9 10 15 ¢ [ I m n
2 3 10 9 16 [ a b o p
3 9 11 12 13 1 b a g ¢
4 7 8 13 12 m o g a h

!5 8 7 14 17 n p q h al

This matrix contains a 5 » 5 submatrix in its right upper corner which 1s not
dyvadic (see Example (3.3)).

6. Homogeneity criterion

Let R be a subset of N and let G(R) be the subgroup of (N, &) generated by
R. We denote by E(R) (O(R)) the subset of G(R) consisting of those elements
which are the sum of an even (odd) number of elements of R. E(R)is a subgroup
of G(R) of index less than or equal to two. For every x € O(R) we have
x 2 E(R) = O(R). We denote by /R) ({R)*) the dyadic matrix D[R : E(R)]
R : O(R)]). Since each row of (R) is a permutation of the elements of O(R),
it follows that {R) is complete. Furthermore, (R) is isotopic to {R)*.

LEMMA (6.1). (R) is a connccted intercalate matrix.
Proof. Let P and @ be a bi-partition of the set E(R), and assume that 0 € P.
Define Ag = {0} and

A, = {x = E(R) : x can be written as the sum of 2 elements in R}, fori > 1.

Since E(R) is the union of the A;, there must exist j > 1 suchthat A;_; C P
and A;Q # 0. Letx € A;NQ,sayx =115 &g Definey = x&ry$ra €
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A, < P. Because x:ky =ritry, it follows that ry & x = ro &y is a common
color in the partition of the matrix {R) induced by P and Q.

An intercalate matrix is c-embedded into another intercalate matrix if the
former is c-isotopic to a submatrix of of the latter.

LEMMA (6.2). If the matrix DIR : Clis connected, then D[R : C]is c-
embedded into (R).

Proof. Since DIR : C] is connected, it must be c-embedded into exactly
one of the connected components of the matrix D[R : N]. But each of these
components is c-isotopic to (R}, so the result follows immediately.

THEOREM (6.3). Any complete and connected intercalate matrix is isotopic
to (R for some subset R of N.

An intercalate matrix is homogeneous if there exists a subset R of N such
that each connected component of M is c-embedded into (R).

THEOREM (6.4). Let M be an intercalate matrix. Then M is dyadic if and
onlv if it is homogeneous.

Proof. Necessity follows directly by Lemma (6.2). For sufficiency, let R be a
subset of M such that the connected components of M are c-embedded into (R}).
We can assume that each of these components is c-embedded into a different
connected component of the matrix DIR : NJ. So clearly M is dyadic.

7. Duality criterion

The following definition is given in [18]. A partial intercalate matrix is
a matrix that may have some undefined colors, and such that (1) the defined
colors along each row and along each column are distinct, (2) whenever three
colors in a 2 « 2 submatrix are defined and two of them are identical, then the
fourth is also defined and such submatrix is an intercalation.

A partial intercalate matrix is said to support an intercalate matrix if it
is possible to determine all its undefined colors so that the resulting matrix is
intercalate. For example the partial intercalate matrix

i”a h

e oF b

L. ¢ d
does not support an intercalate matrix.

Let M = (m(r;, c;)) be a partial intercalate matrix with its rows indexed
by 71,....rp, its columns indexed by c1,..., ¢, and whose {distinct) colors
are dy, ..., d,. The dual matrix M = (m*(r;, dy)) of M is the p x n partial
intercalate matrix with its rows indexed by r1, ... , Tp, its columns indexed by
dy, ..., d,, and whose defined colors are ¢y, ..., ¢ m&(r;, dp) := c¢; if and only

it m(r,, ¢;) = dj, undefined otherwise. Observe that (M€ = M.
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THEOREM (7.1). An intercalate matrix M is dyadic if and only if its dual
supports a dyadic intercalate matrix.

Proof. The result follows by observing that in the group (N, @) the dyadic
sum & has the property r & ¢ = k if and only if r @ B = c. For the necessity
assume that the matrix M is of the form D[R : C] for some subsets R and C of
N. Then, by the observation above, the matrix M¢ supports the dyadic matrix
DR - K], where K is the set of distinct colors of M. For the sufficency assume
that D[R’ : K'] is the dyadic matrix supported by M¢. Let C’ and C" be the
sets of distinct colors of D[R’ : K'] and M°, respectively; C” C C’. Again by
the observation above, we have that M = D[R’ : C"1 (up to isotopy).

Example (7.2). The following process shows that the (bordered) 4 x 4 matrix
M is not dyadic.

1 2 3 4
1f{a b ¢ d
M=2 b a d ¢
3le g h f
4\f i J e
a bcd e f g h i J
1({1 2 3 4 .
e 22143
3 1 4 2 3
4 4 1 2 3
we introduce colors 5 and 6;
a bcdef g h i
1/1 2 3 4 5 6
e 2|2 14368 . 5
315 . 1 4 2 3 . (@
4 6 4 1 . . 2 3

This matrix does not support any intercalate matrix, so by Theorem (7.1), M
is not dyadic.
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