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1. INTRODUCTION

"Equal and similar solid figures are those contained by similar
planes equal in multitude and magnitude.

This is Definition 10 in Book XI of Euclid's Elements. (See HEATH
[1956] and LEGENDRE [1794] for a discussion.). Many authors have
pointed out that this is not properly a definition but a statement that should
be proved. Indeed, one should be more careful about just what the
hypothesis should be and what the terms mean. The two "solid figures" in
Figure 1.1 might be interpreted as a counter-example to the above

statement.

The polyhedron on the left is cut into two pieces and the top portion, a
tetrahedron, is put back inside the other half to get the polyhedron on the
right.

One way to avoid the difficulty of this example is to assume that all
the objects being considered are convex. Indeed, the first substantial
mathematical result concerning rigidity is the following.

Figure 1.1
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[CAUCHY 1813): Two convex polyhedra comprised of the
same number of equal similarly placed faces are superposable
or symmetric.

Cauchy's Theorem was the subject of a great deal of scrutiny as well
as inspiration for many generalizations, even though both were somewhat
belated. The proof was in two parts, one geometric and one topological,
both with certain flaws. The mistake in the geometric part was the more
serious and was finally corrected by Steinitz in STEINITZ and
RADEMACHER [1934]. The relatively minor mistake in the topological
part of the proof was found by HADAMARD [1907] and corrected by
LEBESQUE [1909]. The geometric argument is especially interesting, and
we will discuss it further later.

There are two main categories for generalizations coming from
Cauchy's Theorem. One is in the category of polyhedra and similar
discrete objects such as frameworks and hinged plates. The other
generalization is in the category of appropriately smooth surfaces. There
is also the question of exactly what "kind" of rigidity one is discussing, and
this applies to both categories. In Cauchy's Theorem one thinks of each of
the faces of the polytope as a "rigid" plate, and one stays in the
configuration space of convex objects. Then the rigidity result is a
statement about uniqueness in this space. On the other hand one can also
form a "linearized" definition of rigidity, called infinitesimal rigidity or
first-order rigidity, in both the discrete and smooth categories. However,
only in the discrete category has it been proved generally that infinitesimal
rigidity implies rigidity in the sense of there being no non-trivial
continuous motion of the object preserving its appropriate metric
character. Despite this, there are many similarities between the ideas in the
discrete category and the smooth category. Yet other "kinds" of rigidity
are second-order rigidity and pre-stress stability. These are natural
extensions of first-order rigidity and they are discussed in Section 5.

The study of rigid structures is large and there are many different
points of view. In CONNELLY [1988], CONNELLY [1990], CRIPPEN
AND HAVEL [1988], SUGIHARA [1986], and RECSKI [1989] there are
some interesting applications and relations to other areas that we will not
explore here. Since this is a handbook on convexity we shall try to restrict



this discussion to the intersection of convexity theory and the theory of
rigid structures. Nevertheless, this still leaves a great deal to be covered.
Because of personal interests and lack of space we shall deal less
comprehensively with the smooth category. For some older results in the
category of polyhedral surfaces see STOKER [1968]. In CRAPO and
WHITELEY [1995] there will be an extensive discussion of the geometry
of rigid structures in the discrete category in much greater detail. In
particular the chapter ROTH [1987], "The Rigidity of Frameworks Given
by Convex Surfaces", will provide many of the details left out here. Fora
discussion of some of the classical results in the smooth category see
EFIMOV [1962], NIRENBERG [1963], HICKS [1964], STOKER [1969],
and SPIVAK [1975, vol. 5].
The following is an outline of this chapter:

1. Introduction

2. Early Results
2.1 Cauchy's Proof of his Theorem
2.2 Smooth Analogues of Cauchy's Theorem
2.3 Some Counter-Examples and Flexes
2.4 Alexandrov-Pogorelov Theory

3. Basic Definitions and Basic Results
3.1 Frameworks and Tensegrity Frameworks
3.2 Rigidity and Global Rigidity
3.3 Infinitesimal Rigidity
3.4 Static Rigidity
3.5 Projective Invariance
3.6 The Rigidity Map

4. Infinitesimal and Static Rigidity Related to Surfaces
4.1 Griinbaum and Shephard's Conjectures
4.2 The Infinitesimal Version of Cauchy's Theorem
4.3 Alexandrov's Theory
4.4 Consequences of Alexandrov's Theory
4.5 E. Kann's Proof and Extension of Dehn's Theorem
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4.6 More Proofs and Extensions of Dehn's Theorem
4.7 Maxwell-Cremona Theory and Spider Webs

4.8 Rigidity, Convexity, and Combinatorics in Higher
Dimensions

5. Second-Order Rigidity and Pre-Stress Stability
5.1 The Definition of Second-Order Rigidity
5.2 Second-Order Rigidity and Convex Surfaces.
5.3 Pre-stress Stability
5.4 Global Rigidity and the Stress Matrix
5.5 Second-Order Duality
5.6 Polyhedral Surfaces Revisited
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2. EARLY RESULTS

We shall start with a discussion of some of the early results of

Cauchy and others that are in the spirit of elementary geometry and basic
differential geometry.
2.1 Cauchy's Proof of his Theorem. Cauchy's proof was in two
parts, a geometric part, where the convexity assumption was used in an
essential way, and a topological or combinatorial part where an Euler
characteristic argument is used, as well as the underlying manifold
structure. I like to call the basic geometric Lemma the "Arm Lemma”
since the two polygons invlved resemble an opening arm.

[CAUCHY 1813): Let A, B, ..., G represent a convex planar
or spherical polygon, and let A', B, ... , G' represent
another such convex polygon, where for the corresponding
lengths

AB=AB',BC=BC,..,FG=FG
and for the corresponding angles
/ABC < /AB'C', LBCD < LB'CD, ..., LEFG £ LE'F'G.
Then the for the last unmentioned length, AG < A'G', where
equality holds if and only if the two polygons are congruent.
(See Figure 2.1.1)

Figure 2.1.1

Cauchy attempted to prove this Lemma by induction on the number
of vertices "opening” the "arm" one joint (or vertex) at a time. The
trouble is that the intermediate configurations may not be convex, ruining
the induction hypothesis. This is the more serious mistake mentioned in the
introduction. Figure 2.1.2 shows the problem.
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Convex Not Convex Convex
Figure 2.1.2

Nevertheless, the Lemma is still true, and there have been various
alternate (correct) proofs that have been proposed. For example, see
STEINITZ AND RADEMACHER [1934], LYUSTERNIK [1966], or
LYUSTERNIK [1963]. In SCHOENBERG AND ZAREMBA [1967] there
is an especially clever and elementary proof. Indeed the discussion in
CHERN [1967] of the Lemma of SHUR [1921] is a pleasant generalization
that seems to work in the case the arm is piecewise smooth, thus including
both the discrete and smooth cases. See also EPSTEIN [1986] for an
analogue in the hyperbolic plane. The discussion in Section 4.1 of this
chapter is of a generalization replacing some of the equality constraints
with inequalities, as well as with different combinatorial arrangements.
This follows CONNELLY [1982] and provides yet another proof of the
Arm Lemma, but this time only in the discrete category. There is a short
discussion of other related references in CONNELLY [1982]. An easy
corollary of this Arm Lemma is the the following:

Let P and P' be two convex planar or spherical polygons
with the same number of corresponding sides of equal length.
Assign a + signor a - sign for those vertices of P, where
the internal angle increases or decreases, respectively, in going
from P to P'. (No sign is given to those angles where there
is no change.) Then either there are at least four changes in
sign as one travels around P, or there are no sign assignments
atall, and P and P' are congruent. See Figure 2.1.3.

Figure 2.1.3

The idea of the proof is as follows. Suppose there are only two sign
changes. Choose a line segment with its end points in the interior of two
edges of P separating the two signs. The Arm Lemma applied to one side
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of P implies that this line segment must increase in length in going to P'.
Similarly, the Arm Lemma applied to the other side in going from P' to
P also implies that the line segment must have the opposite change in
length, a contradiction. Thus there must be at least four sign changes, if
there are any at all.

The following is Cauchy's combinatorial Lemma.

(2.1) Suppose that + and - signs are assigned to some of the edges
of a triangulated (two-dimensional) sphere so that at each
vertex with some labeled edge there are at least four changes
of sign as one proceeds around the vertex. Then none of the
edges are labeled.

The proof of this Lemma is an argument using the Euler
characteristic of the sphere and counting the number of the number of sign
changes around each vertex as well as the number of sign changes in each
region defined by the edges that are labeled witha + ora - See
LYUSTERNIK [1963], for example, for a proof.

The proof of Cauchy's Theorem in the introduction now follows
easily. If P and P' are the two corresponding convex polyhedra, then
label an edge of P a + ora - depending on whether the dihedral angle
at the edge increases or decreases respectively. By taking a small sphere
centered at each vertex of P, the Corollary to the Arm Lemma implies that
there must be at least four changes in sign around each vertex with at least
one labeled edge coming into it. The combinatorial Lemma then implies
that there are no sign changes at all. Then it is easy to see that P and P’
are congruent.

These basic results of Cauchy come up again and they are applied in
many other contexts.

2.2 Smooth Analogues of Cauchy's Theorem. If M s a
Riemannian manifold, part of the structure that defines M is the degree of
differentiability of the coordinate maps as well as the implied Riemannian
metric obtained by integrating curves on the surface. The first rigidity
theorems had rather strong assumptions on the differentiability of M, but



after some effort these assumptions were weakened greatly. The first
smooth analogue to Cauchy's Theorem was the following.

COHN-VOSSEN [1936): Suppose that M and M’ are two
isometric, compact, closed, convex, analytic surfaces in R3.
Then M and M' are congruent (including possibly being
reflected copies of each other).

See STOKER [1969], LIEBMANN [1900] as well as BUSEMAN
[1958] for a discussion of this and related problems to follow in this
section. It was later shown how to remove the condition of being analytic.
Notice that this result is again a statement about the uniqueness of an object
in some space of convex surfaces. Later in HERGLOTZ [1943] an
extremely succinct proof of Cohn-Vossen's Theorem is presented, where
the surface need only be of the class C2 (that is, continuous second
derivatives) instead of analytic. See HICKS [1964] or CHERN [1951], for
example, for "modern" treatments of this proof. With some imagination,
one can see certain similarities between Herglotz' proof and Cauchy's
proof. For example the following Lemma comes from Herglotz.

Let Q(x,y) and Q'(x,y) be two positive definite quadratic
forms in two variables with the same determinate when
expressed as symmetric two-by-two matrices. Then the
quadratic form given by the difference Q - Q' is either
indefinite or identically zero.

The idea is that the equations Q(x,y) =1 and Q'(x,y)=1 represent
two ellipses (centered at the origin) with the same area. If they are not
identical, then there must be four changes in sign as one proceeds around
the unit circle of directions in the plane. See Figure 2.2.1.

S

Figure 2.2.1




Loosely speaking, quadratic forms are used to represent the infinitesimal
"bending” near a point in the smooth surface. The above Lemma indicates
that as one proceeds around the circle of directions at a point on the
surface, either there are four times when there is a change as to which
surface bends the most, or the surfaces are infinitesimally isometric at that
point. It seems to me that this Lemma is a smooth analogue to Cauchy's
Corollary to his Arm Lemma. But in the smooth category this Lemma is
quite simple. Smooth surfaces have an infinitesimal symmetry that is
lacking in polyhedral surfaces. Perhaps this is why Herglotz' proof is so
much easier than Cauchy's, after one gets past the fundamentals in each
category. The other half of Herglotz' argument involves an integral
formula, and this seems to play the role of the Euler characteristic
argument in Cauchy's combinatorial lemma.

2.3 Some Counter-Examples and Flexes. In the results mentioned
above, both surfaces were assumed to be convex. The consequence was
that that there was only one such object in the given category. In
particular, this means that there is no continuous deformation, preserving
the appropriate metric structure and the convexity. A continuous
deformation of the surface, preserving the metric, is what I call a flex . It
is non-trivial if it is not the restriction of a rigid motion of the ambient
Euclidean space.

On the other hand, if only one of the surfaces is assumed to be
convex, then there can be difficulties. For example, if one considers the
"piecewise linear" category, then an example similar to the example of
Figure 1.1 exists even with a non-trivial continuous flex, each with the
same polyhedral metric. Furthermore this flex can start with a convex
surface as in Figure 2.3.1.

Figure 2.3.1



The top of the tetrahedron is sliced off by a continuously moving
plane and then "popped in" (i.e. reflected inside through the plane). This
is something like the way-one might turn a paper bag inside out. There is a
"crease” that moves continuously along some of the faces of the
polyhedron.

Of course in Cauchy's Theorem each face of the polyhedron is
assumed to be a rigid "plate”, and no such continuous creasing is allowed.
So for Cauchy's hypothesis in his Theorem there is no such flex. When
there is no such non-trivial continuous flex, we say that the object is rigid.

A natural question then comes up: Is convexity really needed for the
rigidity of a polyhedral surface with rigid faces? Apparently even Euler
conjectured that there was no such continuous flex. This question and
related results are discussed explicitly in GLUCK [1975]. Nevertheless a
counter-example was found in CONNELLY [1978]. This is an embedded
polyhedral surface in three-space with rigid faces that flexes” See
CONNELLY [1979] for the best discussion of this example as well as a
very simple example by K. Steffan roughly based on the original example
in CONNELLY [1978]. See also the description in KUIPER [1978].

What about the same question in the smooth category? Is a smooth
surface convex in three-space rigid, if it must stay in the category of
smooth surfaces? Here one must be careful what the definition of smooth
means. The answer in the C! category (continuous first derivatives) is
surprising. According to N. H. Kuiper, following the ideas of KUIPER
[1955a] and KUIPER [1955b] (see also NASH [1954)), if one takes any Cl
smooth surface, there is a non-trivial flex in the category of C!l surfaces.
In particular, the standard unit sphere in three-space must have a non-
trivial C! flex. It turns out (see Section 2.4) only the initial configuration
can be convex. The surface must immediately move into some sort of
"prune-like" shape. I know of no explicit description of such a flex or
even of an explicit C! embedding other than the original sphere.

In the C2 category (continuous second derivatives) of course no
such examples exist. In this category one can define the Gaussian curvature
of a surface. The space of C2 closed surfaces with strictly positive
Gaussian curvature is open in the space of C2 surfaces. If the Gaussian
curvature of a closed surface is positive at each point, then the surface must
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be convex. Hence Hergoltz' uniqueness Theorem implies that such a
surface is rigid at least in the class of C2 surfaces.

If a smooth surface is C2, then I know of no case when a
(necessarily non-convex) surface flexes staying in the C2 category, even
when the surface is immersed. (In the smooth category, a manifold is
immersed when the differential of each coordinate map is one-to-one.)

2.4 Alexandrov-Pogorelov Theory. Although it may seem as though
the smooth and piecewise-linear categories are distinct with only vague
similarities, it turns out that there is a common generalization. For
Cauchy-type theorems this appears to be the ultimate as far as results about
the uniqueness in the class of convex surfaces. This follows the work of
ALEXANDROV [1958] and POGORELOV [1973], which is a recounting
of earlier work.

Given any two points p and q on a convex surface in n-space,
consider any continuous arc that lies in the surface that connects p and q.
The length of the shortest possible such arc is called the distance between p
and q. This length is always a well-defined ‘finite number, when, say, the
convex surface is the boundary of a compact convex set. This distance
function is easily seen to be a metric function for the surface. See
ALEXANDROV AND ZALGALLER [1967] for a careful discussion.

If the surface is the boundary of a compact convex polytope in three-
space, then intrinsically in the neighborhood of any point that is not a
vertex of the polytope, the metric function is the same as the metric defined
in the plane. At an interior point of an edge, intrinsically the surface is just
a flat surface folded, and so its metric is the same as the metric in the
plane. If any compact topological metric space has the property that all but
a finite number of points have neighborhoods that are isometric to open
subsets of the Euclidian plane, and the other points have neighborhoods
isometric to a cone over a circle with the metric explained above, then
Alexandrov defines this as a convex polyhedral metric. The following
existence theorem of Alexandrov is related closely to a rigidity result that
will be explained later.

ALEXANDROV [1958]: Any convex polyhedral metric given
on a manifold homeomorphic to a sphere is realizable as a
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compact convex polytope, possibly degenerating into a doubly
covered plane polygon.

This result is also an important steppingstone on the way to proving
the following result of Pogorelov, which he called a "monotypy” theorem.

POGORELOV[1973): Isometric closed convex surfaces in
three-space are congruent.

This very powerful result applies equally well to the smooth
category as to the piecewise-linear category. Note how these results
concentrate on the intrinsic metric rather than on any other further
underlying structure. In Cauchy's theorem, for instance, there was the
further structure of the faces of the polytope, which act as rigid "plates”.
There are many more such important results in POGORELOV [1973].
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3. BASIC DEFINITIONS AND BASIC RESULTS

In order to explain the results that follow and to provide a more
unified and precise point of view in the discrete category, we discuss the
concept of a (tensegrity) framework and the various kinds of associated
rigidity. This also serves to set the notation. The discussion in Section 3.1
to Section 3.3 has evolved from the point of view of ALEXANDROV
[1958], GLUCK [1975], ASIMOW AND ROTH [1978], ASIMOW AND
ROTH [1979], ROTH AND WHITELEY [1981], CRAPO AND
WHITELEY [1982], which was again reformulated in CONNELLY
[1988a], CONNELLY [1988b].

3.1 Frameworks and Tensegrity Frameworks. A configuration is a
finite collection p of n labeled points (p1, p2, ---,Pn), Where each point
pi (also called a vertex) is in a fixed Euclidean space Rd. A configuration
p = (p1, p2, ---,pn) and a configuration q = (q1, q2, ...,.qn) are congruent
if there is a congruence of Rd that takes p; to gq; forall i=1,2, .., n

A tensegrity graph G is an abstract graph on the vertices 1,2, ..., n
where each edge is labeled as either a cable, a strut, or a bar. The idea is
that cables cannot increase in length, struts cannot decrease in length, and
bars cannot change in length at all. The pair G and p is called a
tensegrity framework and it is denoted as G(p).

In case all edges (or members) of the graph G are only bars, G(p)
will be called a bar framework. It often turns out that many of the
geometric situations that come up are conveniently and reasonably
expressed as statements about tensegrity frameworks even if the primary
object of interest is a bar framework.

It is also pleasant to show a framework visually. We use the
following notation.
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A vertex in the configuration is represented by @)
A cable is represented by O----em---- O

A bar is represented by Oo—>0

A strut is represented by = O

In Figure 3.1.1 we show some examples, a tensegrity framework and
two bar frameworks in the plane. Note that there is no requirement that a
vertex of the configuration be placed at the intersection where two
members (thought of as line segments) cross.

Figure 3.1.1

3.2 Rigidity and Global Rigidity. We say that a tensegrity
framework G(p) dominates another tensegrity framework G(q) (with
the same graph), if the length of each cable of G(q) is no longer than the
length of the corresponding cable of G(p), the length of each strut of
G(q) is no shorter than the length of the corresponding strut of G(p), and
the length of each bar of G(q) is the same length as the corresponding bar
of G(p). Hereif {ij} is a member of G, then [pi - pjl is its length,
where we use vector notation throughout.

For a fixed graph G it is clear that this relation of dominance is a
only a partial ordering. On the other hand, when all the members of G
are bars, this relation is an equivalence relation. So for bar frameworks,
we say that G(p) is equivalent to another bar framework G(q) when one
of them dominates the other by the above definition. In other words,
G(p) is equivalent to G(q) when the corresponding bars have the same
length. Note that when two configurations p and ¢ are congruent, then
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G(p) always dominates G(q), and indeed G(p) is equivalent to G(q) for
bar frameworks.

Fix a particular tensegrity framework G(p) in Rd. We say that
G(p) is globally rigid in R4 if, when G(p) dominates another tensegrity
framework G(q) in Rd, then p and q are congruent. For example, in
Figure 3.1.1, the tensegrity framework on the left is globally rigid in the
plane, and the other two bar frameworks are not. The framework on the
right even has a continuous family of mutually non-congruent equivalent
configurations. The framework in the middle has equivalent non-
congruent configurations that involve the change of only the rightmost
vertex, for example.

Global rigidity is a very simple and natural concept, but it is also a
very strong property to impose on a framework. We will see later how it
comes up in the discussion of the proof of Cauchy's Arm Lemma as well as
in the resolution of some conjectures in GRUNBAUM AND SHEPHARD
[1975].

Meanwhile, a very basic property of frameworks is simply their
rigidity. We say that the family of configurations p(t) in Rd, for
0<t<1, is a (continuous) flex of the (tensegrity) framework G(p), if
each coordinate of each vertex is a continuous function of t, p(0) = p, and
G(p) dominates each G(p(t)) forall 0 <t <1. We say that the flex p(t)
is trivial if each p(t) is congruent to p. If G(p) admits only trivial
flexes, then we say that G(p) is rigid in Rd. For example, the left
framework and the middle framework in Figure 3.1.1 are rigid in the
plane, whereas the rightmost framework is not. Clearly if a (tensegrity)
framework is globally rigid in R4, then it is rigid in Rd. The middle
framework in Figure 3.1.1 is a counter-example to the converse statement.
See the discussion in CONNELLY [1988a] for some equivalent definitions.

The statement of Cauchy's Theorem can be reformulated in terms of
frameworks and configurations. Each vertex of the polytope is a vertex of
the configuration, and each edge of the polytope corresponds to a bar of
the framework. But since each face is to be regarded as a rigid plate, it is
convenient to specialize to the case when each face of the polytope is a
triangle. The conclusion of Cauchy's Theorem is a statement similar to the
property of global rigidity, except that the configurations are restricted to
those coming from convex polytopes with triangular faces instead of all
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configurations in three-space. In any case, at least in the triangular face
case, it turns out that Cauchy's Theorem does imply that the corresponding
framework is rigid in three-space. We shall have more to say about this in
Section 4.

3.3 Infinitesimal Rigidity. Even if one's main interest is only the
question of whether a certain class of frameworks is rigid, one needs some
methods. A very natural technique is to "linearize" the problem. That is,
one tries to find some system of linear equations (or linear inequalities)
that will detect rigidity. One approach is to "differentiate” the member
constraints.

An infinitesimal flex of a framework G(p) in Rd is an assignment
of a vector pi' in Rd to each vertex i of G such that for each member
{ij} of G,

<0 if {i,j} is a cable

3.1) @i - )i - pj) §= 0 if {i,j} is a bar
>0 if {i,j} is a strut.

The product that is used for the vectors above is the ordinary dot product
(or inner product) in Rd. We denote the infinitesimal flex by p' = (p'1,
P'2, ... , P'n), another configuration. We imagine p;' as a vector based at
pi. We say that p' is trivial, if p' is the derivative of a rigid congruence
of all of Rd restricted to the vertices of p at t=0. It turns out in
dimension three that p' is trivial if, for each i, pi'=r * pi. + u, where r
and u are fixed vectors in three-space and x represents the cross
product. See CONNELLY [1988a] for a further description of such trivial
infinitesimal flexes. We say that a (tensegrity) framework G(p) in Rd is
infinitesimally rigid if it has only trivial infinitesimal flexes.

So p' is analogous to a vector field on a smooth manifold (in the
smooth category). If we have a flex p(t) of a framework G(p), and each
of the coordinates of p(t) are differentiable at t=0, then (3.1) holds
where p' is the derivative of p(t) at t=0. The square of the member
length {i,j} is (i(®) - pj®)) (Pi(V) - pj(t)). The derivative evaluated at
t=0 gives (3.1). One must be careful though. Even if the flex p(t) is
non-trivial, it may turn out that the infinitesimal flex p' is trivial. Simply
replace the parameter t by t2, for example.
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In a visual representation of a framework, we will use a small arrow
at pj to represent an infinitesimal flex pi'. If there is no arrow it will be
understood that pi' = 0. Figure 3.3.1 shows two examples of bar

frameworks in the plane that have non-trivial infinitesimal flexes.

Figure 3.3.1

The infinitesimal flex for the framework on the right comes from a smooth
flex of the framework. For the framework on the left, there is no such
(smooth) flex. In other words, both frameworks are not infinitesimally
rigid in the plane, but the one on the left is rigid nevertheless.

The following basic result helps to justify the study of infinitesimal
rigidity. See CONNELLY [1988a] as well as ROTH AND WHITELEY
[1981] and CONNELLY [1980] for an explicit proof.

If a tensegrity framework G(p) is infinitesimally rigid in Rd
then it is rigid RA.

As far as I know there is no analogous result in the smooth category,
although both the notions of rigidity and infinitesimal rigidity have
appropriate analogues.

3.4 Static Rigidity. The concept of infinitesimal rigidity seems to be
motivated by the "kinematics" of a framework, that is by its motions (even
if they are "infinitesimal”). For engineering structures though, often
another point of view is taken. The idea is that the "stability" of a structure
should have more to do with forces or "loads" acting on it and the
capability of the structure to "resolve” these forces.

We say that a load or force F acting on a framework G(p) in Rd
is an assignment of a vector F; in Rd to each vertex i of G. Formally
F is simply another configuration in Rd, but the words are meant to
suggest a physical force. Note that the force F is really defined for the
configuration p, independently of the graph G.

17



We say that a stress w for a framework G(p) in Rd is an
assignment of a real number wjj = wji for each member {i,j} of G.
We regard wjj as the tension or compression in the member {ij}. We
say that « resolves a load F if the following vector equation holds for
each vertex 1 of G,

(3.2) F;i + Y wij(pj - pd) = 0,
J

where the summation is taken over all the vertices j adjacentto i in G.
(Alternatively we can define wjj =0 for each non-member of G, and
sum over all j). Equation (3.2) represents an equilibrium at each vertex
1.

It turns out that "most" forces cannot be resolved by any framework.
So we say that a force F is an equilibrium force (or an equilibrium load)
at the configuration p in Rd if for every trivial infinitesimal flex p' at
the configuration p, the following holds:

Y Fipi' =0,
1

where the summation is taken over all vertices i. Physically this means
that when F is regarded as giving velocities at the configuration p, it has
zero linear and angular momentum. See CONNELLY [1988b] or ROTH
AND WHITELEY [1981] or CRAPO AND WHITELEY [1982] for a
discussion of other equivalent conditions and reformulations for what it
means to be an equilibrium force.

Now it turns out that it is possible for some frameworks to resolve
an equilibrium load. On the other hand, a cable cannot support
compression and a strut cannot support tension, so we define one further
restriction on stresses. We say that a stress « for a framework G(p) 1S
proper if wij >0 when {ij} is a cable, and wjj <0 when {ij} isa
strut. (There is no condition when {i,j} is a bar.)

We say that a tensegrity framework G(p) in Rd is statically rigid
if every equilibrium load F can be resolved by a proper stress «. The
frameworks in Figure 3.4.1 have equilibrium loads indicated. The
framework on the left is not statically rigid, and the given load cannot be
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resolved The framework on the right is statically rigid, and the resolving
proper stress is indicated.

12,7 || an
“han||
< CO= 5 —O—>
12 || 1
Figure 3.4.1 d

A very basic result now connects this definition to infinitesimal
rigidity. See CONNELLY [1988b] or ROTH AND WHITELEY [1981] for
a proof. Section 3.6 has some information concerning a proof.

(3.3) A tensegrity framework G(p) in R4 is infinitesimally rigid
if and only if it is statically rigid.

We also mention one more result that is very useful for relating the
static rigidity (or the infinitesimal rigidity) of a tensegrity framework to
the static rigidity of a bar framework. A self stress for a tensegrity
framework G(p) is a stress that resolves the zero load. So (3.2) holds
with F =0 The following is the main result of ROTH AND WHITELEY
[1981].

(3.4) Let G(p) be a tensegrity framework in R4. Then G(p) is
statically rigid in R4 if and only if there is a proper self
stress that is non-zero on each cable and strut, and G'(p) is
statically rigid, where G' is obtained from G by replacing
each member with a bar.

3.5 Projective Invariance. It is clear that the definitions of
infinitesimal rigidity and static rigidity for a framework G(p) do not
depend on the way in which the configuration p is realized in R4, In
other words, if each of the points p; of p is transformed by the same
congruence g: R4 — RI, then the framework G(p) is statically and
infinitesimally rigid if and only if G(g(p)) is statically and infinitesimally
rigid, where g(p) = (g(P1), ---,.g(Pn)). With a bit more thought it is easy to
see directly that at least static rigidity is preserved when g is only affine

19



linear. (Of course then infinitesimal rigidity is preserved as well.)
However, even more is true.

Suppose that the points of one configuration p lie in an affine (d-1)-
dimensional subspace S of some larger dimensional space. Let ¢ be a
point that does not lie in S, and let S' be another (d-1)-dimensional
subspace that does not contain ¢. Then we can project the points of p
from c¢ to the points of another configuration q in S'. See Figure 3.5.1.

Figure 3.5.1

Notice that a cable may be transformed into either a cable or a strut. To
see which, suppose g(pi) = q; and g(pj) = gj, where {i,j} is a member of
G. If c lies between p; and q; but not between pj and gj, then {i,j} is
changed from a cable to a strut or from a strut to a cable. Otherwise,
when ¢ is not between p; and g; and not between pj and qj (or c is
between p; and q; and is between p; and gj) {ij} is left unchanged.
This defines a rule for changing the tensegrity graph G to another
tensegrity graph G'. Then the framework G(p) is statically and
infinitesimally rigid in S if and only if G'(g(p)) is statically and
infinitesimally rigid in S'. See ROTH AND WHITELEY [1981] for a
proof in this general situation of tensegrity frameworks. For the case of a
bar framework there have been several proofs from several different
points of view. For example see WUNDERLICH [1977], CRAPO AND
WHITELEY [1982b], WHITELEY [1987a], and WEGNER [1985].

In fact, with the rule described above, it is not hard to see that one
does not even have to have the vertices of the configurations lie on a
hyperplane. Let c*G(p) denote the framework obtained by joining the
vertex ¢ with a bar to all the vertices of some framework G(p) in Rd.
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Suppose that G(p) lies in a hyperplane S as before, but the points of q

and ¢ are only required, for each i, to be such that pj, qi, and c are

colinear, and ¢ is distinct from both p; and qi. Then we have the

following:

(3.5) There are natural linear isomorphisms from the infinitesimal
flexes of G(p) in S8 to the infinitesimal flexes of c*G(p) in

R4, fixing c, to the infinitesimal flexes of c*G'(q) in R4,

Jixing c.

In particular, we can see that G(p) is infinitesimally rigid in the
hyperplane S if an only if a projection of p into the unit sphere in Rd is
infinitesimally rigid in the sphere. (Le. it is infinitesimally rigid in the
sense that all the infinitesimal flexes tangent to the sphere are the time 0
derivative of a rigid congruence of the sphere.)

We can see that it is reasonable to look at the problem of static and
infinitesimal rigidity, at least for bar frameworks, from the point of view
of projective geometry. This is essentially what is done in CRAPO AND
WHITELEY [1982b]. The property of static rigidity is reformulated
entirely in terms of homogeneous coordinates of projective space. The
question of the projective invariance is incorporated in the definitions and
terms of a particular algebra, the Cayley Algebra, that is is especially
convenient for projective geometry. One can then use the Cayley algebra
to get some general algebraic information about those special
configurations of bar frameworks whose space of self stress is of a larger
dimension than the minimum possible for the given graph. This is done in
WHITE AND WHITELEY [1983]). A similar approach is taken in WHITE
AND WHITELEY [1987] but for infinitesimal motions.

But one other case arises. In projective geometry, if we regard
projective space as extended Euclidean space, there are points "at infinity".
Suppose some points of our configuration are at infinity and they are to be
held fixed for infinitesimal flexes. Then in the linear equations (3.1) that
define infinitesimal rigidity we can replace the vector pj - pj by a unit
vector if p;j is at infinity and p; is not. Note that pj'= 0. In some cases
it is convenient to transform the configuration in such a way that some of
the points are at infinity, and, modulo trivial infinitesimal flexes, we can
often assume that these points at infinity are fixed infinitesimally. This will
be useful in Section 4.5. This is also done in the smooth category where
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the projective transformation is called a Darboux Transformation. See
DARBOUX [1896].

3.6 The Rigidity Map. We can shed a little light on what is going on
in Theorem (3.3). Regard a configuration p of n points in Rd as a
single point in Rnd, the concatenation of the n column vectors of Rd
into one single column vector. Suppose that a tensegrity graph G has e
members . To each configuration p and each member {i,j} of G we
associate the square of its length |pj - pil2. This defines a smooth map,
which we call the rigidiry map,
f: Rnd — Re
given by
f(p) = (..., Ipj - pil%,...)-

The differential of this map is a linear map dfp :Rnd — Re. We
define the matrix (divided by 2) of this map (with respect to the usual
bases) to be the rigidity matrix R(p). Each row of R(p) corresponds to
a member {i,j} of G. The columns of R(p) are organized into n sets
of d columns. Furthermore, row {i,j} of R(p) consists of all zeros
except for the two sets of d entries corresponding to i and j. The
entries corresponding to i are the coordinates of p; - pj and the entries
corresponding to j are the coordinates of pj - pi. It is easy to see that if
q is another configuration, again regarded as a column vector in Rnd,
then the {i.j} coordinate of R(p)q is simply (pi- pj)(qi - qj). Thus p'
is an infinitesimal flex of G(p) if and only if the {i,j} coordinate of
R(p)p' is non-positive for a cable, non-negative for a strut, and zero for a
bar. For a bar framework this is simply the condition R(p)p' = 0.

As mentioned in Section 3.4 any tensegrity framework G(p) has the
trivial infinitesimal flexes. These will always be in the kernel of R(p). In
Rd the dimension of the space of trivial infinitesimal flexes is d(d+1)/2.
When d=2, the dimension of trivial infinitesimal flexes is 3, and when
d=3, the dimension of trivial infinitesimal flexes is 6. We have the
following interpretation of infinitesimal and static rigidity. See ASIMOW
AND ROTH [1978], ASIMOW AND ROTH [1979], and CONNELLY
[1988b] for a discussion of this result.
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Let G(p) be a bar framework in R4, where G has n
vertices and they do not all lie in a hyperplane. Then G(p) is
infinitesimally rigid if and only if the rank of R(p) s
nd - d(d+1)/2.

So in the plane, for infinitesimal rigidity, this rank must be 2n-3,
and in three-space it must be 3n-6.

The e rows of the rigidity matrix R(p) correspond to the
members of G and if the rank of R(p) is to be maximal (and G(p) is to
be infinitesimally rigid), then we must have

(3.6) e 2 nd - d(d+1)/2.

When G has all bars, if e = nd-d(d+1)/2, then the rows of R(p) are
independent if and only if G(p) is infinitesimally rigid. The row relations
are related to stresses.

It is easy to check that a force F, regarded as an e-dimensional row
vector, is resolved by the stress , also regarded as an e-dimensional row
vector, if and only if F + wR(p) =0. This is one approach to the duality
statement of (3.3). Recall that a stress « for a framework G(p) is a self
stress if the equilibrium equation as in (3.2) holds at each vertex i with Fj
= 0. Then wR(p) =0 is equivalent to (3.2) for each i. Puting this
information together, we get the following:

(3.7) Let G(p) be a bar framework in R4 with n vertices and e
edges, where e = nd - d(d+1)/2. Then G(p) is
infinitesimally rigid if and only if G(p) has only the zero self
stress.

This is one approach to an infinitesimal version of Cauchy's
Theorem, which we will discuss in Section 4.2.
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4. INFINITESIMAL AND STATIC RIGIDITY RELATED TO
SURFACES

Now that we have the language of frameworks and some of the basic
tools, we can apply them to some problems involving convexity.

4.1 Griinbaum and Shephard's Conjectures. In GRUNBAUM AND
SHEPHARD [1975] as well as GRUNBAUM AND SHEPHARD ([1978]
there is a very interesting discussion of the rigidity of tensegrity
frameworks in the plane. In particular, their discussion relates to some of
the problems concerning Cauchy's Theorem and his Arm Lemma.
Although Griinbaum and Shephard did not put their questions exactly into
the language of frameworks, it is natural to do so.

Suppose that p is a configuration of points in the plane such that the
vertices (p1, P2, ..., pn) = p form the vertices, in order, of a convex
polygon. (This also means of course that no three vertices are colinear.)
Suppose that the edges of the polygon {1,2}, {2,3}, ..., {n-1,n}, {n,1} are
bars. Griinbaum and Shephard conjectured that for various ways of adding
extra cables (which are necessarily on the inside of the polygon) the
resulting framework was rigid in the plane. The two frameworks on the
left in Figure 4.1.1 are some examples. The framework on the right is the
same as the framework in the middle, except that the bars and cables have
been interchanged.

Figure 4.1.1

It turns out that all three of the above frameworks are rigid in the
plane. Griinbaum and Shephard conjectured the following:

24



(4.1) Let G(p) be a rigid tensegrity framework in the plane, where
the vertices form a convex polygon, all the external edges are
bars, and cables are the only other members. Then the
framework, obtained by replacing all the bars by cables and
the cables by bars, is also rigid in the plane.

For example, this conjecture says that since the framework in the middle of
Figure 4.1.1 is rigid, then the framework on the right is rigid. On the
other hand the converse statement is not true in general. In Figure 4.1.2
consider the following frameworks in the plane based on a regular
hexagon. The framework on the right with cables on the outside is
(globally) rigid in the plane, whereas the framework on the left, obtained
by interchanging the cables and bars, is not even rigid in the plane. In
rigidity there is an important asymmetry between the roles that cables and
bars play (or the roles that cables and struts play).

Figure 4.1.2

In CONNELLY [1982] Conjecture (4.1) was proved. It is a
corollary of the following theorem. See Section 5.4 for a further
discussion.

(4.2) Let G(p) be a tensegrity framework in the plane, where the
vertices form a convex polygon, all the external edges are
cables, struts are the only other members, and G(p) has a
proper non-zero self stress. Then G(p) is globally rigid in
R4, forall d2 2.

The framework on the left in Figure 4.1.3 is an example.
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Figure 4.1.3

The framework on the right is also globally rigid in any dimension,
since it is obtained from the framework on the left by simply by replacing
all but one of the cables by a bar.

It is also shown in CONNELLY [1982] that if a tensegrity
framework G(p) is rigid in Rd and G has at least one cable or strut,
then G(p) has a proper non-zero self stress (although it may be zero on the
given cable or strut). Thus for the proof of (4.1) we obtain a non-zero self
stress @ from the rigidity of G(p). Then -w serves as the proper self
stress for the framework in (4.2), where the cables and bars are
interchanged.

For many frameworks coming from convex polygons it is possible to
tell directly that the framework has a proper self stress and thus is globally
rigid in the case of (4.2). Let (p1,p2,...Pn) =P bea configuration in
the plane consisting of the vertices of a convex polygon as before. Let all
of the external edges {1,2}, {2,3}, ..., {n-1,n}, {n,1} be the cables, and
let {13}, {2,4}, ..., {n-2,n} be the struts. (Notice that two consecutive
struts in the cyclic sequence are missing.) I called such a tensegrity
framework G(p) a Cauchy polygon. The framework on the left in Figure
4.1.3 is an example of such a Cauchy polygon. It turns out (see
CONNELLY [1982] and ROTH AND WHITELEY [1981]) that any Cauchy
polygon has a non-zero proper self stress. Thus it is always globally rigid.

Consider a polygonal framework such as the one on the right in
Figure 4.1.3. When a pair of bars, adjacent to a vertex pj, have a strut
connecting the other two vertices pi-1 and pj+l, it is equivalent to the
condition that the internal angle at pj is not permitted to decrease. This is
precisely the condition for Cauchy's Arm Lemma. So if there were
another configuration (even in three-space), where each angle at p2, p3,...,
pn-1 increased or stayed the same, the distance between pj and pi+1
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would be fixed for i=1, 2,...,n-1, and the distance between p1 and Ppn
would decrease, then this would contradict the global rigidity of Cauchy
polygons. Thus we have yet another proof and generalization of Cauchy's
Arm Lemma as mentioned in Section 2.1.

Many of the frameworks mentioned in GRUNBAUM AND
SHEPHARD [1975] were rigid but not globally rigid. For example, the
middle and the left frameworks of Figure 4.1.1 are infinitesimally rigid in
the plane by applying (3.4). Thus they are rigid, but it can be easily seen
that they are not globally rigid. Also any Cauchy polygon is infinitesimally
rigid in the plane. Then, if one changes every cable to a strut and every
strut to a cable, it is easy to see that infinitesimal rigidity is preserved.
(This is true for the infinitesimal rigidity of any framework.) The
frameworks in Figure 4.1.2 naturally are not infinitesimally rigid.

Ben Roth in ROTH AND WHITELEY [1981] suggested another
approach to Conjecture (4.1). He conjectured the following:

(4.3) Let G(p) be a rigid tensegrity framework in the plane, where
the vertices form a convex polygon, all the external edges are
bars, and cables are the only other members. Then G(p) is
infinitesimally rigid in the plane.

As a corollary we find that the framework G'(p), obtained by reversing
the cables and bars, is infinitesimally rigid in the plane. (The bars can be
replaced by struts in this case for the infinitesimal theory.) Thus G'(p)
is rigid in the plane. So this conjecture by itself implies Griinbaum and
Shephard's conjecture (4.1).

In CONNELLY AND WHITELEY ([1990] Conjecture (4. 3) is
proved. It is also related to the result (4.2), but depends on a higher order
analysis. An application of this result, for example, is that the hexagon on
the left in Figure 4.1.2 is not rigid, since it has too few members to be
infinitesimally rigid. We will say more about this in Section 5.

4.2 The Infinitesimal Version of Cauchy's Theorem. In view of
our discussion of infinitesimal rigidity, it is natural to ask whether convex
polyhedra are infinitesimally rigid in three-space. Given a compact convex
polytope P in three-space, one may associate to P a bar framework
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G(p). The vertices of G(p) are the vertices of P, and the edges of G(p)
are the edges of P. One must be careful though. With this description, it
is not automatic that the faces of P are held rigid by the bars of the
framework G(p). Indeed, if any face of P is not a triangle, the
framework G(p) is not rigid. (See Section 4.4.) For example, the bar
framework associated to a cube is very flexible. Nevertheless, the
following result of M. Dehn does show that when the faces are triangular
there is no problem.

(4.4) Let P be a compact convex polytope in three-space with all
Jaces triangles. Then the associated bar framework G(p) is
infinitesimally rigid in three-space.

See DEHN [1916] for his original proof. See also WEYL [1917]. We will
also describe a very simple proof that is basically in ALEXANDROV
[1958], repeated and clarified in GLUCK [1975] and ASIMOW AND
ROTH [1979].

We sketch Dehn's original proof of (4.4). His idea was to calculate
the rank of the rigidity matrix R(p) (as defined in Section 3.5) by means
of a Lagrange expansion of the determinate of the submatrix obtained by
removing three rows corresponding to the edges of a triangle of a face of
P and removing the nine rows corresponding to the three vertices of the
same triangle. (This amounts to fixing those three points.) Each term in
this expansion corresponds to an oriented graph on the remaining vertices
of G (and conversely) such that there are exactly three edges coming into
each vertex. Then it is possible to perform an operation on this oriented
graph that creates another oriented graph with the same sign on the
comresponding term in the Lagrange expansion. The proof is completed
when it is shown that any such oriented graph can be obtained from any
other by a sequence of such operations. All the terms must have the same
sign; the determinate is non-zero; and the rank of R(p) is 3n-6 (where
n in the number of vertices of G), which is what is needed to show that
G(p) is infinitesimally rigid in three-space.

Alexandrov's idea, as discussed in GLUCK [1975], was to calculate
the the row rank of R(p). Since each face of P is a triangle, if there are
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e edgesin P (and G), then 2e= 3f, where f is the total number of
triangular faces in P. Then Euler's formula for the surface of P states:

n-e+22ef3=2,
where n is the number of vertices of P. This implies that
e=3n-6.

In dimension three this is precisely the minimum number of edges needed
for a graph with n vertices to be infinitesimally rigid. By (3.7) G(p) is
infinitesimally rigid in R3 if and only if it has only the zero self stress.

There is a very simple argument to show that a non-zero self stress
does not exist. At each vertex of G(p) the equilibrium condition (3.2)
(with F;j = 0) implies that either all the stresses at that vertex are zero, or
there are at least four changes in the sign of the stresses wjj; as one
proceeds around the point p;. This is because if there were exactly two
changes in sign, then a plane through p; could be found that separates
those edges with a positive stress from those edges with a negative stress.
See Figure 4.2.1.

Figure 4.2.1

But that contradicts the equilibrium condition for the vertex i, since in the
equilibrium equation (3.2), the vector components perpendicular to the
plane all have the same sign Hence the conditions for Cauchy's
combinatorial Lemma (2.1) are satisfied. None of the stresses on the edges
of G are actually strictly positive or strictly negative. Thus « =0, and
G(p) is statically rigid and infinitesimally rigid.

Notice how the above argument takes the place of Cauchy's
somewhat more difficult Arm Lemma. Also, in both cases this is precisely
the point where convexity is used in an essential way.

4.3 Alexandrov's Theory. The restriction in Section 4.2 to polyhedra
with only faces that are triangles is a bit unsatisfying. Cardboard models
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with non-triangular faces seem to hold their shape quite well, and there
should be some reasonable theory to explain this. On the other hand, we
must be careful in the way that we extend Dehn's Theorem (4.4). We wish
have the framework G(p) based on the polytope P in that the members
of P should at least be on the surface of P. A natural idea is to find a
triangulation K of the surface of P, and the vertices and edges of K will
give the framework G(p). By a triangulation of P we mean a simplicial
complex K (in the sense of piecewise linear topology), whose underlying
space is exactly the set P. (In this circumstance, a simplicial complex K
is simply a finite collection of triangles together with their edges and
vertices, where any two of these triangles intersect at a common vertex,
edge, or empty set. The underlying space of K , denoted by [KI, is the
union of the closed triangles.) Unfortunately, though, if any of the vertices
of G(p) lie in the interior of a face of P, then G(p) will not be
infinitesimally rigid. For example, choose an infinitesimal flex p' where
the only non-zero vector of p' corresponds to a vertex in the interior of a
face of P, and is perpendicular to the plane of that face. See Figure 4.3.1.

Figure 4.3.1

Notice that in Dehn's Theorem (4.2), since each face is a triangle, there is a
well-defined triangulation associated to the polytope P, assuming that there
are no vertices in K and G(p) beyond those in P.

The following theorem of ALEXANDROV [1958] gives a good
description of when convex polytopes can be used for infinitesimal rigidity.

(4.5) Let K be a triangulation of a convex polytope P in three-
space such that no vertex of K lies in the interior of a face of
P. Then the bar framework G(p), obtained from the vertices
and edges of K, is infinitesimally rigid in three-space.

For example, Figure 4.3.2 shows two triangulations of a cube that are
infinitesimally rigid by Alexandrov's Theorem. The framework on the left
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has only the original vertices of P as vertices of G(p). The framework
on the right has some extra vertices placed on the edges of P.

Figure 4.3.2

The proof of Alexandrov's Theorem (4.5) is more delicate than one
might first imagine. In this situation the argument that is outlined in
Section 4.2 has some difficulties in that the separating plane is not evident.
There might possibly be exactly two changes in sign for the self stress,
where all the non-zero stresses occur in one face of P. Nevertheless, it is
still possible to prove infinitesimal rigidity in this situation using roughly
similar ideas. See ASIMOW AND ROTH [1979] as well as WHITELEY
[1984] for careful proofs. There are also some extensions of Alexandrov's
Theorem to higher dimensions in WHITELEY [1984]. (See also Section
4.8.)

The techniques used in GLUCK [1975] are not adequate to show this
version of Alexandrov's Theorem. Gluck defines a simplicial complex K,
triangulating the convex polytope P, as strictly convex if for each vertex
pi of K there is a plane meeting P only at pj. (So the triangulation on
the left of Figure 4.3.2 is strictly convex, but the one on the right is not
strictly convex.) Unfortunately in Gluck's proof of his separating Lemma
5.3, his definition of strict convexity is not enough to insure that the edges
with positive and negative stresses can be separated by a plane. (Branko
Griinbaum was the first to point out this problem with GLUCK [1975].)
However, when each face of P is a triangle, Gluck's description is more
than adequate. This is also enough for Gluck's main result that G(p) is
rigid for an open dense set of configurations p.

4.4 Consequences of Alexandrov's Theory. There are several
corollaries/extensions of Alexandrov's result (4.5). Most of these results
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follow from the statement of (4.5) without too much extra work, or one
can extend one's favorite proof of (4.5). The following are some
examples. For more details see CONNELLY [1980], WHITELEY [1984],
ASIMOW AND ROTH {1979}, and ROTH [1987].

(4.6) Let G(p) be a (tensegrity) framework where its vertices
include the vertices and lie on the edges of a convex polytope
P in three-space; all members of G(p) lie on the surface of
P; and for each face F of P the framework, determined by
the vertices and members of G(p) that lie in F, is
infinitesimally rigid in the plane of F. Then G(p) is
infinitesimally rigid in three-space.

For example, in Figure 4.4.1 shows some tensegrity frameworks in three-
space that are infinitesimally rigid by this result. The planar tensegrity
frameworks are infinitesimally rigid by the results in Section 4.1. Only
the near faces of the dodecahedron on the right are shown.

Figure 4.4.1

In these examples the bars can be replaced by struts and the frameworks
will still be infinitesimally rigid. These examples were taken from
GRUNBAUM AND SHEPHARD [1975].

The principle used for the result (4.6) is that the infinitesimal
rigidity of whole structure does not depend on the particular framework
that "holds" the vertices of each face infinitesimally rigid in its plane.
This "subframework" provides the appropriate implied bars needed. (A
bar is implied between two vertices i and j if adding the corresponding
condition for p' for the bar {i,j} does not change the space of
infinitesimal flexes.) Alexandrov's Theorem (4.5) provides one such
framework that is infinitesimally rigid in three-space, and so we get the
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result (4.6). Other cell complexes with planar faces would work as well,
as long as the analogue of (4.5) holds.

Another interesting application of (4.5) is show that certain
frameworks are not rigid. Suppose that G(p) is a bar framework in Rd
(with n 2 d+1) which is infinitesimally rigid, but with the just the
minimum number of edges needed, namely nd-d(d+1)/2. When d=3 this
number is 3n-6, of course. What happens when one of the bars is
removed? Certainly the framework does not remain infinitesimally rigid,
but we can say more. From the discussion in Section 3.6, the rigidity map
f for G into the space of edge lengths is locally onto. This is because the
differential of f, the rigidity matrix R(p), is onto since its rank
nd-d(d+1)/2 is equal to the number of edges of G. This means that any
perturbation of the edge lengths, that is small enough, will correspond to a
configuration with those given lengths. So if one edge length is shortened
or lengthened continuously, there will be a configuration realizing those
given lengths. It is easy to show (using the inverse function theorem) that
the configuration can be chosen to vary continuously as well. Thus when
one bar is removed from G(p) the resulting framework is flexible. For
example, when one bar is removed from either of the frameworks of
Figure 4.3.2, it becomes flexible. Also ideas similar to the those above
show that if any one of the cables of the cube on the left in Figure 4.4.1 is
removed, then the framework becomes flexible. These ideas essentially
come from ALEXANDROV [1958] and are used extensively in ASIMOW
AND ROTH [1978]. See also WHITELEY [1988].

4.5 E. Kann's Proof and Extension of Dehn's Theorem. In the
last several years there has been some interest in proving the infinitesimal
version of Cauchy's Theorem, Dehn's Theorem. This has not been
because of any lack of confidence in the result, but because there was
interest in finding a generalization in some particular direction or because
the result followed from some other techniques.

In KANN [1970] there is a proof of the infinitesimal rigidity of C2
smooth convex surfaces with positive Gaussian curvature. This follows
the results of MINAGAWA AND RADO [1952] and BLASCHKE [1967].

In KANN [1990] this idea is applied to "polyhedral” surfaces in
three-space. We define a polygonal region as a compact polygonal disk in
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a plane. We say that K is a polyhedral network if it is a finite collection
of polyhedral regions such that they have disjoint interiors, and any two
such intersect either at a common vertex, a common edge, or in the empty
set. Each polygonal region in K has its own affine linear structure, and
any two of these structures agree on the overlap on their boundaries. We
may think of K as something like a generalized simplicial complex. The
underlying space of K, denoted by [K]|, is what you get by gluing together
the polyhedral regions along their boundaries. Figure 4.5.1 shows such a
polyhedral network when the underlying space is naturally identified with
a disk in the plane.

Figure 4.5.1

Suppose for simplicity that the underlying space |K| is a connected
orientable two dimensional surface with boundary, i.e. a sphere with
handles and holes. Let g be a continuous function from the underlying
space of K to three-space, where g is affine linear on each polygonal
region. We will say that g represents a polyhedral cap if

i. The affine map g is one-to-one when restricted to each

polygonal region;

ii. The directed normals to the singular surface given by g

lie in a fixed hemisphere. In other words, for each polygonal

region the outward pointing normal N; has Nje > 0, where

e is a fixed vector in three-space;

iii. The images under g of adjacent polygonal regions are

edge-convex. That is the interior one of the regions is

contained in the open positive half-space determined by the
normal to the plane of the other region.
Notice that condition iii is milder than the usual global form of convexity.
We regard the image under g as a singular surface in that there can be a
variety of branch points and self-intersections. Figure 4.5.2 shows some
examples. The surface on the left is an example of singularity. The
surface on the right is a spiral trough.
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Figure 4.5.2

We can now state one form of E. Kann's Theorem that is a
generalization of Dehn's Theorem about infinitesimal rigidity.

(4.7) Let C be a polyhedral cap satisfying i, ii, and iii, and let p'
be an infinitesimal flex such thar p' s trivial on each
polygonal region and p'i-e = constant for every vertex pj on
each boundary component of C separately. Then p' is a
trivial infinitesimal flex.

For example, if the boundary of C has just one component, then by
adding a trivial flex to p' we may assume that p'ie = 0 for each
boundary component. This is called the glidebending condition.

Despite the special role that the boundary plays, the statement (4.7)
still does specialize to Dehn's result about the infinitesimal rigidity of
triangulated polyhedra (4.4). (Indeed, it is even possible to prove the more
refined Alexandrov version (4.5) using these techniques.) To see this start
with one vertex of a triangulated convex polytope. As we mentioned in
Section 3.5, the infinitesimal rigidity of a bar framework is invariant under
projective transformations, even when a point is sent to the "plane at
infinity" under the transformation. It is always possible to find a
projective transformation that sends exactly one vertex (and no other
vertices or edges) of the polytope to the plane at infinity. Fix that point at
infinity, so the infinitesimal flex is zero at that point. Remove the vertex
now at infinity. The object that one obtains is now a polyhedral cap that
satisfies the glidebending condition as well as the local convexity. Thus it
is rigid by (4.7).

We sketch a proof of (4.7). Recall from Section 3.3 that a trivial
infinitesimal flex p' has the form, for each i, p'i =r x pi. + u, where r
and u are fixed vectors in three-space. The vector r corresponds to an
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infinitesimal rotation and the vector u corresponds to an infinitesimal
translation. Since a triangle composed of three bars is infinitesimally rigid,
the infinitesimal flexes at its vertices are the restriction of a trivial
infinitesimal flex. So in a triangulation of a surface as in Theorem (4.7),

each triangle T in any infinitesimal flex will have its own infinitesimal
rotation vector rr. If rre > 0, then we say that the spin of the triangle is

counterclockwise. If rr-e < 0, then we say that the spin of the triangle is
clockwise. Add a trivial infinitesimal flex to the given infinitesimal flex so
that rr =0 for some face 1. We do this in such a way that there remain
faces where there are both kinds of spin clockwise and counterclockwise.

Divide the triangles (with a non-zero spin) of the polytope into two
sets, those with counterclockwise spin and those with clockwise spin. If
two adjacent triangles have opposite spins (or one spins one way and the
other has no spin), then when their common edge is oriented in the
direction compatible with both spins, the convexity condition implies that
the oriented edge (i,j) points "uphill”, i.e. (p; - pj)-e > 0. The boundary of
one of the sets of triangles has all of its edges oriented in a cycle, where the
edges point uphill. This is not possible, so there can be no non-zero spin
and the infinitesimal flex must be trivial.

4.6 More Proofs and Extensions of Dehn's Theorem. We
mention briefly some other approaches to Dehn's Theorem.

The following is a sketch of an idea of Oded Schramm that is
basically in SCHRAMM [1990]. Start with an infinitesimal flex p' of a
convex polytope P with triangular faces. Orient some of the edges of P
by the following rule. If p; and p; are the vertices of an edge, orient the
edge from pj to p;j if pi“(pj- pi) > 0. This means that p; is moving
infinitesimally in the direction of pj. By the condition of being an
infinitesimal flex (3.1), (' - pj)-(pi - pj) = 0, we get pi“(pj - pi) =
- pi"(Pi - pj), so each edge has only one possible orientation. Since P is
convex, the plane defined by { p | pi"p = 0 } can separate the edges
incident to p; into at most two sets and can contain at most two edges
unless pi'=0. Thus the orientation of the edges of P has the following
properties.
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i. The edges oriented out of a vertex are connected as one proceeds
cyclically around a vertex. Similarly the edges oriented into a vertex
are connected.
ii. Either 0, 1, 2 or all of the edges incident to a vertex are
unoriented. (If all the edges incident to pj are unoriented, then
pi=0)
iii. If two edges are unoriented, then either they separate both ends
of the interval of edges that are oriented out of a vertex from the
interval of edges that are oriented into a vertex, or they are next to
each other and all the other edges are oriented out of or into the
vertex.
Figure 4.6.1 shows an example of such an orientation of the edges in a
neighborhood of a vertex.

Figure 4.6.1

Fix a triangular face of P so that the infinitesimal flex is zero on all its
vertices. Thus all the edges incident to those three vertices are unoriented.

Then a combinatorial lemma implies that there is no way of
orienting the rest of the vertices consistent with the three properties above,
other that leaving them all unoriented. This implies that the infinitesimal
flex is zero on all the vertices, and thus the bar framework of the edges is
infinitesimally rigid.

We mention some other approaches to Dehn's Theorem. Let {ni,
n2, ..., ng} be a finite set of unit vectors in three-space. Let ajy, ap, ..., ak

be a corresponding set of positive real numbers such that
k

2 ajn; = 0.
1

A theorem of Minkowskii states that there is a unique polytope (up to
translation) for which n; is the unit normal and aj is the area of the i-th
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face. See STOKER [1969], Chapter X for a discussion in the smooth
category as well as LYUSTERNIK [1963], Chapter 5 for a discussion in the
category of polytopes. The uniqueness parts of the proofs of these results
are very similar to the proofs of Cauchy's original theorem.

Another recent proof of Dehn's Theorem is due to P. Filliman in
FILLIMAN [1990]. The idea is to translate the problem of the
infinitesimal rigidity of the simplicial polytope P to a corresponding
statement about its polar dual P*. Then Minkowskii's Theorem and the
Brunn-Minkowskii inequality is applied to obtain the rigidity result. See
ALEXANDROV [1937] for a discussion of mixed volumes and the Brunn-
Minkowskii inequality.

So far most of the results have been concerned with objects that have
been topologically spheres. This is natural since the idea is to use
convexity to show rigidity. However, it is possible to have convexity
available even for a surface other than a sphere. The only published results
that 1 know along this line are in the smooth category. Let S and S' be
two compact oriented smooth (C3) immersed surfaces in a Riemannian
three-manifold of constant sectional curvature. Assume that S and S' are
both "locally convex" in the sense that the second fundamental forms of
both surfaces are positive definite. Let e3 and e3' be unit normal vectors
in S and S' respectively, and let e denote a continuous conformal vector
field on an open set containing both S and S'. We assume that scalar
products e-e3>0 and e-e3' > 0. This is analogous to the similar condition
ii in Section 4.5. With this set-up the following result of HSIUNG AND
LIU [1977] is a generalization of Cohn-Vossen's Theorem that applies
naturally to the surfaces S and S' of arbitrarily large genus.

(4.8) Let f- S — S' be an isometry. Then the second fundamental
Jorms of S and S' are equal under f.

The second fundamental form is analogous to the dihedral angle in the
polyhedral category.

A suggestion was made by M. Gromov that there should be a result
similar to (4.8), but for infinitesimal rigidity in the polyhedral category.
For such triangulated two-manifolds, in GROMOV [1986], there is a proof
of certain combinatorial inequalities that would follow from the
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infinitesimal rigidity of such triangulated two-manifolds. More will said
about this in Section 4.7.

In FOGELSANGER [1988] there is a proof that any compact
connected triangulated two-manifold is infinitesimally rigid in three-space
if the configuration of vertices is generic; that is there is no polynomial
relation with integer coefficients among the coordinates of the vertices.
This result, however, makes no use of convexity.

See TAY AND WHITELEY [1985] for an introduction to generic
rigidity in general.

47 Maxwell-Cremona Theory and Spider Webs. So far most of
the results that have been discussed have been related to Cauchy's Theorem.
There is a very simple rigidity result that on the face of it does not seem to
be related to convexity or Cauchy's result, but nevertheless it does have a
connection to convex polytopes in three-space.

Suppose that one has a tensegrity framework that is composed
entirely of cables attached to some points fixed in the plane. In
CONNELLY [1982], such a tensegrity framework is called a spider web in
honor of the creature that so frequently makes them. When is such a
spider web rigid? For example, Figure 4.7.1 shows two spider webs where
the one on the left is rigid, but the one on the right is not rigid.

Q- O/
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s Figure 4.7.1 s
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The black vertices are the fixed vertices. Spider webs with the graph as in
Figure 4.7.1 are rigid only if the lines through the three outside cables
intersect in one point. In general, a spider web is rigid if there is a proper
self stress that is positive on all the cables. (T he equilibrium condition
(3.2) with F; = 0 holds only for the vertices that are not fixed.) In fact
when the self stress condition does hold, then the spider web is globally
rigid. This result is in CONNELLY [1982] and is quite easy.
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The question remains: When is there a positive self stress? One
answer, of course, is just when there is an appropriate solution to the
equilibrium equations (3.2) with the constraint that each stress is positive.

However, there is a more geometric answer. Suppose that the fixed
vertices form a convex polygon Fg in the plane, and the cables do not
cross, as in Figure 4.7.1. Suppose further that there is a convex polytope
P in three-space that has Fp as a face and orthogonal projection into the
plane of Fp takes the vertices of P onto the vertices of the spider web in
a one-to-one manner. Then a Theorem of J. Clerk Maxwell in
MAXWELL [1864] and L. Cremona in CREMONA [1872] states that there
is positive self stress in the spider web. Figure 4.7.2 shows how this is
done for the for the spider web on the left in Figure 4.7.1. The polytope
P is a truncated tetrahedron.

Figure 4.7.2

This result has been reformulated expanded and extended in WHITELEY
[1982] and in CRAPO AND WHITELEY [1988]. In fact, the convexity of
P is not relavant to the correspondence itself, which can be achieved by a
purely projective construction. It is true though that since P is convex,
then in this set-up the corresponding stresses will be positive.

Indeed, perhaps the proper way to think of this sort of construction
is to instead consider an infinitesimal flex p' of a closed orientable
polyhedral surface Pg. Each face of the surface is say a planar polygon,
but the surface itself is allowed to be quite singular. Then there is a
canonical self stress w defined on the edges of Pp. Let 0j' be
infinitesimal rate of change of the dihedral angle corresponding to the edge
between the vertices p; and pj of Po. Then

wij = 635'/lpi - pjl
serves as the self stress defined by p'. One must be careful to be sure that
the infinitesimal flex p' preserves the faces of Pp (as if they were rigid
plates). This point of view is presented in GLUCK [1974]. A purely



algebraic/projective-geometric description of « is described in
WHITELEY [1982] and in CRAPO AND WHITELEY [1988].

In our setting for spider webs, the polyhedral surface Po is the
orthogonal projection of P, contained entirely in Fg. The infinitesimal
flex of a vertex p;j in Pp is simply the vector from p; to the
corresponding vertex of P. See Figure 4.7.3.

Figure 4.7.3

One can also reverse the correspondence p' — w above if the
surface Pg is simply connected. In other words if Pg is topologically a
sphere and w is a self stress of the edge framework of Py, then there is
an infinitesimal flex p' of Pg which is non-trivial if  is non-zero.
This is described in WHITELEY [1982] and in CRAPO AND WHITELEY
[1988].

See also HOPCROFT AND KAHN [1989] for an explicit description
of the self stress described above as well as an application of the rigidity of
spider webs to convex polytopes. In computational geometry it often
occurs that a polytope P is defined, where some small unwanted edges
appear. One wants to change P to another "nearby” polytope that does
not have those small edges. This can be accomplished by using the
correspondences above and deforming the spider web . Simply increase
the stress on the corresponding unwanted edges until their end points are
close enough to be considered the same. Given the fixed vertices, there
will be a unique spider web with any given positive stress, and in this
situation the deformed spider web will be close to the original. It turns out
that such a deformation of P quite often must necessarily deform almost
all of the vertices. This is why some sort of global procedure as above is
necessary.

In ASH, BOLKER, CRAPO AND WHITELEY [1988] there is a
survey of various aspects of the Maxwell-Cremona correspondence and its
relation to things such as Dirichlet tessellations. (A Dirichlet tessellation is
the collection of sets corresponding to a collection of points in the plane,
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where each set is the set of nearest points to one of the given points.) A
finite part of the vertices and edges of a Dirichlet tessellation is a spider
web. Section 5.3 discusses some of the ideas inherent to this technique.

See SUGIHARA [1986] for an application of the Maxwell-Cremona
correspondence to scene analysis and combinatorics.

4.8 Rigidity, Convexity, and Combinatorics in Higher
Dimensions. Suppose that P is a convex polytope in Rd, where each
face is a simplex. Let f; i=1, 2, 3 ... be the number of simplicial faces
of P of dimension i. The Lower Bound Theorem of BARNETT [1973]
(see also WALKUP [1970]) says, among other things, that

d d+1
fk 2 (k)fo ) (k+1 for 1<k<d-2

(d-1)fp - (d+1)(d+2) for k=d-1.

When d23, a result due to McMullen, Perles, and Walkup (See KALAI
[1987]), reduces this inequality to the special case:

f1 > fod - d(d+1)12.

The number of vertices of P is fg, and the number of edges of P is fj.
But this is the same as the inequality (3.6) that is necessary for the
infinitesimal rigidity of the 1-skeleton (the vertices and edges) of P in
Rd. This observation was exploited and extended in KALAI [1983] and
KALAI [1987] to many other similar situations.

However, Dehn's Theorem (4.4) on the infinitesimal rigidity of
convex polytopes with triangular faces is stated only when the dimension
d=3. Fortunately there is a general principle that allows one to "bootstrap”
rigidity results in lower dimensions up to results in higher dimensions.
For example, suppose that P is a convex polytope in R4, where all its
faces are simplices. Let p; be any vertex of P. Then those simplices that
are adjacent to p; form a simplicial complex (called the star of pi in P)
which may be regarded as the cone over another complex, called the link
of pi in P. Let So be a three-dimensional support hyperplane that
intersects P at p; only. Let S be another hyperplane that is parallel to
So that does not contain p;j. Project the link of p; into S from p;j. Itis
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easy to see that this projection is a convex simplicial three-polytope in S.
Thus by Dehn's Theorem (4.4) this projection is is infinitesimally rigid in
S. See Figure 4.8.1. (So that we may see things more clearly, the
dimension of all the sets in the Figure are decreased by one. In Figure
4.8.1 the link is a polygonal circle in the plane, and this is not
infinitesimally rigid.)

P;
Projection of the link

The link of P,

Figure 4.8.1

By our discussion in Section 3.5 about the projective invariance of
infinitesimal rigidity and from Statement (3.5), we see that the cone on the
projection and the cone on the link (i.e. the star of p; in P) are both
infinitesimally rigid in R4. But the stars of all the vertices of P overlap
in such a way that the whole framework can be built by gluing
infinitesimally rigid pieces together along intersections such that the union
is infinitesimally rigid.

Clearly this argument extends to higher dimensions, and, by
induction on the dimension d, we can show that all simplicial polytopes for
d>3 are infinitesimally rigid in Rd. Thus we have a proof of the lower
bound inequalities of Barnett.

A slightly more ambitious idea is to extend an appropriate version of
Alexandrov's Theorem (4.5) to higher dimensions. The following is a
result in WHITELEY [1984].

Suppose that P is convex polytope in R4 d23, and G(p) is

a bar framework consisting of the vertices and edges of P,

together with additional bars that triangulate all the two

dimensional faces of P. Then G(p) is infinitesimally rigid in

R4,
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This result follows essentially from the bootstrap idea and the property that
one can retriangulate the two-dimensional faces of P without altering its
infinitesimal rigidity. As a consequence we get the following inequality:

fi + kZS (k-3)f3 > fod - d(d+1)12,

where fg is the number of two-dimensional faces of P which have k

sides. This is again from KALAI [1987]. Previously this inequality had
been only known for polytopes that had a realization with all the
coordinates as rational numbers.

In FILLIMAN [1991] there is an attempt of a proof of the conditions
of McMullen (generalizing the the Lower Bound Theorem of Barnett) on
the face numbers fx of a simplicial polytope. The idea is to replace a
previous difficult proof with the calculation of the rank of a matrix that
generalizes the rigidity matrix of Section 3.6. See BILLERA AND LEE
[1981] for a discussion. This follows a suggestion of C. Lee, which has
generated some interest in the various proofs of Dehn's Theorem.

Even though the proof of Dehn's Theorem (4.4) is simple enough, it
seems that there should be a way of proving the combinatorial inequalities
of Barnett following the general outline as suggested by Kalai, but without
appealing to the geometric realization that is needed for infinitesimal
rigidity. In fact, this is the case, and this is done in GROMOV [1986],
Chapter 2.4.10. (Unfortunately, some of the proofs are slightly garbled.)

Another way of thinking of the proof of the higher dimensional
Dehn's Theorem is to imagine a small (d-1)-dimensional sphere Sd-1
centered at p;. The intersection of Sd-1 with the star of p; in P will be
a triangulated spherical polytope of dimension one less than P. If we have
an appropriate theorem about the infinitesimal rigidity of such objects, then
we will able to conclude the that the star of p; in P is infinitesimally
rigid in Rd. Statement (3.5) can be interpreted as a way of transforming a
rigidity result about polytopes in Rd-1 to the corresponding result about
polytopes in Sd-1,

Indeed, this correspondence has been exploited in POGORELOV
[1964] to show that there is in fact a way of transforming rigidity results
about pairs of objects in Rd  to rigidity results about pairs of objects in
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Sd. One can then bootstrap lower dimensional rigidity results about pairs
to higher dimensional results about pairs. For example, Cauchy's original
result about convex polytopes (mentioned in the introduction) is about pairs
of convex polytopes, and this bootstrap method allows one to generalize it
to any dimension greater than three:

Any pair of convex polytopes in R4 or S4 for d>3 that

have a correspondence which is a congruence on each facet of

one lower dimension extends to congruence of the whole

space.

(Of course, a setin Sd is convex if, for every pair of points in the set, the
shortest geodesic arc joining them is in the set.)

One can view our statements about infinitesimal rigidity as a
statement about pairs of configurations, where both pairs are "almost the
same" but differ by an "infinitesimal". With that interpretation
Pogorelov's correspondence can be regarded as specializing to give the
statements about infinitesimal rigidity. (In CONNELLY [1988a] it is
shown how to deduce the statement about some pairs from the statement
about infinitesimal flexes (3.5) as well.)
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5. SECOND-ORDER RIGIDITY AND PRE-STRESS STABILITY

So far we have been only concerned with the linear or first-order
theory of rigid mostly convex objects. There are many other convex
objects that are still rigid, but are not first-order rigid.

5.1 The Definition of Second-Order Rigidity. Most of the
definitions will be taken from CONNELLY [1980] and CONNELLY AND
WHITELEY [1990]. There is also a discussion of second-order rigidity in
ROSENBERG [1980]. Suppose that we have a (tensegrity) framework
G(p) in Rd, Let p' be an infinitesimal flex of G(p), which we will also
call a first-order flex of G(p) satisfying (3.1). Let p'" = (p1", p2", ---
pn"') be another configuration of vectors in Rd such that for each
member {i,j} of G where (p;- pj)(Pi- pj) =0,

<0 if {i,j} is a cable

6.1 Ipi’ - 12 + (pi - P (pi"- p") 1= 0 if {i,j} is a bar
> 0 if {i,j} is a strut.

There is no condition for the member {i,j} when (p;j - pj)(pi- pj) # 0.
(Of course, for a bar framework both (5.1) and (3.1) must hold.) We then
say that the pair (p',p'') is a second-order flex of p' and extends the
first-order flex p'. We can think of p' as the velocities of the points of
the configuration and p'' as the accelerations of the points of the
configuration, since (3.1) and (5.1) are obtained by differentiating the
distance constraints.

We say that the tensegrity framework G(p) is second-order rigid in
Rd if for every non-trivial first-order flex p' of G(p), there is no
extension to a second-order flex (p',p'"). It is important for this
definition that the first-order flex be non-trivial, since any trivial first-
order flex extends to some second-order flex. For example, if p' = 0,
then the equations (5.1) become identical to the first-order equations (3.1)
except for p'"' replacing p'.

The basic result for second-order rigidity is the following:



(5.2) If a tensegrity framework G(p) is second-order rigid in R4,
then it is rigid in RA.

This was proved for bar frameworks in CONNELLY [1980] and extended
to tensegrity frameworks in CONNELLY AND WHITELEY [1990]. The
proof involves an analysis of the Taylor series expansion of any non-trivial
analytic flex p(t) of G(p).

Consider the left framework of Figure 3.3.1, which is first-order
flexible and has a first-order flex indicated. This first-order flex together
with the trivial first-order flexes generate all of the first-order flexes of
G(p). But none of the non-trivial first-order flexes extend to a second-
order flex. For example, for the flex indicated in Figure 3.3.1, the middle
vertex must have a second-order flex, an acceleration vector, that has a
non-zero component in both the positive and negative y directions. This
is not possible, so the second-order flex does not exist, and the framework
is rigid (which is easy to see anyway for this example).

5.2 Second-Order Rigidity and Convex Surfaces. Let P be a
compact convex polytope in three-space. For Alexandrov's Theorem (4.5)
it is important that no vertex be in the interior of any two-dimensional face
of P. But if some of the vertices are chosen in the relative interior of
some of the faces of P, is the resulting framework still rigid, even though
it is not infinitesimally rigid? Figure 5.2.1 shows some examples of
triangulated polytopes with vertices in the interior of some of the faces.

) 4

Figure 5.2.1

The lighter weight edges are bars in the interior of the faces of the
polytope.
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It is easy to see from Alexandrov's Theorem that any such first-
order flex on a framework as in Figure 5.2.1 is trivial when restricted to
the vertices and edges of the polytope P. So if p' is any first-order flex
of the whole framework G(p), by adding a trivial infinitesimal flex to p',
we may assume that each pj', in addition to being zero for all the vertices
that do not lie in the interior of a face of P, is perpendicular to each face
on which it lies.

If (p',p'") is a second-order flex that is an extension of p', then it
turns out that p'', when restricted to the vertices of P, acts as if it were a
first-order flex of a framework as in Alexandrov's Theorem. This is a
tensegrity framework that just the vertices of P, cables between all of the
vertices on the same face and bars along the edges of P. (The frameworks
of Figure 4.4.1 are examples.) So (p',p') acts as if the vertices of P
were fixed. Then it is easy to see that the rest of the vertices in the
triangulation must have p;'=0 for the the vertices in the interior of faces
of P, for much the same reason as for the middle vertex of Figure 3.3.1 as
was discussed in Section 5.1. This shows that p' is trivial, and G(p) is
second-order rigid. Thus we have the following, which is in
CONNELLY[1980]. '

(5.3) Any triangulation of a convex polytope in three-space is
second-order rigid.

In fact, the same idea can be extended to show that if a convex hole is
removed from the polyhedral surface, and the resulting surface with
boundary is triangulated, then it is still second-order rigid. It might look
something like Figure 5.2.2.

Figure 5.2.2
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In the smooth category similar objects have been studied, but the
analogue of the fundamental result (5.2) is not known (except for analytic
surfaces). There is a discussion of second-order rigidity in the smooth
category in EFIMOV [1951], which is translated from the original paper
EFIMOV [1948]. See also EFIMOV [1957] and EFIMOV [1962] for a
general discussion of the rigidity of smooth surfaces.

5.3 Pre-Stress Stability. Although second-order rigidity is natural
mathematically, physically it may not be the concept that describes the
stability of a structure most accurately. From a physical point of view, it is
not enough just to declare that the distance constraints force the structure to
have only one configuration locally up to rigid motions. The members of a
physical framework do not behave as ideal bars or cables. There must be
some way of describing the behavior of the system as it is perturbed.

A common method used to describe such behavior is to introduce
energy functions. For example, if a spring at rest is displaced, then
Hooke's law describes how much work it takes to displace the spring any
given amount. This can be though of as changing the potential energy that
is stored in the spring. Idealized springs will be our way of modeling a bar
in a framework. Mathematically the idea is that when the end points of a
bar are displaced, there is a well-defined (energy) function of the lengths
of the bars (or the squares of the lengths) such that each function has a
strict minimum at the rest length of the bar. For a cable, its energy
function is strictly monotone increasing, and for a strut its energy function
is strictly monotone decreasing.

In structural mechanics a basic principle used for the stability of
structures is that the configuration must be at a local minimum for the total
energy functional. This is often associated with "Castigliano's Principle".
See PRZEMIENIECKI [1968]. Mathematically this is sound, since if the
total energy function is at a unique local minimum, modulo rigid motions,
then it must be at least rigid. This is because if there were another nearby
non-congruent configuration that satisfied the member constraints, then
each of the energy functions of the members would be no larger, and the
original configuration would not be at a unique minimum. Physically, the
idea is that if the structure is perturbed to a nearby configuration, then the
gradient of the energy function provides the force necessary to push the
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configuration back to the unique minimum point, or at least keep the
structure from wandering far from the desired minimum point.

The following is taken mostly from CONNELLY AND WHITELEY
[1990a] and CONNELLY AND WHITELEY [1990b]. Suppose that G(p)
is a tensegrity framework in R4 and let Hjj be an energy function for
the member {i,j} as described above. The total energy is

H(g) = ¥ Hij(ai-qj?),
L]
where ( is any configuration in Rd. We have chosen to write H as a
function of the square of the lengths to make some expressions simpler that
appear later.

The conditions for a configuration p to be a critical point for H
turn out to be that G(p) has a proper self stress w, where wjj =
Hij'(lpi-pj|2). Conditions (3.2) must hold with F;j=0. The functional Hjj'
is the first derivative of Hj;.

We also need to find conditions when H has a minimum, or at least
a local minimum at a given configuration p. We simply apply the second
derivative test from multivariable calculus. The Hessian of H turns out to
be the following nd-by-nd symmetric matrix (up to a scalar multiple):

(5.4) QQId + R(p)!DR(p),

where R(p) is the e-by-dn rigidity matrix as defined in Section 3.6, D is
the e-by-e diagonal matrix such that the second derivative Hij"(lpi-pj|2) is
the ij-th diagonal entry of D, and Q is the n-by-n stress matrix obtained
by defining its ij-th entry as

~-wij i i#]
(5.5) Qj =\ Yowix if i=j.

k

Recall that wjj = 0, for {i,j} non-members of the graph G. The tensor
product of Q with the d-by-d identity matrix is denoted by Q®Id,
which is obtained by replacing each 1 entry of Id with an n-by-n block
Q. The transpose of a matrix is indicated by ()t n is the number of
vertices of G, and e is the number of members of G.
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The matrix R(p)!DR(p) is called the stiffness matrix, and it is
always positive semi-definite, since we insist that the second derivative
Hj;" > O for all members {i,j}.

The second derivative test says that H has a local minimum at the
configuration p, if the matrix (5.4) is positive semi-definite (regarding it
as quadratic form). If, in addition, the kernel of (5.4) contains only the
trivial infinitesimal flexes, we say that G(p) is pre-stress stable (with w
as a rigidifying prestress). Clearly if G(p) is pre-stress stable, then it is
rigid.

A basic result of CONNELLY AND WHITELEY [1990] is the
following:

If a tensegrity framework G(p) is infinitesimally rigid, then
it is pre-stress stable. If G(p) is pre-stress stable, then it is
second-order rigid. Neither of these implications is reversible.

For example, many spider webs are not first-order rigid but when
they have a proper self stress that is positive on all the cables, they are pre-
stress stable, essentially because the stress matrix is positive semi-definite
of maximal rank. (This imagines some appropriate globally rigid
framework, behind the scenes, holding the pinned vertices fixed.) Also all
three of the frameworks in Figure 5.2.1 are not first-order rigid, but they
are pre-stress stable, which is a bit harder to show. Many of the tensegrity
frameworks championed by R. Buckminster Fuller are pre-stress stable.
Figure 5.3.1 shows some of these tensegrities. See FULLER [1975].

--------

R N Figure 5.3.1

The framework on the right was one of the first discovered by Kenneth
Snelson. See SNELSON [1973]. The bars in these tensegrity frameworks
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can be replaced by struts and they will still be pre-stress stable. All of the
tensegrity frameworks that are rigid in GRUNBAUM AND SHEPHARD
[1975] are surely rigid because they are pre-stress stable. Similarly most
of the large collection of tensegrity frameworks in PUGH [1976] are not
infinitesimally rigid and must be pre-stress stable. In CONNELLY AND
TERRELL [1991] an explicit computation with the stress matrix is
performed for a certain collection of tensegrity frameworks with dihedral
symmetry. Those with a positive definite stress matrix are identified, and
it is easy to check that they are at least pre-stress stable.

When a framework is pre-stress stable with « as the rigidifying
pre-stress, then those bars {i,j} that have wjj # 0 can be replaced by a
cable or strut. For example, the framework on the the left in Figure 5.3.2
is a triangulation of a tetrahedron and is pre-stress stable. The framework
on the right replaces some of the bars by cables and struts. Both are pre-
stress stable. If any member is removed or any bar is replaced by a cable
or strut in the framework on the right, then it will not b rigid.

Figure 5.3.2

5.4 Global Rigidity and the Stress Matrix. It tumns out that there is
another geometric property associated to the stress matrix €2 that was
defined in Section 5.3. It is very useful for guaranteeing that a tensegrity
framework is globally rigid. This analysis however does not deal directly
with the rigidity matrix or the stiffness matrix.

It is helpful instead to think of the stress w, and its associated stress
matrix , first, and then look for a configuration p with w as its self
stress. (The graph G is superfluous.) It is easy to check that if the
configuration q is an affine image of the configuration p, then any self
stress for p will be a self stress for q. Extending the ideas discussed in
Section 5.2, the following result is shown in CONNELLY [1982]. (Recall
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from Section 3.2, that if one tensegrity framework dominates another, that
means the cables become no longer, struts become no shorter, and bars are
the same length.)

(5.6) Suppose G(p) is a tensegrity framework in R4 with n
vertices not all in a (d-1)-dimensional affine subspace, a self
stress , and associated stress matrix Q. If Q is positive
semi-definite of rank n-d-1, and if G(q) is dominated by
G(p), then q is an affine image of p.

In other words, if Q is positive semi-definite of maximal rank (it turns
out that if the affine span is all of Rd, then the kernel must be at least d+1
dimensional), then the framework is globally rigid up to affine motions.

When is there an affine image q of a configuration p such that
G(p) dominates G(q)? Since translations are rigid motions we need only
consider when the affine motion is given by some linear map given by a
d-by-d matrix A in some coordinate system. If {i,j} is a member of the
graph G, then

|gi - qj|2 = |Ap; - Apjl? = (Api - Apj)* (Api - Ap))
< (pi - pt (pi - pj) if {i,j} is a cable
= (pi - Pt A'A (pi - pj) 1= (Pi - P (pi - py) if {i,j} is a bar
2 (pi - pjt (pi - pj) if {i,j} is a strut.
This is the same as the condition
<0 if {i,j} is a cable
(5.7 (pi-pt [AtA -19] (p; - pp) {= 0 if {i,j} is a bar
20 if {i,j} is a strut.
We can regard the symmetric matrix AtA - Id as a quadratic form, and
condition (5.7) says that all the member directions, defined as all scalar
multiples of (pi-pj) with {ij} in G, lie in the appropriate region
defined by the quadric at infinity (regarding the coordinates in Rd as

homogeneous coordinates for the (d-1)-dimensional real projective space
"at infinity"). For example, the bar directions must lie on the quadric at
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infinity, where the quadric is given by the symmetric matrix AtA - 14,
When the dimension d = 2, then the quadric at infinity is simply two
directions. When d = 3, then the projective space at infinity is the usual
real projective plane, and the quadric at infinity consists of the directions
that lie on any given conic, possibly degenerating into two lines.

We could leave things at this state, but there is a further
simplification that is very useful. Suppose that G(p) is a tensegrity
framework in Rd with a proper self stress w. We say that a member
direction p; - p; with wjj # O is a stressed direction.

There is another non-congruent configuration g, an affine
image of p, such that G(q) is dominated by G(p), if and
only if for G(p) the stressed directions lie on a non-zero
quadric Q at infinity, as well at the condition (5.7), with Q
replacing A'A - H for the non-stressed directions..

By replacing the symmetric matrix Q by €Q for € >0 small enough, it
is possible to solve Q = AtA - 1d for the matrix A. See WHITELEY
[1987c] as well as WHITELEY [1987b].

Suppose that « is a proper self stress of a tensegrity framework
G(p) in Rd such that the associated stress matrix Q is positive semi-
definite of maximal rank n-d-1, and no non-congruent affine image q of
p is such that G(q) is dominated by G(p). Then we say that G(p) is
w globally rigid. For example, all spider webs are w globally rigid,
where each scalar component of  is positive. (But some vertices are
fixed by some appropriate globally rigid tensegrity framework in the
background with its own self stress and corresponding positive semi-
definite stress matrix of maximal rank. The two stresses then can be
combined to give a positive semi-definte stress matrix of maximal rank on
all of the vertices.).

We apply the stress matrix-stiffness matrix decomposition of (5.4) to
convex polygons. This follows the proof in CONNELLY [1982] of the
statement (4.2) about the global rigidity of convex polygons when the
internal members are struts. Statement (5.8) below is the key fact needed.

(5.8) Let G(p) be a tensegrity framework in the plane, where the
vertices form a convex polygon, all the external edges are
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cables, struts are the only other members, and G(p) has a
proper non-zero self stress . Then the stress matrix £ is
positive semi-definite of rank n-3. Thus G(p) is
globally rigid.

It is clear that there are more than two stressed directions for such
polygons, and thus (5.8) together with (5.6) imply that such polygons are
globally rigid in any dimension greater that one. From CONNELLY
[1982] it is shown that if such a framework (other than a triangle) is rigid
at all, then it must have a non-zero proper self stress. Thus any such rigid
polygonal framework with cables on the outside edges and struts on the
inside must be globally rigid even in higher dimensional Euclidean spaces.

Many, but not all, of the tensegrity frameworks in PUGH [1976] are
also  globally rigid. Thus they are also globally rigid in higher
dimensional Euclidean spaces.

5.5 Second-Order Duality. The following equivalence is useful for
understanding the relation among global rigidity, second-order rigidity,
and pre-stress stability. This is the second-order stress test in CONNELLY
AND WHITELEY [1990]. This follows from an application of the "Farkas
Alternative" as used in linear programming duality.

(5.9) A tensegrity framework G(p) in R4 is second-order rigid if
and only if for every non-trivial first-order flex p' there
exists a proper self stress « of G(p) such that

(p"Ht QR1d p' > 0,
where Q) is the stress matrix associated to .

It is not too hard to see that the condition for being pre-stress stable
is the same as the condition as in (5.9) except that a single proper self stress
must satisfy the condition. There are examples in CONNELLY AND
WHITELEY [1990] of bar frameworks that are second-order rigid but not
pre-stress stable. Another such example is the complete bipartite graph
K33 on a line in the plane as in Figure 5.5.1. All six points of K33 lie
on a line with one partition of three points on the negative part of the line,
and the other partition on the positive part. Each point of one partition is
joined to each other point of the other partition. This bar framework in
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second-order rigid in the plane, and is a mechanism (i.e. a flexible
framework) in three-space. In Figure 5.5.1 the bars are curved so as to be
more visible.

Figure 5.5.1

In such examples it is as if there is a demon in the framework that
somehow senses what first-order flex (or load) will be encountered and
then provides an appropriate self stress to "block" that flex. Different
flexes require different self stresses. Because of this, it seems to me much
more reasonable to regard a framework as truly "stable" if it is pre-stress
stable, than if it is just second-order rigid.

An application of the second-order stress test (5.9) is to show Roth's
Conjecture (4.3). Suppose that G(p) is a tensegrity polygonal framework
in the plane with bars on the external edges and cables on the inside. If
G(p) is not infinitesimally rigid, let p' be a non-trivial first-order flex of
G(p). Let w be any proper self stress for G(p). The result in (5.8) says
that if Q is the associated stress matrix, then -Q is positive semi-definite
of rank n-3. So Q is negative definite of rank n-3. By an argument
similar to the one sketched in Section 5.4, since there are no non-trivial
infinitesimal flexes that are affine images of p, the infinitesimal flex p' is
not in the kernel of Q®I2. Thus

(p")t Q12 p' <0,
and p' must extend to a second-order flex (p', p'") of G(p) by the
second-order stress test (5.9). An extension of the second-order stress test
implies that since the inequality above is strict, any smooth flex p(t) of
the points of p, with the first and second derivatives at t=0 the same as
p' and p'" respectively, will have all of the cable distances decrease. It
is possible to make sure that, in fact, p(t) does not change the length of
the bars of G(p) as well. Then p(t) is a non-trivial flex of all of G(p).
If G(p) is rigid, this non-trivial flex p(t) cannot exist. So p' cannot
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exist, and G(p) is infinitesimally rigid, showing Roth's Conjecture. This
argument is explained in detail in CONNELLY AND WHITELEY [1991].

5.6 Polyhedral Surfaces Revisited. Another application of the
second-order stress test is to triangulated polygons, thought of as "paper
membranes”. This in turn can be used to strengthen our result (5.3) that
triangulated polyhedral surfaces are second-order rigid. First we need a
different kind of stability result from CONNELLY [1991]. A bar simplex
in Rd is a framework where all the vertices of the configuration are
affine independent (no k+2 vertices lie in an affine k-dimensional
subspace), and every pair of vertices is joined by a bar. For example, bar
triangles and bar tetrahedra are bar simplices.

(5.10) A tensegrity framework G(p) in R4 is second-order rigid
in R4 for all R4’ > Rd, d'>d if and only if either G(p) is
a bar simplex in Rd or there is a proper self stress © such
that G(p) is « globally rigid.

This result allows one to use results about the second-order rigidity
of a framework to know that there is some particular self stress « that
works for  global rigidity. Although the proof is non-constructive, the
result can be useful. The following result follows easily from the
techniques in CONNELLY [1980].

(5.11) Suppose that a bar framework G(p) in R2 consists of the
vertices and edges of some triangulation of a convex polygon
in the plane, with the boundary vertices fixed. Then G(p) is
second-order rigid in any R4 for d22. Thus there is a self
stress w suchthat G(p) is w globally rigid

At first sight this result seems like the statement about the w global
rigidity of a spider web. But for a spider web all the coordinates of the
stress are positive. For the triangulation af a triangle as in Figure 5521t
turns out that no proper self stress can be positive on all the internal bars.
See CONNELLY AND HENDERSON [1980] for an easy proof.
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Figure 5.5.2

Nevertheless, the result (5.11) does say that there is a self stress  that
makes G(p) w globally rigid.

We generalize the result (5.11) to a more delicate property of w.
Suppose that Go(p) is the bar framework obtained from a triangulation of
a convex planar polygon Pg. Attach the boundary vertices of Go(p) to a
system of parallel bars in three-space which are in turn attached to fixed
(pinned) vertices in three-space as in Figure 5.5.3. (The pinned vertices
are black.) This gives us a bar framework G(p).

Figure 5.5.3

Suppose that the triangulation of Po is the orthogonal projection of
a face of a convex polyhedral surface. We assume also that each vertex of
in the interior of Py corresponds to a strictly convex vertex on the
surface. (lLe. a support plane intersects the surface just at the vertex.)
From the discussion of Maxwell-Cremona Theory in Section (4.6) this
implies that there is a self stress wQ on Go(p) that is positive on interior
edges that correspond to the edges of the surface. (It may be negative on
the boundary.) Each interior vertex is adjacent to at least two members of
G(p) with a strictly positive stress. Let @ be the self stress for G(p)
obtained by adjoining to wo a large positive self stress on each vertical
bar.

Suppose that p' is a first-order flex of G(p) in any dimension
d 2 3. We calculate
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(p"t Q@14 p' =Y wijlpi-p;'>
1,)
On the boundary of Pg the vertical stresses dominate, and thus the first-

order flexes at those vertices must evaluate to zero. For the interior
vertices of Pg all the stresses on members adjacent to the vertices are
positive, so anything non-zero will be strictly positive. Thus all the first-
order flexes must be zero, and by (5.10), G(p) is globally rigid.

If we further subdivide this triangulation of Po by only adding new
vertices along the existing edges of first triangulation, then the same
argument shows that the corresponding G(p) will be w globally rigid.

Now suppose that Go(p) and G(p) come from any triangulation of
Po. We claim that G(p) is second-order rigid in any dimension d 2 3.
If not, then there must be a second-order flex (p',p'") of G(p), where
p' is non-trivial. But it is easy to see that the second-order flex must
extend to any subdivision of the triangulation of Po. But we can choose a
subdivision of this triangulation that is also a triangulation coming from a
convex surface as mentioned above. This contradicts the argument above.
Hence, this G(p) must also be second-order rigid in all higher dimensions.
Our stability result (5.10) then says that there is a self stress « such that
G(p) is w globally rigid.

Using such a self stress for each face of an arbitrarily triangulated
convex polytope and an argument similar to the one above gives the
following basic result relating convexity and rigidity. This result and
details of the argument above will appear in CONNELLY [1991].

Every triangulation of a convex polytope in three-space is pre-
stress stable.

For example, the frameworks of Figure 5.3.2 and Figure 5.2.1 are seen to
be pre-stress stable in three-space.
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