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AssTracT. We show that any continuous flex that preserves the edge lengths of a closed
triangulated surface of any genus in three-space must flex in such a way that the volume it
bounds stays constant during the flex.

1. Introduction.

Consider a triangulated polyhedral surface S in three-space. Regard the edges of S as
a rigid bars, and regard the bars as joined at ideal universal joints at the vertices of S.
There are several examples when S is a mathematically exact (flexible) mechanism (see
Connelly [4] for example). Indeed there are even simpler examples of such surfaces where
S may intersect itself and have various singularities. The simplest non-trivial example
of this sort is a self-intersecting surface due to R. Bricard [2], and there are many others,
for example Connelly [5].

For each such orientable singular surface S, it is possible to define the notion of
the (generalized. signed) volume bounded by S, vol(S). When S is a (triangulated)
embedded surface, |vol(S)| is indeed the volume of the bounded domain with S as
boundary.

Suppose 5¢, 0 < ¢ < 1, represents a flex of the surface S so that Sg = S. In Connelly [3]
it was conjectured that vol(S;) is constant. This was called the Bellows Conjecture in
the sense that it stated that there is no exact mathematical bellows.

Here we describe a proof of the Bellows Conjecture for any triangulated orientable
surface mapped into three-space. The ideas here were inspired by a proof by I. Sabitov
in [7] in case the surface S is homeomorphic to a sphere. In fact, the proof here follows
the same plan as in Sabitov [7]. The basic addition here is a way of streamlining a key
induction step using the theory of places instead of resultants. This has the advantage
that the proofs are simpler and easier to find, but the calculation of the polynomial in
the main result is much less explicit. We owe Stephen Chase a deep debt of gratitude
for suggesting the theory of places as the proper algebraic tool for the problem at hand.
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2. An algebraic reformulation.

Although we are primarily interested in surfaces in Euclidean three-space, it is useful
to think of things in the following way. Let p; = (x4, v:,2:), 7 = 1,... be a finite number of
points, where the coordinates z;, y;, z; together are algebraically independent quantities
and generate a field K = Q(z1,y1,21,2,Y2,22,---). So each point p; belongs to K3,
= 1.....

Let M be a triangulation of an orientable combinatorial 2-dimensional manifold. In
other words M is a 2-dimensional simplicial complex such that the triangles (2-simplices)
adjacent to a given vertex form a cycle, and there is a consistent orientation to the
triangles.

Let M — L3 be a map that associates to each vertex i of M the point p; € L3, where
L is any field of characteristic not 2,3. We regard this map as a singular surface S. We
define the (generalized) volume of S as

1
VOl(S) = 6 Z det[piapj7pk]:

[’i,j,k]EM+

where the sum is taken over all positively oriented triangles [i, 7, k] of M (denoted by
M) (In our notation describing a matrix, we will treat vectors as columns).

Let L be any field that contains a ring R. Recall from algebra (see Lang [6]) that
an element x € L is defined to be integral over R if there are elements a; € R, i =
0,1,...,n—1 such that

"+ an_12" -+ a4+ ag = 0.

For any field L we say that the square of the edge length between p; and p; in LY is

(0o —pj)° = (@ —z;)* + (yi —y;)* + (2 — 2;)* ..., where p; = (zi, ¥i, 2iy - . . )
The following is the main result of this paper.

Theorem 1. For any (singular) orientable surface S in L3, where L is any field of
characteristic not 2 or 3, 12vol(S) is integral over R, the ring generated by the squares
of the edge lengths of S.

Remark. In order to prove Theorem 1, it is enough to consider only the case when
the field L is the field K described above. We can simply specialize each independent
coordinate x;, y; or z; to be the desired quantity in the field L. This provides a (ring)
homomorphism K — L, and the integral condition for vol(S) is preserved. In particular,
we can take L to be the real field.

Corollary 1. If S; is a flex of an orientable (singular) sdrface in R3, then vol(S;)is
constant.

Proof. The integrality condition insures that there are at most a finite number of values
for vol(S;), independent of ¢, 0 < t < 1. Since vol(S;) is continuous in ¢, it must be
constant.
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3. Places.

In order to streamline our tests for integrality, we repeat here some basic facts from
Lang [6]. Suppose L and F are fields. Let ¢ : L — F U {oo} be a function such that for
all z.y € L,

(1) oz +y) =) + oY)
(i) o(xy) = p(z)e(y) and
(iii) (1) = 1.
where it is understood that for a € F (called a finite a) a £ c0 = 00 - 00 = 5 = 00,
— =0.and if a #0, a- 00 = co. (The expressions %, 2,0 00,00 £ 00 are not defined).
We call such a function a place for the field L. Our basic tool for integrality is the
following from Lang [6], page 12.

Lemma 1. An element x in a field L containing the ring R is integral over R if and
only if every place defined on L that is finite on R is finite on x.

Corollary 2. Suppose that x.y are both integral elements in a field containing a ring
R. Then z 4+ 1y and x — y are integral over R as well.

4. The Cayley-Menger determinant.

We need an algebraic condition on the set of distances between pairs of points that
are satisfled when they exist in L, where L is any field and N = 3,4. In the following
vol[pr,... .pn] = Tni—l)‘ det{p1,...,pn] is the (n — 1)-dimensional volume of the simplex
determined by pi,...,pnp. It is clearly 0 when the vertices lie in an (n — 2)-dimensional
hyperplane. It is also clear, using the multilinearity of the determinant, that this defi-
nition of volume agrees with the definition in Section 2. (In other words, the expression
for volume in Section 2 is invariant under translation of the vertices.)

Let p1.po,... ,pn € LY be n points and let d?j =i —p)},i#j=12,...,n be
the squared pair-wise distances. Then we define the Cayley-Menger determinant to be

001 1 1 - 17
L 0 di, diy - di,
L dfy 0 diy - di,

CM|py,...,pn] = det
SRR R S

L1 d3, d3, - - 0 J
The algebraic condition on distances is given by the following.

Lemma 2 (Cayley-Menger). Suppose, for a positive integer N, py,pa,... ,pn € LN
are n. points, where L is any field of characteristic not 2,3,... ,n — 1. Then

CMpy,... ,pn) = (=1)"2" Y (n — ))2vol®[py,... ,pnl,

where vol represents the oriented (n — 1)-dimensional volume.

This result can be found in Blumenthal [1], page 98.
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Corollary 3. If p1,p2,p3,p4,05 € L? for any field L not of characteristic 2 or 3, then

CM p1,p2,ps,p4,p5) = 0.

Corollary 4. If p1.pa,p3,.ps € L2 for any field L not of characteristic 2 or 3, then

CM|p1,p2. ps, pa) = 2262 vol®[py, p2, p3, pa] = 2(12 vol[p1, p2, p3, pa))?,

where vol is the 3-dimensional volume, and

(12vol[p1, p2, p3, pa))? € Z]. .. ,dfj, o

Proof. The coefficient of each term of CM[py, ps, p3, p4] is divisible by 2. (Each term in
the expansion of the determinant is repeated when all the matrix entries are reflected
about the main diagonal. These are distinct terms since if the entries in a term are
reflected into each other, one entry must be fixed along the main diagonal and be 0 since
the matrix has an odd number of rows and columns.)

5. The Key Lemmas.

We need to control the behavior of a place when it is defined on various extensions of
our base ring R. Recall that in K, (p;—p;)? # 0 for all i # j, because of the independence
of their coordinates.

Lemma 3. Let py, p2,p3, P4, ps be a configuration of 5 points in K2. Define

D /,"“35 D ay = di, ag = d3
2 A > 3

v 3

P, ¢ P, c1 = d3, 2 =d3s

Let o be a place defined on the field generated by all dgj, 1#7,1,7=1,2,3,4,5 such
that

p(b1) = @(b2) = ¢ (2—1) = <Z—Z> = 00,

and o(d%). i = 1,2,3,4 and ¢(cq) are finite. Then ¢ (b_fll);) # 0 and hence ¢ <%11~> =
o) =

Proof. By Corollary 3 we have
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(01 1 1 1 1 7

[ 1 0 (25} C1 d%t’;j 1

1 ay 0 Co @ d%5 2
det | =0
1 D) o 0 las d?r 3

El c1] by ax |0 dﬁ5]4

L1 dly dis d35 idiy O

We divide each circled row and column by the circled entry in that row or column, b;
or by. This gives the following:

_ — —~ -
0 L 1 1 L 1
| b1 be
{
(Lo o @ ke dhalls
kbl f b1 blb’z bl)
\

2 |2
Logtl 00 e @® das
det =0
. az 2 3
1 (D e 0 8] di
2
L1 cy az fiAi] 4
&2 1b1b2 @ bo 0 b
d; 2 2 | di. 5
L L] dys dys [0
A AN

It » (ﬁgq) = 0. then all the matrix entries of ﬁgCN[[pl,pg,pg,m,ps] would have

a finite ¢ value and each entry in the circled row or column would be 0 except the
circled entry 1. Expanding the determinant in each of these rows or columns gives the

determinant
0 1
det L 0} = -1

so applying ¢ to both sides we get a contradiction to Corollary 3. Thus we get that
D ﬁg; #= 0.

We now prepare for the analysis of the behavior of a place ¢ in a neighborhood of a
point in a surface S.

Lemma 4. Suppose that p1,... ,pn,Pn+1 are n+ 1 distinct points in K° and that ¢ is
a place defined on the field generated by all the pair-wise non-zero distances dfj, 1% 7,
Ly=1.....n,n+1, such that

@(df’nﬁu) and (p(d?yH_l) are finite fort=1,... ,n (1 + 1 mod n).
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Then for some i, ©(dZ,.,) is finite, i = 1,2,... ,n—2 .

Proof. Suppose ¢(d?,,,) = occ fori =1,...,n —2. We will find a contradiction. We
will show inductively for i = 3,... | n,

This is clear for 7+ = 3. We assume it for ¢ and then we will show it for i + 1. Apply
Lemma 3 to

2 2

ay =dj; ag = dj
— 42 — 2

by = dl,i by = di—l,H—l
— q2 — 2

cr=df ;1 Ca=d;_q,

The conclusion of Lemma 3 is that

2
1 dl,i+1
® <a> =@ ( d%,i > - ‘P(d%,iﬂ) = 0oQ.

This is the inductive step. But this is the desired contradiction since for i = n, we get

©(d?,)) = oo, which contradicts ¢(d3 ,,) finite. Thus finally some ©(d? ;. ,) is finite.

6. The complexity of a two-manifold.

In order to describe the induction steps to follow, we define a partial ordering, which
we call complexity, for the combinatorial types of closed, orientable, triangulated two-
manifolds M. Let M, N be two such two-manifolds. If the genus of M is less than the
genus of IV, then we say M has less complexity than N. If the genus of M equals the
genus of N, and M has fewer vertices than N, then we say M has less complexity than
N. If the genus of M is equal to the genus of N, M and N have the same number of
vertices and the minimal degree of a vertex of M is less than the minimal degree of a
vertex of IV, then we say M has less complexity than N. The proof of the main theorem
will be based on the complexity of M, the underlying two-manifold. It is clear that any
given two-manifold can have only a finite number of other two-manifolds of comparable
strictly less complexity in any given chain. It is also clear that the tetrahedron with 4
vertices and 4 triangles has strictly less complexity than any other such two-manifold.
Corollary 4 allows us to start the induction.
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7. Surgery.

Suppose that there are three vertices i, j, k of an orientable, closed, triangulated two-
manifold such that all three edges [¢, j], [/, k] and [k, ] are edges of M. If the triangle
[i.J, k] is not part of the triangulation of M, then we say that the three edges form a
splitting triangle T for M.

Topologically T" forms a simple closed curve in M which separates a neighborhood into
two components. We now describe how to do surgery along T. Remove the vertices 1, j, k
and replace them with two triangles Ty, T5 that are each in a new triangulation of a new
manifold M’. T, is joined with the vertices of M in one component of the neighborhood
of T"and Ty is joined with the other. We call M’ the result of doing surgery on M along
T.

Lemma 5. The complezity of each component of M' the surgered manifold is strictly
less than the complexity of M.

Proof. There arc essentially two cases.

Case I: T separates M into two components M7, M;. Here the genus of M; UT; is no
larger than the genus of M for i = 1,2. But both M; and M, have fewer vertices than
M and thus less complexity.

Case II: T does not separate M. Here M’ is connected but the genus of M’ is one
less. and thus the complexity is strictly less.

Splitting Triangle / M,
IA\ T

We also need to consider what happens to the volume function when we do surgery
along a simple closed curve C' in a manifold M. By surgery we mean we cut M along
C"and add a triangulated disk D (with the consistant orientation on each triangle in D)
to one local component and —D (that is D with the opposite orientation) to the other
local component, obtaining the surgered manifold M’. Let S be the (possibly singular)
surface corresponding to M, and S’ be the (possibly singular) surface corresponding to
M'. Note that M’ may consist of two components in which case the volume function is
the sum of the volume of each component. In any case we have the following.

Lemma 6. vol(S) = vol(5’).

Proof. Each triangle in the disk D contributes one extra term in the calculation of the
(generalized) volume, and the negative of that term appears in —D. Thus the volume
remains the same.
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8. The proof of the Main Theorem.

We will proceed by induction on the complexity of the underlying manifold M. We
will assume the statement of the theorem for all manifolds of strictly smaller complexity
than M, and for all fields L. However, for the induction step we will assume that the
underlying field for M and the corresponding singular surface S is the field K described
in Section 2, where all the p;, i = 1,..., N are distinct. After we have shown that
12vol(S) is integral over R for K, we can recover the statement of the theorem for a
general field by the Remark.

The induction starts with the tetrahedron, which has the smallest complexity. The
corresponding surface S for the tetrahedron has 12vol(S) integral by Corollary 4. We
will assume that every manifold with comparable smaller complexity has the property
that its corresponding surface S has an integral 12vol(S). Since there are only a finite
number of manifolds that we can obtain with splitting along a triangle or exchanging
edges (described later), we will be done when we show 12 vol(S) is integral over R with
our assumption.

If M has any splitting triangle T', then the surgered manifold has each component
M, M, (possibly only one component) of smaller complexity. Thus each corresponding
surface S1, Sz has 12vol(S;), 1 = 1,2 integral over R. Since vol(S) = vol(S;) + vol(Ss)
by Corollary 2, 12 vol(S) is integral over R.

Suppose M has no splitting triangle. Let p,4+; be a point corresponding to a vertex
of M with minimum degree n. Suppose p;,...,pn are the other points in order cor-
responding to the adjacent vertices. By our assumption about no splitting triangles,
[i — 1,7+ 1] is not in the triangulation M, (i — 1,4+ 1 mod n). Thus we can replace
any edge [i — 1,7 + 1] with [i,n + 1] and the triangles [{ — 1,i,n + 1], [{,i + 1,n + 1]
with [t — 1,1+ 1,n + 1], [ — 1,4,¢ + 1] to get another orientable two-manifold M; and
a corresponding surface S;. Each M; has a smaller complexity than M, so 12 vol(S;) is
integral over R[d?_; ;,,]. See the Figure at the end of Section 7.

Let ¢ be any place defined on the field generated by R[d%’:;, e ,df__l’H_l,. . ,dﬁ_l,l]
that is finite on R. By Lemma 4, cp(d?_l,iﬂ) is finite for some i. Thus (12 vol(S;)) is
finite. -By Corollary 4, ¢(12vol([pi—1,D:, Pi+1, Pn+1)) is finite as well. Since vol(S) =
vol(S,) =+ vol([pi-1,Di, Pit1,Pn+1)) We see that ¢(12vol(S)) is also finite. Thus, by
Lemma 1, 12 vol(S) is integral over R and this finishes the proof of the Theorem.
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