S

Math. Proc. Camb. Phil. Soc. (1980), 88, 299 299
With 5 text-figures

Printed in Great Britain

A convex 3-complex not simplicially isomorphic
to a strictly convex complex _ )
ARG iy Wi it oy 0 Sl QQ) CCAVEX Lo Pilj e |

BY ROBERT CONNELLY+ axp DAVID 1y HENDERSON
Cornell University, Ithaca

(Received 30 July 1979, revised 26 November 1979)

(L) Introduction. A set X in euclidean space is convex if the line segment, joining any
two points of X is in X. If X is convex, every boundary point is on an (n— 1)-plane
which contains Y in one of its two closed half-spaces. Such a plane is called a support
plane for X. A simplicial complex K in R™ is called strictly convex if | K| (the underlying
space of K} is convex and if, for every simplex ¢ in 8K (the boundary of K) there is a
support plane for | K| whose intersection with |K| is precisely o. In this case |K| is
often called a simplicial polytope. .

If | K is just convex it is often desired to move the vertices of K (slightly) so that
the altered complex is strictly convex. In Theorem 2 we provide an example of a
3-complex where no such altering is possible W‘mﬁfﬁﬁgt we show a
bit more. There is a 3-complex K such that |K| is a tetrahedron (and thus convex)
and A is not simplicially isomorphic to a complex K’ in R?, where | K| is convex and
the condition for strict convexity holds at the vertices of K'.

Part of the motivation for this example was the following statement made by D.
Chillingworth in (4) on page 354: . . . we can if necessary slightly alter the positions
of some of the vertices to obtain a complex simplicially isomorphic to K, which has
no two vertices at the same height and is such that vy Is strictly higher than all the
other vertices’.

Our Theorem 1 provides a specific complex 7', where |T| is a triangle (2-simplex),
such that if 7' is the projection (from an appropriate point below say) of a simplicially
ixomorphic complex 7", which is part of the boundary of a convex surface in 3-space,
then |7 has to be a flat triangle, so its interior vertices violate the condition of
“trict convexity. The condition needed for 7' to have the property that Theorem 1
holds, is that a certain interior triangle be turned or twisted sufficiently with respect
to the outer triangle. When 7 satisfies this condition (defined later) we say it is twisted.
[t turns out that, if 7'is twisted, then any other complex 7" simplicially isomorphiec to
I with the corresponding vertices of 7" close enough to 7', is twisted also. Thus if

I is a subset of the boundary of a tetrahedron, then it provides a counterexample to
the statement of Chillingworth. Theorem 2 gives a way of triangulating the whole
tetrahedron so that the interior simplices force the one face to be twisted, thus providing
+ wlobal counterexample to Chillingworth’s statement. (We say a complex K (recti-
Crearly) triangulates a space X, if X = |K|.)
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[t should be borne in mind that there is no way of ﬁndlng a global counterexample

just using a triangulation of the boundary of a convex 3-dimensional set. A \ theorem

of Steinitz (see (16) or (9), chapter 13, for example) says that, among other thlng@
any abstract simplicial complex topologically homeomorphic to a 2-dimensional
sphere is simplicially isomorphic to the boundary of a strictly convex complex.

Despite these counter-examples, corollaries 2 and 3 of Chillingworth are unaffected,
since the starting vertex in the theorem can be chosen appropriately anyway without
using the statement we quoted above. In fact, the main theorem itself is apparently
still true as can be seen by a slightly different argument (provided to us by Chilling-
worth in private communication).

Another motivation (and the inspiration) for the example of Theorem 1, is that it
can be interpreted in terms of frameworks in the plane. If the vertices on the boundary
of the triangle are held fived, for any given triangulation one can ask if it is possible
to assign positive scalar tensions to the interior edges so that each interior vertex is
in equilibrium. An interpretation of Theorem 1 via the work of J. Clerk Maxwell (13)
or (. Cremonaf(e) (see also H. Crapo and W. Whiteley(5)) implies that if the tri-
angulation is twisted no such positive tensions exist.

Yet another use of these 3-dimensional examples is to find analogous examples in
dimensions greater than three. Previously such examples had been constructed from
a related example due to Barnette (1) following Griinbaum(9), p. 218, and Grinbaum
and Sreedharan(10). We construct triangulations of the boundaries of convex sets of
dimensions >4 such that they are not simplicially isomorphic to strictly convex
complexes. We can also construct the Griitnbaum-Sreedharan-Barnette type of
examples as well, but with more vertices.

Lastly, we briefly discuss a hierarchy of examples such as ours, and mention some
related ideas and conjectures.

(11} The rvamples. Let A,, d,, A, be the vertices of a triangle A in the plane. Let
B,. B,. B, be three points inside A such that the triangles A, = 4, 43 By, A, = Az A, B,
and A, = 4,4, By do not overlap except on common vertices as in Fig. 1. Consider
the thive ungles ZB, A, By, /By Ay By, LBy A3 B, regarded as (closed) subsets of A
(<haded in Figure 1). If A,, A,, and A, are part of a rectilinear triangulation 7' of A
and the three angles above do not have a point in common, we say 7' is twisted. Fig. 2
shows one such simple triangulation.

[n what follows we shall regard a surface (with boundary) as convex with respect to
« point p in 3-space if the 3-dimensional solid, obtained by joining all possible line
segments from p to the surface, is convex, and each ray from p intersects the surface
in at most one point.

THEOREM 1. Let T be a twisted triangulation of A, and p a point not in the plane of
A f T is a triangulated surface, convex with respect to p, such that T is the projection
from pof T ', then T’ is planar.

Proof. Let AL A; Aj be the triangles in 7" carried on to Ay, Ay, Agof T, respectively.
If any two of these are co-planar, then 7" is planar since it is convex. (The vertices
on the boundary of 7* would determine a support plane.)

ata
phu

ther
by 1
mus
inte
tha-

I3
whe
par
mee
COTL
a }1»
inte
erit
at

180

(hu

sin

of .




RSON

hal rounterexample
e oset. N rtheorem
mone other things,
reo a 2-dimensional
Lex complex.

orta ave unatfected,
ey anvway without
it is apparently
- to us by Chilling-

Pheorem 1, :s that t
ices on the boundary
5 oask it it iz possible
h interior vertex is
J. Clerk Maxwell 113
piies that if the tri-

\:]()g()ll‘\' ©Xd mples 111
on econstructed from
213, and Griinbaum
ies of convex sets of
<t strictly convex
1 Barnette type of

<. 2.‘11(1 ment on some

-3 in the plane. Let
LB, N, = dyd, By
i< in Fig. 1. Consider
oseds s shsets of A
1l alerion T oot A

v 1o i sted ) gl 2

conren ik respect to
ining all nossible line

interseers e surface

st ot L the plane of

St T is tae projection

A of Tvenpectively.
convex. : Phe vertices

A complex not isomorphic to a convex complex 301

' v )’\ Ll ' _“N"“ )
Fig. 1 g s T RV Fig. 2
b R TR e e
If no two of A}, A;, Aj are co-planar, the planes determined by them must i tér?é’ét

at a point ¢'. Let ¢ be the projection of ¢ into the plane of A, the twisted face.

Note that the planes determined by A;_; and A7, (indices mod 3) must be support
planes which interesct in the line q' 4, where A} projectson to 4;.

The plane determined by p, ¢, d; (1 = 1,2,3) separates Aj_; and A,;. (If not,
then one of A} , or A’_, is on the opposite side from p of the support plane determined
by the other, which contradicts convexity.) So the projection from p of the line ¢'4;
must lie in the shaded angle ZB;_, 4; B,,, in the plane of A. Hence q must lie in the
intersection of the shaded angles, which does not exist. Then the only possibility is
that 7" is planar, as was to be shown.

Remark 1. In Shephard(15) and Supnick(17) criteria or algorithms are given for
when a ‘spherical complex’ is the central projection of a convex polytope. See in
particular Theorem 3 of Shephard (15). If one takes the triangulation 7 as above and
incorporates it as one face of a tetrahedron, then T will be the projection of a strictly
convex complex if and only if the spherical complex obtained by projecting 7' (from
a point inside the tetrahedron) and the rest of the triangulation of the tetrahedron
into the 2-sphere is the central projection of a polytope. Thus Shephard and Supnick’s
criteria must be violated if 7' is twisted. Perhaps this can be seen also from just looking
at Shephard’s criterion, but we think that our method is simpler for our case.

(‘oROLLARY. If, as in Theorem 1, T s twisted, and T' is convex and simplicially
isomorphic to T, with the vertices of T" su ficiently close to the corresponding vertices of 1
(but not necessarily projecting onto T'), then T" is planar.

Proof. T' projects on to some other twisted triangulation of A in the plane of .
since the property of being twisted, as we defined it, is open.

Remark 2. With the triangulation of Fig. 2 it is easy to see that it is the projectio
of a strictly convex triangulation if and only if the intersection of the open angles

.
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not empty. One could view this as a precise statement of how far the triangulation
must move to guarantee the global conclusion of Steinitz’s theorem.

In the following let 7' be the particular twisted triangulation shown in Figure 3
where Pistotheleftof 4; B, ,,7 = 1,2, 3.

TurorEM 2. The triangulation T can be extended to a subdivision T of a tetrahedron
such that, if T is simplicially isomorphic to a convex complex T', the corresponding
tieisted face T" is planar (and thus the condition for strict convexity at the vertices is
vinlated).

©Ve
Proaf. Let (' be any point not in the plane of A, and consider the tetrahedron t
lydy Let D, i =1,23 be any point in the relative interior of the triangle

(.
('d; 4 4. (indices mod 3) such that the line determined by C, D, intersects the edge
4,24, inthe angle Z B, 4, P and such that the lines D, 4, ({ = 1,2, 3) are disjoint.
Then all the faces of
3
TU{CPYUUACD A, CD Ay DA, 4,,, 4, D,;,CB}

i=1

fon
P

b

cOr
form a complex in 3-space, which is a triangulation of the boundary of C4, 4, 4, (T

together with seven spanning 1-simplices. By the lemma of J. H. C. Whitehead (19)

orlemma 6 of R. H. Bing(2), this complex can be extended to a rectilinear triangulation

Tof O, 4,4, See Figs. 4 and 5. (o
Suppose we have a convex complex 7" in R3 simplicially isomorphic to 7'. Primes co

will label corresponding vertices. Project 7", the image of T' (the twisted face) from

('into the plane of 4] 4; A4, Call the projection 7. We claim this projection is twisted sp

also. (A7 and "B} project to A7 = A} and Bj, and A Dj (i = 1,2,3) must project

into the angle 2 By A7 P". Also, Dj will project outside of or on the boundary of A 4} A3, o

because 77 is convex: and 4] D; must be between (P’ and (" B;. To see this note, for th

example. that the loop C-B,~P-C links A, D, in C4, 4, A; and linking is preserved o

because the correspondence from T to 7" is a homeomorphism. This ensures that K

T 15 twisted. Thus by Theorem 1, 7" is planar. (It may be helpful to construct a

model from pipe cleaners.) i
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Dy
— B,
B, P
—(
D, Ba
As
N Fig. 5. View from C.

Remark 3.1 4, D, (1 = 1,2 3) are woven ag in Fig. 4, then the proof will go through
evenit £ is deleted from 7' In fact it is not hard to see that Theorem 2 holds for any
twisted face T

Remark 4 We can use the examples of Theorem 2 to provide alternative generators
for examples asserted to exist by the following theorem (stated in our terms) due to
P. Mania2) (his Proposition 2). This is a higher-dimensional version of Theorem 2,
but here only the sphere boundary is needed.

For a closed (n - 1)-dimensional surface in R®, we sayv it is convex (or strictly
convexiif the bounded domain enclosed by the surface is convex (or strictly convex).
{The interior simplices are not needed for strict convexity.)

TuroreN 3 (Mand). For each n = 4 there is a convex simplicial complex (a simplicial
(v=- 1 spherey K70 i B such that Ko~ 4s not simplictally isomorphic to a strictly
conrer compler in R

Actually rhe (n — 1)-spheres guaranteed by Mani have only n + 4 vertices, and our
sphere will surely have many more but our methods are somewhat different.

Briefly the idea is to start with an example of Theorem 2 and then take the cone
over its boundary from a point in R* not in R3. This defines K3 in R*. Triangulating
tue bonnded domain of |A3| without adding any new vertices to K and taking the
cone over A% from a point in R5 not in R? gives A%, ete. It is easy to show that these
A7 s have the desired properties for Theorem 3.

I Manicr2r K3 is created from a complex due basically to Griinbaum and Sree-
dharanoror and simplified (and changed slightly) by D. Barnette (1). This is a simplicial
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subdivision of a tetrahedron (with eight vertices) that is not simplicially isomorphie
10 a strictly convex complex in R4 See Griinbaum (9) chapter 11 for another version
(the first). To rephrase this, there are examples of d-diagrams for d = 3 {simplicial
subdivisions of d-simplices) that are not Schlegel diagrams (projections onto one
fice of the rest of the boundary) of a polytope in R4+1 (a strictly convex triangulated
{-dimensional surface). In all of our examples coming from Theorem 2 at least one
f — D-dimensional face has a support plane that intersects the convex sot in just that
face. No we could project from a point close to the face on the opposite side of the rest
of the complex to get our own examples of d-diagrams that are not Schlegel diagrams.
't is intriguing to compare the twisting in our examples with the twisting in Bar-
nette’soy. Our examples, however, will have many more than eight vertices.

According to Barnette, Griinbaum’s example and his have the property that they
cannot he “inverted . That is they could be realized in various ways with different
tetrahedra as the outside tetrahedron, but not any tetrahedron can be the outside ofa
representation. He even conjectures that an invertible 3-diagram is a Schlegel diagram.
It would be interesting to know if our exam ples are invertible. However, see (24).

(L) The hicrarchy and some questions. The examples discussed above fit naturaily
into a hierarchy of complexes that have more and more convexity. First, there is
Cairns” example (3) (see (9) or (18) also) of a 3-complex with a subdivision isomorphic
fo a subdivision of a 3-simplex, but not isomorphic itself to any complex in R3.

Second. there are examples due to Goodrick (8) of complexes in R3 which have sub-
divisions isomorphic to a subdivision of a 3-simplex, but are not themselves isomorphie
toany convex complex in R3. These are the cubes with a knotted plug, and it is possible
for them to be simplicially collapsible, also, as long as the ‘bridge number’ of the knot
is 2. (See Lickorish and Martin(11).) If the bridge number of the knot is high, then it
turns out that these examples cannot simplicially collapse (see Goodrick(8)) and from
Chillingworth's theorem thev, therefore, cannot be simplicially isomorphic to a convex
complex in B3,

Third. our example of Theorem 2 is convex but not strictly convex, and in higher
aimensions it need only be defined on the boundary.

In view of our results, it is natural to make the following definition. A convex
simplicial complex K in R” is said to be k-strictly convex if, for every k-simplex o*
in the boundary of K there is a support planc for | K| intersecting | K| in only o*.

[t is easy to check that if A is k-strictly convex, then it is 'k’-strictly convex for
every A" < bk and if K is (n — 2)-strictly convex, it is (n — 1)-strictly convex. So (n — 1)-
strict convexity is what we have been calling striet convexity.

Note that even if for every (n — 3)-simplex, 73, in the boundary of X, a support
planc of [A] intersects |K | only in o"=3, then & might be non-convex.

Theorem 2 can be interpreted as saying that the complex defined there is not
simplicially isomorphic to a 0-strictly convex complex. However, Theorem 3 seems
to need (n — 1)-strict convexity-.

Question. Let K be a convex O-strictly convex complex in R*. Is K simplicially
isomorphie (by & small move) to a complex A’ that is (n — 1)-strictly convex?

If ti
differe

For
but v
imterse
One ¢
as et

The
small
equilil
conve
that I
avert
face a
that t
put »
triang

Ren
to be
“stelli
star p
theort
L (not
(sece 7
conve

:l(/r
Rudnr
nition
spann
three-
This i
MeMu
that t
shell,
altern

Hon
on the
be mo
This «
bounc
cone «
triang

compl




sonrphie
her version
Csimpliciad
w5 oonto one
ringulated
o bast one
in st thadt
Cofthe pest
4 ams.
ine in Bar-
votaat they
trcdifferent
cntsicde of a
sobdlagram,

ceo (24

it naturally
<t. there i~
wsemorphi
<y
Lohave sub
omaorplhile
1 is possible
of the knot
ioh, then 1t
< and from

toa conves
adn higher

¢ A conves

Y 'vx [
m’t».‘ ff’.
convex tos

~o (n--1)
A support

there is not

o 3 oseeins

stmplicially

A

A complex not isomorphic to a convex complex 305

If the answer to the question were affirmative, then there would be little essential

AP

difference between the types of strict convexity.

For n = 3 the answer to the question is yes. A detailed proof is out of place here.
hut very briefly the idea is to find a triangular face, if one is available, that is the
intersection of a support plane with |K|. By projecting the rest of K into this face
one can view the projection as a framework in equilibrium with non-negative tenstons

ax mentioned in the introduction.

The edges with 0-tensions correspond to the “flat " edges of K. By adding a verv
«mall amount of tension to these 0-tension edges the framework then will have anotter
cquilibrium near to the original. Then a 1-strictly convex surface (thus strietly
~onvex) can be recovered close to the original K. If K hasno triangular face (2-simplex)
that is the intersection of a support plane with | K|, then it can be shown that K has
vertex ¢ with only three *bent” edges. Then one can “slice off” v to create a trisigiile.
face and apply the above procedure leaving the tensions zero on the O-tension ¢
that touch this new face. This will create a triangular face outside the star of ¢ 1e.o
put ¢ back in by extending the nearby faces. The altered complex will now ..

triangular face and the above argument applies.

Remeark 5. A natural question is: can a conves complex be subdivided o wlics
to be altered to a strictly convex embedding? 1t is easy to see that if one taks
“stellar” subdivision of a strictly convex complex, then there is a small motion of .
star points that makes that subdivision strictly convex. (See Ewald and Shephard .
theorem 4. for this same observation.) Any convex n-complex K of R*hasa subdivis
/. (not necessarily stellar) which is isomorphic to a stellar subdivision of the n-sitng
(see Zeeman(20) or Rourke and Sanderson(14) for instance). Thus L has a st
convex embedding in R7. So the answer to this question is ves.

Addendum. R. Stanley has pointed out to us that if one takes an example ot M
2udin(22). which is a non-shellable triangulation of tetrahedron (see (22) for th
nition of shellable), and cones over its boundary from a point in R%, not in the 3

spanned by the tetrahedron, thenone obtains another example of a convex triang il
three-sphere in R* that is not simplicially isomorphic to a strictly convex embeiid
Thix is because if there were a strictly convex embedding in R an argument -
MeMullen23) (p. 182 in the middle). following H. Bruggesser and P. Mani2ny u.
that the complement of the star of the cone point, which is the Rudin complex.
el a contradiction. Thus there is no strictly convex embedding. So this provice. .. -
aternate example for Theorem 3.

However, there is more. Rudin's complex has the property that ail s st
i the houndary of the tetrahedron, and it is 1ot hard to show that the veru
e moved slightly so that Rudin's example can be taken to be strictly T
This can be seen since the subdivision of the tetrahedron when restricred
Ponndary is a stellar subdivision and Remark 5 above applies. If one now tas..
cone over the boundary of this complex, Stanley’s argument still applies, and a2 this
trianenleted three-sphere is also not simplicially isomorphic to a strictly coneox
complex in 71 However, it is easily seen that this three-sphere in R* is O-strictl.
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convex, Thius the answer to our question above in the beginning of this section is that
Ak not alwavs simplicially isomorphic to a strictly convex embedding, even if it is 0-
strietly convex,
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and also fit the triangles of T(B) in B.

All that remains to be done is to triangulate the part of the elements
of V. not in elements of W', and do this so as to get a fit with the other
elements of 7', previously defined. As a step toward this, we consider a
face I of a tetrahedron of V. and triangulate it. Now F' already has a
linear structure under T., and if F does not intersect B, we leave F as it
is.  Otherwise F'is given a triangulation T(F) into triangles under 7', so
that if an element of 7(B) lies in £, this element is an element of 7(F)
— furthermore 7T(F') is chosen so that if F,, I', have an edge in common
T(F), T(F ) agree on this edge and no edge of V, is subdivided.

Suppose © is a teirahedron of V. not covered by elements of W' and
T(Bd ») is a triangulation of Bd v imposed by the four triangulations of
the faces of ». It follows from Lemma 6 that there is a triangulation
T'(r) of » which is rectilinear with respect to the structure of » under T,
and such that each element of T(B) in v and each element of T(Bd v) is
an element of 7(»). For each tetrahedron ¢ in V, not covered by elements
of W, the elements of T(v) that do not lie in the sum of elements of W
are the remaining elements of T.. We note that these elements agree
with 7(B) on B and with 7, on the faces of the tetrahedra of 17,.

LEMMA 6. If Pis a finite polyhedron in E* and T(P) is a rectilinea)
triangulation of P, there is a rectilinear triangulation T of E* such that
each simples of T(P) is a sim pler of T.

PRrRoOF. First we build protective cushions about certain exposed parts

of P. First we cover exposed faces of T(P) and then we cover exposed
edges of T(P).

COVERING EXPOSED FACES. If abe is an exposed face of T(P) (some
interval intersects P only at a point, and this point belongs to Int ube),
consider a point p to one side of e and and so near the center of abe
that the tetrahedron «bep intersects P only in abe. We regard ¢bep as a
pyramid with base «b- and apex p. Such pyramids are placed over each
exposed face in T(F). on both sides of a face if both sides are exposed,
and such that no two of these added pyramids intersect except possibly

in a subset of their bases. Denote the sum of P and all such pyramids
bv /2.,

COVERING EXPOSED EDGES. Let ab be an exposed edge of 7(P)and ayz
be & small equilateral triangle such that ab is perpendicular to »yz at the
center of wyz and »yr hisects ub. We suppose that the triangles xyz are
taken so small that the double pyramids .wyze + aryzb about the various
edges b do not intersect. except possibly at the ends of the edges, and
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no one of these double pyramids needlessly intersects any face, edge,
vertex of T(F), or pyramid added in previous step.
P, and all such double pyramids by P..

Denote the sum of

THE TRIANGULATION T. Let 7" be a triangulation of E’ such that each
isolated vertex of T(P) is a vertex of T" and the 2-skeleton of 7" contains
each triangle abp, bep, ucp described at the first step, and each triangle
sy, b, yza, yzh. wza, r2b described at the second stage. Each tetrahedron
of T" not in P, is an element of T as is each tetrahedron in T(P).

We now triangulate a triangle abp introduced at the first step. The
intersection of it with the boundary of the double pyramid xyza + xyzbis
a broken line a¢b broken only at ¢. This broken line lies in the 1-skeleton
of T" and contains certain vertices of T'. Let T(abg) be the triangulation
of triangle abq formed by drawing edges from the center of triangle aby
to the various vertices of T" on broken line agb. Then T(abp) is a tri-
angulation of abp containing the triangles in T(abg) and the triangles of
T' in the closure of abp — aby. Triangulations T(bcp) and T(acp) are
given to bep and acp in a similar fashion.

We now triangulate the tetrahedron abep. Suppose the triangulations
T(abp), T(bep), T(abp) have been described as above. The tetrahedrons
of T'(ubep) consists of cones from the center of abep to the triangle abe,
and the triangles of the triangulations of the other faces of abep. Each
tetrahedron in each T(abep) is an element of T. Now we have described
all elements of 7T that lie in either P, or E' — P.. We note that ab is
an edge and abe is a face in this triangulation.

Now consider a tetrahedron abry in the double pyramid described at
the second step. If it does mnot lie in P, (elements of T have already
been defined covering it if it lies in P,) the closure of each component of

abay — P, is a pyramid abrs. Then «br and abs are triangulated as abq
was triangulated previously (it may be that abr or abs is an abq) and ars
and brs are triangulated by T7. Then abrs is triangulated by taking
cones from the center of abrs to the various triangles on its triangulated
boundary. The tetrahedrons beary and acxy are treated similarly.
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LEMMA 7. Suppose M is « 3-manifold with boundary, T is a tri-
angulation of M, K is closed subset of M, and f s a positive continuous
Frunction defined on M. Then there is a subdivision T' 0 F T such that each
clement of T that misses K is an clement of T' and each element tof T
that intersects K is of diameter less than the minimum value o f font.
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PrROOF. Let W be the set of elements of T that miss K and f' be a
positive continuous function on M such that f' < fand for each point «
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